IS&T International Symposium on Electronic Imaging SCIENCE AND TECHNOLOGY

29 January – 2 February 2017 • Burlingame, CA, USA

SHORT COURSES • EXHIBITS • DEMONSTRATION SESSION • PLENARY TALKS •
INTERACTIVE PAPER SESSION • SPECIAL EVENTS • TECHNICAL SESSIONS •

Hyatt San Francisco Airport Floor Plans

IS&T International Symposium on

Electronic Imaging science and technology

29 January - 2 February 2017

Hyatt Regency San Francisco Airport 1333 Bayshore Highway Burlingame, California USA

2017 Symposium Co-Chair Joyce Farrell Stanford University (USA)

2017 Symposium Co-Chair **Nitin Sampat**

Rochester Institute of Technology (USA)

2017 Short Course Co-Chair Jonathan B. Phillips Google, Inc. (USA)

2017 Short Course Co-Chair **Mohamed-Chaker Larabi** University of Poitiers (France)

Past Symposium Chair Choon-Woo Kim Inha Univ. (Republic of Korea)

Welcome

On behalf of IS&T—the Society for Imaging Science and Technology—we would like to welcome you to the 29th annual International Symposium on Electronic Imaging.

Imaging is pervasive in the human experience — from the way we view the world each day to the photographs we take on our smart phones to its exciting use in technologies related to national security, space exploration, entertainment, medical, and printing applications — and an increasingly vital part of our lives.

This week you have the opportunity to hear the latest research from the world's leading experts in imaging, image processing, sensors, color, and augmented/virtual reality/3D, to name but a few of the applications and technologies covered by the event. You also have many opportunities to develop both your career and business by networking with leading researchers and entrepreneurs in the field.

The Electronic Imaging Symposium is the premier international meeting in this exciting technological area, one that brings together academic and industry colleagues to discuss topics on the forefront of research and innovation. We look forward to seeing you and welcoming you to this unique event.

-Joyce Farrell and Nitin Sampat, EI2017 Symposium Co-chairs

IS&T Board of Directors July 2016 - June 2017

President

Geoff Woolfe, Canon Information Systems Research Australia Pty. Ltd (CISRA)

Executive Vice President Steven Simske, *HP Inc.*

Conference Vice President Francisco Hideki Imai, *San Jose, CA*

Publications Vice President Susan Farnand, Rochester Institute of Technology

Secretary Dietmar Wueller, Image Engineering GmbH & Co. KG

Treasurer Eric Hanson, retired, HP Laboratories Vice Presidents Sergio Goma,

Qualcomm Technologies, Inc. Teruaki Mitsuya,

Ricoh Company, Ltd.

Majid Rabbani, Rochester Institute of Technology James Stasiak,

HP Inc. Radka Tezaur,

Intel Corporation Werner Zapka,

XaarJet AB

Immediate Past President Alan Hodgson, Alan Hodgson Consulting Ltd.

Chapter Directors Korea: Choon-Woo Kim, Inha University Rochester: Michel Molaire, Molecular Glasses Tokyo: Masahiko Fujii, Fuji Xerox Co., Ltd.

IS&T Executive Director Suzanne E. Grinnan

UPCOMING IS&T EVENTS

May 15-18, 2017; Riga, Latvia Archiving 2017

September 11 – 15, 2017; Lillehammer, Norway 25th Color and Imaging Conference (CIC25)

November 5 – 9, 2017; Denver, CO Printing for Fabrication 33rd International Conference on Digital Printing Technologies (formerly NIP)

November 8 – 9, 2017; Denver, CO Technologies in Digital Photo Fulfillment

Jan. 28 – Feb. 1, 2018; SFO/Burlingame, California Electronic Imaging 2018

Learn more at www.imaging.org.

Table of Contents

El Symposium Leadership	1
Symposium Overview	5
El Sponsors	5
Plenary Speakers	7
Short Course Daily Schedule Chart	3
Special Events	?
Conference Keynote Talks)
Joint Sessions	5
Paper Schedule by Day/Time	?

Conferences and submission information by topic

3D Image Processing, Measurement (3DIPM), and Applications 2017	31
Autonomous Vehicles and Machines 2017	33
Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications	37
Computational Imaging XV	42
Computer Vision Applications in Sports 2017	46
Digital Photography and Mobile Imaging XIII	48
The Engineering Reality of Virtual Reality 2017	53
Human Vision and Electronic Imaging 2017	56
Image Processing: Algorithms and Systems XV	62
Image Quality and System Performance XIV	65
Image Sensors and Imaging Systems 2017	70
Imaging and Multimedia Analytics in a Web and Mobile World 2017	75
Intelligent Robotics and Industrial Applications using Computer Vision 2017	78
Material Appearance 2017	81
Media Watermarking, Security, and Forensics 2017	85
Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017	89
Stereoscopic Displays and Applications XXVIII	92
Surveillance: Applications and Algorithms 2017	97
Visual Information Processing and Communication VIII	99
Visualization and Data Analysis 2017	102
Short Courses Detail Listing	105
General Information Pages	115
Author Index	119

Plan Now to Participate Join us for Electronic Imaging 2018 Burlingame, California, 28 January – 1 February, 2018

El Symposium Leadership

El 2017 Symposium Committee Symposium Co-Chairs Joyce Farrell, Stanford University (United States) Nitin Sampat, Rochester Institute of Technology (United States)

Symposium Short Course Co-Chairs Jonathan B. Phillips, Google, Inc. (United States) Mohamed-Chaker Larabi, University of

Poitiers (France)
At-large Conference Chair Representative

Adnan Alattar, Digimarc (United States)

Past Symposium Chair Choon-Woo Kim, Inha University (Republic of Korea)

El 2017 Technical Committee

Sos S. Agaian, Univ. of Texas at San Antonio David Akopian, Univ. of Texas at San Antonio Adnan M. Alattar, Digimarc Corp. Jan Allebach, Purdue Univ. Charles A. Bouman, Purdue Univ. Reiner Creutzburg, Fachhochschule Brandenburg Arnaud Darmont, APHESA SPRL Huib de Ridder, Technische Univ. Delft Edward J. Delp, Purdue Univ. Patrick Denny, Valeo Margaret Dolinsky, Indiana Univ. Karen Egiazarian, Tampere Univ. of Technology Reiner Eschbach, National Univ. of Science and Technology / Monroe Community College Zhigang Fan, Apple Inc. Gregg E. Favalora, VisionScope Technologies, LLC

Atanas Gotchev, Tampere Univ. of Technology Zhen He, Intel Corp. Mathieu Hebert, Université Jean Monnet de Saint Etienne Nicolas S. Holliman, Newcastle Univ. Francisco Imai Mustafa Jaber, NantVision Robin Jenkin, ON Semiconductor Elaine W. Jin, Google Inc. David L. Kao, NASA Ames Research Center Takashi Kawai, Waseda Univ. Feng Li, GoPro Inc. Qian Lin, HP Labs Gabriel Marcu, Apple Inc. Ian McDowell, Fakespace Labs, Inc. Jon S. McElvain, Dolby Labs, Inc. Nasir D. Memon, Polytechnic Institute of New York Univ. Darnell Moore, Texas Instruments Henry Ngan, Hong Kong Baptist Univ. Kurt S. Niel, Upper Austria Univ. of Applied Sciences Thrasyvoulos N. Pappas, Northwestern Univ. William Puech, Lab. d'Informatique de Robotique et de Microelectronique de Montpellier Alessandro Rizzi, Univ. degli Studi di Milano Bernice Rogowitz, Visual Perspectives Juha Röning, Univ. of Oulu Robert Sitnik, Warsaw Univ. of Technology Robert L. Stevenson, Univ. of Notre Dame Inaebora Tastl, HP Labs Grigorios Tsagkatakis, Institute of Computer Science, FORTH Sreenath Rao Vantaram, Intel Corp. Ralf Widenhorn, Portland State Univ. Thomas Wischgoll, Wright State Univ. Andrew J. Woods, Curtin Univ. Buyue Zhang, Intel Corp. Song Zhang, Mississippi State Univ.

Sponsored by

Society for Imaging Science and Technology (IS&T)

7003 Kilworth Lane • Springfield, VA 22151 703/642-9090 /703/642-9094 fax / info@imaging.org / www.imaging.org IS&T expresses its deep appreciation to the symposium chairs, conference chairs, program committee members, session chairs, and authors who generously give their time and expertise to enrich the Symposium. El would not be possible without the dedicated contributions of our participants and members.

Symposium Overview

Explore the Electronic Imaging of tomorrow

Imaging is integral to the human experience—from personal photographs taken every day with mobile devices to autonomous imaging algorithms in self-driving cars to the mixed reality technology that underlies new forms of entertainment. At El 2017, leading researchers, developers, and entrepreneurs from around the world discuss, learn about, and share the latest imaging developments from industry and academia.

The 2017 event features 18 technical conferences and two featured sessions covering all aspects of electronic imaging, including:

- Augmented and virtual reality displays and processing
- Autonomous machine imaging algorithms
- Computational and digital photography
- Human vision, color, perception, and cognition
- Image and video processing and communication via the web
- Mobile imaging
- Imaging sensors
- Image quality
- Display and hardcopy
- Media security and forensics
- Machine vision and machine learning

Research and applications of these technologies are discussed in the fields of communications, security, transportation, education, space exploration, medicine, entertainment, and more.

Technical courses taught by experts from academia and industry augment the main technical program of symposium plenary, and conference keynote, oral, and interactive (poster) presentations.

Technology demonstrations by industry and academia participants and a focused exhibition showcase the latest developments driving next generation electronic imaging products.

Exhibitors

Exhibit Hours Tuesday 10 AM - 7 PM Wednesday 10 AM - 4 PM

 $\square (\bigcirc$

imatest [®]

Inciging.org Society for Imaging Science and Techology

IS&T's DIGITAL LIBRARY

JIST

C74

0.0.0.0

your knowledge resource for imaging science and technology

LIBRARY HOLDINGS

- Journal of Imaging Science and Technology (JIST)
- Archiving Conference Proceedings
- CIC: Color and Imaging Conference Proceedings
- CGIV: European Conference on Colour in Graphics, Imaging, and Vision Proceedings
- International Symposium on Technologies for Digital Photo Fulfillment Proceedings
- Digital Printing / Digital Fabrication Conference Proceedings
- and free access to the full papers of ALL Electronic Imaging Symposium Proceedings for everyone*

* Members have unlimited access to full papers; non-members have unlimited access to abstracts and can purchase full papers; **everyone** has free access to Electronic Imaging volumes beginning in 2016.

www.ingentaconnect.com/content/ist/

your resource for imaging knowledge

Plenary Speakers

Giga-scale 3D Computational Microscopy

Monday, January 30, 2017 2:00 — 3:00 PM Grand Peninsula Ballroom D

Laura Waller (Univ. of California, Berkeley)

Dr. Waller discusses work on computational imaging methods for fast capture of gigapixel-scale 3D intensity

and phase images in a commercial microscope. Her lab's experimental setups employ illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is high-resolution reconstructions across a large field-of-view, achieving high space-bandwith-time product. Experimentally, they have achieved real-time 3D and phase imaging with digital aberration correction and mitigation of scattering effects, by sparsity-constrained nonlinear optimization methods.

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, with affiliations in Bioengineering and Applied Sciences & Technology. She was a Postdoctoral Researcher and Lecturer of Physics at Princeton University (2010-2012) and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). She is recipient of the Moore Foundation Data-Driven Investigator Award, Bakar Fellowship, Carol D. Soc Distinguished Graduate Mentoring Award, NSF CAREER Award, and Packard Fellowship for Science and Engineering.

VR 2.0: Making Virtual Reality better than Reality

Tuesday, January 31, 2017 2:00 — 3:00 PM Grand Peninsula Ballroom D

Gordon Wetzstein (Stanford University)

Virtual reality is a new medium that provides unprecedented user experiences. Eventually, VR/AR systems will redefine education, communication, entertain-

ment, collaborative work, simulation, training, telesurgery, and basic vision research. In all of these applications, the primary interface between the user and the digital world is the near-eye display. While today's VR systems struggle to provide natural and comfortable viewing experiences, next-generation computational near-eye displays have the potential to provide visual experiences that are better than the real world. In this talk, we explore the frontiers of VR systems engineering.

Gordon Wetzstein is an assistant professor of Electrical Engineering and – by courtesy – of Computer Science at Stanford University. He is the leader of the Stanford Computational Imaging Group, an interdisciplinary research group focused on advancing imaging, microscopy, and display systems. At the intersection of computer graphics, machine vision, optics, scientific computing, and perception, Wetzstein's research has a wide range of applications in next-generation consumer electronics, scientific imaging, human-computer interaction, remote sensing, and many other areas. Prior to joining Stanford in 2014, Wetzstein was a Research Scientist in the Camera Culture Group at the MIT Media Lab. He received a PhD in computer science from the

University of British Columbia (2011) and graduated with Honors from the Bauhaus in Weimar, Germany before that. His doctoral dissertation focuses on computational light modulation for image acquisition and display and won the Alain Fournier PhD Dissertation Annual Award. He organized the IEEE 2012 and 2013 International Workshops on Computational Cameras and Displays, founded displayblocks.org as a forum for sharing computational display design instructions with the DIY community, and has presented a number of courses on computational displays and computational photography at ACM SIGGRAPH. Wetzstein is the recipient of an NSF CAREER award, International Conference on Computational Photography (ICCP) best paper awards (2011 and 2014), and a Laval Virtual Award (2005).

Designing VR Video Camera Systems

Wednesday, February 1, 2017 2:00 — 3:00 PM Grand Peninsula Ballroom D

Brian Cabral (Facebook, Inc.)

Unlike traditional digital video camera systems that are fairly linear and composed of a single streaming optical and digital pipeline, VR video capture systems

are not. They are composed of multiple, possibly homogenous, optical and digital components—all of which must operate as if they were one seamless optical system. The design of VR video cameras requires a whole new set of technologies and engineering approaches. The arrangement of cameras, optical choices, and SNR—all of which play important roles in every camera design—become far more complex for a VR camera and require tight coupling to the computational system components.

Brian Cabral is director of engineering at Facebook specializing in computational photography, computer vision, and computer graphics. He is the holder of numerous patents (filed and issued) and leads the Surround 360 VR camera team. He has published a number of diverse papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Brian's interests include computational photography, computer graphics and image processing hardware and software, numerical computation, differential geometry, hardware and software architecture, computational geometry, and statistical learning.

Short Course Daily Schedule See page 105 for course descriptions.

Sunday January 29

Jona	ay sundary	E 7							
8:00 to 10:00		EIO2 Burns/ Williams - Introduction to Image Quality Testing: Targets, Software, and Standards	EIO3 Matherson/ Artmann - Concepts, Procedures, and Practical Aspects of Measuring Resolu- tion in Mobile and Compact Imaging Devices and the Impact of Image Processing	El04 Hodgson - Electronic Imaging of Secure Documents	EIO5 Rabbani - Advanced Image Enhancement and Deblurring	EIO5 Rabbani - Advanced Image Enhancement and Deblurring	EIO6 Ptucha - Fundamentals of Deep Learning	El08 Agam - 3D Imaging	
10:15 to 12:15	EIO1 Woods/ Merritt - Stereoscopic Display Application	El09 Matherson/ Artmann - Color and Calibration in Mobile Imaging Devices	E110 Rizzi/ McCann - High- Dynamic-Range Imaging in Cameras, Displays, and Human Vision	E112 Viggiano - Psychophysics Lab: In Depth and Step-by- Step					
1:30 to 3:30 3:45 to 5:45	155065	E114 Hemami/ Pappas - Perceptual Metrics for Image and Video Quality in a Broader Context: From Perceptual Transparency to Structural Equivalence	EI15 Darmont - Introduction to CMOS Image Sensor Technology	E116 Ho - 3D Video Processing Techniques for Immersive Environments	E117 Rogowitz - Perception and Cognition for Imaging	EI18 Matherson/ Artmann - Camera Module Calibration for Mobile Imaging Devices	E119 Pulli/ Gitudhuri - OpenVX: A Standard API for Accelerating Computer Vision	E113 Costa - Real-time and Parameter- free Anomaly Detection from Image Streams EI20 Ferzli - Computer Vision for Autonomous Driving	
Mone	lay January	[,] 30							
	EI22 Sharma - Introduction to Digital Color Imaging 8:30–12:45	E123 Matherson/ Artmann - Noise Sources at the Camera Level and the Use of Interna- tional Standards for Its Characterization 10:30–12:30							
Tuesd	lay February	y 1							
8:30 to 12:45	El24 Stork - Joint Design of Optics and Image Processing for Imaging Systems								

Special Events

Monday, January 30, 2017

Symposium Welcome Reception

Atrium 5:00 - 6:00 pm

Join colleagues for a light reception featuring beer, wine, soft drinks, and hors d'oeuvres. Make plans to enjoy dinner with old and new friends at one of the many area restaurants. Conference registration badges are required for entrance.

