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INTRODUCTION

Neurological disorders are complex diseases caused by a combination of 

genetic, environmental, and lifestyle factors. Most neurological diseases—such 

as schizophrenia, autism, and Alzheimer’s and Parkinson’s disorders—have been 

described many decades ago. However, it is only recently, with the use of next-

generation sequencing (NGS), that their full complexity is being revealed.1,2 There 

is an increasing awareness that disease development is driven through a complex 

interplay between somatic (non-inherited) mutations, inherited mutations, and 

epigenetic modifications.3,4,5,6 This complexity results in extremely weak genotype-

phenotype correlations, and the same disease can present with a variety of 

pathological phenotypes in different individuals. Not surprisingly, different neurological 

diseases present a spectrum of similar symptomatic profiles (such as dementia, e.g., 

Parkinson’s disease and dementia with Lewy bodies).7 These overlapping symptoms 

could indicate the involvement of the same underlying molecular mechanisms. A 

diagnosis based on these underlying molecular processes, as well as the observed 

phenotype, promises more objective and accurate diagnosis and treatment in  

the future.8

The increased information obtained from NGS, along with a variety of library 

preparation methods, offers an impressive armamentarium of tools to unravel the 

genomic and epigenomic aspects of psychiatric and neurodegenerative diseases. 

The improved understanding also could translate ultimately into the development of 

new, effective therapies. Additionally, whole-genome sequencing (WGS) potentially 

could detect predisposition to these disorders, to allow preventative care and 

early intervention. A recently announced massive 100,000 Genomes project, 

initiated by Genomics England, signifies the importance of genomic diagnostics for 

tomorrow’s medicine.

Diagnostic yield for patients with severe intellectual disability (IQ < 50), specified by technology: genomic 
microarrays, whole-exome sequencing (WES), and WGS. Percentages indicate the number of patients in 
whom a conclusive cause was identified using the specified technique.9
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Diseases

Neurological diseases represent a daunting spectrum of complex multifactorial 

pathologies, ranging from subtle to life-threatening. To illustrate the most recent 

research and the use of genomics, this review focuses on schizophrenia and 

autism as examples of complex neurodevelopmental disorders, and Alzheimer’s 

and Parkinson’s as examples of neurodegenerative diseases. The approaches 

and techniques used in these studies can be applied to a wide variety of 

neurological diseases.

Schizophrenia

Schizophrenia is one of the most complex psychiatric diseases, and it affects as 

much as 1% of the global adult population.10 The most common symptoms include 

irrational thinking, auditory hallucinations, false beliefs, and reduced social activity. 

The disease typically develops between 12 and 25 years of age and is a highly 

heritable, polygenic disorder. Recent genomic analysis studies have shown that 

schizophrenia is attributed to over a thousand gene loci, many of which appear 

in non-coding parts of the genome.11-15 A significant subset of risk alleles for 

schizophrenia is also implicated across other diseases in this diagnostic category, 

such as bipolar disorder, autism, and depression.16,17,18 All these diseases are truly 

spectrum disorders, which has complicated understanding of their genetic causes 

and the development of targeted therapies. However, the advent of high-throughput 

gene sequencing technology provides a tool for deeper analysis of the genetic basis 

of these diseases, and it holds promise for unraveling the complex interplay between 

multiple genetic and epigenetic modifications.

Genotype-phenotype correlations in schizophrenia are extremely weak, and the same 

disease can present with a variety of pathological phenotypes in different patients. 

Studies with twins revealed that over 80% of the risk of developing schizophrenia 

comes from genetic predisposition, but exposure to environmental risk factors can 

play a significant role.20 The first genetic mutations detected in schizophrenia were 

rare variants, including copy-number variants (CNVs).21 Altogether, these variants 

account for almost 20% of disease cases.22 The remaining genetic hits are most likely 

represented by common variants.23 Presumably, the effects of individual common 

variants are mild; however, in combination, they may be sufficient to trigger the onset 

of schizophrenia.24,25 

“Schizophrenia liability is being mapped to hundreds, 	
perhaps ultimately more than a thousand, genetic loci, 
each contributing a small increment of risk.” Hyman 2014

10.	 Elert E. (2014) Aetiology: Searching for schizo-
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association analysis identifies 13 new risk loci 
for schizophrenia. Nat Genet 45: 1150-1159

12.	 Purcell S. M., Moran J. L., Fromer M., Ruderfer 
D., Solovieff N., et al. (2014) A polygenic bur-
den of rare disruptive mutations in schizophre-
nia. Nature 506: 185-190

13.	 Hyman S. E. (2014) Perspective: Revealing 
molecular secrets. Nature 508: S20
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Williams H. J., Dwyer S., et al. (2014) De novo 
mutations in schizophrenia implicate synaptic 
networks. Nature 506: 179-184
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378-385
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nomics C., Lee S. H., Ripke S., Neale B. M., 
Faraone S. V., et al. (2013) Genetic relationship 
between five psychiatric disorders estimated 
from genome-wide SNPs. Nat Genet 45: 
984-994

18.	 Cukier H. N., Dueker N. D., Slifer S. H., Lee 
J. M., Whitehead P. L., et al. (2014) Exome 
sequencing of extended families with autism 
reveals genes shared across neurodevelop-
mental and neuropsychiatric disorders. Mol 
Autism 5: 1

19.	 Wright J. (2014) Genetics: Unravelling com-
plexity. Nature 508: S6-7

20.	 Hyman S. E. (2014) Perspective: Revealing 
molecular secrets. Nature 508: S20

21.	 Wright J. (2014) Genetics: Unravelling 
complexity. Nature 508: S6-7

22.	 Wright J. (2014) Genetics: Unravelling 
complexity. Nature 508: S6-7

23.	 Wright J. (2014) Genetics: Unravelling 
complexity. Nature 508: S6-7

24.	 Wright J. (2014) Genetics: Unravelling 
complexity. Nature 508: S6-7

25.	 Gaugler T., Klei L., Sanders S. J., Bodea C. A., 
Goldberg A. P., et al. (2014) Most genetic risk 
for autism resides with common variation. Nat 
Genet 46: 881-885
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Along with determining the individual mutations leading to schizophrenia, the power 

of genetic analysis is expected to give answers to some other important questions, 

such as why the development of schizophrenia is associated with accelerated 

ageing26 or why schizophrenic patients suffer from heart, lung, and metabolic 

diseases at young ages and at a much higher rate than the general population.29 

These effects could be due to additional lifestyle risks, such as substance abuse and 

smoking. Approximately 50% of patients with chronic schizophrenia have substance-

use disorder, and their risk to develop this disorder is 4.6 times higher than for the 

general population. Over 80% of schizophrenic patients in the U.S. are also heavy 

smokers,30 as nicotine serves as an agonist of the nicotine acetylcholine receptor and 

presumably can attenuate some cognitive impairment associated  

with schizophrenia.31

Smoking and substance abuse are common among schizophrenia patients. Over 80% of schizophrenic 
patients in the U.S. are heavy smokers,32 as nicotine presumably can attenuate some of the cognitive 
impairment associated with schizophrenia.

Early, accurate, and objective diagnosis of the underlying molecular mechanisms 

of the disease will allow a better control of the disease symptoms with available 

therapies. In the more distant future, an improved understanding of the disease 

should lead to the development of more effective, targeted, and  

personalized therapies. 

Reviews
Anthes E. (2014) Ageing: Live faster, die younger. Nature 508: S16-17

Brody H. (2014) Schizophrenia. Nature 508: S1

Dolgin E. (2014) Therapeutics: Negative feedback. Nature 508: S10-11

Elert E. (2014) Aetiology: Searching for schizophrenia's roots. Nature 508: S2-3

Horvath S. and Mirnics K. (2014) Immune system disturbances in schizophrenia. Biol Psychiatry 75: 316-323

Hyman S. E. (2014) Perspective: Revealing molecular secrets. Nature 508: S20

Singh S., Kumar A., Agarwal S., Phadke S. R. and Jaiswal Y. (2014) Genetic insight of schizophrenia: past 
and future perspectives. Gene 535: 97-100

Schizophrenia Working Group of the Psychiatric Genomics C. (2014) Biological insights from 108 
schizophrenia-associated genetic loci. Nature 511: 421-427

Wright J. (2014) Genetics: Unravelling complexity. Nature 508: S6-7

Malhotra D. and Sebat J. (2013) CNVs: harbingers of a rare variant revolution in psychiatric genetics.  
Cell 148: 1223-1241

Schreiber M., Dorschner M. and Tsuang D. (2013) Next-generation sequencing in schizophrenia and other 
neuropsychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 162B: 671-678

26.	 Brody H. (2014) Schizophrenia. Nature 508: 
S1

27.	 Anthes E. (2014) Ageing: Live faster, die 
younger. Nature 508: S16-17

28.	 Hyman S. E. (2014) Perspective: Revealing 
molecular secrets. Nature 508: S20

29.	 Dixon L. (1999) Dual diagnosis of substance 
abuse in schizophrenia: prevalence and impact 
on outcomes. Schizophr Res 35 Suppl: 
S93-100

30.	 de Leon J. and Diaz F. J. (2005) A meta-anal-
ysis of worldwide studies demonstrates 
an association between schizophrenia and 
tobacco smoking behaviors. Schizophr Res 
76: 135-157

31.	 Ng E., McGirr A., Wong A. H. and Roder J. C. 
(2013) Using rodents to model schizophrenia 
and substance use comorbidity. Neurosci 
Biobehav Rev 37: 896-910

32.	 de Leon J. and Diaz F. J. (2005) A meta-anal-
ysis of worldwide studies demonstrates 
an association between schizophrenia and 
tobacco smoking behaviors. Schizophr Res 
76: 135-157



7 An Overview of Publications Featuring Illumina® Technology

References
Fromer M., Pocklington A. J., Kavanagh D. H., Williams H. J., Dwyer S., et al. (2014) De novo mutations 
in schizophrenia implicate synaptic networks. Nature 506: 179-184
Of the known risk alleles for schizophrenia, the only ones definitively shown to confer considerable increments 
in risk are rare chromosomal CNVs that involve deletion or duplication of thousands of bases of DNA. This 
study examined the effect of small de novo mutations affecting one or a few nucleotides. By Illumina HiSeq 
WES of 623 schizophrenia trios, the authors assessed de novo mutation rates and shared genetic etiology 
for schizophrenia, intellectual disability, and autism-spectrum disorders (ASDs). They found several insights to 
suggest a common etiological mechanism.