SD&A Conference 3D Theater

Grand Peninsula Ballroom D

6:00 – 7:30 pm Hosted by Andrew J. Woods, Curtin Univ. (Australia)

The 3D Theater Session of each year's Stereoscopic Displays and Applications Conference showcases the wide variety of 3D content that is being produced and exhibited around the world. All 3D footage screened in the 3D Theater Session is shown in high-quality polarized 3D on a large screen. The final program will be announced at the conference and 3D glasses will be provided.

Tuesday, January 31, 2017

Women in Electronic Imaging Breakfast

Location provided at Registration Desk 7:15 - 8:45 am

Start your day with female colleagues and senior women scientists to share stories and make connections at the Women in Electronic Imaging breakfast. The complimentary breakfast is open to El full registrants. Space is limited to 40 people. Visit the onsite registration desk for more information about this special event.

Industry Exhibition

Grand Peninsula Foyer 10:00 am – 7:30 pm

El's annual industry exhibit provides a unique opportunity to meet company representatives working in areas related to electronic imaging. The exhibit highlights products and services, as well as offers the opportunity to meet prospective employers.

Symposium Demonstration Session

Grand Peninsula Ballroom E 5:30 – 7:30 pm

This symposium-wide, hands-on, interactive session, which traditionally has showcased the largest and most diverse collection of stereoscopic and

electronic imaging research and products in one location, represents a unique networking opportunity. Attendees can see the latest research in action, compare commercial products, ask questions of knowledgeable demonstrators, and even make purchasing decisions about a range of electronic imaging products. The demonstration session hosts a vast collection of stereoscopic products providing a perfect opportunity to witness a wide array of stereoscopic displays with your own two eyes.

Wednesday, February 1, 2017

Industry Exhibition

Grand Peninsula Foyer 10:00 am – 4:00 pm

El's annual industry exhibit provides a unique opportunity to meet company representatives working in areas related to electronic imaging. The exhibit highlights products and services, as well as offers the opportunity to meet prospective employers.

Interactive Paper (Poster) Session

Atrium

5:30 – 7:00 pm

Conference attendees are encouraged to attend the Interactive Paper (Poster) Session where Interactive Paper authors display their posters and are available to answer questions and engage in in-depth discussions about their papers. Light refreshments are provided. Please note that conference registration badges are required for entrance and that posters may be previewed by all attendees beginning on Monday.

Authors are asked to set up their posters starting at 10:00 am on Monday. Pushpins are provided; other supplies can be obtained at the Registration Desk. Authors must remove poster materials at the conclusion of the Interactive Session. Posters not removed are considered unwanted and will be removed by staff and discarded. IS&T does not assume responsibility for posters left up before or after the Interactive Session.

Meet the Future: A Showcase of Student and Young Professionals Research

Atrium 5:30 – 7:00 pm

This 1st annual event will bring invited students together with academic and industry representatives who may have opportunities to offer, and will provide each student with an opportunity to present and discuss their academic work via an interactive poster session.

Student presenters expand their professional network and explore employment opportunities with the audience of academic and industry representatives.

Conference Keynotes Talks

Monday, January 30, 2017

AVM: Key Learnings from Automated Vehicle Development

Session Chair: Buyue Zhang, Intel Corporation (United States)

8:50 – 9:50 am Grand Peninsula Ballroom B

AVM-009

Architectures for automated driving, Jack Weast, Intel Corporation (United States)

Jack Weast is a Principal Engineer and the Chief Systems Engineer for Autonomous Driving Solutions at Intel Corporation. In his 17 year career at Intel, Weast has built a reputation as a change agent in new industries with significant technical and architectural contributions to a wide range of industry-first products and standards that range from one the world's first Digital Media Adapters to complex heterogeneous high performance compute solutions in markets that are embracing high performance computing for the first time. With an End to End Systems perspective, he combines a unique blend of embedded product experience with a knack for elegant Software and Systems design that will accelerate the adoption of Autonomous Driving. Weast is the co-author of "UPnP: Design By Example", an Associate Professor at Portland State University, and the holder of numerous patents with dozens pending.

MWSF: Media Forensics

Session Chair: Adnan Alattar, Digimarc Corporation (United States)

8:50 – 10:10 am Regency Ballroom A

MWSF-316

The nimble challenges for media forensics, P. Jonathon Phillips, National Institute of Standards and Technology (NIST) (United States)

Jonathon Phillips is a leading technologist in the fields of computer vision, biometrics, and face recognition. He is at the National Institute of Standards and Technology (INIST), where he runs challenge problems and evaluations to advance biometric technology. His previous efforts include the Iris Challenge Evaluations (ICE), the Face Recognition Vendor Test (FRVT), the Face Recognition Grand Challenge and FERET. From 2000-2004, Phillips was assigned to DARPA. For his work on the FRVT 2002 he was awarded the Dept. of Commerce Gold Medal. His work has been reported in the New York Times, the BBC, and the Economist. He has appeared on NPR's Science Friday show. In an Essential Science Indicators analysis of face recognition publication over the past decade, Phillips' work ranks at #2 by total citations and #1 by cites per paper. In 2013, he won the inaugural Mark Everingham Prize. He is a fellow of the IEEE and IAPR.

HVEI: Human Vision - Unifying Theory from Peripheral Vision

Session Chair: Bernice Rogowitz, Visual Perspectives (United States)

9:10 – 10:00 am Regency Ballroom B

HVEI-111

Vision at a glance (Invited), Ruth Rosenholtz, MIT (United States)

Ruth Rosenholtz is a Principal Research Scientist in the Dept. of Brain and Cognitive Sciences at MIT. Her lab studies human vision, including visual search, peripheral vision, perceptual organization, and the impact of visual clutter on task performance. Rosenholtz earned her PhD in electrical engineering and computer science, University of California at Berkeley (1994). Prior to MIT, she held research positions with the (Xerox) Palo Alto Research Center, NASA Ames, and with Utrecht University.

IQSP: Automated Video Quality Measurement and Application

Session Chair: Elaine Jin, Google Inc. (United States)

10:50 – 11:30 am Harbour

andee

IQSP-222

DPMI-067

How to use video quality metrics for something other than video compression, Anil Kokaram, Google/YouTube (United States)

Anil Kokaram is the Engineering Manager for the media algorithms team in YouTube. The team is responsible for developing video processing algorithms for quality improvement in various pipelines. Kokaram is also a Professor at Trinity College Dublin, Ireland and continues to supervise a small number of students at www.sigmedia.tv in the EE Dept there. His main expertise is in the broad areas of DSP for Video Processing, Bayesian Inference, and motion estimation. He has published more than 100 refereed papers in these areas. In 2007 he was awarded a Science and Engineering Academy Award for his work in video processing for post-production applications. He was founder of a company (GreenParrotPictures) producing video enhancement software that was acquired by Google in 2011. He is a former Associate Editor of the IEEE Transactions on CCts and Systems for Video Technology and IEEE Transactions on Image Processing.

DPMI: Accelerated Computational Tools

Session Chair: Michael Kriss, MAK Consultants (United States)

10:50 – 11:30 am

Grand Peninsula Ballroom A

Heterogeneous computational imaging, Kari Pulli, Intel Corporation (United States)

Kari Pulli is a Senior Principal Engineer at Intel Corporation, working as the CTO of the Imaging and Camera Technologies Group. He has a long history in Computational Photography, Computer Vision, and Computer Graphics (earlier jobs include VP of Computational Imaging at Light, Sr. Director at NVIDIA Research, Nokia Fellow), with numerous publications (h-index = 30). Pulli has a PhD from the University of Washington, Seattle. He has also been a researcher / lecturer at Stanford, MIT, and University of Oulu. He has contributed to many multimedia standards at the Khronos Group, including OpenVX, and is a regular speaker and contributor at SIGGRAPH, CVPR, and many other conferences.

CVAS: Computer Vision, Robotic Cameras, Sports Applications

Session Chairs: Mustafa Jaber, NantVision Inc. (United States) and Grigorios Tsagkatakis, FORTH (Greece)

3:30 – 4:30 pm Cypress B

CVAS-348

Automated sports broadcasting, Peter Carr, Disney Research (United States)

Peter Carr is a Senior Research Engineer at Disney Research, Pittsburgh. He received his PhD from the Australian National University (2010), under the supervision of Prof. Richard Hartley. His thesis, "Enhancing Surveillance Video Captured in Inclement Weather", explored single-view depth estimation using graph cuts, as well as real-time image processing on graphics hardware. As part of his earlier PhD work in sports analysis, Carr was a research intern at Mitsubishi Electric Research Labs. He received a Master's in physics from the Centre for Vision Research at York University in Toronto, Canada, and a Bachelor's of Applied Science (engineering physics) from Queen's University in Kingston, Canada.

AVM: Functional Safety and Security in Autonomous System Design

Session Chair: Umit Batur, Faraday Future (United States)

3:30 – 4:30 pm Grand Peninsula Ballroom B

AVM-016

Needs and challenges analysis for reference architectures in autonomous systems, Justyna Zander, Intel Corporation (United States)

Justyna Zander is Software Architect and Technology Lead in autonomous driving at Intel Corporation. Before joining Intel, she spent over a year working on self-driving cars, ADAS, and functional safety as a senior consultant in Germany. She engaged with Fortune 500 companies including most prestigious automotive OEMs. Prior to that, Zander was a postdoctoral research scientist at Harvard University and a senior scientist at the Fraunhofer Institute in Germany. She holds PhD, MSc, and two BSc degrees in computer science and electrical engineering. Her expertise includes modeling, simulation, deep learning, validation, and verification, functional safety, computing platforms, and rapid prototyping with worldwide operations focus. A frequent public speaker, she holds 6 patents, has 8 patent applications at USPTO, and has co-authored more than 40 publications and 3 books. Her publications have been cited more than 550 times. Zander is recognized internationally with countless awards (IEEE, European Union, NIST, etc). She regularly serves as a technical committee member for more than 50 journals and conferences, and is invited by NSF, EU Commission, and national councils to advise on government strategy and research roadmaps.

SD&A: 3D and VR on a User's Desk

Session Chair: Andrew Woods, Curtin University (Australia)

3:30 – 4:30 pm

Grand Peninsula Ballroom D

SD&A-362 Stereoscopic displays, tracking, interaction, education, and the web, David Chavez, zSpace, Inc. (United States)

David Chavez brings 20 years of experience in start-up companies, working with technologies ranging from GSM infrastructure to laptops, printers, PDAs and smartphones, in both consumer and commercial product spaces. He has managed product development teams through the full range of the product life cycle, from initial concept to volume production. Chavez has extensive experience working with suppliers and manufacturing partners worldwide, with a particular emphasis in Asia. He has held various positions in product development organizations such as pen-based computer companies GO & EO, Hewlett Packard, and Handspring.

HVEI: Media Content Semantics - Transmitting Meaning

Session Chair: Thrasyvoulos Pappas, Northwestern University (United States)

3:30 – 4:20 pm

Regency Ballroom B

HVEI-117

Movies and meaning: From low-level features to mind reading (Invited), Sergio Benini, University of Brescia (Italy)

Sergio Benini received his MSc in electronic engineering (cum laude) at the University of Brescia (2000) with a thesis granted by Italian Academy of Science. Between '01 and '03 he was with Siemens Mobile Communications R&D. He received his PhD in information engineering from the University of Brescia (2006), working on video content analysis. During his PhD he spent one year in British Telecom Research, United Kingdom, working in the "Content & Coding Lab." Since 2005 he has been an Assistant Professor at the University of Brescia. In 2012, he co-founded Yonder, a spin-off company specialized in NLP, Machine Learning, and Cognitive Computing.

Tuesday, January 31, 2017

AVM: Autonomous Vehicle Navigation in Planetary Exploration

Session Chair: Darnell Moore, Texas Instruments (United States)

8:50 - 9:50 am

Grand Peninsula Ballroom B

AVM-018

Common themes in autonomous navigation on earth and in space, *Larry* Matthies, Jet Propulsion Laboratory (United States)

Larry Matthies received his PhD in computer science from Carnegie Mellon University in 1989, then moved to the Jet Propulsion Laboratory, where he a Senior Research Scientist and supervisor the Computer Vision Group. His research interests include 3-D perception, state estimation, terrain classification, and dynamic scene analysis for autonomous navigation of unmanned vehicles on Earth and in space. He has been a principal investigator in many programs involving robot vision funded by NASA, Army, Navy, DARPA, and commercial sponsors. He and his group have achieved several firsts in computer vision for space exploration, including development of vision algorithms used by rovers and landers in the 2003 Mars Exploration Rover mission. He is an Adjunct Professor of Computer Science at the University of Southern California, a lecturer in computer vision at Caltech, and a member of the editorial boards of the Autonomous Robots journal and the Journal of Field Robotics. He is a Fellow of the IEEE and was a joint winner in 2008 of the IEEE's Robotics and Automation Award for his contributions to robotic space exploration.

IQSP/DPMI: Mobile Device Camera IQ Joint Session

Session Chairs: Susan Farnand, Rochester Institute of Technology, and Jackson Roland, Apple Inc. (United States)

8:50 – 9:20 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Quality and System Performance XIV and Digital Photography and Mobile Imaging XIII.

IQSP-249

Towards the development of the IEEE P1858 CPIQ standard – A validation study, Elaine Jin¹, Jonathan Phillips¹, Susan Farnand², Margaret Belska³, Vinh Tran³, Ed Chang¹, Yixuan Wang³, and Benjamin Tseng⁴; ¹Google Inc. (United States), ²Rochester Institute of Technology (United States), ³NVIDIA (United States), and ⁴Apkudo (Australia)

Elaine W. Jin holds a PhD in optical engineering from Zhejiang University in China, and a PhD in psychology from the University of Chicago. She has worked in the imaging industry for 15+ years including employment at Polaroid Corporation, Eastman Kodak Company, Micron Technologies, Aptina Imaging, Marvell Semiconductors, and Intel Corporation. She currently is a staff image scientist at Google, working on developing cutting-edge consumer hardware products. Her primary research interests include imaging systems design and analysis, color imaging, and psychophysics. She has published 22 journal and conference papers, and authored 14 US patents / patent applications. She joined the CPIQ initiative (Camera Phone Image Quality) in 2006, and since then has made major contributions in the development of the softcopy quality ruler method, and the CPIQ metrics for visual noise, texture blur, spatial frequency responses, chroma level, and color uniformity. She currently leads the Color/Tone Subgroup of the IEEE CPIQ Standard Working Group.

MAAP: Communicating Material Appearance

Session Chair: Ingeborg Tastl, HP Labs, HP Inc. (United States)

3:30 - 4:10 pm

Grand Peninsula Ballroom C

MAAP-277

The future of material communication via the Appearance Exchange Format (AxF), Marc Ellens, Gero Mueller, and Francis Lamy, X-Rite, Inc. (United States)

Marc S. Ellens is a Senior Research Scientist with X-Rite-Pantone in Grand Rapids, MI. He received his BS in mathematics and computer science from Calvin College, and his PhD in computer aided geometric design from the University of Utah. In the past, Ellens has worked on CNC programming and at Lectra Systemes developing design applications for the textile industry. Now at X-Rite for more than 10 years, he has been involved in research and development efforts beyond color toward the capture and reproduction of appearance. Ellens has presented at the NVIDIA GPU Technology conference, Autodesk's Automotive Innovation Forums, and the IS&T Electronic Imaging Conference. He is named in three patents related to material visualization and reproduction.

MWSF: Camera Verification in Practice

Session Chair: Nasir Memon, New York University (United States)

3:30 - 4:30 pm

Regency Ballroom A

MWSF-339

PRNU in practice, Walter Bruehs, Federal Bureau of Investigation (United States)

Walter E. Bruehs is employed by the Federal Bureau of Investigation as the Supervisory Photographic Technologist in the Forensic Audio, Video, and Image Analysis Unit, where he is an Examiner of Questioned Photographic Evidence. Part of Bruehs' responsibilities focus on seeking out and researching emerging digital imaging technologies as they apply to the Forensic arena. He heads a program designed to identify digital images to digital cameras or to other sets of digital images, based on the sensor noise of the capture device. He has a MS in electrical engineering from the University of Maine at Orono, as well as a BS in electrical engineering from Clarkson University. Prior to working at the FBI, he worked as an Imaging Scientist in the research labs of the Eastman Kodak Company, where he co-authored a patent, "Method and System for Improving an Image Characteristic Based on Image Content."

Wednesday February 1, 2017

IMSE/DPMI: Sharp High-quality Color Interpolation Joint Session

Session Chairs: Kevin Matherson, Microsoft Corporation (United States), and Dietmar Wueller, Image Engineering GmbH & Co. KG (Germany)

8:50 – 9:30 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

IMSE-077

Bayer pattern and image quality, Jörg Kunze, Basler AG (Germany)

Jörg Kunze has received his PhD in physics from the University of Hamburg (2004). He joined Basler in 1998, where he started as an electronics developer and where he currently is the team leader of New Technology. Kunze serves as an expert for image sensors, camera hardware, noise, color fidelity, 3D- and computational imaging and develops new algorithms for color image signal processing. The majority of the Basler patents name him as inventor.