Illumina Technology: HiSeq for exome sequencing

Karayannis T., Au E., Patel J. C., Kruglikov I., Markx S., et al. (2014) Cntnap4 differentially contributes 
to GABAergic and dopaminergic synaptic transmission. Nature 511: 236-240
In an effort to understand the pathological development of neurological disorders, genetic effects have been 
studied in the context of proteins that are expressed in neural cells. In this study, the authors characterized 
the effect of CNTNAP4 knockouts on mouse behavior and development, and relate these results to the 
findings of CNVs in humans across a region including the CNTNAP2 gene. The authors found that CNTNAP4 
is localized presynaptically, and its loss leads to a reduction in the output of cortical parvalbumin (PV)-positive 
GABAergic basket cells. In addition, CNTNAP4-mutant mice showed defects in these neuronal populations 
and exhibited sensory-motor gating and grooming endophenotypes.

Illumina Technology: HumanHap550, HumanOmni1-Quad 

Purcell S. M., Moran J. L., Fromer M., Ruderfer D., Solovieff N., et al. (2014) A polygenic burden of rare 
disruptive mutations in schizophrenia. Nature 506: 185-190
Identifying gene associations for complex genetic diseases remains challenging, with small sample sizes being 
a hindrance for finding significant effects. In this study of schizophrenia, the authors performed WES, based 
on Illumina technology, of 2,536 schizophrenia cases and 2,543 controls. They identified disruptive mutations 
distributed across many genes; however, no individual gene-based test for low frequency and moderately 
large effect achieves significance after correction for multiple testing.

Illumina Technology: HiSeq 2000, Genome AnalyzerIIx 

Schizophrenia Working Group of the Psychiatric Genomics C. (2014) Biological insights from 108 
schizophrenia-associated genetic loci. Nature 511: 421-427
Schizophrenia is a highly heritable disorder, but the heritability is not found in a single gene effect. In this 
largest genome-wide association study (GWAS) for schizophrenia to date, the authors used single-nucleotide 
polymorphism (SNP) arrays for 36,989 cases and 113,075 controls to determine genetic risk factors for the 
disorder. The authors found that the significant genetic associations were not randomly spread across the 
genome, but enriched among genes expressed in brain and genes that have been associated with typical 
co-morbidity diagnoses, such as ASD and intellectual disability. Interestingly, links were also enriched within 
genes related to immunity, which fits the existing hypothesis of immune dysregulation in schizophrenia.

Illumina Technology: Human1M, HumanOmni2.5, HumanOmniExpress, HumanHap550, Human610, 
HumanHap650Y, HumanHap300

Stefansson H., Meyer-Lindenberg A., Steinberg S., Magnusdottir B., Morgen K., et al. (2014) CNVs 
conferring risk of autism or schizophrenia affect cognition in controls. Nature 505: 361-366
Certain CNVs contribute to the pathogenesis of schizophrenia and autism. In this study, the authors 
investigated the influence of these CNVs on phenotypes separate from those of the mentioned diseases. In a 
big population-wide study of nearly a third of the Icelandic population (n = 101,655), the authors used Illumina 
SNP microarrays to test for associations of CNVs with cognitive deficits, dyslexia, dyscalculia, and brain 
structure changes. The authors found that the 15q11.2(BP1-BP2) deletion affects brain structure in a pattern 
consistent with first-episode psychosis in both schizophrenia and dyslexia.

Illumina Technology: HumanHap300, HumanCNV370-Duo, HumanHap650Y, Human1M, HumanOmni2.5, 
HumanOmniExpress, HumanOmni1S



8 Neurobiology Research Review

Yoon K. J., Nguyen H. N., Ursini G., Zhang F., Kim N. S., et al. (2014) Modeling a genetic risk for 
schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions 
and polarity. Cell Stem Cell 15: 79-91
Defects in brain development can contribute to the onset of neuropsychiatric disorders. This study set out to 
identify the functional role of the 15q11.2 deletion on neural development using induced pluripotent stem cell 
(iPSC)-derived human neural precursor cells (hNPCs) by RNA-Seq and SNP-genotyping arrays. They found 
that haploinsufficiency of CYFIP1, a gene within 15q11.2, affects radial glial cells, leading to their ectopic 
localization outside of the ventricular zone.

Illumina Technology: HumanOmni2.5S 

Stoll G., Pietilainen O. P., Linder B., Suvisaari J., Brosi C., et al. (2013) Deletion of TOP3beta, a 
component of FMRP-containing mRNPs, contributes to neurodevelopmental disorders.  
Nat Neurosci 16: 1228-1237
Genetic studies, including studies of mRNA-binding proteins, have shed new light on the connection 
of mRNA metabolism to disease. In this study, the authors found that deletion of the TOP3b gene was 
associated with neurodevelopmental disorders in the Northern Finnish population. Combining the genotyping 
with photoactivatable ribonucleoside–enhanced crosslinking and immunoprecipitation (PAR-CLIP), the authors 
found that the recruitment of TOP3b to cytosolic messenger ribonucleoproteins (mRNPs) was coupled to the 
co-recruitment of FMRP, the disease gene involved in Fragile X syndrome.

Illumina Technology: Human Gene Expression, Human610-Quad, HumanHap300, HumanCNV370-Duo 

RNase T1 digestion

UV 365 nm

cDNA

Proteinase K

RNA-protein 
complex

RNA extraction and 
reverse transcription

Incorporate 4-thiouridine (4SU) into 
transcripts of cultured cells

Photoactivatable ribonucleoside–enhanced crosslinking and immunoprecipitation (PAR-CLIP) maps 
RNA-binding proteins (RBPs).33 This approach is similar to high-throughput sequencing of RNA isolated by 
crosslinking immunoprecipitation (HITS-CLIP) and cross-linking immunoprecipitation sequencing (CLIP-
Seq), but uses much more efficient crosslinking to stabilize the protein-RNA complexes. The requirement 
for a photoactivatable ribonucleoside limits this approach to cell culture and in vitro systems. In this method, 
4-thiouridine (4-SU) and 6-thioguanosine (6-SG) are incorporated into transcripts of cultured cells. Ultraviolet 
irradiation crosslinks 4-SU/6-SG–labeled transcripts to interacting RBPs. The targeted complexes are 
immunoprecipitated and digested with RNase T1, followed by Proteinase K, before RNA extraction. The RNA 
is reverse-transcribed to cDNA and sequenced. Deep sequencing of cDNA accurately maps RBPs interacting 
with labeled transcripts. (For more methods, see: http://applications.illumina.com/applications/sequencing/
ngs-library-prep/library-prep-methods.ilmn)

Ionita-Laza I., Xu B., Makarov V., Buxbaum J. D., Roos J. L., et al. (2014) Scan statistic-based analysis of 
exome sequencing data identifies FAN1 at 15q13.3 as a susceptibility gene for schizophrenia and autism. 
Proc Natl Acad Sci U S A 111: 343-348

McCarthy S. E., Gillis J., Kramer M., Lihm J., Yoon S., et al. (2014) De novo mutations in schizophrenia 
implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol 
Psychiatry 19: 652-658

Todarello G., Feng N., Kolachana B. S., Li C., Vakkalanka R., et al. (2014) Incomplete penetrance of NRXN1 
deletions in families with schizophrenia. Schizophr Res 155: 1-7

Ripke S., O'Dushlaine C., Chambert K., Moran J. L., Kahler A. K., et al. (2013) Genome-wide association 
analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45: 1150-1159

33.	 Hafner M., Landgraf P., Ludwig J., Rice A., 
Ojo T., et al. (2008) Identification of microRNAs 
and other small regulatory RNAs using cDNA 
library sequencing. Methods 44: 3-12



9 An Overview of Publications Featuring Illumina® Technology

Autism Spectrum Disorder

Autism spectrum disorder (ASD) comprises a group of polygenic, multi-locus 

disorders,34 often accompanied by symptoms of other disorders, such as 

developmental disability/intellectual disability (DD/ID; over 40% of ASD cases), 

attention deficit/hyperactivity disorder (ADHD; 59%–75%), obsessive-compulsive 

disorder (OCD; 60%), epilepsy (7%–46%), and other neurological and behavioral 

patterns.35,36 Autism rates have been increasing rapidly, from 0.7% of the population 

in 2000 to 1.1% in early 2010.37 In the U.S., 1 in 68 children has been diagnosed 

as autistic. This trend can be partially attributed to the improved diagnosis of the 

disease. Improved understanding of the genetic causes of ASD is anticipated to 

facilitate development of palliative or therapeutic care for affected individuals. It is 

also expected to be instrumental in providing a more accurate method to assess the 

mental condition of at-risk populations, such as criminals and individuals with other 

psychiatric pathologies.38,39,40

Autism is primarily a genetic disease, with 15–30 times increased risk of disease 

development in siblings of autistic children.41 Heritability of this disease has 

been estimated as high as 90%–96%, suggesting yet unidentified non-genetic 

causes.42,43,44 A more accurate, systematic approach is still needed to improve 

the distinction between essential autism and complex (syndromic, sporadic) 

autism (Table 1). Genomic approaches promise to be efficient and reliable tools for 

distinguishing between various types of autism.45 

Table 1: Types of autism 

Type of Disease
Percentage 

of Cases
Disease Characteristics

Essential autism46w 75% Higher male to female ratio
Lack of dysmorphic features
Higher sibling recurrence risk
Positive family history
Common gene variants

Complex (syndromic, sporadic) 
autism47

25% Large number of highly penetrant 
rare mutations

Similar to schizophrenia, ASD is a heterogenic disorder.48 This heterogeneity may be 

observed not only across individuals, but even across different sections of brain. 

Gene expression may change based on the timing of the analysis, as shown in 

experiments with mice.49 

“Two years from now, researchers will need a larger T-shirt 
to flaunt their findings.” Wright 2014

34.	 Losh M., Childress D., Lam K. and Piven J. 
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Am J Med Genet B Neuropsychiatr  
Genet 147B: 424-433

35.	 Buxbaum J. (2013) The Neuroscience of Autism 
Spectrum Disorders.  

36.	 Lee H., Lin M. C., Kornblum H. I., Papazian D. 
M. and Nelson S. F. (2014) Exome sequencing 
identifies de novo gain of function missense 
mutation in KCND2 in identical twins with autism 
and seizures that slows potassium channel 
inactivation. Hum Mol  
Genet 23: 3481-3489

37.	 Gilbert J. A., Krajmalnik-Brown R., Porazinska 
D. L., Weiss S. J. and Knight R. (2013) Toward 
effective probiotics for autism and other neuro-
developmental disorders. Cell 155: 1446-1448

38.	 King C. and Murphy G. H. (2014) A Systematic 
Review of People with Autism Spectrum Disor-
der and the Criminal Justice System. J Autism 
Dev Disord  

39.	 Gadow K. D. (2013) Association of schizophre-
nia spectrum and autism spectrum disorder 
(ASD) symptoms in children with ASD and clinic 
controls. Res Dev Disabil 34: 1289-1299

40.	 Smith K. R. and Matson J. L. (2010) Social skills: 
differences among adults with intellectual disabil-
ities, co-morbid autism spectrum disorders and 
epilepsy. Res Dev Disabil 31: 1366-1372

41.	 Szatmari P. (1999) Heterogeneity and the genet-
ics of autism. J Psychiatry  
Neurosci 24: 159-165

42.	 Rosti R. O., Sadek A. A., Vaux K. K. and 
Gleeson J. G. (2014) The genetic landscape 
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Gleeson J. G. (2014) The genetic landscape 
of autism spectrum disorders. Dev Med Child 
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Gleeson J. G. (2014) The genetic landscape 
of autism spectrum disorders. Dev Med Child 
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CNVs were the first type of mutation associated with autism.50,51 The de novo rate of 

CNVs is three to seven times higher than in controls. The gene groups most affected 

by autism-associated CNVs are GTPase/Ras, ubiquitin degradation genes, and 

genes involved in synapse development, axon targeting, and neuron motility.52,53,54 

Large CNVs are present in 5%–10% of ASD patients, primarily in those with a 

syndromic ASD phenotype.55,56,57  Private CNVs in autistic individuals often affect 

genes encoding synaptic proteins and neuronal cell-adhesion proteins.58  

(see Copy-Number Variants)

Furthermore, ASD can also be caused by rare mutations, deletions, duplications,59 

and larger chromosomal abnormalities, which may be inherited or arise de novo.60 

Monogenic mutations known to date contribute to 2%–5% of syndromic cases, with 

Fragile X chromosome, PTEN macrocephaly, and tuberous sclerosis being the most 

common abnormalities.61,62 PTEN mutations are also strongly associated with  

tumor syndromes.63

Twin studies have become a standard model in the research of psychiatric diseases. They allow 
assessment of the contribution of genes and the environment to disease risk.

Recent WES and WGS studies have identified multiple, high-confidence ASD 

genes.64 Of two large-scale WGS projects, one was initiated by the U.K. government 

in collaboration with Illumina and the Wellcome Trust (100,000 Genomes project), 

and the second was initiated by Beijing Genomics Institute (BGI) in collaboration with 

Autism Speaks (Autism Genome 10K project). The pilot results of the latter study 

have been published by Jiang et al.65
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large-scale variation in the human genome. Nat 
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Perry G. H., et al. (2006) Global variation in copy 
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Nature 444: 444-454
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Kim C. E., et al. (2009) Autism genome-wide 
copy number variation reveals ubiquitin and 
neuronal genes. Nature 459: 569-573

53.	 Gilman S. R., Iossifov I., Levy D., Ronemus M., 
Wigler M., et al. (2011) Rare de novo variants as-
sociated with autism implicate a large functional 
network of genes involved in formation and 
function of synapses. Neuron 70: 898-907
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 Med 3: 86ra49
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Epigenetics
Susceptibility to ASD can arise at both the genetic and epigenetic levels.66 Several 

groups have independently identified multiple differentially methylated regions (DMRs) 

in post-mortem samples of autistic individuals. These biologically diverse gene 

regions include DNase hypersensitive sites and an alternative transcript termination 

site.67,68,69 These studies provide an additional level of evidence for the role of 

epigenetics in complex diseases, such as ASD.
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were studied using exome sequencing. A novel variant in the KCND2 gene was observed in both twins. The 
de novo mutation is located in the protein coding the Kv4.2 potassium channel, and the authors expressed 
the mutant protein in Xenopus oocytes to observe functional effects. Expression analysis showed that the 
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KCND2 as the causal gene for epilepsy in this family.
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Topoisomerases are expressed throughout the developing and adult brain, and are mutated in some 
individuals with ASD. However, the mechanism by which topoisomerases impact ASD is unknown. By 
transcriptome sequencing, in combination with genome-wide mapping of RNA polymerase II density in 
neurons, the authors found that expression of long genes was reduced after knockdown of topoisomerase in 
neurons. The authors noted that many high-confidence ASD candidate genes are exceptionally long and were 
reduced in expression after TOP1 inhibition. This observation suggests that defective topoisomerases could 
contribute to ASD.
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Illumina Technology: HumanMethylation450
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ASD research by indicating which genes are most likely to have overlapping molecular, cellular or circuit-
level phenotypes.
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and her unaffected parents. By filtering the detected genetic variants by segregation, the authors discovered 
a single homozygous missense variant segregating with the disorder. The variant disrupts the collagen gene 
COL27A1, which codes for a protein expressed in developing cartilage.

Illumina Technology: HiSeq 2000, HumanOmniExpress

Lionel A. C., Tammimies K., Vaags A. K., Rosenfeld J. A., Ahn J. W., et al. (2014) Disruption of the 
ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism spectrum disorders, ADHD and other 
neurodevelopmental phenotypes. Hum Mol Genet 23: 2752-2768

McCarthy S. E., Gillis J., Kramer M., Lihm J., Yoon S., et al. (2014) De novo mutations in schizophrenia 
implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol 
Psychiatry 19: 652-658

Nava C., Keren B., Mignot C., Rastetter A., Chantot-Bastaraud S., et al. (2014) Prospective diagnostic 
analysis of copy number variants using SNP microarrays in individuals with autism spectrum disorders.  
Eur J Hum Genet 22: 71-78

Wong C. C., Meaburn E. L., Ronald A., Price T. S., Jeffries A. R., et al. (2014) Methylomic analysis of 
monozygotic twins discordant for autism spectrum disorder and related behavioural traits.  
Mol Psychiatry 19: 495-503



13 An Overview of Publications Featuring Illumina® Technology

Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common form of dementia, affecting over 40 

million people world-wide, and the incidence may double by the year 2050.70 Eleven 

percent of people 65 or older and 32% of people 85 or older are affected by this fatal 

neurodegenerative disorder.71 Early symptoms of AD include gradually worsening 

ability to memorize new information,72 followed by confusion, irritability, trouble with 

language, and long-term memory loss. The disease destroys memory and cognitive 

skills through the accumulation of two types of abnormal insoluble aggregates in the 

brain: extracellular ß-amyloid plaques and intracellular neurofibrillary tangles. The 

aggregates disrupt the intricate interplay between brain neurons, which eventually 

cause the death of the neurons with consequent significant shrinkage of the  

brain volume.73

Pathogenic ß-amyloid protein belongs to a group of prion proteins, which kick-start 

a chain reaction of destructive processes by engaging new ß-amyloid “seeds” into 

formation of insoluble oligomers and spreading across the brain. However, unlike 

“mad cow disease” (bovine spongiform encephalopathy or BSE) prions, AD-related 

amyloidosis is not infectious and cannot be transmitted between individuals.74 

Neurofibrillary tangles are formed intracellularly by oligomerization of the hyper-

phosphorylated form of Tau protein, which is normally abundant in axons and is 

responsible for maintaining the structure of microtubules. During the disease, tau 

protein is misfolded and mislocalized to the neuronal soma.75

Beta-amyloid protein is the major component of amyloid plaques.

Alzheimer’s disease can be present in one of two forms: early-onset AD (EOAD, 

30–60 years old) and late-onset AD (LOAD) (Table 2). EOAD is mostly a genetic 

disease, whereas LOAD is a sporadic disease, associated with a complex interplay 

among different mutations. 
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Table 2: Types of AD

Type of Disease
Age of 
Onset

Percentage of 
Cases

Disease 
Characteristics

Early-onset AD 
(EOAD) 

30–60 years 2%–5% Mostly genetic76

Late-onset AD 
(LOAD)

>60 years 95%–98%77 Strong role for epigenetic 
markers, such as DNA 
methylation78

EOAD is associated with mutations in three genes: amyloid precursor protein 

(APP, integral Type I membrane glycoprotein) and presenelins PSEN1 and PSEN2. 

However, these mutations reportedly account for fewer than 2% of all AD cases.79,80 

Mutations in these genes deregulate the APP pathway and cause accumulation of 

plaques built of ß-amyloid protein.81 Interestingly, some mutations in APP can be 

protective against AD,82,83 highlighting the importance of deep genetic analysis and 

correlative studies of this disease. 

LOAD had, until recently, only one known genetic risk factor: the E4 variant of the 

apolipoprotein E gene (APOE).84 The risk of developing LOAD in individuals with 

two copies of APOE4 (2% of population) is as high as 60% at 85 years old, and 

in individuals with one copy of this gene (25% of the population), it is 30%.85 Each 

additional copy of APOE4 increases the risk of developing AD by a factor of three 

or more.86 It is possible that low-frequency variants with large influence on LOAD 

pathogeneses may have been missed by traditional GWAS. Sequence-based 

association studies may be able to identify risk alleles in complex diseases, and it is 

anticipated that these studies will elucidate low-frequency variants with large  

effect sizes.87 

Extracellular amyloid plaques stick to each other, as well as to the neuron. They disrupt neuronal networks, 
causing death of neurons and impairment of brain activity. 