IMAWM: Web Scale Multimedia Analysis I

Session Chair: Jan Allebach, Purdue University (United States)

9:10 - 10:10 am

Cypress A

IMAWM-157

The internet on things: Delivering augmented reality experiences in context, Michael Gormish, Blippar (United States)

Michael Gormish is Principal Scientist at Blippar on the infrastructure team working on image retrieval and multiple computer vision products. Gormish is an image processing and computer vision scientist and engineer who invented algorithms used in products including video games, digital cinema, satellite and medical image acquisition and transport. He earned a PhD in electrical engineering dealing with image and data compression from Stanford University. In his twenty year career at Ricoh, he led several aspects of the JPEG 2000 standardization and provided key inventions used in photocopiers, digital cameras, tablets and imaging services. He was awarded the status of Ricoh Patent Master for being a co-inventor on more than 100 US patents. He has served the research community as an Associate Editor of the IEEE Signal Processing Magazine, Associate Editor of the Journal of Electronic Imaging, Program Chair of the Document Engineering Conference, and technical committee member and reviewer for numerous conferences and journals. Currently he is interested changing the world via mobile image understanding.

DPMI/IMSE: Machine Vision Retina Improvement Joint Session

Session Chairs: Thomas Vogelsang, Rambus Inc., and Ralf Widenhorn, Portland State University (United States)

10:50 - 11:30 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

DPMI-080

Silicon retina technology (Invited), Tobi Delbruck, Institute for Neuroinformatics (INI) (Switzerland)

Tobi Delbruck (IEEE M'99-SM'06-F'13) received a PhD from Caltech (1993). He is currently a professor of physics and electrical engineering at ETH Zurich in the Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland, where he has been since 1998. His group, which he coordinates together with Shih-Chii Liu, focuses on neuromorphic eventbased sensors and sensory processing. He has co-organized the Telluride Neuromorphic Cognition Engineering summer workshop and the live demonstration sessions at ISCAS and NIPS. Delbruck is past Chair of the IEEE CAS Sensory Systems Technical Committee. He worked on electronic imaging at Arithmos, Synaptics, National Semiconductor, and Foveon and has founded 3 spin-off companies, including inilabs.com, a non-for-profit organization that has distributed hundreds of R&D prototype neuromorphic sensors to more than a hundred organizations around the world. He has been awarded 9 IEEE awards.

SD&A: 360° Multi-Camera Content Creation

Session Chair: Gregg Favalora, Draper (United States)

11:30 am - 12:30 pm

Grand Peninsula Ballroom D

SD&A-375 360° 3D capture: Meeting the need in VR, Timothy Macmillan 1 and David Newman2; 1 Consultant and 2GoPro Inc. (United States)

Tim MacMillan is an award-winning photographic artist whose career with Camera Array systems began in the 1980's. In the 1990's he established Time-Slice Films Ltd. to produce content and innovate array technology for clients such as the BBC, Sky TV, Discovery Channel, and many others. His distinctive approach has been influential in the development of special effects widely used today. MacMillan's work spans both the artistic and technical, with his early camera technology now in the (United Kingdom) Science Museum. As well as architecting and designing Array systems, he has also worked in HD Broadcast Product Development with Grass Valley Cameras, and is currently Senior Manager of Advanced Products at GoPro Cameras.

IMSE/DPMI: Comparing CMOS Image Sensor Architectures Joint Session

Session Chairs: Thomas Vogelsang, Rambus Inc., and Ralf Widenhorn, Portland State University (United States)

11:50 am - 12:40 pm

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

IMSE-082

CMOS image sensor pixel design and optimization, Boyd Fowler, OmniVision Technologies (United States)

Boyd Fowler's research interests include CMOS image sensors, low noise image sensors, noise analysis, data compression, and machine learning and vision. He received his MSEE (1990) and PhD (1995) from Stanford University. After finishing his PhD he stayed at Stanford University as a research associate in the Electrical Engineering Information Systems Laboratory until 1998. In 1998, Fowler founded Pixel Devices International in Sunnyvale California. Between 2005 and 2013, Fowler was CTO and VP of Technology at Fairchild Imaging. He is currently at OmniVision Technologies leading the marketing department. Fowler has authored numerous technical papers, book chapters and patents.

VDA: Topological Data Analysis

Session Chair: Thomas Wischgoll, Wright State University (United States)

3:30 – 4:30 pm Cypress B

VDA-383

Topological analysis at the extreme scale: Finding features in large data sets, Gunther Weber; Lawrence Berkeley National Laboratory and University of California, Davis (United States)

Gunther Weber is a Staff Scientists in LBNL's Computational Research Division and an Adjunct Associate Professor of Computer Science at UC Davis. His research interests include computer graphics, scientific visualization, topological data analysis methods, parallelization of visualization algorithms, hierarchical data representation methods, and bioinformatics. Prior to joining LBNL, Weber worked as a Project Scientist at the Institute for Data Analysis and Visualization (IDAV) at UC Davis focusing on visualization of three-dimensional gene expression data (with researchers of LBNL's Genomics and Life Sciences divisions), topological exploration of scalar data, and visualization of brain imaging data and experimental earthquake data. Weber earned his PhD in computer science, from the University of Kaiserslautern, Germany (2003).

Thursday, February 2, 2017

ERVR: Immersive Visualization Room - Design and Build

Session Chairs: Margaret Dolinsky, Indiana University, and Ian McDowall, Intuitive Surgical / Fakespace Labs (United States)

9:10 - 10:10 am

Sandpebble A

ERVR-098

VR journeys from the dark ages to a bright future, Gregory Dawe, University of California, San Diego (United States)

Gregory Dawe, the design engineer who made many iterations of CAVE systems possible, will share his perspective on the progression of virtual reality from the first CRT based CAVE system and how it was enhanced during the digital projector era to where we are now with present day flat panel systems. He will discuss the technological quest to improve brightness, resolution and contrast in the crusade to exceed human acuity.

IMSE: Sensor design and technology

Session Chairs: Arnaud Peizerat, CEA, and Jean-Michel Tualle, University Paris 13 (France)

9:50 – 10:20 am Harbour

IMSE-188

A 128×128, 34μm pitch, 8.9mW, 190mK NETD, TECless Uncooled IR bolometer image sensor with columnwise processing, Laurent Alacoque¹, Sébastien Martin¹, Wilfried Rabaud¹, Édith Beigné¹, and Antoine Dupret²; ¹Minatec Campus and ²CEA (France)

Laurent Alacoque was born in Lyon, France in 1974, He received the engineering degree in electronics and information processing from the Ecole Superieure de Chimie Physique et Electronique of Lyon (ESCPE) (1998). In the same year, he joined the Institut National de Sciences Appliquees (INSA) on Villeurbanne Campus for a PhD on the application of Asynchronous Logic to Analogue-Digital Conversion. He received his PhD (2002), and joined the CEA-Leti in 2003, first as a postdoctoral student and then as a member of the smart-imaging laboratory. Since then, his work focuses on the imaging chain, from pixel level design, imager-specific Analogue-Digital Conversion, to Image Signal Processing algorithms.

IMSE/AVM: History and Standards for Automotive Vision Systems Performance Joint Session

Session Chairs: Arnaud Darmont, APHESA SPRL (Belgium), Ralf Widenhorn, Portland State University (United States), and Buyue Zhang, Intel Corporation (United States)

11:50 am - 12:30 pm

Harbour

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Autonomous Vehicles and Machines 2017.

Automotive imaging, Patrick Denny, Valeo (Ireland)

IMSE-196

Patrick Denny is a Senior Research Engineer and a Valeo Senior Expert and has worked for the last 15 years at Valeo Vision Systems, Ireland. He received his PhD in physics (2000) from the National University of Ireland, Galway, where he is also Adjunct Professor of Automotive Electronics. Denny has in excess of 20 years experience in scientific and technological development internationally, designing, innovating and developing automotive imaging technologies for BMW, Jaguar Land Rover, Daimler, VW, and other OEMs. His research interests include several aspects of automotive vision system image quality, sensor components, algorithmic design, systems, machine learning and data analytics.

IMSE: Image Sensors for Devices of Internet of Things

Session Chairs: Arnaud Darmont, APHESA SPRL (Belgium), and Ralf Widenhorn, Portland State University (United States)

2:40 – 3:20 pm Harbour

IMSE-195

In the quest of vision-sensors-on-chip: Pre-processing sensors for data reduction, Angel Rodríguez-Vázquez, Universidad de Sevilla (Spain)

Ángel Rodriguez-Vazquez (IEEE Fellow, 1999) conducts research on the design of analog and mixed-signal front-ends for sensing and communication, including smart imagers, vision chips and low-power sensory-processing microsystems. He received his Bachelor's (University of Seville, 1976) and PhD in physics-electronics (University of Seville, 1982) with several national and international awards, including the IEEE Rogelio Segovia Torres Award (1981). After research stays at UC Berkeley and Texas A&M University, he became a Full Professor of Electronics at the University of Sevilla in 1995. He co-founded the Institute of Microelectronics of Sevilla, under the umbrella of the Spanish Council Research (CSIC) and the University of Sevilla and started a research group on Analog and Mixed-Signal Circuits for Sensors and Communications. In 2001 he was the main promotor and co-founder of the start-up company AnaFocus Ltd. and served as CEO, on leave from the University, until June 2009, when the company reached maturity as a worldwide provider of smart CMOS imagers and vision systems-on-chip. He has authored 11 books, 36 additional book chapters, and some 150 journal articles in peer-review specialized publications. He was elected Fellow of the IEEE for his contributions to the design of chaos-based communication chips and neuro-fuzzy chips. His research work has received some 6,954 citations; he has an h-index of 42 and an i10-index of 143.

Joint Sessions

Monday, January 30, 2017

Surface Appearance Modeling and Reproduction Joint Sess

Session Chair: Francisco Imai (United States)

3:30 - 4:50 pm Regency Ballroom C

This session is jointly sponsored by: Material Appearance 2017 and Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications.

3:30

MAAP-288

Modeling and reproducing effect paints, Gary Meyer and Avery Musbach, Univ. of Minnesota (United States)

3:50

MAAP-289

How to design a recto-verso print displaying different images in various everyday-life lighting conditions, Nicolas Dalloz^{1,2}, Serge Mazauric^{1,3} Mathieu Hebert¹, and Thierry Fournel¹; ¹Univ. Lyon, UJM-Saint-Etienne, CNRS, Institut d'Optique Graduate School, ²Institut d'Optique Graduate School, and ³CPE Lyon (France)

4:10 MAAP-290 Appearance decomposition and reconstruction of textured fluorescent objects, Shoji Tominaga, Keiji Kato, Keita Hirai, and Takahiko Horiuchi,

Chiba University (Japan)

4.30

MAAP-291

Assessing the proper color of translucent materials by an extended two-flux model from measurements based on an integrating sphere, Lionel Simonot¹, Mathieu Hebert², Serge Mazauric^{2,3}, and Roger Hersch⁴;

¹Université de Poitiers (France), ²Université Jean Monnet de Saint Etienne (France), ³CPE Lyon, Domaine Scientifique de la Doua (France), and ⁴École Polytechnique Fédérale de Lausanne (Switzerland)

Tuesday, January 31, 2017

Keynote: Mobile Device Camera IQ Joint Session

Session Chairs: Susan Farnand, Rochester Institute of Technology, and Jackson Roland, Apple Inc. (United States)

8:50 - 9:20 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Quality and System Performance XIV and Digital Photography and Mobile Imaging XIII.

IQSP-249 Towards the development of the IEEE P1858 CPIQ standard - A

validation study, Elaine Jin¹, Jonathan Phillips¹, Susan Farnand², Margaret Belska³, Vinh Tran³, Ed Chang¹, Yixuan Wang³, and Benjamin Tseng⁴, ¹Google Inc. (United States), ²Rochester Institute of Technology (United States), ³NVIDIA (United States), and ⁴Apkudo (Australia)

Elaine W. Jin holds a PhD in optical engineering from Zhejiang University in China, and a PhD in psychology from the University of Chicago. She has worked in the imaging industry for 15+ years including employment

at Polaroid Corporation, Eastman Kodak Company, Micron Technologies, Aptina Imaging, Marvell Semiconductors, and Intel Corporation. She currently is a staff image scientist at Google, working on developing cuttingedge consumer hardware products. Her primary research interests include imaging systems design and analysis, color imaging, and psychophysics. She has published 22 journal and conference papers, and authored 14 US patents / patent applications. She joined the CPIQ initiative (Camera Phone Image Quality) in 2006, and since then has made major contributions in the development of the softcopy quality ruler method, and the CPIQ metrics for visual noise, texture blur, spatial frequency responses, chroma level, and color uniformity. She currently leads the Color/Tone Subgroup of the IEEE CPIQ Standard Working Group.

Human Vision and Stereoscopic Imaging Joint Session

Session Chairs: Nicolas Holliman, University of Newcastle (United Kingdom), and Thrasyvoulos Pappas, Northwestern University (United States)

8:50 - 10:10 am

Grand Peninsula Ballroom D

This session is jointly sponsored by: Stereoscopic Displays and Applications XXVIII and Human Vision and Electronic Imaging 2017.

HVFI-378

Depth-compressed expression for providing natural, visual experiences with integral 3D displays, Yasuhito Sawahata and Toshiya Morita, Japan Broadcasting Corporation (Japan)

9:10

8.50

HVEI-379

Blind quality prediction of stereoscopic 3D images, Jiheng Wang¹, Qingbo Wu², Abdul Rehman¹, Shiqi Wang¹, and Zhou Wang¹

¹University of Waterloo (Canada) and ²University of Electronic Science and Technology of China (China)

9:30

SD&A-380 Pseudo-haptic by stereoscopic images and effects on muscular activity, Takashi Kawai¹, Fumiya Ohta¹, Sanghyun Kim¹, and Hiroyuki Morikawa^{1,2}; ¹Waseda University and ²Aoyama Gakuin University (Japan)

9.50

SD&A-381

The effects of proximity cues on visual comfort when viewing stereoscopic contents (JIST-first), Yaohua Xie¹, Danli Wang², and Heng

Qiao³; ¹Chinese Academy of Sciences, ²Institute of Software, Chinese Academy of Sciences, and ³Central University of Finance and Economics (China)

Surface Appearance Assessment and Digital Methods I Joint Session

Session Chair: Greg Ward, Dolby Laboratories (United States)

9:10 - 10:10 am

Grand Peninsula Ballroom C

This session is jointly sponsored by: Material Appearance 2017 and 3D Image Processing, Measurement (3DIPM), and Applications 2017.

9:10 MAAP-282 Graininess appearance of goniochromatic samples in lighting cabinets, Paola Iacomussi, Michela Radis, and Giuseppe Rossi, INRIM (Italy) 9:30 MAAP-283 Measurement and evaluation method of orange peel, Takuroh Sone and Shuhei Watanabe, Ricoh Company, Ltd. (Japan) 9.50 MAAP-284 Enhanced RTI for gloss reproduction, Peter Fornaro, Andrea Bianco, and Lukas Rosenthaler, Universitiy of Basel (Switzerland)

Mobile Device Camera IQ Joint Session

Session Chairs: Susan Farnand, Rochester Institute of Technology, and Jackson Roland, Apple Inc. (United States)

9:20 - 10:20 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Quality and System Performance XIV and Digital Photography and Mobile Imaging XIII.

9.20

A methodology for perceptual image quality assessment of smartphone cameras - Color quality, Susan Farnand, Rochester Institute of Technology (United States)

9.40 IQSP-251 Assessing the ability of simulated laboratory scenes to predict the image quality performance of HDR captures (and rendering) of exterior scenes using mobile phone cameras, Amelia Spooner¹, Ashley Solter¹, Fernando Voltolini de Azambuja¹, Nitin Sampat¹, Stephen Viggiano¹, Brian Rodricks², and Cheng Lu³; ¹Rochester Institute of Technology, ²SensorSpace, LLC, and ³Intel Corporation (United States)

10:00

Cell phone rankings!, Dietmar Wueller, Image Engineering GmbH & Co. KG (Germany)

Surface Appearance Assessment and Digital Methods II Joint Session

Session Chair: Mathieu Hebert, Université Jean Monnet de Saint Etienne (France)

10:50 - 11:50 am

Grand Peninsula Ballroom C

This session is jointly sponsored by: Material Appearance 2017 and 3D Image Processing, Measurement (3DIPM), and Applications 2017.

10.50

MAAP-285

MAAP-286

Consistent tool-independent virtual material appearance, Dar'ya Guarnera¹, Giuseppe Claudio Guarnera¹, Cornelia Denk², and Mashhuda Glencross^{1,3}; ¹Loughborough University (United Kingdom), ²BMW Research (Germany), and ³Switch That Limited (United Kingdom)

11:10

Interactive object surface retexturing using perceptual quality indexes, Keita Hirai, Wataru Suzuki, Yoshimitsu Yamada, and Takahiko Horiuchi, Chiba University (Japan)

MTF Joint Session

Session Chairs: Peter Burns, Burns Digital Imaging, and Feng Li, GoPro Inc. (United States) 10:50 am - 12:30 pm

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Quality and System Performance XIV and Digital Photography and Mobile Imaging XIII.