An interesting experimental approach proposes that WES be run on a thoroughly 

selected subgroup of individuals at increased risk of AD, and this analysis can be 

followed by a combination of genotyping and resequencing assays.88
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Aging and AD are associated with a spectrum of epigenetic changes, such as 

abnormal DNA methylation and histone modification.89 These changes can occur 

under certain environmental conditions, such as stroke,90 hypertension, type II 

diabetes, obesity,91 exposure to heavy metals,92,93 head injury, immunological 

proteins,94,95,96 and maternal viral infections.97-100 (see Epigenetic Modifications)

An analysis of the two largest GWAS available for AD has shown that there is a 

significant overlap between disease-associated genes in pathways associated with 

AD, cholesterol metabolism, and immune response.101 Neurodegeneration is often 

accompanied by the accumulation of microglia and monocytes around amyloid 

plaques and dying neurons.102 Furthermore, neurons express some molecules 

normally attributed to the immune system, thus hinting at an intricate interplay 

between neuronal and immune systems.103 (see Biology: Immunity)
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Research into LOAD has identified several genetic risk variants, but generally with small effects. To identify 
low-frequency coding variants with large effects, this study used WES on Illumina HiSeq in 14 large LOAD 
families and case-control data sets. The authors found a rare variant in PLD3 segregating with disease status 
in two independent families and doubling the risk for AD in seven independent case-control series. The 
authors conducted follow-up functional assays to determine the effect of PLD3 and found that it influences 
APP processing.
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De Jager P. L., Srivastava G., Lunnon K., Burgess J., Schalkwyk L. C., et al. (2014) Alzheimer's 
disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat 
Neurosci 17: 1156-1163
DNA methylation is a genetic mechanism that may affect gene expression and, as such, may be implicated 
in disease susceptibility. The epigenomic influence on AD onset and progression was examined in this study 
using Illumina HumanMethylation450 arrays and bisulfite sequencing on Illumina HiSeq 2000. The authors 
found several replicated, functionally validated associations between altered DNA methylation and the pre-
symptomatic accumulation of AD pathology. They hypothesized that the observed DNA methylation changes 
may be involved in the onset of AD.

Illumina Technology: HumanMethylation450, HiSeq 2000

Lunnon K., Smith R., Hannon E., De Jager P. L., Srivastava G., et al. (2014) Methylomic profiling 
implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat Neurosci 17: 1164-1170
In this study of AD methylomic variation, the authors used Illumina HumanMethylation450k arrays to 
characterize the genome-wide DNA methylation state across multiple tissues. Based on the results from 122 
donor samples, the authors compared the methylation state in four brain regions and whole blood where 
available. The authors identified evidence for cortex-specific hypermethylation at CpG sites in the ANK1 gene 
associated with AD neuropathology.

Illumina Technology: HumanMethylation450, Human Gene Expression BeadArray

Raj T., Ryan K. J., Replogle J. M., Chibnik L. B., Rosenkrantz L., et al. (2014) CD33: increased inclusion 
of exon 2 implicates the Ig V-set domain in Alzheimer's disease susceptibility. Hum Mol  
Genet 23: 2729-2736
The identification of possible therapeutic targets for disease requires a functional identification follow-up to 
identified genetic disease variants. In this study, a previously identified risk allele for AD was scrutinized in 
detail using expression data on population cohorts stratified by their genetic risk variant identified by Illumina 
Infinium arrays. The authors found that the risk allele rs3865444(C) results in a higher surface density of CD33 
on monocytes. The risk allele is strongly associated with greater expression of CD33 exon 2, which is likely to 
be the functional consequence of the risk variant.

Illumina Technology: Human OmniExpress

Bai B., Hales C. M., Chen P. C., Gozal Y., Dammer E. B., et al. (2013) U1 small nuclear 
ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease. Proc Natl Acad Sci U 
S A 110: 16562-16567
Many neurodegenerative diseases are characterized by deposition of insoluble protein aggregates. The 
universal presence of ß-amyloid and tau proteins in AD has facilitated advancement of the amyloid cascade 
and tau hypotheses that have dominated AD pathogenesis research and therapeutic development. This 
study investigated the human brain-insoluble proteome in AD by mass spectrometry and transcriptome 
sequencing. The authors identified 36 proteins that accumulate in the disease and found similarities with 
protein aggregates in mild cognitive impairment.

Illumina Technology: HiSeq 2000 (mRNA sequencing)

Cruchaga C., Kauwe J. S., Harari O., Jin S. C., Cai Y., et al. (2013) GWAS of cerebrospinal fluid tau 
levels identifies risk variants for Alzheimer's disease. Neuron 78: 256-268
The progress of AD can be monitored by the tau phosphorylated threonine 181 (ptau) in cerebrospinal fluid 
(CSF). To identify the genetic mechanism associated with elevated ptau, the authors performed the largest 
GWAS to date, enrolling 1,269 participants. The participants were genotyped using Illumina OmniExpress 
arrays and tau/ptau levels measured. The authors identified three genome-wide significant loci for CSF tau 
and ptau; one of these showed a strong association with AD risk in independent data sets.

Illumina Technology: Human610-Quad, HumanOmniExpress

Lambert J. C., Ibrahim-Verbaas C. A., Harold D., Naj A. C., Sims R., et al. (2013) Meta-analysis of 
74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease.  
Nat Genet 45: 1452-1458
AD is a progressive neurological disorder, primarily affecting the elderly. Previous analyses have identified 
eleven genomic loci associated with LOAD. To search for additional risk loci, the authors conducted a large 
GWAS meta-analysis using published datasets of Illumina iSelect genotype data from ~17,000 AD cases 
and ~37,000 controls. The analysis resulted in 19 significant associated loci, of which 11 loci have not been 
associated previously with LOAD.
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Zhang B., Gaiteri C., Bodea L. G., Wang Z., McElwee J., et al. (2013) Integrated systems approach 
identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153: 707-720
Despite decades of intensive research, the causal chain of mechanisms behind LOAD remains elusive. 
This study characterized the molecular systems associated with LOAD by RNA-Seq on Illumina HiSeq 
for both brain specimens and cell line samples. The authors built a rank-ordered molecular interaction 
network by LOAD pathology and identified an immune- and microglia-specific module that is dominated 
by genes involved in pathogen phagocytosis. The authors recommend the causal network structure as a 
useful predictor of response to gene perturbations and a framework to test models of disease mechanisms 
underlying LOAD.

Illumina Technology: HiSeq 2000 (mRNA sequencing), HT-12 Expression BeadChip, HumanHap 650Y

Sherva R., Tripodis Y., Bennett D. A., Chibnik L. B., Crane P. K., et al. (2014) Genome-wide association study 
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Guffanti G., Torri F., Rasmussen J., Clark A. P., Lakatos A., et al. (2013) Increased CNV-region deletions in 
mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects in the ADNI sample. Genomics 102: 
112-122

Jonsson T., Atwal J. K., Steinberg S., Snaedal J., Jonsson P. V., et al. (2012) A mutation in APP protects 
against Alzheimer's disease and age-related cognitive decline. Nature 488: 96-99
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Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative 

disorder after AD.104 Approximately 1 million people in the U.S., and over 4 million 

people world-wide, develop this pathological condition. The prevalence of PD in 

industrialized countries is estimated at 1%–2% in people over 60 years of age, and 

3%–5% in people over 85 years old. Only 1% of PD cases are familial; the rest are 

sporadic.105 Typical symptoms include muscle rigidity, bradykinesia (slow movement), 

tremors, and postural instability.106 As the disease progresses, memory loss can 

occur and the symptoms may become very similar to those of AD.107 Persons 

with PD may develop various neuropsychiatric disorders, such as anxiety, apathy, 

depression, hallucinations, and delusions.108

The diagnosis of PD is based on symptoms, and no molecular tests are used at this 

time.109 A majority of neurons exhibit degenerative dysfunction or are lost before the 

onset of visible symptoms of PD,110 so early detection could improve the prognosis 

substantially. Recently, a few groups have reported on the development of minimally 

invasive diagnostic systems for detection of AD111,112,113 and PD114 in whole peripheral 

blood, plasmacytoid bone marrow–derived cells (PBMCs), or CSF. Examples of 

the target molecules for diagnostics include eukaryotic initiation factor 2 (EIF2),115 

epidermal growth factor (EGF),116,117 and amyloid ß1-42.118,119
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The biological causes of PD include progressive loss of substantia nigra 

dopaminergic neurons and striatal projections.120 The major pathological indicator of 

PD is the accumulation of Lewy bodies, which are predominantly formed by self-

assembling small protein -synuclein expressed in multiple brain segments.121 Similar 

to plaques in AD, Lewy bodies spread to other compartments of brain (e.g., limbic 

and neocortical areas) as the disease progresses and cause neuronal death.122 

Age is a major risk factor for development of PD123. Over 80% of PD patients will 

eventually develop dementia, a condition termed Parkinson’s disease dementia 

(PDD). It is believed that the major cause of dementia of this kind is the spread 

of fibrillar α-synuclein from the brain stem to limbic and neocortical structures.124 

Additionally, over 50% of PDD patients develop amyloid- ß plaques and neurofibrillary 

tangles, typical for AD.125 Dual pathology of PDD and AD increases malignancy of the 

disease and significantly worsens prognosis.

Mutations in six genes listed in Table 3 have been associated with PD.126,127  

Table 3: Gene mutations associated with PD

Gene Name Protein Name Functional Role

SNCA α-synuclein Essential for normal brain activity: involved in 
learning, development, cellular differentiation, 
neuronal plasticity, and regulation of dopamine 
uptake.128,129,130 Risk factor both in familial and 
sporadic PD.131,132

PARK2 PARK2 (Parkin) Core component of a complex to ubiquitinate 
cellular proteins for degradation.133

PINK1 PTEN-induced 
kinase protein 1

Mitochondrially targeted kinase. Protects cells from 
stress-induced mitochondrial dysfunction, oxidative 
stress, and apoptosis.134

UCHL1 Ubiquitin carboxyl-
terminal hydrolase 
izozyme L1

Neuronal-specific ubiquitin C-terminal hydrolase. 
Recycles ubiquitin chains back to monomeric 
ubiquitin and adds ubiquitin to monoubiquitylated 
α-synuclein.135

DJ1 (PARK7) PARK7 Modulates α-synuclein aggregation.136

LRRK2 Leucine-rich repeat 
serine/threonine 
protein kinase 2

LRRK2 may deregulate phosphorylation 
of α-synuclein, leading to initiation of PD 
pathogenesis.137
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The familial type of PD can be inherited in an autosomal dominant or autosomal 

recessive manner. The former is associated with α-synuclein and LRRK2 and the 

latter with Parkin, PINK1, DJ1, and ATP13A2. Improved understanding of the role 

of these genes in PD will facilitate the development of genomic analysis as an early 

diagnostic tool for familial PD.138

Currently, the major approach to controlling clinical symptoms of patients with 

PD is pharmacological replacement of dopamine with L-DOPA, carbidopa, and 

monoamine oxidase-B inhibitors.139 However, the effect of such treatment is transient, 

and patients develop resistance to these therapies, leaving no further options for 

treatment. Genomic analysis of PD is anticipated to improve treatment of PD. One 

of the new therapeutic approaches made possible by NGS is based on the use 

of mirtrons: miRNA relying on splicing, rather on Dicer and RNA-induced silencing 

complex (RISC) to generate precursors for targeting disease-specific mRNA via an 

RNA interference pathway.140 With this approach, researchers attained up to 85% 

silencing of α-synuclein and LRRK2.

Methylation of α-synuclein was reduced in DNA from substantia nigra, cortex, and 

putamen of patients with sporadic PD.141 Six risk loci have been associated with 

proximal gene expression or DNA methylation142 (see Epigenetic Modifications).
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GENETIC MECHANISMS

Schizophrenia, autism, PD, and AD are complex diseases driven by an intricate 

interplay between multiple genetic and environmental factors. The etiology of a 

complex disease is the sum of all these factors, including somatic (non-inherited) 

mutations, inherited mutations, epigenetic modifications, small RNAs, immunity, and 

many others. NGS provides the tools to measure most of these contributing factors. 

The future challenge will be to combine these measurements into a coherent view of 

these complex diseases.143

Copy-Number Variants

CNVs are one of the most common mutations in psychiatric diseases. Some 

notable successes have been achieved with array-based approaches, particularly 

with mapping CNVs.144 However, arrays cannot detect balanced translocations 

and fluorescence in situ hybridization (FISH) techniques have limited resolution. The 

true extent of balanced translocations in both healthy and diseased genomes was 

only discovered with the advent of NGS. Paired-end and mate-pair sequencing 

are particularly effective in mapping genomic rearrangements.145 Two groups 

have estimated that the number of CNVs relevant to ASD range from 130 to 300 

target loci.146,147 CNVs also play a critical role in onset of schizophrenia and bipolar 

disorder.148-151 A recent study of single cells and neurons in brain tissue found 

that most (≥95%) neurons in normal brain tissue are euploid. However, a patient 

with hemimegalencephaly (HMG) due to a somatic CNV of chromosome 1q had 

unexpected tetrasomy 1q in 20% of neurons. This observation suggests that different 

cells in the brain may have different mutations, and that CNVs in a minority of cells 

can cause widespread brain dysfunction.152 This increased complexity can only be 

resolved with single-cell sequencing approaches (see Biology: Single Cells).

The majority of de novo structural variations are attributed to new transposon 

insertions. Exome sequencing studies have shown that an increased level of ASD-

causing single-nucleotide variants (SNVs) correlates positively with paternal age.153 

CNVs can also contribute to disease, in combination with other CNVs or other 

point mutations at different loci, but identifying these interactions is challenging.154 

To account for these multiple impacts, several groups have devised a “two-hit” 

hypothesis, analogous to that for cancer.155,156

“Recent advances in technology have allowed the 
interrogation of very large numbers of markers dispersed 
throughout the genome in a highly rapid and inexpensive 
manner.” Bras et al. 2012
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Scandinavian families have been used extensively as subjects for autism and schizophrenia GWAS. This 
selection is due to the ethnic uniformity of  Scandinavian peoples, and the well-developed registry system 
of newborn blood samples (such as Danish Newborn Screening Biobank) and health records established in 
those countries.157

Reviews
Cai X., Evrony G. D., Lehmann H. S., Elhosary P. C., Mehta B. K., et al. (2014) Single-Cell, Genome-wide 
Sequencing Identifies Clonal Somatic Copy-Number Variation in the Human Brain. Cell Rep 8: 1280-1289  

Gilissen C., Hehir-Kwa J. Y., Thung D. T., van de Vorst M., van Bon B. W., et al. (2014) Genome sequencing 
identifies major causes of severe intellectual disability. Nature 511: 344-347

Jacquemont S., Coe B. P., Hersch M., Duyzend M. H., Krumm N., et al. (2014) A higher mutational burden in 
females supports a "female protective model" in neurodevelopmental disorders. Am J Hum Genet  
94: 415-425

Rosti R. O., Sadek A. A., Vaux K. K. and Gleeson J. G. (2014) The genetic landscape of autism spectrum 
disorders. Dev Med Child Neurol 56: 12-18

Malhotra D. and Sebat J. (2012) CNVs: harbingers of a rare variant revolution in psychiatric genetics.  
Cell 148: 1223-1241

References
Fromer M., Pocklington A. J., Kavanagh D. H., Williams H. J., Dwyer S., et al. (2014) De novo mutations 
in schizophrenia implicate synaptic networks. Nature 506: 179-184
Of the known risk alleles for schizophrenia, the only ones definitively shown to confer considerable increments 
in risk are rare chromosomal CNVs that involve deletion or duplication of thousands of bases of DNA. This 
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etiological mechanism.
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resides with common variation. Nat Genet 46: 881-885
Although ASDs have been studied widely, the proportion and nature of genetic heritability is uncertain. This 
study analyzed the largest autism cohort data to date, including 1.6 million Swedish families with at least 
two children and ~5,700 individuals with strict autism diagnoses. Using Illumina SNP arrays, the authors 
investigated the contribution of rare versus common genetic variants to the disease. They conclude that the 
heritability is ~52.4%, with common variation as the biggest contributor. Rare, de novo mutations contribute 
substantially to individual liability, yet their contribution to variance in liability is modest at 2.6%.
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to GABAergic and dopaminergic synaptic transmission. Nature 511: 236-240
In an effort to understand the pathological development of neurological disorders, genetic effects have been 
studied in the context of proteins that are expressed in neural cells. In this study, the authors characterized 
the effect of CNTNAP4 knockouts on mouse behavior and development, and relate these results to the 
findings of CNVs in humans across a region including the CNTNAP2 gene. The authors found that CNTNAP4 
is localized presynaptically, and its loss leads to a reduction in the output of cortical parvalbumin (PV)-positive 
GABAergic basket cells. In addition, CNTNAP4-mutant mice showed defects in these neuronal populations 
and exhibited sensory-motor gating and grooming endophenotypes.
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SNP microarrays to test for associations of CNVs with cognitive deficits, dyslexia, dyscalculia, and brain 
structure changes. The authors found that the 15q11.2(BP1-BP2) deletion affects brain structure in a pattern 
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Alternative Splicing

It has been established that up to 94% of multi-exon genes are alternatively spliced, 

and that incorrect alternative splicing can lead to at least 15% of disease cases in 

humans.158,159 Alternative splicing is a mechanism by which exons of pre-mRNA 

can be grouped (spliced) into different arrangements to produce mature mRNA that 

codes structurally and functionally distinct protein variants. The advent of high-

throughput genomic analysis tools, such as exon arrays and RNA-Seq, has allowed 

the identification of alternative splicing events which were undetectable previously by 

conventional microarrays.

Exon arrays can distinguish between different isoforms.160 This technology also has 

some intrinsic limitations, such as the ability to detect only known splice variants of 

previously sequenced genomes, low signal-to-noise ratio, limited dynamic range, 

and cross-hybridization. The full power of this technology can be realized when 

combined with whole mRNA sequencing, which allows the identification of the exon 

and transcript boundaries at single-base resolution and detection of novel transcripts. 

In this approach, the mRNA is first converted into cDNA, which is further ligated to 

unique adapters and sequenced in a massively parallel fashion.161

Most genes commonly associated with AD have multiple splice variants, and some 

of those variants are pathogenic.162,163,164 In PD, alternative splicing was detected 

for PARK2, SNCA, and SRRM2 genes. Although all three splice variants of PARK2 

are believed to be non-pathogenic, it was hypothesized that the variable ratio of 

these three transcripts may determine disease susceptibility.165 Finally, there is 

some evidence that unspliced mRNA corresponding to AD susceptibility genes can 

accumulate in brains of AD patients as a result of mutations in U1 small nuclear 

ribonucleoprotein (U1 snRNP), a component of the spliceosome complex. Multiple 

U1 snRNP subunits form cytoplasmic tangled agglomerations in AD.166

RNA samples from human brains are usually acquired post-mortem, which raises 

the problem of poor RNA quality for genetic analysis. However, correlative studies of 

RNA and protein expression in brain and in peripheral organs and tissues, such as 

blood, may provide the means for early, non-invasive diagnosis of neurodegenerative 

diseases, similar to the approach once established for the diagnosis of  

prostate cancer.167-170 
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Epigenetic Modifications