10:50 Characterization of entire imaging plane spatial frequency response,

Victor Lenchenkov, Orit Skorka, Stan Micinski, and Radu Ispasoiu, ON Semiconductor (United States)

Reverse-projection method for measuring camera MTF, Stan Birchfield, Microsoft Corporation (United States)

11:30

11:10

IQSP-255

DPMI-256

IQSP-257

IQSP-254

IQSP-253

Texture MTF from images of natural scenes, Riccardo Branca¹, Sophie Triantaphillidou¹, and Peter Burns²; ¹University of Westminster (United Kingdom) and ²Burns Digital Imaging (United States)

11.50

Camera phone texture preservation measurements with modulation transfer function: An alternative approach for noise estimation of random texture chart images, Nitin Suresh^{1,2}, Joshua Pfefer¹, and Quanzeng Wang¹; ¹U.S. Food and Drug Administration and ²University of Maryland (United States)

12:10

IQSP-2.50

DPMI-252

The effects of misregistration on the dead leaves cross-correlation texture blur analysis, Ranga Burada¹, Robert Sumner¹, and Noah Kram²; ¹Imatest, LLC and ²Rochester Institute of Technology (United States)

Image Interpolation, Restoration, and Denoising Joint Session

Session Chairs: Karen Egiazarian, Tampere University of Technology (Finland), and Radka Tezaur, Intel Corporation (United States)

3:30 - 5:30 pm Grand Peninsula Ballroom A

This session is jointly sponsored by: Digital Photography and Mobile Imaging XIII and Image Processing: Algorithms and Systems XV.

3.30

BM3D-HVS: Content-adaptive denoising for improved visual quality (Invited), Karen Egiazarian^{1,2}, Aram Danielyan², Nikolay Ponomarenko^{1,2}, Alessandro Foi^{1,2}, Oleg leremeiev³, and Vladimir Lukin³; ¹Tampere University of Technology (Finland), ²Noiseless Imaging Oy (Finland), and ³National Aerospace University (Ukraine)

3.50

IPAS-084

IPAS-08.5

IPAS-086

Refining raw pixel values using a value error model to drive texture synthesis, Henry Dietz, University of Kentucky (United States)

4.10

Color interpolation based on colorization for RGB-white color filter array, Paul Oh¹, Sukho Lee², and Moon Gi Kang¹; ¹Yonsei University and ²Dongseo University (Republic of Korea)

4.30

Video frame synthesizing method for HDR video capturing system with

four image sensors, Takayuki Yamashita^{1,2} and Yoshihiro Fujita¹; ¹Ehime University and ²NHK (Japan)

4:50

DPMI-088 Robust defect pixel detection and correction for Bayer Imaging Systems, Noha El-Yamany, Intel Corporation (Finland)

Wednesday, February 1, 2017

Keynote: Sharp High-quality Color Interpolation Joint Session

Session Chairs: Kevin Matherson, Microsoft Corporation (United States), and Dietmar Wueller, Image Engineering GmbH & Co. KG (Germany)

8:50 - 9:30 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

Conference Chair Opening Remarks

IMSE-077

Bayer pattern and image quality, Jörg Kunze, Basler AG (Germany)

Jörg Kunze has received his PhD in physics from the University of Hamburg (2004). He joined Basler in 1998, where he started as an electronics developer and where he currently is the team leader of New Technology. Kunze serves as an expert for image sensors, camera hardware, noise, color fidelity, 3D- and computational imaging and develops new algorithms for color image signal processing. The majority of the Basler patents name him as inventor.

Input Signal Quality & Characterization Joint Sess

Session Chairs: Kevin Matherson, Microsoft Corporation (United States), and Dietmar Wueller, Image Engineering GmbH & Co. KG (Germany)

9:30 - 10:10 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

9.30

IMSE-078 Accurate joint geometric camera calibration of visible and far-infrared

cameras, Takashi Shibata^{1,2}, Masayuki Tanaka¹, and Masatoshi Okutomi¹; ¹Tokyo Institute of Technology and ²NEC Corporation (Japan)

9.50

DPMI-079

Interferometric measurement of sensor MTF and crosstalk, Todor Georgiev, Jennifer Gille, Amber Sun, Lyubomir Baev, and Tharun Battula, Qualcomm Technologies, Inc. (United States)

Keynote: Machine Vision Retina Improvement Joint Session

Session Chairs: Thomas Vogelsang, Rambus Inc., and Ralf Widenhorn, Portland State University (United States)

10:50 - 11:30 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

DPMI-080

Silicon retina technology (Invited), Tobi Delbruck, Institute for Neuroinformatics (INI) (Switzerland)

Tobi Delbruck (IEEE M'99-SM'06-F'13) received a PhD from Caltech (1993). He is currently a professor of physics and electrical engineering at ETH Zurich in the Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland, where he has been since 1998. His group, which he coordinates together with Shih-Chii Liu, focuses on neuromorphic eventbased sensors and sensory processing. He has co-organized the Telluride Neuromorphic Cognition Engineering summer workshop and the live demonstration sessions at ISCAS and NIPS. Delbruck is past Chair of the IEEE CAS Sensory Systems Technical Committee. He worked on electronic imaging at Arithmos, Synaptics, National Semiconductor, and Foveon and has founded 3 spin-off companies, including inilabs.com, a non-for-profit organization that has distributed hundreds of R&D prototype neuromorphic sensors to more than a hundred organizations around the world. He has been awarded 9 IEEE awards.

Emerging Imaging Sensor & Hardware Joint Session

Session Chairs: Thomas Vogelsang, Rambus Inc., and Ralf Widenhorn, Portland State University (United States)

11:30 - 11:50 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

11.30

DPAAL-081

TIK: A time domain continuous imaging testbed using conventional still images and video, Henry Dietz, John Fike, Paul Eberhart, Katie Long, Clark Demaree, and Jong Wu, University of Kentucky (United States)

Keynote: Comparing CMOS Image Sensor Architectures Joint Session

Session Chairs: Thomas Vogelsang, Rambus Inc., and Ralf Widenhorn, Portland State University (United States)

11:50 am - 12:40 pm

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

IMSE-082

CMOS image sensor pixel design and optimization, Boyd Fowler, OmniVision Technologies (United States)

Image Sensors and Imaging Systems 2017 Awards

Boyd Fowler's research interests include CMOS image sensors, low noise image sensors, noise analysis, data compression, and machine learning and vision. He received his MSEE (1990) and PhD (1995) from Stanford University. After finishing his PhD he stayed at Stanford University as a research associate in the Electrical Engineering Information Systems Laboratory until 1998. In 1998, Fowler founded Pixel Devices International in Sunnyvale California. Between 2005 and 2013, Fowler was CTO and VP of Technology at Fairchild Imaging. He is currently at OmniVision Technologies leading the marketing department. Fowler has authored numerous technical papers, book chapters and patents.

Visualization Facilities Joint Session

Session Chairs: Margaret Dolinsky, Indiana University (United States), and Andrew Woods, Curtin University (Australia)

3:30 - 5:40 pm

Grand Peninsula Ballroom D

This session is jointly sponsored by: Stereoscopic Displays and Applications XXVIII and The Engineering Reality of Virtual Reality 2017.

3:30

SD&A-105

Designing a cloud-based 3D visualization engine for smart cities,

Nicolas Holliman, Stephen Dowsland, Mark Turner, Richard Cloete, and Tom Picton, Newcastle University (United Kingdom)

3:50

SD&A-106

Interactive computer graphics, stereo and VR practice at the Electronic Visualization Laboratory University of Illinois at Chicago, Maxine Brown¹, Jason Leigh², Tom DeFanti³, and Daniel Sandin¹; ¹The University of Illinois at Chicago, ²University of Hawai'i at Manoa, and ³University of California, San Diego (United States)

4:10 ERVR-107 Designing at the Advanced Visualization Lab at Indiana University, Margaret Dolinsky¹, Eric Wernert², Michael Boyles², and Chris Eller²;

¹School of Art and Design, Indiana University and ²Advanced Visualization Lab, Indiana University (United States)

4.30

ERVR-108

SD&A-109

Exploring Calit2, Jürgen Schulze and Gregory Dawe, University of California, San Diego (United States)

4:50

3D-Stereoscopic immersive analytics projects at Monash University and University of Konstanz, Björn Sommer^{1,3}, David G. Barnes^{1,4}, Sarah Boyd¹, Thomas Chandler¹, Maxime Cordeil¹, Karsten Klein^{1,3}, Toan Nguyen⁴, Hieu Nim^{1,5}, Kingsley Stephens¹, Dany Vohl², Elliott Wilson¹, Jon McCormack¹, Kim Marriott¹, and Falk Schreiber^{1,3}; ¹Monash University (Australia), ²Swinburne University of Technology (Australia), ³University of Konstanz (Germany), ⁴Monash Immersive Visualization Platform at Monash University (Australia), and ⁵Australian Regenerative Medicine Institute of Monash University (Australia)

5:10

SD&A-110

Image distortions in large-scale immersive display systems - Cylinder and wedge displays, Andrew Woods¹, Joshua Hollick¹, Jesse Helliwell¹, and Paul Bourke²; ¹Curtin University and ²University of Western Australia (Australia)

5:30

SD&A Closing Remarks, Nicolas Holliman, Newcastle University (United Kinadoml

Thursday, February 2, 2017

Keynote: History and Standards for Automotive Vision Systems Performance Joint Session

Session Chairs: Arnaud Darmont, APHESA SPRL (Belgium); Ralf Widenhorn, Portland State University (United States); and Buyue Zhang, Intel (United States)

11:50 am – 12:30 pm

Harbour

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Autonomous Vehicles and Machines 2017.

IMSE-196

Automotive imaging, Patrick Denny, VALEO (Ireland)

Patrick Denny is a Senior Research Engineer and a Valeo Senior Expert and has worked for the last 15 years at Valeo Vision Systems, Ireland. He received his PhD in physics (2000) from the National University of Ireland, Galway, where he is also Adjunct Professor of Automotive Electronics. Denny has in excess of 20 years experience in scientific and technological development internationally, designing, innovating and developing automotive imaging technologies for BMW, Jaguar Land Rover, Daimler, VW, and other OEMs. His research interests include several aspects of automotive vision system image quality, sensor components, algorithmic design, systems, machine learning and data analytics.

Interactive Workshop: How can COLOR imaging provide US with powerful INSIGHTS? Joint Session

Moderator: Fritz Lebowsky, STMicroelectronics (France)

2:00 - 5:00 pm

Regency Ballroom C

This session is jointly sponsored by: Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications and Material Appearance 2017.

COLOR-062

Interactive Workshop: How can color imaging provide us with powerful insights?, Fritz Lebowsky, STMicroelectronics (France)

We would very much like to have you participate in a special session in which we encourage asking questions and exchange ideas that frequently trouble us during research and development projects. The presence of experts in COLOR imaging and perhaps Electronic Imaging at large will provide a unique opportunity of efficiently and lively sharing simple/stupefying ideas enabling fascinating engineering concepts which may also stimulate your own future research and development projects!

Paper Schedule by Day/Time

Monday, January 30, 2017

8:50 am	
AVM-009	Architectures for automated driving (Weast)
COIMG-453	Deep neural networks for synchrotron X-ray imaging (Yang)
DPMI-063	Stabilized high-speed video from camera arrays (El Choubassi)
IQSP-218	Blind image quality assessment using multiscale local binary patterns (JIST-first) <i>(Garcia Freitas)</i>
MWSF-316	The nimble challenges for media forensics (Phillips)
SD&A-353	Expert viewers' preferences for higher frame rate 3D film (JIST-first) <i>(Allison)</i>
9:10 am	
COIMG-415	Synchrotron x-ray diffraction dynamic sampling for protein crystal centering (Simpson)
DPMI-064	Panoramic background estimation from RGB-D videos (Bampis)
HVEI-111	Vision at a glance (Invited) (Rosenholtz)
IQSP-219	Dimension reduction-based attributes selection in no- reference learning-based image quality algorithms (<i>Charrier</i>)
SD&A-354	Investigating aircrew depth perception standards using a stereoscopic simulation environment (<i>Winterbottom</i>)
9:30 am	
COIMG-416	An iterative method to estimate and recover systematic and random errors in grating based x-ray phase contrast imaging (<i>Lim</i>)
DPMI-065	Accurate measurement of point to point distances in 3D camera images (Seshadrinathan)
IQSP-220	GPGPU based implementation of a high performing No Reference (NR)- IQA algorithm, BLIINDS-II (<i>Yadav</i>)
SD&A-355	Estimation of altitude in stereoscopic-3D versus 2D real- world scenes <i>(Deas)</i>
9:40 am	
CVAS-342	Virtual tracking shots for sports analysis (Bennett)
9:50 am	
AVM-010	3D Perception: multi-camera embedded structure-from- motion prototype for real-time mapping (<i>Mueller</i>)
COIMG-417	A model based neuron detection approach using sparse location priors <i>(Majee)</i>
DPMI-066	A novel framework for fast MRF optimization (Somanath)
IQSP-221	No-reference image contrast assessment based on just-noticeable-difference (<i>Kim</i>)

SD&A-356	Study of objective parameters of 3D visual fatigue based on analysis of salient area <i>(Du)</i>
10:00 am	
CVAS-343	Aerodynamic analysis via foreground segmentation (Carey)
10:10 am	
AVM-451	Measuring MTF with wedges: Pitfalls and best practices (Koren)
COIMG-449	Multi-resolution Data Fusion (MDF) for computational electron microscopy (<i>Sreehari</i>)
10:30 am	
HVEI-112	Eidolons: Effects of capricious local sign (Invited) (Koenderink)
MWSF-317	Embedding information into objects fabricated with 3-D printers by forming fine cavities inside them (<i>Suzuki</i>)
10:50 am	
AVM-012	Free-view multi-camera visualization and harmonization for automotive systems (<i>Zlokolica</i>)
COIMG-418	High spatial resolution detection method for point light source in scintillator (Xu)
CVAS-344	Goal! Event detection in sports video (Tsagkatakis)
DPMI-067	Heterogeneous computational imaging (Pulli)
IQSP-222	How to use video quality metrics for something other than video compression (<i>Kokaram</i>)
MAAP-273	Comparison between angularly and spectrally resolved gloss measurements with gloss measurements carried out on a national reference goniometer for gloss calibration (Charriere)
SD&A-357	Architectures and codecs for real-time light field streaming (JIST-first) (<i>Kovács)</i>
VIPC-398	A fast TU mode decision algorithm based on residual difference for HEVC <i>(Li)</i>
10:55 am	
MWSF-319	High-capacity reversible data hiding in encrypted images using MSB prediction (<i>Puteaux</i>)
11:00 am	
HVEI-113	Careful methods and measurements for comparisons between men and machines (Invited) (Wichmann)
11:10 am	
Δ\/ΛΛ-Ο13	Accelerated stereo matching for autonomous vahicles
101010	using upright pinhole camera model (Chen)

COIMG-419	A randomized approach to reduce metal artifacts in x-ray computed tomography (<i>Castañón</i>)	MAAP-276	Optimal LED selection for multispectral lighting reproduction (<i>LeGendre</i>)
CVAS-345	Pose estimation for deriving kinematic parameters of competitive swimmers (<i>Zecha</i>)	SD&A-360	Multilevel light modulation of three-dimensional magneto- optic spatial light modulator using optically addressing
MAAP-274	A normal vector and BTF profile measurement system using a correlation camera and scanning dome	VIPC-401	method (Nakamura) Compression of infrared images (Mantel)
SD&A-358	Illumination <i>(Kimachi)</i> Wide viewing angle projection-type integral 3D display system with multiple UHD projectors <i>(Watanabe)</i>	12:00 pm HVEI-116	Emeraina visual representations in deep learning net-
VIPC-399	A fast intra mode decision algorithm for HEVC (<i>Liao</i>)		works (Invited) (Oliva)
11:20 am		12:10 pm	
MWSF-320	The A Priori knowledge based secure payload estimation for additive model <i>(Ma)</i>	AVM-011	Real-time flight altitude estimation using phase correlation with gram polynomial decimation (<i>Badshah</i>)
11:30 am		COIMG-422	Fast and robust discrete computational imaging (Tuysuzoglu)
AVM-014	Perspectively correct bird's views using stereo vision, Christian Fuchs and Dietrich Paulus, University of	DPMI-070	Representation and compression for cinematic VR (Invited) (Lakshman)
COMG-420	Koblenz-Landau <i>(Germany)</i>	IQSP-225	Image quality assessment by comparing CNN features between images (JIST-first) (Ali Amirshahi)
	energy CT images (<i>Castañón</i>)	SD&A-361	Integral three-dimensional display with high image quality using multiple flat-panel displays <i>(Okaichi)</i>
CVAS-340	Comparison of a virtual game-day experience on varying devices (Miller)	VIPC-402	Graph regularized sparse coding by modified online
DPMI-068	ls there a multi-camera future? (Invited) (Macmillan)		dictionary learning (Sha)
HVEI-114	Perceptual and engineering implications of cascaded gain control models (Invited) (Simoncelli)	2:00 pm	
IQSP-223	MS-UNIQUE: Multi-model and sharpness-weighted unsupervised image quality estimation (Prabhushankar)	PLENARY	Giga-scale 3D computational microscopy (Waller)
MAAP-27.5	Polarimetric multispectral bidirectional reflectance	3:30 pm	
10001273	distribution function measurements using a Fourier transform instrument (Boher)	AVM-016	Needs and challenges analysis for reference architectures in autonomous systems (<i>Zander</i>)
SD&A-359	A novel hardware based method for multiview glassless	COIMG-423	Linear mapping based inverse tone mapping (Kim)
	3D display (Chen)	CVAS-348	Automated sports broadcasting (Carr)
VIPC-400	Diamond frequency domain inter frame motion estimation for HEVC (<i>Abdelazim</i>)	DPMI-071	Quantifying the luminance ratio of interior and exterior scenes: Challenges and tradeoffs in definitions, current standards, measurement methodologies and instrumenta-
11:50 am			tion, capturing capabilities of digital cameras, effects of
AVM-015	A sense and avoid algorithm using surround stereo vision for drones (Godaliyadda)	HVEI-117	veiling glare (Voltolini de Azambuja) Movies and meaning: From low-level features to mind
COIMG-421	MultiGPU acceleration of branchless distance driven		reading (Invited) (Benini)
	projection and backprojection for Clinical Helical CT	IQSP-226	Potential contrast – A new image quality measure (Shaus)
0.44.0.0.47	(JISI-tirst) (Mitra)	MAAP-288	Modeling and reproducing effect paints (Meyer)
CVAS-34/	Digital playbook – A teaching tool tor American tootball (Vorstandlechner)	MWSF-321	Benefits of combining forensic image creation and file carving (<i>Steinebach</i>)
DPMI-069	Capturing light field video for 6-DOF VR playback (Invited) (<i>Jiang)</i>	SD&A-362	Stereoscopic displays, tracking, interaction, education, and the web <i>(Chavez)</i>
IQSP-224	Microarchitectural analysis of a GPU implementation of the most apparent distortion image quality assessment algorithm (<i>Kannan</i>)	VIPC-403	A coarse-to-fine framework for video object segmentation (Zhang)

3:50 pm

COIMG-424	Performance of the 14 skin-colored patches to accurately estimate the human skin <i>(Choi)</i>
DPMI-072	Sensitivity analysis applied to ISO recommended camera color calibration methods to determine how much of an advantage, if any, does spectral charac- terization of the camera offer over the chart-based approach (Sampat)
IQSP-227	Observer calibrator for color vision research (Zhou)
MAAP-289	How to design a recto-verso print displaying different im- ages in various everyday-life lighting conditions (Dalloz)
VIPC-404	A fast and accurate segmentation method for medical images (Wu)
3:55 pm	
MVVSF-322	Codec-embedded MP3 partial encryption for DRM (Steinebach)
4:10 pm	
COIMG-425	Skin-representative region in a face for finding true skin color <i>(Suk)</i>
DPMI-073	Perceptual optimization driven by image quality metrics (Invited) (<i>Wang</i>)
IQSP-228	Knowledge based taxonomic scheme for full reference objective image quality measurement models (JIST-first) <i>(Lahoulou)</i>
MAAP-290	Appearance decomposition and reconstruction of textured fluorescent objects (<i>Tominaga</i>)
VIPC-405	Adaptive combination of local motion, appearance, and shape for video segmentation (JIST-first) <i>(Lee)</i>
4:20 pm	
HVEI-119	On the role of color in visual saliency (Etchebehere)
MVVSF-323	How to recompress a JPEG crypto-compressed image? (<i>ltier</i>)
4:30 pm	
AVM-017	Enabling functional safety ASIL compliance for autono- mous driving software systems (<i>Chitnis</i>)
DPMI-074	Looming challenges in mobile imaging quality: New technologies and new markets (Invited) (<i>Cardinal</i>)
IQSP-229	A RGB-NIR data set for evaluating dehazing algorithms <i>(Lüthen)</i>
MAAP-291	Assessing the proper color of translucent materials by an extended two-flux model from measurements based on an integrating sphere <i>(Simonot)</i>

Tuesday, January 31, 2017

8:50 am

AVM-018	Common themes in autonomous navigation on earth and in space (<i>Matthies</i>)
COIMG-454	Atomistic simulations of interface characteristics in materials systems (<i>Rickman</i>)
COLOR-026	Wide-gamut mobile-device displays: Gamut-mapping and color enhancement challenges (<i>Safaee-Rad</i>)
HVEI-378	Depth-compressed expression for providing natural, visual experiences with integral 3D displays (Sawahata)
IPAS-197	Compressed sensing MRI using curvelet sparsity and nonlocal total variation (<i>Pour Yazdanpanah</i>)
IQSP-249	Towards the development of the IEEE P1858 CPIQ standard – A validation study <i>(Jin)</i>
MWSF-324	Pre-training via fitting deep neural network to rich-model features extraction procedure and its effect on deep learning for steganalysis (<i>Zeng</i>)
VIPC-406	Improvement of infrared image based on directional anisotropic wavelet transform (Jin)
9:00 am	
SRV-349	Traffic light recognition and dangerous driving events de- tection from surveillance video of vehicle camera (Guan)
9:10 am	
COIMG-426	A phase-coded aperture camera with programmable optics (<i>Chen</i>)
COLOR-027	Methods of defining a gamut boundary based on a face/vertex encoding (<i>Green</i>)
HVEI-379	Blind quality prediction of stereoscopic 3D images (Wang)
IPAS-198	Brand detection framework in LG wavelet domain (Mangiatordi)
MAAP-282	Graininess appearance of goniochromatic samples in lighting cabinets (<i>lacomussi</i>)
VIPC-407	New diamond half-pel hexagon serach algorithm for block matching motion estimation (<i>Abdelazim</i>)
9:15 am	
MWSF-325	Histogram layer, moving convolutional neural networks towards feature-based steganalysis (<i>Sedighianaraki</i>)
9:20 am	
IQSP-250	A methodology for perceptual image quality assessment of smartphone cameras – color quality (<i>Farnand</i>)
SRV-350	A combined HOG and deep convolution network cascade for pedestrian detection (<i>Lipetski</i>)

9:30 am

COIMG-427	Wavefront correction using self-interference incoherent digital holography (<i>Bang</i>)
COLOR-028	Gamut mapping in RGB colour spaces with the iterative ratios diffusion algorithm (<i>Farup</i>)
IPAS-199	Texture representations in different basis functions for image synthesis using system criteria analysis (Voronin)
MAAP-283	Measurement and evaluation method of orange peel (Sone)
SD&A-380	Pseudo-haptic by stereoscopic images and effects on muscular activity <i>(Kawai)</i>
VIPC-408	Self-example-based edge enhancement algorithm for around view monitor images <i>(Choi)</i>
9:40 am	
IQSP-251	Assessing the ability of simulated laboratory scenes to predict the image quality performance of HDR captures (and rendering) of exterior scenes using mobile phone cameras. (<i>Spooner</i>)
MWSF-326	Model based steganography with precover (Denemark)
SRV-352	A multi-scale approach to skin pixel detection (Roheda)
9:50 am	
AVM-019	Milpet – The self-driving wheelchair (Echefu)
COIMG-428	Non-iterative image reconstruction for single photon image sensors <i>(Chan)</i>
COLOR-029	Checklist for daltonization methods: Requirements and characteristics of a good recoloring method (Simon-Liedtke)
IPAS-200	2-D octonion discrete fourier transform: Fast algorithms (Grigoryan)
MAAP-284	Enhanced RTI for gloss reproduction (Fornaro)
SD&A-381	The effects of proximity cues on visual comfort when viewing stereoscopic contents (JIST-first) (<i>Xie</i>)
VIPC-409	Adaptive multireference prediction using a symmetric framework <i>(Liu)</i>
10:00 am	
SRV-351	Detecting and estimating sound events locations through a microphone array (Martínez-García)
10:10 am	
COLOR-030	On the edge: A scalable daltonization method focusing on color contrasts and color edges (Simon-Liedtke)
10:30 am	
MWSF-327	A preliminary study on convolutional neural networks for camera model identification <i>(Bondi)</i>

10:40 am

AVM-020 HVEI-120	Efficient pre-processor for CNN (Mody) Interactions between saliency and utility (Scott)
10:50 am	
COIMG-429	Single image super-interpolation using adjusted self- exemplars (<i>Kim</i>)
COLOR-033	Estimating appearance differences of 3D objects with an RGB camera <i>(Sun)</i>
IPAS-201	Artifact suppression in compressed images using residual- based deep convolutional network (Nam)
IQSP-253	Characterization of entire imaging plane spatial fre- quency response (<i>lenchenkov</i>)
MAAP-285	Consistent tool-independent virtual material appearance (Guarnera)

- SD&A-363 See-through projection 3D display using time-division multiplexing (Kajimoto)
- VIPC-411 Semi-supervised learning feature representation for historical Chinese character recognition (Yu)

10:55 am

MWSF-328	Design principles of convolutional neural networks for multimedia forensics (<i>Bayar</i>)
11:00 am	

AVM-021	Free-space detection with self-supervised and online trained fully convolutional networks (Sanberg)
HVEI-121	Perceptual evaluation of psychovisual rate-distortion enhancement in video coding <i>(Duanmu)</i>

11:10 am

COIMG-430	Temporal super-resolution for time domain continuous imaging (Dietz)
COLOR-034	A metric for the evaluation of color perceptual smoothness (Marchessoux)
IPAS-202	Full-reference metrics multidistortional analysis (leremeiev)
IQSP-254	Reverse-projection method for measuring camera MTF (Birchfield)
MAAP-286	Interactive object surface retexturing using perceptual quality indexes (<i>Hirai</i>)
SD&A-364	Flat autostereoscopic 3D display with enhanced resolu- tion using a static color filter barrier (Jurk)
VIPC-412	Document image classification on the basis of layout information (<i>Zavalishin</i>)
11:20 am	
AVM-022	Motion estimation using visual odometry and deep learn- ing localization (<i>Bag</i>)
HVEI-122	Balancing Type I errors and statistical power in video quality assessment (<i>Brunnstrom</i>)

MWSF-329	Image recapturing detection with convolutional and recurrent neural network (Li)
11:30 am	
COIMG-431	Edge-aware light-field flow for depth estimation and occlusion detection (<i>Zhou</i>)
COLOR-035	Towards a perceptually-motivated color space for high dynamic range imaging <i>(Abebe)</i>
IPAS-203	ICA-based background subtraction method for an FPGA-SoC (<i>Carrizosa-Corral</i>)
IQSP-255	Texture MTF from images of natural scenes (Branca)
SD&A-365	Portrait and landscape mode convertible stereoscopic display using parallax barriers <i>(Minami)</i>
11:40 am	
AVM-023	Deep reinforcement learning framework for autonomous driving <i>(El Sallab)</i>
HVEI-123	On the perceptual factors underlying the quality of post- compression enhancement of textures (Yaacob)
11:45 am	
MWSF-330	Autoencoder with recurrent neural networks for video forgery detection (D'Avino)
11:50 am	
COIMG-432	Evaluating age estimation using deep convolutional neural nets (<i>Belver</i>)
DPMI-256	Camera phone texture preservation measurements with modulation transfer function: An alternative approach for noise estimation of random texture chart images (<i>Suresh</i>)
IPAS-204	A robust line segmentation for Arabic printed text with diacritics (Mohammad)
SD&A-366	Digital holographic display with two-dimensional and three-dimensional convertible feature by high speed switchable diffuser <i>(Hong)</i>
12:00 pm	
AVM-024	Automatic glare detection via photometric, geometric, and global positioning information (<i>Andalibi</i>)
HVEI-124	Do gaze disruptions indicate the perceived quality of non-uniformly coded natural scenes? (<i>Rai</i>)
12:10 pm	
COIMG-452	3-D Shape recovery from real images using a symmetry prior (Jayadevan)
IQSP-257	The effects of misregistration on the dead leaves cross- correlation texture blur analysis <i>(Burada)</i>
SD&A-382	A low-cost static volumetric display based on layered high incidence angle scattering <i>(Frayne)</i>

12:20 pm

AVM-025	Pose estimation from rigid face landmarks for driver monitoring systems (Shankar)
HVEI-125	Subjective evaluation of distortions in first-person videos (<i>Bai</i>)
2:00 pm	
PLENARY	VR 2.0: Making virtual reality better than reality (Wetzstein)
3:30 pm	
COIMG-433	Augmenting salient foreground detection using Fiedler vector for multi-object segmentation <i>(Kucer)</i>
COLOR-036	Color discrimination threshold for medical test devices (Hassani)
DPMI-083	BM3D-HVS: Content-adaptive denoising for improved visual quality (Invited) (<i>Egiazarian</i>)
HVEI-126	Image and video compression for mobile: Is my screen small enough? (Invited) <i>(Delp)</i>
IQSP-230	Towards a quantitative evaluation of multi-imaging systems (<i>Vlachomitrou</i>)
MAAP-277	The future of material communication via the Appearance Exchange Format (AxF) <i>(Ellens)</i>
MWSF-339	PRNU in practice (Bruehs)
SD&A-367	Real time depth estimation method using hybrid camera system (<i>Baek)</i>
3:40 pm	
HVEI-127	Business perspectives on perceptually lossless and lossy quality (Invited) (<i>Daly</i>)
3:50 pm	
COIMG-434	Non-destructive localization of overpaintings in Byzantine miniature illuminations (<i>Psarrou</i>)
COLOR-037	Content-dependent adaptation in a soft proof matching experiment (<i>High</i>)
HVEI-128	Usage perspectives on perceptually lossless and lossy quality and assessment (Invited) <i>(Corriveau)</i>
IPAS-084	Refining raw pixel values using a value error model to drive texture synthesis (<i>Dietz</i>)
IQSP-231	Resolution enhancement through superimposition of pro- jected images: An evaluation of the image quality <i>(Hansen)</i>
SD&A-368	Pixel based adaptive normalized cross correlation for illumination invariant stereo matching (<i>Chang</i>)
4:00 pm	
HVEI-129	Subjective assessment and the criteria for visually lossless compression (Invited) <i>(Wilcox)</i>
4:10 pm	
COIMG-435	Computing height and width of in situ sorghum plants using 2.5d infrared images (<i>Baharav</i>)

COLOR-038	Comparisons of measures of blurriness in transparent displays (Yang)
HVEI-130	Masked detection of compression artifacts on laboratory, consumer, and mobile displays (Invited) (<i>Zhang</i>)
IPAS-085	Color interpolation based on colorization for RGB-white color filter array <i>(Oh)</i>
IQSP-232	Evaluation of major factors affecting spatial resolution of gamma-rays camera (<i>Xie</i>)
MAAP-278	Material with visual effects: Study of the gonioapparency of the anodized titanium (<i>Cridling</i>)
SD&A-369	Guide image filtering based disparity range control in stereo vision <i>(Mun)</i>
4:20 pm	
HVEI-131	Industry and business perspectives on the distinctions between visually lossless and lossy video quality: Mobile and large format displays (Invited) (Brunnstrom)
4:30 pm	
COIMG-436	Non-parametric texture synthesis using texture classification (<i>Ziga</i>)
COLOR-039	The smallest projection optics for the vertical shaped ultra short throw projector (<i>Takano</i>)
IPAS-086	Video frame synthesizing method for HDR video capturing system with four image sensors (<i>Yamashita</i>)
IQSP-233	Development and image quality evaluation of 8K high dynamic range cameras with hybrid log-gamma (<i>Funatsu</i>)
MAAP-279	Adapted modulation transfer function method for charac- terization and improvement of 2.5D printing. (PAGE)
4:50 pm	
COIMG-437	On-the-fly performance evaluation of large-scale fiber tracking (Yu)
COLOR-040	Pareto optimality in primary selection for multiprimary displays (<i>Xie</i>)
DPMI-088	Robust defect pixel detection and correction for Bayer Imaging Systems (El-Yamany)
IQSP-234	Detection of streaks caused by dust in the sheetfed scanners (<i>Kenzhebalin</i>)
MAAP-280	Evaluating an image based multi-angle measurement setup using different reflection models (Sole)
5:10 pm	
COIMG-438	Point cloud based approach to biomass feature extraction (<i>Jin</i>)
IQSP-235	Effect of dark current distribution on image quality (Skorka)
MAAP-281	Model-based skin pigment cartography by high-resolution hyperspectral imaging (JIST-first) (Seroul)