The extensive role of epigenetic changes in the onset and progression of psychiatric 

diseases has recently become apparent due to the development of microarray- 

and NGS-based protocols for detecting genome-wide epigenetic patterns. This 

role appeared to be especially strong in neurodegenerative diseases; however, 

some recently discovered epigenetic patterns in psychiatric disorders may be 

critical for better understanding the causes and patterns of these diseases. One of 

the complications of studying the epigenetics in neurological diseases is that the 

signature can only be detected post-mortem, and stability of samples and these 

modifications is often compromised.171 

Genomic imprinting is an example of an epigenetic modification that occurs 

throughout life.172 SHANK3, the first gene associated with ASD, has five CpG 

islands across the gene that display brain- and cell-type–specific DNA methylation 

patterns.173,174,175 Similar specificity was observed for histone acetylation in this 

gene.176 These modifications regulate the expression of the SHANK3 gene in an 

isoform-specific manner.177 Several groups have independently identified other 

multiple differentially methylated regions (DMRs) in post-mortem samples of autistic 

patients representing biologically diverse gene regions, such as DNase-hypersensitive 

sites and an alternative transcript termination site.178,179,180 These studies provide an 

additional level of evidence to unravel the mechanisms of complex diseases,  

such as ASD. 
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Aging and AD—in particular, LOAD—are also associated with a spectrum 

of epigenetic changes, including abnormal DNA methylation and histone 

modifications.181,182 These changes can be precipitated by physiological and 

environmental conditions, such as stroke,183 hypertension, type II diabetes, obesity,184 

exposure to heavy metals,185,186 and head injury.187 Oxidative stress, for example, can 

cause an imbalance between methylation and demethylation of DNA in AD brains.188 

Changes in histone tail modifications (primarily decreased levels of H3 acetylation in 

the temporal lobe, and increased levels of histone deacetylases HDAC2 and HDAC6) 

have also been observed in post-mortem brains of AD patients.189,190,191 Targeting 

these histone modifications by therapeutic agents is a potential strategy for the 

treatment of AD.192 Experiments in mouse have shown that pharmacological inhibition 

of DNA methylation in the hippocampus of mice after a learning task impaired 

memory consolidation,193 and promotion of histone acetylation had an opposite 

effect: it increased learning and memory through increased learning-related gene 

expression in aged mice.194,195 
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Epigenetic modifications are also critical for the development of PD. Reduced 

methylation levels of the SNCA gene that encodes α-synuclein protein were detected 

in the substantia nigra, cortex, and putamen regions of brain in patients with sporadic 

PD.196,197 The protein α-synuclein binds directly to histone H3 and inhibits  

histone acetylation.198
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PD is the most frequent neurodegenerative movement disorder. To study α-synuclein-mediated toxicity in 
PD progression, the authors developed a new cell-line model in which moderate overexpression of wild-type 
α-synuclein led to gradual death of human post-mitotic dopaminergic neurons. Using Illumina BeadArrays to 
monitor gene expression, the authors discovered that activating autophagy in human dopaminergic mid-brain 
neurons rescued them fromα-synuclein-induced cell death. The phenothiazine neuroleptic trifluoperazine, an 
activator of macroautophagy, may be a potential therapeutic target.
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Only a small fraction of genetic heritability has been discovered for PD to date. This study performed a meta-
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Small RNAs

MicroRNA (miRNA) is enriched in the brain, and neuronal-specific miRNA controls 

neuronal differentiation, excitability, and function.199 Other RNAs, such as non-coding 

RNA (ncRNA), appear to play a role in neurodevelopment.

A number of miRNAs are associated with AD and PD, and were detected not only 

in brains, but also in peripheral tissues of affected individuals.200,201 This observation 

suggests that minimally invasive diagnostic tools could be developed for early 

prediction of neurodegenerative disorders. miRNAs have also been considered as 

therapeutic agents against AD pathogens, such as APP202. miRNA molecules can 

be conjugated to—or otherwise associated with—aptamers, monoclonal antibodies, 

peptides, or exosomes for delivery in vivo to specific cell types and tissues.203
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Genetic Variants

Genome Wide Association Studies
Genome-wide association studies (GWAS) are conducted to identify common 

disease susceptibility alleles by comparing allele frequencies across the genome 

in large groups of cases and controls.204,205 This approach has yielded an 

unprecedented amount of clinically relevant data, including the majority of mutations 

and variants associated with AD and PD.207-211 However, in spite of over 9,000 GWAS 

published to date, this approach has uncovered only a fraction of the true heritability. 

Additionally, GWAS can miss epigenetic patterns, such as methylation, and it 

can mistakenly identify genes in the vicinity of pathogenic213 SNVs as pathogenic. 

The sequencing of entire genomes in large cohorts at affordable prices is likely to 

generate additional genes, pathways, and biological insights, as well as the potential 

to identify causal mutations.214 NGS, both alone or in combination with microarrays, 

can address most of these limitations and significantly improve the results from  

these studies.215 

Reviews
Sharma M., Kruger R. and Gasser T. (2014) From genome-wide association studies to next-generation 
sequencing: lessons from the past and planning for the future. JAMA Neurol 71: 5-6

Keogh M. J. and Chinnery P. F. (2013) Next generation sequencing for neurological diseases: new hope or 
new hype? Clin Neurol Neurosurg 115: 948-953e>

Koboldt D. C., Steinberg K. M., Larson D. E., Wilson R. K. and Mardis E. R. (2013) The next-generation 
sequencing revolution and its impact on genomics. Cell 155: 27-38
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Karayannis T., Au E., Patel J. C., Kruglikov I., Markx S., et al. (2014) Cntnap4 differentially contributes 
to GABAergic and dopaminergic synaptic transmission. Nature 511: 236-240
In an effort to understand the pathological development of neurological disorders, genetic effects have been 
studied in the context of proteins that are expressed in neural cells. In this study, the authors characterized 
the effect of CNTNAP4 knockouts on mouse behavior and development, and relate these results to the 
findings of CNVs in humans across a region including the CNTNAP2 gene. The authors found that Cntnap4 
is localized presynaptically, and its loss leads to a reduction in the output of cortical parvalbumin (PV)-positive 
GABAergic basket cells. In addition, CNTNAP4-mutant mice showed defects in these neuronal populations 
and exhibited sensory-motor gating and grooming endophenotypes.

Illumina Technology: HumanHap550, HumanOmni1 

Nalls M. A., Pankratz N., Lill C. M., Do C. B., Hernandez D. G., et al. (2014) Large-scale meta-analysis 
of genome-wide association data identifies six new risk loci for Parkinson's disease.  
Nat Genet 46: 989-993
Only a small fraction of genetic heritability has been discovered for PD to date. This study performed a meta-
analysis of GWAS for PD in the search for new loci associated with the disease. Using Illumina genotyping 
arrays, the authors identified 24 loci that were both statistically significant and replicated across experiments. 
Six of the identified loci had not been previously reported associated with PD, and the authors estimated the 
cumulative risk of the loci to be substantial (odds ratio = 3.31).

Illumina Technology: ExomeChip, HumanOmniExpress, HumanHap550, Human610-Quad, Human660W-
Quad; HumanMethylation27, Human Gene Expression BeadArray
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Cruchaga C., Kauwe J. S., Harari O., Jin S. C., Cai Y., et al. (2013) GWAS of cerebrospinal fluid tau 
levels identifies risk variants for Alzheimer's disease. Neuron 78: 256-268
The progress of AD can be monitored by the tau phosphorylated threonine 181 (ptau) in CSF. To identify the 
genetic mechanism associated with elevated ptau, the authors performed the largest GWAS to date, enrolling 
1,269 participants. The participants were genotyped using Illumina OmniExpress arrays and tau/ptau levels 
measured. The authors identified three genome-wide significant loci for CSF tau and ptau; one of these 
showed a strong association with AD risk in independent data sets.

Illumina Technology: Human610-Quad, HumanOmniExpress

Next-Generation Sequencing
Next-generation sequencing for the analysis of eukaryotic DNA genome consists 

of two modalities: WGS and WES.216 A combination of WES with custom-designed 

microarrays is the method of choice for large sample sizes.217 This combinatory 

approach allows the effective resolution of such common genetic analysis 

problems as pseudogenes, repeated exons, and a failure to detect rare and/

or novel mutations.218 Additionally, WES per se is not very adequate currently for 

addressing CNVs, because sample preparation relies on non-quantitative PCR 

amplification.219 However, an approach that combines WES with genotyping resolves 

this complication.220 

A multi-pronged approach—supplementing WES with WGS, proteomics, and 

epigenomics—is anticipated to deliver full understanding of the effects of newly 

discovered genetic variability. Rare mutations often have significantly stronger effects 

on disease pathology than common mutations, and that effect has been especially 

remarkable in the field of complex diseases. The power of NGS was further proved in 

the discovery of de novo mutations, which arise in individuals during their life and are 

more likely to have functional roles in rare diseases. Although the appearance of such 

mutations seems stochastic, the mutation rate and its dependence on parental age222 

and other environmental factors are only some of the important results of using  

this technology.223 

Sequencing is becoming indispensable for diagnosing disease by analyzing 

circulating tumor DNA. Not only the sequence of that DNA, but also fluctuations in 

cell count, often correlate with the disease pathology and state. The “liquid biopsy 

approach” allows the detection of somatic mutations for a specific tumor type in 

plasma or liquid Papanicolaou (Pap) smears.224,225 This approach is currently being 

developed to detect PD226 and AD227,228 in peripheral blood. The recent discovery 

that the whole fetal genome is present in maternal plasma during pregnancy230 has 

launched the era of pre-natal non-invasive genetic diagnostics. 

“Unlike GWAS which examines common mutations, 
sequencing facilitates the discovery of rare mutations 
which often associate with complex phenotypes.”
Koboldt et al. 2013
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Reviews
Rabbani B., Tekin M. and Mahdieh N. (2014) The promise of whole-exome sequencing in medical genetics. J 
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Koboldt D. C., Steinberg K. M., Larson D. E., Wilson R. K. and Mardis E. R. (2013) The next-generation 
sequencing revolution and its impact on genomics. Cell 155: 27-38

Bras J., Guerreiro R. and Hardy J. (2012) Use of next-generation sequencing and other whole-genome 
strategies to dissect neurological disease. Nat Rev Neurosci 13: 453-464

Malhotra D. and Sebat J. (2012) CNVs: harbingers of a rare variant revolution in psychiatric genetics.  
Cell 148: 1223-1241
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De Jager P. L., Srivastava G., Lunnon K., Burgess J., Schalkwyk L. C., et al. (2014) Alzheimer's 
disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat 
Neurosci 17: 1156-1163
DNA methylation is a genetic mechanism that may affect gene expression and, as such, may be implicated 
in disease susceptibility. The epigenomic influence on AD onset and progression was examined in this study 
using Illumina HumanMethylation450 arrays and bisulfite sequencing on Illumina HiSeq 2000. The authors 
found several replicated, functionally validated associations between altered DNA methylation and the pre-
symptomatic accumulation of AD pathology. They hypothesized that the observed DNA methylation changes 
may be involved in the onset of AD.