Wednesday, February 1, 2017

8:50 am

COLOR-041	Color halftoning based on Neugebauer Primary Area Coverage <i>(Jiang)</i>
HVEI-132	Orientation-ocularity maps: A technique for computer vision (<i>Restrepo</i>)
IMSE-077	Bayer pattern and image quality (Kunze)
IPAS-205	Water region extraction in thermal and RGB sequences using spatiotemporally-oriented energy features (Ghahremani)
IRIACV-258	Efficient visual loop closure detection via moment based global image descriptors (<i>Erhan</i>)
MOBMU-292	Introduction to WLAN-fingerprinting based indoor localization (Akopian)
MVVSF-331	Videos versus still images: Asymmetric sensor pattern noise comparison on mobile phones (<i>Galdi</i>)
SD&A-340	Sharpness mismatch and 6 other stereoscopic artifacts measured on 10 Chinese S3D movies (<i>Vatolin</i>)
9:10 am	
COLOR-042	Color halftoning based on multi-stage, multi-pass, clustered-DBS (<i>Xi)</i>
ERVR-089	Oculus rift with stereo camera for augmented reality medical intubation training (<i>Lim</i>)
HVEI-133	Evaluation of color prediction methods in terms of least dissimilar asymmetric matching <i>(Roshan)</i>
IMAWM-157	The internet on things: Delivering augmented reality experiences in context (<i>Gormish</i>)
IPAS-206	Cloud and shadow detection using sequential characteristics on multi-spectral satellite images (Groot)
IQSP-238	Feature ranking and selection used in a machine learning framework for predicting uniformity of printed pages (Nguyen)
IRIACV-259	Real-time mobile robot navigation based on stereo vision and low-cost GPS (Hong)
MOBMU-299	Android door and window image based measurements (Mohammad)
SD&A-370	Bringing 3DMap to the 21st century (Keith)
9:15 am	
MWSF-332	Linear filter kernel estimation based on digital camera sensor noise <i>(Liu)</i>
9:30 am	
COLOR-43	On large local error accumulation in multilevel error diffusion (JIST-first) <i>(Eschbach)</i>
ERVR-090	Virtual reality instructional modules in education based or gaming metaphor (Sharma)

24

Schedule

HVEI-134	Characterization of spatiotemporal fluctuation in absorbed light energy by an array of interleaved photosensitive elements (<i>Peyvandi</i>)
IMSE-078	Accurate joint geometric camera calibration of visible and far-infrared cameras (Shibata)
IPAS-207	Thermal facial signatures for state assessment during deception (<i>Powar</i>)
IQSP-239	Real-time print quality diagnostics (Xiao)
IRIACV-260	The acceleration effect to the perception of velocity difference in passive elbow flexion movement (Akatsuka)
MOBMU-293	Usability of smart mobile micro photonic sensor systems for industrial and non-industrial quality assurance (Dittrich)
SD&A-371	Subjective and objective study of the relation between 3D and 2D views based on depth and bit rate (Appina)
9:40 am	
MVVSF-333	PRNU-based forgery detection with discriminative random fields <i>(Chakraborty)</i>
9:50 am	
COLOR-044	Edge-preserving error diffusion for multi-toning based on dual quantization (<i>Kiyotomo</i>)
DPMI-079	Interferometric measurement of sensor MTF and crosstalk <i>(Georgiev)</i>
ERVR-092	Drawing towards virtual reality (Dolinsky)
HVEI-135	Robust dynamic range computation for high dynamic range content (<i>Hulusic</i>)
IPAS-208	Face spoofing detection based on local binary descriptors (<i>Tsai</i>)
IRIACV-261	Targeted intelligent autonomous robotics contest: The European Roboathlon <i>(Röning)</i>
MOBMU-294	Blackmagic production camera raw color investigation by spectral analysis of Macbeth color charts (<i>Hasche</i>)
SD&A-373	Improved depth of field analysis of multilayer displays (Gotoda)
10:10 am	
MOBMU-295	Liquid crystal lens characterization for integrated depth sensing and all in focus imaging application (<i>Emberger</i>)
10:30 am	
HVEI-136	GPU-accelerated vision modeling with the HPE cognitive computing toolkit (Invited) (<i>Chandler</i>)
MWSF-335	Sensitivity of different correlation measures to print-and- scan process (<i>Tkachenko</i>)
10:50 am	
COLOR-045	Selecting best ink color for sparse watermark (Reed)
DPMI-080	Silicon retina technology (Invited) (Delbruck)

ERVR-093	The Destiny-class CyberCANOE- a surround screen, stereoscopic, cyber-enabled collaboration analysis navigation and observation environment (Kawano)
IMAWM-158	MS-Celeb-1M: A review of large-scale face recognition (Invited) (<i>Guo</i>)
IPAS-209	Real-time estimation of the 3D transformation between images with large viewpoint differences in cluttered environments (van de Wouw)
IQSP-240	UHD quality analyses at various viewing conditions (Lee)
IRIACV-262	Application of big data analytics for recognition of microbial colonies from hyperspectral images (<i>Yoon</i>)
SD&A-374	Stereo rendering of photorealistic precipitation (Hussain)
10:55 am	
MVVSF-336	Scalable processing history detector for JPEG images (Boroumand)
11:00 am	
HVEI-137	A neurally-inspired algorithm for detecting ordinal depth from motion signals in video streams (Invited) <i>(Livitz)</i>
MOBMU-296	High quality virtual lighting using image-based-lighting and projection onto meshes generated from Lidar and SfM Point Clouds <i>(Hasche)</i>
11:10 am	
COLOR-046	Page classification for print imaging pipeline (Xu)
COLOR-046 ERVR-094	Page classification for print imaging pipeline (Xu) CAVE versus head-mounted displays: On-going thoughts (Mestre)
COLOR-046 ERVR-094 IPAS-210	Page classification for print imaging pipeline (Xu) CAVE versus head-mounted displays: On-going thoughts (Mestre) Camera-to-model back-raycasting for extraction of RGBD images from pointclouds (Javan Hemmat)
COLOR:046 ERVR:094 IPAS:210 IQSP:241	Page classification for print imaging pipeline (Xu) CAVE versus head-mounted displays: On-going thoughts (Mestre) Camera-to-model back-raycasting for extraction of RGBD images from pointclouds (Javan Hemmat) Image quality assessment for holographic display (Seo)
COLOR-046 ERVR-094 IPAS-210 IQSP-241 IRIACV-263	Page classification for print imaging pipeline (Xu) CAVE versus head-mounted displays: On-going thoughts (Mestre) Camera-to-model back-raycasting for extraction of RGBD images from pointclouds (Javan Hemmat) Image quality assessment for holographic display (Seo) Weaving pattern recognition of ancient Chinese textiles by regular bands analysis (Chan)
COLOR:046 ERVR:094 IPAS:210 IQSP:241 IRIACV:263 SD&A:372	Page classification for print imaging pipeline (Xu) CAVE versus head-mounted displays: On-going thoughts (Mestre) Camera-to-model back-raycasting for extraction of RGBD images from pointclouds (Javan Hemmat) Image quality assessment for holographic display (Seo) Weaving pattern recognition of ancient Chinese textiles by regular bands analysis (Chan) Utilization of stereoscopic 3D images in elementary school social studies classes (Shibata)
COLOR:046 ERVR:094 IPAS:210 IQSP:241 IRIACV:263 SD&A:372 11:20 am	Page classification for print imaging pipeline (Xu) CAVE versus head-mounted displays: On-going thoughts (Mestre) Camera-to-model back-raycasting for extraction of RGBD images from pointclouds (Javan Hemmat) Image quality assessment for holographic display (Seo) Weaving pattern recognition of ancient Chinese textiles by regular bands analysis (Chan) Utilization of stereoscopic 3D images in elementary school social studies classes (Shibata)
COLOR-046 ERVR-094 IPAS-210 IQSP-241 IRIACV-263 SD&A-372 11:20 am MOBMU-297	Page classification for print imaging pipeline (Xu) CAVE versus head-mounted displays: On-going thoughts (Mestre) Camera-to-model back-raycasting for extraction of RGBD images from pointclouds (Javan Hemmat) Image quality assessment for holographic display (Seo) Weaving pattern recognition of ancient Chinese textiles by regular bands analysis (Chan) Utilization of stereoscopic 3D images in elementary school social studies classes (Shibata) A billion words to remember (Nagy)
COLOR:046 ERVR:094 IPAS:210 IQSP:241 IRIACV:263 SD&A:372 11:20 am MOB:MU:297 MVVSF:337	Page classification for print imaging pipeline (Xu) CAVE versus head-mounted displays: On-going thoughts (Mestre) Camera-to-model back-raycasting for extraction of RGBD images from pointclouds (Javan Hemmat) Image quality assessment for holographic display (Seo) Weaving pattern recognition of ancient Chinese textiles by regular bands analysis (Chan) Utilization of stereoscopic 3D images in elementary school social studies classes (Shibata) A billion words to remember (Nagy) Deciphering severely degraded license plates (Agarwal)
COLOR:046 ERVR:094 IPAS:210 IQSP:241 IRIACV:263 SD&A-372 11:20 am MOBMU:297 MVVSF:337 11:30 am	Page classification for print imaging pipeline (Xu) CAVE versus head-mounted displays: On-going thoughts (Mestre) Camera-to-model back-raycasting for extraction of RGBD images from pointclouds (Javan Hemmat) Image quality assessment for holographic display (Seo) Weaving pattern recognition of ancient Chinese textiles by regular bands analysis (Chan) Utilization of stereoscopic 3D images in elementary school social studies classes (Shibata) A billion words to remember (Nagy) Deciphering severely degraded license plates (Agarwal)
COLOR-046 ERVR-094 IPAS-210 IQSP-241 IRIACV-263 SD&A-372 11:20 am MOBMU-297 MVVSF-337 11:30 am COLOR-047	Page classification for print imaging pipeline (Xu) CAVE versus head-mounted displays: On-going thoughts (Mestre) Camera-to-model back-raycasting for extraction of RGBD images from pointclouds (Javan Hemmat) Image quality assessment for holographic display (Seo) Weaving pattern recognition of ancient Chinese textiles by regular bands analysis (Chan) Utilization of stereoscopic 3D images in elementary school social studies classes (Shibata) A billion words to remember (Nagy) Deciphering severely degraded license plates (Agarwal) Indirect periodic disturbance compensator using feedforward control for image noises (Kaneko)
COLOR:046 ERVR:094 IPAS:210 IQSP:241 IRIACV:263 SD&A-372 11:20 am MOBMU:297 MVVSF:337 11:30 am COLOR:047 DPMI:081	Page classification for print imaging pipeline (Xu) CAVE versus head-mounted displays: On-going thoughts (Mestre) Camera-to-model back-raycasting for extraction of RGBD images from pointclouds (Javan Hemmat) Image quality assessment for holographic display (Seo) Weaving pattern recognition of ancient Chinese textiles by regular bands analysis (Chan) Utilization of stereoscopic 3D images in elementary school social studies classes (Shibata) A billion words to remember (Nagy) Deciphering severely degraded license plates (Agarwal) Indirect periodic disturbance compensator using feedforward control for image noises (Kaneko) TIK: A time domain continuous imaging testbed using conventional still images and video (Dietz)
COLOR:046 ERVR:094 IPAS:210 IQSP:241 IRIACV:263 SD&A:372 11:20 am MOBMU:297 MWVSF:337 11:30 am COLOR:047 DPMI:081 ERVR:095	Page classification for print imaging pipeline (Xu) CAVE versus head-mounted displays: On-going thoughts (Mestre) Camera-to-model back-raycasting for extraction of RGBD images from pointclouds (Javan Hemmat) Image quality assessment for holographic display (Seo) Weaving pattern recognition of ancient Chinese textiles by regular bands analysis (Chan) Utilization of stereoscopic 3D images in elementary school social studies classes (Shibata) A billion words to remember (Nagy) Deciphering severely degraded license plates (Agarwal) Indirect periodic disturbance compensator using feedforward control for image noises (Kaneko) TIK: A time domain continuous imaging testbed using conventional still images and video (Dietz) Distributed rendering using NVIDIA OptiX (McCarthy)

IMAWM-159	Evaluation of Hadoop and HPCC for multimedia big data analysis <i>(Chinta)</i>
IPAS-212	Depth image object extraction approach based on improved fractal dimension <i>(Cao)</i>
IQSP-242	Subjective viewer preference model for automatic HDR down conversion <i>(Lenzen)</i>
IRIACV-264	Finding a needle in a haystack: Recognizing surgical instruments through vision and manipulation (<i>Zhou</i>)
SD&A-375	360° 3D capture: Meeting the need in VR (Macmillan)
11:40 am	
MOBMU-298	Demographic prediction based on mobile user data (Podoynitsina)
11:45 am	
MWSF-338	PCB surface fingerprints based counterfeit detection of electronic devices (<i>Iqbal</i>)
11:50 am	
COLOR-048	3D halftoning <i>(Mao)</i>
ERVR-096	Laser illuminated projectors and the technological advancements brought forth to immersive environments <i>(Rains)</i>
IMAWM-160	Creating the world's largest real-time camera network (Dailey)
IMSE-082	CMOS image sensor pixel design and optimization (Fowler)
IQSP-243	A foveated just noticeable difference model for virtual reality (<i>Deng</i>)
IRIACV-265	Automatic detection of plant roots in multispectral images (Srinivas)
12:00 pm	
HVEI-139	Learning visual representations for active perception (Invited) (<i>Olshausen</i>)
MOBMU-300	Optimizing video transmission for mobile devices (<i>lee</i>)
12:10 pm	
ERVR-097	New VR navigation techniques to reduce cybersickness (Kemeny)
IMAWM-161	Multimedia instant messaging with real-time attribute- based encryption (Pan)
IRIACV-266	Education in industrial machine vision in Upper Austria University of Applied Sciences (bachelor/master) with respect to the needs by the European industry and automation engineering <i>(Niel)</i>
12:20 pm	
MOBMU-308	Comparative visualization of the geometry of a hollow box girder using 3D-liDAR – Part 2: Reconstruction of a 3D geometric model <i>(Maack)</i>

2:00 pm

PLENARY Designing VR video camera systems (Cabral)

3:30 pm

COLOR-049	What makes hue special? (Farup)
HVEI-140	Simulation of the biological information available for relative position acuity (<i>Jiang</i>)
IMAWM-162	Distracted driver detection: Deep learning vs handcrafted features (<i>Hssayeni</i>)
IMSE-178	High sensitivity and high readout speed electron beam detector using steep pn Junction Si diode for low acceleration voltage (<i>Koda</i>)
IQSP-244	A framework for auto-exposure subjective comparison (Oh)
IRIACV-267	Unsupervised video segmentation and its application to region-based local contrast enhancement (<i>Park</i>)
MOBMU-301	Investigation of three security relevant aspects of Android eHealth Apps - permissions, storage properties, and data transmission <i>(Knackmuss)</i>
SD&A-105	Designing a cloud-based 3D visualization engine for smart cities (<i>Holliman</i>)
VDA-383	Topological analysis at the extreme scale: Finding features in large data sets <i>(Weber)</i>
3:50 pm	
COLOR-050	Revealing the Dark Ages – Imaging erased manuscripts (Knox)
HVEI-141	Can 'crispening' be explained by contrast gain? (Kane)
IMAWM-163	Logo recognition using data augmentation techniques (Mas Montserrat)
IMSE-179	A full-resolution 8K single-chip portable camera system (Nakamura)
IQSP-245	Autofocus measurement for imaging devices (Robisson)
IRIACV-268	High-precision 3D sensing with hybrid light field & photometric stereo approach in multi-line scan framework (Antensteiner)
MOBMU-302	Privacy issues in mobile health applications - Assessment of current Android Health Apps (<i>Hoppe</i>)
SD&A-106	Interactive computer graphics, stereo and VR practice at the Electronic Visualization Laboratory University of Illinois at Chicago (Brown)
4:10 pm	
COLOR-051	Image quality for visually impaired? (Triantaphillidou)
ERVR-107	Designing at the Advanced Visualization Lab at Indiana University (<i>Dolinsky</i>)
HVEI-142	Defining self-similarity of images using features learned by convolutional neural networks (<i>Brachmann</i>)
IMAWM-164	Detection and characterization of Coordinate Measuring Machine (CMM) probes using deep networks for improved quality assurance of machine parts (<i>Nair</i>)