Illumina Technology: HumanMethylation450, HiSeq 2000

Fromer M., Pocklington A. J., Kavanagh D. H., Williams H. J., Dwyer S., et al. (2014) De novo mutations 
in schizophrenia implicate synaptic networks. Nature 506: 179-184
Of the known risk alleles for schizophrenia, the only ones definitively shown to confer considerable increments 
in risk are rare chromosomal CNVs that involve deletion or duplication of thousands of bases of DNA. This 
study examined the effect of small de novo mutations affecting one or a few nucleotides. By Illumina HiSeq 
WES of 623 schizophrenia trios, the authors assessed de novo mutation rates and shared genetic etiology 
for schizophrenia, intellectual disability, and ASDs. They found several insights to suggest a common 
etiological mechanism.

Illumina Technology: HiSeq (exome sequencing)

Lee H., Lin M. C., Kornblum H. I., Papazian D. M. and Nelson S. F. (2014) Exome sequencing identifies 
de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that 
slows potassium channel inactivation. Hum Mol Genet 23: 3481-3489
Numerous studies have reported comorbidity of autism and epilepsy, but the relationship between the two 
disorders is unknown. In this study, identical twins, affected by both autism and severe intractable seizures, 
were studied using exome sequencing. A novel variant in the KCND2 gene was observed in both twins. The 
de novo mutation is located in the protein coding the Kv4.2 potassium channel, and the authors expressed 
the mutant protein in Xenopus oocytes to observe functional effects. Expression analysis showed that the 
mutation dominantly impairs the closed-state inactivation of the potassium channel, strongly supporting 
KCND2 as the causal gene for epilepsy in this family.

Illumina Technology: HiSeq 2000, Illumina Paired-End Sequencing Library Prep Protocol

King I. F., Yandava C. N., Mabb A. M., Hsiao J. S., Huang H. S., et al. (2013) Topoisomerases facilitate 
transcription of long genes linked to autism. Nature 501: 58-62
Topoisomerases are expressed throughout the developing and adult brain, and are mutated in some 
individuals with ASD. However, the mechanism by which topoisomerases impact ASD is unknown. By 
transcriptome sequencing, in combination with genome-wide mapping of RNA polymerase II density in 
neurons, the authors found that expression of long genes was reduced after knockdown of topoisomerase in 
neurons. The authors noted that many high-confidence ASD candidate genes are exceptionally long and were 
reduced in expression after TOP1 inhibition. This observation suggests that topoisomerases could contribute 
commonly to ASD.

Illumina Technology: HiSeq 2000, TruSeq RNA, TruSeq for ChIP-Seq
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Willsey A. J., Sanders S. J., Li M., Dong S., Tebbenkamp A. T., et al. (2013) Coexpression networks 
implicate human midfetal deep cortical projection neurons in the pathogenesis of autism.  
Cell 155: 997-1007
Recent studies employing WES and WGS have identified nine high-confidence ASD genes. This study 
examined the contribution of these nine genes to the common phenotype by combining Illumina WES and 
RNA-Seq data into co-expression networks. The authors explain how these networks will guide future 
ASD research by indicating which genes are most likely to have overlapping molecular, cellular or circuit-
level phenotypes.

Illumina Technology: HiSeq 2000, Genome Analyzer

Yu T. W., Chahrour M. H., Coulter M. E., Jiralerspong S., Okamura-Ikeda K., et al. (2013) Using whole-
exome sequencing to identify inherited causes of autism. Neuron 77: 259-273
Steel syndrome is a developmental structural disorder first described in 1993 in 23 Hispanic children from 
Puerto Rico. This paper presents the genomic analysis of a family with two affected siblings. The authors 
used whole-exome sequencing using the Baylor College of Medicine Human Genome Sequencing Center 
(BCM-HGSC) core design followed by sequencing of both affected siblings, parents, and an affected cousin 
and her unaffected parents. By filtering the detected genetic variants by segregation, the authors discovered 
a single homozygous missense variant segregating with the disorder. The variant disrupts the collagen gene 
COL27A1, which codes for a protein expressed in developing cartilage.

Illumina Technology: HiSeq 2000, HumanOmniExpress
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MODEL SYSTEMS 

Modeling of neurological diseases has been challenging for two primary reasons: 

extremely limited access to the primary brain tissue of individuals affected by these 

diseases, and polygenicity of these disorders. Traditional knockout models reiterate 

only a fraction of the disease phenotype, leaving room for speculation about the 

relevance of research results to real human diseases. The introduction of triple-

knockout mice, transgenic rats, and stem cells as in vitro models has significantly 

broadened the arsenal of tools available to researchers in the field and moved closer 

to the “hypothetical” ideal disease model.231 The development of adequate model 

systems is essential for developing accurate diagnostic and therapeutic strategies. 

Animal Models

The development of animal models for schizophrenia and ASD has been challenging, 

because over 90% of these diseases are polygenic. Therefore, a standard single-

knockout mouse model can only partially mimic the disease phenotype. Introduced 

mutations are only tangentially relevant to the disease, and symptoms observed in 

animals may represent other diseases in this spectrum.232 Another complication is 

associated with the recognition and quantification of the symptoms: animal behavioral 

patterns are different from those of a human; therefore, interpretation of behavioral 

changes, feelings, and intentions of animals may be highly subjective.

Schizophrenia
Rodents have been the most commonly used models for studying schizophrenia and 

ASD. Until recently, these models were limited to mice, but now some rat knockouts 

have also become available.233 Rats may be beneficial over mice, as they are highly 

social animals and possess a rich acoustic communication system (including 

frequencies in the ultrasonic range) and have a closer resemblance to human neural 

processes.234 Additionally, pre-clinical toxicology studies are normally carried out in 

rats; therefore, use of these animals as a research model can significantly streamline 

the drug development process.235

“Given the low penetrance of schizophrenia-associated 
alleles, and their ability to contribute to different diseases, 
inserting one or even several into an animal model may 
yield a phenotype that is ambiguous with respect to 
human disease — or no phenotype at all.” Hyman 2014
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Several genetic mouse models of schizophrenia have been developed that use 

one of the three traditional methods: conventional gene targeting, conditional gene 

targeting, or point mutation by chemical mutagens.236 However, these techniques 

allow for generation of phenotypes only scarcely similar to schizophrenia. For that 

reason, Cre/loxP-based chromosome engineering technique was used to generate 

models reflecting complex genomic rearrangements, such as large deletions, 

inversions, and duplications.237 

One of the oldest models of schizophrenia is the dominant-negative disrupted in 

schizophrenia 1 (DISC1) gene. DISC1 mice are a good model for studying not only 

schizophrenia, but also a dual diagnosis of schizophrenia and substance-abuse 

disorder.238 The effects of this mutation on brain structure or function remain to  

be studied.239

Autism Spectrum Disorder
Mouse models have allowed for the demonstration of fundamental principles of ASD 

diseases. Mouse knockout models, with mutations in a range of genes, are making 

a significant contribution to understanding disease onset. These genes include 

SHANK3 (Phelan-McDermid syndrome, idiopatic ASD), MeCP2 (Rett syndrome), 

Fragile X chromosome (FMR1), PTEN (autism), and others.240,241 SHANK3 is a good 

example of the importance of reproducing the exact type and point of mutation of the 

gene: some mutations in this gene are also associated with other diseases, including 

schizophrenia and intellectual disability.242,243 Microduplications of SHANK3 were 

also associated with developmental delay and dysmorphic features in children.244 

This phenomenon underpins the need to use genomic analysis tools for accurate 

identification of mutations in spectrum disorders, and for the verification of their 

accurate reproduction in animal models.

Additional models of ASD include non-human primates, songbirds, zebrafish, 

Drosophila, and C. elegans. Non-human primates have been instrumental in studying 

the behavioral patterns in this disorder, as the anatomy of their neural circuits 

responsible for mediating social behavior is very similar to that of humans.245 Like 

humans, they possess mirror neurons—cells responsible for repeating the actions of 

others, commonly damaged in autism. For ethical reasons, introduction of genetic 

mutations into primates is currently not feasible.

Songbirds have been used as a model due to their well-developed vocal machinery. 

As in humans, vocal learning is an important element of language in this species, and 

its impairment is commonly associated with ASD.246 Finally, zebrafish, Drosophila, 

and C. elegans have been used extensively to study the genetic fundamentals of 

psychiatric diseases.247
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Animal models used in research of psychiatric and neurodegenerative diseases: mice, rats, non-human 
primates, Drosophila, songbirds, and zebrafish.

Alzheimer’s Disease
Animal models of AD are challenging to develop, as spontaneous amyloidosis is not 

common in laboratory animals. Aged non-human primates can develop ß-amyloidosis 

and tau fibrillary inclusions; however, these animals do not develop the clinical signs 

of human AD.248 Currently used animal models of AD are mostly limited to genetically 

engineered mice.249 These models allowed for the successful mimicking of most 

human cerebral amyloidosis, including ß-amyloidosis and taupathies.250 In all cases, 

overexpression of human amyloidogenic protein was required.251

A mouse model overexpressing ß-amyloid protein has also been established. 

Although neurofibrillary tangles are not produced in brains of these mice, tau 

pathology is still observed, because ß-amyloid pathology activates kinases, 

down-regulates phosphatases, and impairs tau degradation.252 Mice expressing 

both mutated APP and tau demonstrate greater neurofibrillary tangle pathology 

than mutated tau mice, thus suggesting a role of ß-amyloid accumulation in the 

development of tau pathology.253

Apart from the previously mentioned models, knockout models for genes involved 

in APP processing—such as presenelin-1, presenelin-2, and b-secretase enzyme 

(BACE1) are now available. Unfortunately, none of them accurately mimics all the key 

symptoms and molecular signatures of this disease. Specifically, increased neuronal 

death has been one of such symptoms, and it seems to be necessary for selecting 

and testing drugs against AD. A more advanced model was obtained by crossing 

APP-overexpressing mice with transgenic animals expressing mutated presenilin-1 
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or presenelin-2, with the third transgene (mutated tau) added to the system. These 

mice featured accelerated ß-amyloid pathology, formation of neurofibrillary tangles, 

neuronal loss and cognitive decline, and tau pathology. 254

Although significant progress has been made in the development of mouse models 

of AD, the available models do not take into account genetic and epigenetic variability 

or the immunological factors common in LOAD. Recent advances in NGS technology 

are anticipated to intensify building of these models, which are essential to develop 

disease-modifying drugs for AD.255

Parkinson’s disease
The etiopathogenesis of PD is not yet clarified, and existing animal models have many 

limitations. Nevertheless, they allow for unraveling some fundamental mechanisms 

underlying the molecular and cellular basis of this neurodegenerative disorder. Most 

animal models of PD developed to date are toxic, rather than genetic, models. Toxic 

(also known as pharmacological) models—in particular, neurotoxin-based models—

were most effective in reproducing dopaminergic neuron death and striatal dopamine 

deficit in non-human primates and rodents. The additional advantage of toxic models 

is the feasibility of their use in non-human primates, whose motor symptoms and 

neuronal structure are very similar to those of a human. The only limitation is the lack 

of formation of classic Lewy bodies in primate brains.

Genetic models of PD are very limited. The reason for this limited availability is the 

low contribution of the genetic component to this disorder: only 5% to 10% of all 

PD cases are inherited. The most common mutations in this form of PD are those 

in LRRK2 (which encodes an enzyme that may be involved in the deregulation of 

α-synuclein phosphorylation), 256 PINK1 (PTEN-induced putative kinase 1), and 

Parkin (which participates in the ubiquitin proteasome system). Transgenic mice with 

knockouts in one of these genes exhibit only part of the PD phenotype, such as 

motility abnormalities, mitochondrial and nigrostriatal neurotransmission deficits,  

and others.257 
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None of the single-gene transgenic mouse models featured substantial nigrostriatal 

degeneration.258 Multi-gene transgenic mouse models are also available (with 

α-synuclein and parkin or DJ-1 knockouts, or simultaneous silencing of PINK-1, 

DJ-1, and parkin), but they too have only limited relevance to the symptomatic and 

phenotypical spectrum of PD.259

Recently developed rat models with monogenic PD mutations are believed to be 

advantageous over mouse models. Rat neuronal circuitry is closer to that of a 

human, and they are less prone to anxiety than mice, which is important for the 

evaluation of behavioral patterns. Transgenic rats with mutated α-synuclein do not 

have major motor deficits, but do exhibit significant olfactory deficits.260 Rats with a 

neuron-specific mutation in LRRK2, driven by adenoviral vectors, exhibit progressive 

degeneration of nigral dopaminergic neurons.261,262 
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STEM-CELL MODELS

One of the most promising models for studying neurological diseases is patient-

derived iPSCs. These cells would allow testing of new therapeutic approaches 

directly on human neural tissue that contains molecular alterations typical for ASD.263 

The use of iPSCs in animal models has already provided a tool to correct abnormal 

synaptic morphology and physiology, and to reverse behavioral alterations, even in 

symptomatic animals.264

Human iPSC have been used as a model for studying PD.265 Because only a limited 

population of dopaminergic neurons located in the midbrain is most prone to 

degeneration, the engrafted stem cells must be matched to those affected  

by degeneration.266 

Another stem-cell model has been used for the treatment of ASD in clinical trials—

mesenchymal stem cells (MSCs).267 Reportedly, they overturn ASD symptoms by 

restoring integration into the neural network, facilitating the recovery of synaptic 

plasticity, and releasing anti-inflammatory cytokines.268 
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BIOLOGY

Neurological and neurodegenerative diseases occur and develop as a result of 

genetic and epigenetic mutations. However, many of these mutations are somatic 

(non-inherited) and occur under the influence of biological factors, such as immune 

activity, gut microbiome activity, and environmental factors. The contribution of 

these factors at a multi-cell and single-cell level has long remained hypothetical and 

controversial. However, the advent of high-resolution sequencing techniques now 

allows the uncovering of these mechanisms and the significance of their contribution 

to disease.

Immunity

The immune system, which was long believed to be independent from the central 

nervous system (CNS), is now acknowledged to have an important contribution to 

normal CNS function as well as to multiple neurological disorders.269,270 For example, 

in PD, elevated levels of inflammatory cytokines are associated with more severe 

forms of the disease, such as PD with dementia.271 In AD, an analysis of the two 

largest GWAS has shown a significant overlap between disease-associated genes in 

pathways associated with AD, cholesterol metabolism, and immune response.272 In 

schizophrenia, a number of immune genes have been identified as genetic risk 

factors associated with this disease.273,274,275 In autism, ongoing inflammation has 

been determined as one of the common components of the disease. Interestingly, 

fever in some autistic children was associated with improvement of their social 

behavior, underpinning the involvement of inflammation in the symptomatic profile.276 

“Both inflammation and oxidative stress tend to increase with age 
and are associated with a variety of chronic diseases. They have 
also been linked to neurodegeneration and proposed as factors that 
might contribute to schizophrenia.” Anthes 2014
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The blood-brain barrier prevents penetration of many types of immune cells into the 

brain; however, a very limited number of certain immune cell populations, such as 

dendritic cells and microglia, reside in the brain and facilitate the removal of dead 

neurons.277,278 Neurodegeneration is most often accompanied by the accumulation of 

microglia and monocytes around amyloid plaques and dying neurons.279 According 

to one hypothesis of PD origin, the death of dopaminergic neurons in PD per se may 

be facilitated by neuroinflammation.280 Infection of neurons and neighboring glial cells 

with viruses, such as Japanese encephalitis virus (JIV), can increase the vulnerability 

of neurons to factors such as aging, oxidative stress, environmental stress, and 

genetic predisposition.281 Furthermore, neurons express some molecules normally 

attributed to the immune system, thus uncovering an intricate interplay between 

neuronal and immune systems.282

Immunotherapy is considered one of the promising approaches to treating 

neurological diseases. Examples of such treatment include celecoxib, an inhibitor of 

cyclooxygenase-2, which has shown some improvement of schizophrenia symptoms 

in four studies283, and anti-ß-amyloid antibody, used in multiple trials up to phase III as 

an agent to remove pathogenic ß-amyloid plaques.284,285
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METAGENOMICS

Metagenomics refers to the study of genomic DNA obtained from multiple micro-

organisms that often cannot be cultured in the laboratory. Humans carry 10 times 

more bacterial cells than human cells, and 100 times more bacterial genes than the 

human genome.286 The new generation of sequencing technology, with its ability to 

sequence thousands of organisms in parallel, has proved to be uniquely suited to this 

application. Recent technical improvements allow nearly complete genome assembly 

from individual microbes directly from environmental samples or clinical specimens, 

without the need for cultivation methods.287 This accumulation of sequence 

information has greatly expanded the appreciation of the dynamic nature of microbial 

populations, as well as their impact on the environment and human health. With this 

extraordinary and powerful set of sequencing tools now available, it is no surprise 

that metagenomics has become one of the fastest-growing scientific disciplines.

The concept of a gut-brain axis has been developed recently, to highlight the 

important influence of the metagenome on mental processes. It has been shown 

that the gut microbiome plays an unexpectedly important role in the development 

of depression, anxiety, irritable bowel syndrome, and neurological diseases, such 

as autism289,290 and schizophrenia.291 The gut-microbial products may impose their 

effect on the brain through chromatin plasticity, which causes changes in neuronal 

transcription.292 Hsiao et al. proposed the use of microbiome-mediated therapies for 

treating neurodevelopmental disorders.293

Interestingly, some gut bacteria (defined as psychobiotics) have a positive effect 

on mental health and foster brain activity.294 These living organisms produce such 

neuroactive substances as g-aminobutyric acid and serotonin, and are beneficial not 

only for healthy individuals, but also for those with psychiatric disorders.295
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ENVIRONMENTAL FACTORS

Exposure to microbes298,299, as well as various industrial and agricultural chemicals 

(especially pesticides), has been implicated as conferring risk for multiple 

diseases, including neurodegenerative disorders . Environmental pesticides serve 

as mitochondrial toxins and induce nitrosative stress that inhibits activity of the 

myocyte-specific enhancer factor 2C (MEF2C). This factor is involved in cardiac 

morphogenesis, myogenesis, and vascular development. MEF2C, in turn, inhibits the 

expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha 

(PGC-1 α), and hence suppresses the neuroprotective function of this transcriptional 

co-activator.302

Neurodegenerative disorders, including PD, often co-exist with metabolic diseases. 

For example, type 2 diabetes may stimulate the development of PD.303 Sekiyama et 

al. suggest that genomic studies should contribute to better understanding of the 

mechanism of this interaction, and help to develop strategies for new  

therapeutic approaches.304
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SINGLE CELLS

Each cell type has a distinct lineage and function, which contributes to the functioning 

of the tissue, the organ, and—ultimately—the organism. The lineage and developmental 

stage of each cell determine how they respond to each other and to their environment. 

While the ultimate goal of an exhaustive understanding of tissues at their cellular level is 

still elusive, recent progress in single-cell analysis is offering a glimpse at the future.

A recent study of single cells and neurons in brain tissue found that most (≥ 95%) 

neurons in normal brain tissue are euploid. However, a patient with hemimegalencephaly 

(HMG) due to a somatic CNV of chromosome 1q had unexpected tetrasomy 1q in 

20% of neurons. This observation suggests that CNVs in a minority of cells can cause 

widespread brain dysfunction.305 This complexity can only be resolved with single-cell 

sequencing approaches.

Recent advances in research have highlighted the mosaic genomes of individual neurons, 

exhibiting CNVs even among cells that make up a specific region of the brain.306 Even 

though genetic variations in the brain arise during fetal development,307 the functional 

relevance of this mosaicism is unclear at present. It will be of interest not only to discover 

the significance of mosaicism in the normal brain, but also to study its role in neurological 

diseases and psychological disorders.308-311

Research has just begun to shed light mosaicism, where heterogeneity among cells is 

notable at the genome level. If mosaicism exists in the genetic code among single cells,312 

there are likely also variations in protein expression, epigenetic changes,313 and RNA 

isoforms.314 Sequencing single cells provides a larger integrated image of the collected 

data, helping to account for the effects of mosaicism on individual cellular phenotypes 

within a given region of the brain.315,316,317

The high accuracy and specificity of NGS lends itself well to single-cell and low-level 

DNA/RNA sequencing. The growing armamentarium of published techniques includes 

the detection of DNA mutations, CNVs, DNA-protein binding, RNA splicing, and the 

measurement of RNA expression values.
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