IMSE-180	Filter selection for multispectral imaging optimizing spectral, colorimetric and image quality (Wang)
IQSP-246	Auto Focus Performance – What can we expect from today's cameras? (<i>Artmann</i>)
IRIACV-269	Line-scan stereo using binary descriptor matching and regularization <i>(Štolc)</i>
MOBMU-303	A forensic mobile application designed for both steganalysis and steganography in digital images (Li)
4:30 pm	
COLOR-052	Lights, camera, metameric failure (Pines)
HVEI-143	Determining the influence of image-based cues on human skin gloss perception (Wang)
IMAWM-165	Robust head detection with CNN <i>(Chen)</i>
IMSE-181	The challenge of shot-noise limited speckle patterns statisti- cal analysis (<i>Tualle</i>)
IQSP-247	Autofocus analysis: Latency and sharpness (Passarella)
IRIACV-270	Traffic Camera Dangerous Driver Detection (TCD3™): Contextually aware heuristic feature & OFA density-based computer vision with movement machine learning analysis of live streaming traffic camera footage to identify anomalous & dangerous driving (<i>Prasad</i>)
MOBMU-304	Pokemon Go – A forensic analysis <i>(Creutzburg)</i>
VDA-384	An interactive tool for Analyzing the Correlation, Uncertainty, and Clustering (ACUC) over ensembles in climate dataset (<i>Abedzadeh</i>)
4:36 pm	
VDA-385	Analysis enhanced particle-based flow visualization (Shi)
4:42 pm	
VDA-450	Constellations of movement: An interactive application to visualise research in motor imagery decoding <i>(Rogers)</i>
4:50 pm	
COLOR-053	What we see and what we know: Partners in human vision <i>(McCann)</i>
HVEI-144	Writer identification in modern and historical documents via binary pixel patterns, Kolmogorov-Smirnov test and Fisher's method (JIST-first) <i>(Shaus)</i>
IMSE-182	Overview of machine vision standards (Darmont)
IRIACV-271	An in-situ defect detection system for Big Area Additive Manufacturing using laser profilometry (<i>Goin</i>)
MOBMU-305	Computation of equidistant curve for the image with blurred contours (Semenishchev)
SD&A-109	3D-Stereoscopic immersive analytics projects at Monash University and University of Konstanz <i>(Sommer)</i>

5:10 pm

HVEI-145	CNN-based transfer learning for historical Chinese seal character recognition based on artificial random samples <i>(Shang)</i>
IMSE-183	Hot pixel rate behavior as pixel sizes go to 1 micron <i>(Chapman)</i>
IRIACV-272	Outlier detection in large-scale traffic data by naïve bayes method and Gaussian mixture model method <i>(Lam)</i>
MOBMU-306	Prune the convolutional neural networks with Sparse Shrink (Li)
SD&A-110	Image distortions in large-scale immersive display systems – Cylinder and wedge displays <i>(Woods)</i>
5:20 pm	
IMSE-184	Performance evaluation of the thick pinhole gamma rays diagnostic system (<i>Xie</i>)
5:30 pm	
COIMG-439	Non-iterative joint demosaicing and super resolution framework (<i>Petrova</i>)
COIMG-440	Localized high dynamic range plenoptic image compression <i>(Chang)</i>
COIMG-441	Image-based age estimation: Comparing hand crafted and deep features (Dornaika)
COIMG-442	Compressive light field display using scattering polarizer (<i>Lee</i>)
COIMG-443	High-resolution image reconstruction for PET using local and non-local regularizations <i>(Ren)</i>
COIMG-444	3D reconstruction based multiple view depth generation using heterogeneous cameras <i>(Shin)</i>
COIMG-445	Deep convolutional neural networks for the classification of snapshot mosaic hyperspectral imagery (<i>Fotiadou</i>)
COIMG-446	Space-variant smoothing in median-regularized recon- struction for transmission tomography (Jung)
COIMG-447	A viewing direction control camera without mechanical motion based on computational imaging (<i>Teraya</i>)
COIMG-448	The human sclera and pupil as the calibration targets <i>(Choi)</i>
DPMI-075	A Canon hack development kit implementation of time domain continuous imaging <i>(long)</i>
DPMI-076	Advanced HDR fusion method for image sensor with variable pixel exposure (Uvarov)
IPAS-087	Search the optimal border for combination of image pairs using neural networks <i>(Semenishchev)</i>
IPAS-211	Feature representation learning by rank ordered autoen- coder for multi-camera person re-identification (Makov)
IPAS-213	Change detection from remote sensing images based on fractional integral and improved FCM (Wang)

IPAS-214	Non-blind image deconvolution using a sampling without replacement <i>(Han)</i>
IPAS-215	Alpha-rooting method of gray-scale image enhancement in the quaternion frequency domain <i>(Grigoryan)</i>
IPAS-217	What makes HDR the contents more realistic? Peak- luminance enhancement using the loading effect for OLED displays <i>(Woo)</i>
IQSP-236	Solid-mottle method for measuring in laser-printers (Ko)
IQSP-248	Estimation and compensation of reconstructed image in digital holographic display <i>(Kim)</i>
MOBMU-307	Automated segmentation of ophthalmological OCT images (Müller)
MOBMU-309	Concept for software-based configuration of the organizational and technical security of a company of arbitrary size (Möller)
MOBMU-310	Facilitated polling approach for SMS and IP messaging applications (<i>Mahadik</i>)
MOBMU-311	A multi-platform characterization of delays inherent in Message Queue Telemetry Transport (MQTT) communications. (<i>Bendele</i>)
MOBMU-312	Semi-automatic generation of multilingual lecture notes – Wikipedia books on different subjects in various languages (<i>Creutzburg</i>)
MOBMU-313	The strange world of keyloggers – An overview (Creutzburg)
MOBMU-314	The study of algorithms reducing the level of out-of-band radiation and inter carrier interference of the OFDM signal <i>(Fedosov)</i>
MOBMU-315	Two-tier state-machine programming for messaging applications (Morales)
SD&A-376	Analysis of retinal images for retinal projection type super multi-view 3D head-mounted display <i>(Emoto)</i>
SD&A-377	A new design and algorithm for lenticular lenses display (de la Barré)

Thursday, February 2, 2017

8:50 am

COLOR-054	Extraordinary perceptual color stability in low cost, real time color image compression inspired by structure tensor analysis <i>(Lebowsky)</i>
HVEI-146	Comparison of visual discomfort and visual fatigue between HMD and smartphone (Suk)
IMAWM-166	Analytics for body worn cameras (Invited) (Fan)
IMSE-185	Octagonal CMOS image sensor for endoscopic applications (<i>Reis</i>)
VDA-386	Declarative guide creation (Cottam)
9:10 am	
3DIPM-001	A 3D mesh image quality metric based on features fusion (Chetouani)
COLOR-055	Sky color enhancement of photographic images (Zeng)
ERVR-098	VR journeys from the dark ages to a bright future (Dawe)
HVEI-147	Measuring visually induced motion sickness using wearable devices (<i>Liu</i>)
IMSE-186	Optimization of CMOS image sensor utilizing variable temporal multi-sampling partial transfer technique to achieve full-frame high dynamic range with superior low light and stop motion capability <i>(Kabir)</i>
VDA-387	Visual-interactive semi-supervised labeling of human motion capture data (<i>Bernard</i>)
9:30 am	
3DIPM-002	3D blind mesh quality assessment index (Nouri)
COLOR-056	A novel colour hessian and its applications (Tahery)
HVEI-148	Developmental changes in ambient and focal visual processing strategies. (<i>Krishna</i>)
IMAWM-167	Click-based interactive segmentation with graph cut (Tai)
IMSE-187	A lateral electric field charge modulator with bipolar- gates for time-resolved imaging <i>(Morikawa)</i>
VDA-388	Visual-interactive creation and validation of text clustering workflows to explore document collections <i>(Ruppert)</i>
9:50 am	
3DIPM-003	A magnifier on accurate depth jumps (Hach)
COLOR-057	A color image model with applications to denoising <i>(Fuller)</i>
HVEI-149	Gaze-contingent center-surround fusion of infrared images to facilitate visual search for human targets (JIST-first) (Glaholt)
IMAWM-168	Drone Detection by acoustic signature identification (Bernardini)

IMSE-188	A 128x128, 34µm pitch, 8.9mW, 190mK NETD, TECless Uncooled IR bolometer image sensor with columnwise processing <i>(Alacoque)</i>
VDA-389	AssisTag: Seamless integration of content-based and keyword-based image exploration for category search (JIST-first) <i>(Mizuno)</i>
10:10 am	
ERVR-099	The Qlik Environment (Margolis)
HVEI-150	Evaluation and prediction of evoked emotions induced by image manipulations (<i>Yuan</i>)
IMAWM-169	Aesthetics of fashion photographs: Effect on user preferences <i>(Li)</i>
10:50 am	
3DIPM-004	3D microscopic image construction using high dynamic range imaging <i>(Zheng)</i>
COLOR-058	Addressing the colorimetric redundancy in 11-ink color separation (<i>Nyström</i>)
ERVR-103	The Reality Wall: The aesthetics of reality disambiguation in AR/VR (<i>Lichty</i>)
IMAWM-170	Local boosted features for illumination invariant face recognition (Essa)
IMSE-189	Residual bulk image characterization using photon transfer techniques (<i>Crisp</i>)
VDA-390	Megacity: A collaborative virtual reality environment for emergency response, training, and decision making <i>(Sharma)</i>
11:00 am	
HVEI-151	Measurement problems and measurement strategies for capturing the rich experience of art (Invited) (<i>Carbon</i>)
11:10 am	
3DIPM-005	Digitized 3D mesh segmentation based on curvature analysis (<i>Gauthier</i>)
COLOR-059	Spectral band selection using a genetic algorithm based wiener filter estimation method for reconstruction of munsell spectral data <i>(Gouton)</i>
ERVR-104	Decoupling of real and digital content in projection based augmented reality systems using time multiplexed image capture (JIST-first) <i>(Soomro)</i>
IMAWM-171	High precision 3D reconstruction of the human face (Wang)
IMSE-190	RTS and photon shot noise reduction based on maximum likelihood estimate with multi-aperture optics and semi- photon-counting-level CMOS image sensors <i>(Ishida)</i>
VDA-391	Display systems for visualization and simulation in virtual environments (<i>Wischgoll</i>)

11:30 am

3DIPM-006	Small scale surface profile recovery using a tunable lens based system (<i>Angot-Petit</i>)
COLOR-060	Illumination and reflectance spectra separation of hyperspectral image data under multiple illumination conditions (<i>Chen</i>)
ERVR-100	A survey: Tools for human motion synthesis (Yan)
HVEI-152	The gist of beauty: An investigation of aesthetic perception in rapidly presented images (Invited) (Mullin)
IMAWM-172	Chromatic domain phase features with gradient and texture for efficient human detection (<i>Ragb</i>)
IMSE-191	Linearity analysis of a CMOS image sensor (Wang)
VDA-392	Ray traced volume clipping using multi-hit BVH Traversal (Zellmann)
11:50 am	
COLOR-061	Multispectral face recognition using hybrid feature (Gouton)
ERVR-101	Exploring body gestures as natural user interface for flying in a virtual reality game with Kinect (<i>Tong</i>)
IMAWM-173	A real-time smile elegance detection system: A feature- level fusion and ranking SVM based approach (<i>Lin</i>)
IMSE-196	Automotive imaging (Denny)
VDA-393	Effectiveness of feature-driven storytelling in 3D time- varying data visualization (JIST-first) <i>(Lu)</i>
12:00 pm	
HVEI-153	Gaze patterns in art viewing and their dependency on expertise and image characteristics (Invited) (Fedorovskaya)
12:10 pm	
ERVR-102	Soft robotic glove for kinesthetic haptic feedback in virtual reality environments <i>(Jadhav)</i>
2:00 pm	
3DIPM007	A comparison of stereo matching algorithms on multi-core digital signal processor platform <i>(Menant)</i>
COLOR-062	Interactive Workshop: How can color imaging provide us with powerful insights? <i>(Lebowsky)</i>
HVEI-154	Imaging human vision: An artistic perspective (Invited) (Pepperell)
IMAWM-174	MU, the ultra mobile visual analytic sensor for toys and IOTs (<i>Yu</i>)
IMSE-192	FPGA platform for testing a real-time tone-mapping algorithm based on a Mantissa-exponent representation (Shahnovich)
VDA-394	A visual and statistical benchmark of graph sampling methods (<i>Zhang</i>)

2:20 pm

3DIPM-008	Viewing angle enhancement of a real-time integral imaging system using multi-directional projections and GPU parallel processing (Alam)
IMAWM-175	An imaging approach to online progressive addition lens retrieval (Li)
IMSE-194	Fast, low-complex, non-contact motion encoder based on the NSIP concept (Astrom)
VDA-395	Inferring partial orders of nodes for hierarchical network layout (JIST-first) <i>(Wu)</i>
2:30 pm	
HVEI-155	Art training matters: Enhancement of spatial cognition and brain connectivity (Invited) (<i>Likova</i>)

2:40 pm

IMAWM-176	Are mobile phones changing the order behavior and content for printed photo products? <i>(Fageth)</i>
IMSE-195	In the quest of vision-sensors-on-chip: Pre-processing sensors for data reduction (<i>Rodríguez-Vázquez</i>)
VDA-396	Closest point sparse octree for surface flow visualization (<i>Kim</i>)
3:00 pm	
HVEI-156	Trading conversations between science and art: When musical improvisation enters the dialogue on stage (Invited) (<i>Lopez-Gonzalez</i>)
IMAWM-177	Texture re-rendering tool for re-mixing indoor scene images (Liu)
VDA-397	Accelerating advection via approximate block exterior flow maps (<i>Bleile</i>)

3D Image Processing, Measurement (3DIPM), and Applications 2017

Conference overview

Scientific and technological advances during the last decade in the fields of image acquisition, processing, telecommunications, and computer graphics have contributed to the emergence of new multimedia, especially 3D digital data. Nowadays, the acquisition, processing, transmission, and visualization of 3D objects are a part of possible and realistic functionalities over the internet. Confirmed 3D processing techniques exist and a large scientific community works hard on open problems and new challenges, including 3D data processing, transmission, fast access to huge 3D databases, or content security management.

The emergence of 3D media is directly related to the emergence of 3D acquisition technologies. Indeed, recent advances in 3D scanner acquisition and 3D graphics rendering technologies boost the creation of 3D model archives for several application domains. These include archaeology, cultural heritage, computer assisted design (CAD), medicine, face recognition, video games, and bioinformatics. New devices such as time-of-flight cameras open challenging new perspectives on 3D scene analysis and reconstruction.

Three-dimensional objects are more complex to handle than other multimedia data, such as audio signals, images, or videos. Indeed, only a unique and simple 2D grid representation is associated to a 2D image. All the 2D acquisition devices generate this same representation (digital cameras, scanners, 2D medical systems). Unfortunately (for the users), but fortunately (for scientists), there exist different 3D representations for a 3D object. For example, an object can be represented on a 3D grid (digital image) or in 3D Euclidian space. In the latter, the object can be expressed by a single equation (like algebraic implicit surfaces), by a set of facets representing its boundary surface, or by a set of mathematical surfaces. One can easily imagine the numerous open problems related to these different representations and their processing, a new challenge for the image processing community.

Awards: Best Paper Award and Best Student Paper given to the author(s) of two full papers presented at the conference, selected by the Organizing Committee.

Conference Chairs: William Puech,

Lab. d'Informatique de Robotique et de Microelectronique de Montpellier (France), and **Robert Sitnik**, Warsaw Univ. of Technology (Poland);

Program Committee: Atilla M. Baskurt, Univ. de Lyon (France); Hugues Benoit-Cattin, Institut National des Sciences Appliquées de Lyon (France); Silvia Biasotti, Consiglio Nazionale delle Ricerche (Italy); Adrian G. Bors, The Univ. of York (United Kingdom); Saida Bouakaz, Univ. Claude Bernard Lyon 1 (France); Mohamed Daoudi, Télécom Lille 1 (France); Florent Dupont, Univ. Claude Bernard Lyon 1 (France); Gilles Gesquière, Lab. des Sciences de l'Information et des Systèmes (France); Afzal Godil, National Institute of Standards and Technology (United States); Serge Miguet, Univ. Lumière Lyon 2 (France); Eric Paquet, National Research Council Canada (Canada); Frédéric Payan, Univ. of Nice Sophia Antipolis - 13S Laboratory, CNRS (France); Tobias Schreck, Graz Univ. of Technology (Austria); Frédéric Truchetet, Univ. de Bourgogne (France); and Stefano Tubaro, Politecnico di Milano (Italy)

3D Image Processing, Measurement (3DIPM), and Applications 2017

Tuesday, January 31, 2017

Surface Appearance Assessment and Digital Methods I JOINT SESSION				
Session Chair: Greg Ward, Dolby Laboratories (United States)				
9:10 – 10:10 am Grand Peninsula Ballroom C				
This session is jointly sponsored by: Material Appearance 2017 a Image Processing, Measurement (3DIPM), and Applications 2017	nd 3D			
9:10 N Graininess appearance of goniochromatic samples in lighting cc Paola Iacomussi, Michela Radis, and Giuseppe Rossi, INRIM (Italy	NAAP-282 abinets, 1			
9:30 N Measurement and evaluation method of orange peel, Takuroh Sa Shuhei Watanabe, Ricoh Company, Ltd. (Japan)	NAAP-283 one and			
9:50 N Enhanced RTI for gloss reproduction, Peter Fornaro, Andrea Biand Lukas Rosenthaler, Universitiy of Basel (Switzerland)	NAAP-284 co, and			
10:00 am - 7:30 pm Industry Exhibition				
10:10 – 10:50 am Coffee Break				
Surface Appearance Assessment and Digital Methods II Low Sesse	И			

Session Chair: Mathieu Hebert, Université Jean Monnet de Saint Etienne (France)

10:50 - 11:50 am

Grand Peninsula Ballroom C

This session is jointly sponsored by: Material Appearance 2017 and 3D Image Processing, Measurement (3DIPM), and Applications 2017.

MAAP-28.5

Consistent tool-independent virtual material appearance, Dar'va Guarnera¹, Giuseppe Claudio Guarnera¹, Cornelia Denk², and Mashhuda Glencross^{1,3}; ¹Loughborough University (United Kingdom), ²BMW Research (Germany), and ³Switch That Limited (United Kingdom)

11:10

10:50

MAAP-286

Interactive object surface retexturing using perceptual quality indexes, Keita Hirai, Wataru Suzuki, Yoshimitsu Yamada, and Takahiko Horiuchi, Chiba University (Japan)

Thursday, February 2, 2017

3D Image Quality

Session Chair: Aladine Chetouani, University of Orléans (France)

9:10 - 10:10 am Regency Ballroom A

9:10

3DIPM-001

A 3D mesh image quality metric based on features fusion, Aladine Chetouani, University of Orleans (France)

9:30 3D blind mesh quality assessment index, Anass Nouri, Christophe Charrier, and Olivier Lézoray, Normandie University (France) 9:50 3DIPM-003

A magnifier on accurate depth jumps, Thomas Hach and Sascha Knob, Arnold & Richter Cinetechnik (Germany)

> 10:10 - 10:50 am Coffee Break

3D Image Analysis

Session Chair: Olivier Strauss, University of Montpellier (France)

10:50 - 11:50 am

Regency Ballroom A

10:50 3DIPM-004 3D microscopic image construction using high dynamic range imaging, Chi Zheng¹, Salvador Bernal Garcia², and Guoping Qiu^{1,2}; ¹University of Nottingham, Ningbo (China) and ²University of Nottingham (United Kingdom)

11.10 3DIPM-005 Digitized 3D mesh segmentation based on curvature analysis, Silvère Gauthier^{1,2}, William Puech¹, Roseline Bénière², and Gérard Subsol¹;

- ¹University of Montpellier and ²C4W (France)

11:30

3DIPM-006

Small scale surface profile recovery using a tunable lens based system, Ludovic Angot-Petit, Industrial Technology Research Institute (Taiwan)

> 11:50 am - 2:00 pm Lunch Break

3D Imaging Systems

Session Chair: William Puech, University of Montpellier (France)

2:00 - 2:40 PM Regency Ballroom A

A comparison of stereo matching algorithms on multi-core digital signal processor platform, Judicaël Menant, Jean-François Nezan, Muriel Pressigout, and Luce Morin, IETR - INSA de Rennes (France)

2:20

2:00

3DIPM-008

3DIPM-007

Viewing angle enhancement of a real-time integral imaging system using multi-directional projections and GPU parallel processing, Md. Ashraful Alam^{1,2}, Md. Sifatul Islam¹, Mohd. Zishan Tareque¹, Mahfuze Subhani Protik¹, M.Rashidur Rahman Rafi¹, Md. Shahinur Alam², and Nam Kim²; ¹BRAC University (Bangladesh) and ²Chungbuk National University (Republic of Korea)

Meet the Future: A Showcase of Student and Young Professionals Research 3:00 - 5:00 pm Atrium

> 3:20 - 4:00 pm Coffee Break

3DIPM-002

Autonomous Vehicles and Machines 2017

Conference overview

Joint advancements in sensing, computing, imaging processing, and vision are enabling unprecedented growth and interest in autonomous vehicles and intelligent machines, from selfdriving cars to unmanned drones to personal service robots. These new capabilities have the potential to fundamentally change the way people live, work, commute, and connect with each other and will undoubtedly provoke entirely new applications and commercial opportunities for generations to come.

The inaugural focus of Autonomous Vehicles and Machines (AVM) will consider a broad range of topics as it relates to equipping vehicles and machines with the capacity to perceive dynamic environments, inform human participants, demonstrate situational awareness, and make unsupervised decisions on self-navigating. The conference seeks high-quality papers featuring novel research in areas intersecting sensing, imaging, vision, and perception with applications including, but not limited to, autonomous cars, ADAS (advanced driver assistance system), drones, robots, and industrial automation. In addition to the main technical program, AVM will include demonstrations and exhibits.

Conference Sponsor

Program Committee: Umit Batur, Faraday Future (United States); Zhigang Fan, Apple Inc. (United States); Ching Hung, NVIDIA Corporation (United States); Mustafa I. Jaber, NantVision (United States); Pavan Shastry, Continental (Germany); Markus Vill, Intel Corporation (Germany); Yuqiong (Joan) Wang, Uber Advanced Technologies Center (United States); Xinzhou Wu, Qualcomm Technologies, Inc. (United States); and Yi Zhang, Ford Research and Innovation Center (United States)

Autonomous Vehicles and Machines 2017

Monday, January 30, 2017

Keynote: Key Learnings from Automated Vehicle Development
Session Chair: Buyue Zhang, Intel Corporation (United States)
8:50 – 9:50 pm
Grand Peninsula Ballroom B

AVM-009

Architectures for automated driving, Jack Weast, Intel Corporation (United States)

Jack Weast is a Principal Engineer and the Chief Systems Engineer for Autonomous Driving Solutions at Intel Corporation. In his 17 year career at Intel, Weast has built a reputation as a change agent in new industries with significant technical and architectural contributions to a wide range of industry-first products and standards that range from one the world's first Digital Media Adapters to complex heterogeneous high performance compute solutions in markets that are embracing high performance computing for the first time. With an End to End Systems perspective, he combines a unique blend of embedded product experience with a knack for elegant Software and Systems design that will accelerate the adoption of Autonomous Driving. Weast is the co-author of "UPnP: Design By Example", an Associate Professor at Portland State University, and the holder of numerous patents with dozens pending.

Multi-Camera and Embedded Systems for Autonomous Machines

Session Chair: Buyue Zhang, Intel Corporation (United States)

9:50 - 10:30 am

Grand Peninsula Ballroom B

9:50

AVM-010

3D Perception: Multi-camera embedded structure-from-motion prototype for real-time mapping, Martin Mueller¹, Vikram Appia¹, and Umit Batur²; ¹Texas Instruments Inc. and ²Faraday Future (United States)

10:10 AVM-451 Measuring MTF with wedges: Pitfalls and best practices, Norman Koren, Robert Sumner, and Henry Koren, Imatest LLC (United States)

10:30 – 10:50 am Coffee Break

Multi-Camera and Embedded Systems for Autonomous Machines (cont.)

Session Chairs: Darnell Moore, Texas Instruments, and Yi Zhang, Ford Research and Innovation Center (United States)

10:50 AM - 12:30 pm

Grand Peninsula Ballroom B

10:50

AVM-012

Free-view multi-camera visualization and harmonization for automotive systems, Vladimir Zlokolica, Brian Deegan, Patrick Denny, Mark Griffin, and Barry Dever, Valeo (Ireland)

11:10

AVM-013

Accelerated stereo matching for autonomous vehicles using upright pinhole camera model, Chen Chen¹, Jiangbo Lu², Minh Do¹, Do-Kyoung Kwon³, and Darnell Moore⁴; ¹University of Illinois at Urbana-Champaign (United States), ²Advanced Digital Sciences Center (Singapore), and ³Texas Instruments (United States)

11:30 AVM-014 **Perspectively correct bird's views using stereo vision**, Christian Fuchs and Dietrich Paulus, University of Koblenz-Landau (Germany)

11:50

AVM-015

A sense and avoid algorithm using surround stereo vision for drones,

G.M. Dilshan Godaliyadda^{1,2}, Do-Kyoung Kwon², Victor Cheng², and Darnell Moore²; ¹Purdue University and ²Texas Instruments (United States)

12:10

AVM-011

Real-time flight altitude estimation using phase correlation with gram polynomial decimation, Amir Badshah¹, Aadil Choudhry², and Saadullah Amin²; ¹International Islamic University Islamabad and ²National University of Sciences and Technology (Pakistan)

12:30 – 2:00 pm Lunch Break

El 2017 Opening Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) **2:00 – 3:00 pm**

Grand Peninsula Ballroom D

Giga-scale 3D computational microscopy, Laura Waller, University of California, Berkeley (United States)

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). Waller's talk is on computational imaging methods for fast capture of gigapixel-scale 3D intensity and phase images in a commercial microscope that employs illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is high-resolution reconstructions across a large field-of-view, achieving high spacebandwith-time product.

3:00 – 3:30 pm Coffee Break
Keynote: Functional Safety and Security in Autonomous System Design Session Chair: Umit Batur, Faraday Future (United States) 3:30 – 4:30 pm Grand Peninsula Ballroom B

AVM-016

Needs and challenges analysis for reference architectures in autonomous systems, Justyna Zander, Intel Corporation (United States)

Justyna Zander is Software Architect and Technology Lead in autonomous driving at Intel Corporation. Before joining Intel, she spent over a year working on self-driving cars, ADAS, and functional safety as a senior consultant in Germany. She engaged with Fortune 500 companies including most prestigious automotive OEMs. Prior to that, Zander was a postdoctoral research scientist at Harvard University and a senior scientist at the Fraunhofer Institute in Germany. She holds PhD, MSc, and two BSc degrees in computer science and electrical engineering. Her expertise includes modeling, simulation, deep learning, validation, and verification, functional safety, computing platforms, and rapid prototyping with worldwide operations focus. A frequent public speaker, she holds 6 patents, has 8 patent applications at USPTO, and has co-authored more than 40 publications and 3 books. Her publications have been cited more than 550 times. Zander is recognized internationally with countless awards (IEEE, European Union, NIST, etc). She regularly serves as a technical committee member for more than 50 journals and conferences, and is invited by NSF, EU Commission, and national councils to advise on government strategy and research roadmaps.

Functional Safety

Session Chair: Umit Batur, Faraday Future (United States)

4:30 - 4:50 pm

Grand Peninsula Ballroom B

4:30

AVM-017

Enabling functional safety ASIL compliance for autonomous driving software systems, Kedar Chitnis, Mihir Mody, Biju Mg, Sivaraj R, Chaitanya Ghone, Badri Narayanan, Yashwant Dutt, Aish Dubey, and Pramod Swami, Texas Instruments India Ltd. (India)

Symposium Welcome Reception 5:00 – 6:00 pm Atrium

Tuesday, January 31, 2017

Keynote: Autonomous Vehicle Navigation in Planetary Exploration Session Chair: Darnell Moore, Texas Instruments (United States) 8:50 – 9:50 am Grand Peninsula Ballroom B

AVM-018

Common themes in autonomous navigation on earth and in space, *Larry Matthies, Jet Propulsion Laboratory (United States)*

Larry Matthies received his PhD in computer science from Carnegie Mellon University in 1989, then moved to the Jet Propulsion Laboratory, where he a Senior Research Scientist and supervisor the Computer Vision Group. His research interests include 3-D perception, state estimation, terrain classification, and dynamic scene analysis for autonomous navigation of unmanned vehicles on Earth and in space. He has been a principal investigator in many programs involving robot vision funded by NASA, Army, Navy, DARPA, and commercial sponsors. He and his group have achieved several firsts in computer vision for space exploration, including development of vision algorithms used by rovers and landers in the 2003 Mars Exploration Rover mission. He is an Adjunct Professor of Computer Science at the University of Southern California, a lecturer in computer vision at Caltech, and a member of the editorial boards of the Autonomous Robots journal and the Journal of Field Robotics. He is a Fellow of the IEEE and was a joint winner in 2008 of the IEEE's Robotics and Automation Award for his contributions to robotic space exploration.

Computer Vision, Machine Learning, and Image Processing

Session Chair: Darnell Moore, Texas Instruments (United States)

9:50 - 10:10 am

Grand Peninsula Ballroom B

9:50

AVM-019

Milpet – The self-driving wheelchair, Samuel Echefu, Jacob Lauzon, Suvam Bag, Rasika Kangutkar, Amar Bhatt, and Raymond Ptucha, Rochester Institute of Technology (United States)

10:00 am – 7:30 pm Industry Exhibition

10:10 – 10:40 am Coffee Break

Computer Vision, Machine Learning, and Image Processing (continued) Session Chairs: Markus Vill, Intel Corporation (Germany), and Buyue Zhang, Intel Corporation (United States) 10:40 am - 12:40 pm Grand Peninsula Ballroom B AVM-020 10.40 Efficient pre-processor for CNN, Mihir Mody, Manu Mathew, and Shyam Jagannathan, Texas Instruments India Ltd. (India) 11:00 AVM-021 Free-space detection with self-supervised and online trained fully convolutional networks, Willem Sanberg, Gijs Dubbelman, and Peter De With, Eindhoven University of Technology (the Netherlands) 11.20 AVM-022 Motion estimation using visual odometry and deep learning localization, Suvam Bag, Vishwas Venkatachalapathy, and Raymond Ptucha, Rochester Institute of Technology (United States) 11:40 AVM-023 Deep reinforcement learning framework for autonomous driving, Ahmad El Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani, Valeo (Ireland) AVM-024 12.00 Automatic glare detection via photometric, geometric, and global positioning information, Mehran Andalibi¹ and Damon Chandler²; ¹Embry-Riddle Aeronautical University (United States) and ²Shizuoka University (Japan) 12:20 AVM-025 Pose estimation from rigid face landmarks for driver monitoring systems, Bhawani Shankar, Jayachandra Dakala, and Kalyan Kumar Hati, Path Partner Technology Pvt Ltd. (India) 12:40 - 2:00 pm Lunch Break El 2017 Tuesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 – 3:00 pm

Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as next-generation computational near-eye displays evolve to deliver visual experiences that are better than the real world.

3:00 – 3:30 pm Coffee Break

Symposium Demonstration Session 5:30 – 7:30 pm

Thursday, February 2, 2017

Keynote: History and Standards for Automotive Vision Systems Performance JOINT SESSION

Session Chairs: Arnaud Darmont, APHESA SPRL (Belgium); Ralf Widenhorn, Portland State University (United States); and Buyue Zhang, Intel Corporation (United States) **11:50 am – 12:30 pm**

Harbou

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Autonomous Vehicles and Machines 2017.

IMSE-196

Automotive imaging, Patrick Denny, Valeo (Ireland)

Patrick Denny is a Senior Research Engineer and a Valeo Senior Expert and has worked for the last 15 years at Valeo Vision Systems, Ireland. He received his PhD in physics (2000) from the National University of Ireland, Galway, where he is also Adjunct Professor of Automotive Electronics. Denny has in excess of 20 years experience in scientific and technological development internationally, designing, innovating and developing automotive imaging technologies for BMW, Jaguar Land Rover, Daimler, VW and other OEMs. His research interests include several aspects of automotive vision system image quality, sensor components, algorithmic design, systems, machine learning and data analytics.

12:30 – 2:00 pm Lunch Break

Meet the Future: A Showcase of Student and Young Professionals Research 3:00 – 5:00 pm Atrium

Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications

Conference overview

Color imaging has historically been treated as a constant phenomenon well described by three independent parameters. Recent advances in computational resources and in the understanding of the human aspects are leading to new approaches that extend the purely metrological view towards a perceptual view of color in documents and displays. Part of this perceptual view is the incorporation of spatial aspects, adaptive color processing based on image content, and the automation of color tasks, to name a few. This dynamic nature applies to all output modalities, e.g., hardcopy devices, but to an even larger extent to soft-copy displays.

Spatially adaptive gamut and tone mapping, dynamic contrast, and color management continue to support the unprecedented development of the display hardware spreading from mobile displays to large size screens and emerging technologies. This conference provides an opportunity for presenting, as well as getting acquainted, with the most recent developments in color imaging researches, technologies, and applications. Focus of the conference is on color basic research and testing, color image input, dynamic color image output and rendering, color image automation, emphasizing color in context and color in images, and reproduction of images across local and remote devices.

The conference covers also software, media, and systems related to color. Special attention is given to applications and requirements created by and for multidisciplinary fields involving color and/or vision. The Special Session entitled "The Dark Side of Color" will group challenging questions, open issues, alternative views, paradigm shifts, bottom up experimentation, re-addressing the current state of the color science, technology, and applications. For this session, we are looking for well-asked questions rather than tangible results.

Interactive Workshop: How can COLOR imaging provide us with powerful INSIGHTS?

On Thursday afternoon we would very much like to have you participate in a special session in which we encourage asking questions and exchanging ideas that frequently trouble us during research and development projects. The presence of experts in COLOR imaging and perhaps Electronic Imaging at large will provide a unique opportunity of efficiently and lively sharing simple/stupefying ideas enabling fascinating engineering concepts which may also stimulate your own future research and development projects!

This workshop is jointly sponsored by: Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications and Material Appearance 2017

Conference Chairs: Reiner Eschbach,

Norwegian Univ. of Science and Technology (Norway) and Monroe Community College (United States); **Gabriel G. Marcu**, Apple Inc. (United States); and **Alessandro Rizzi**, Univ. degli Studi di Milano (Italy)

Program Committee: Jan P. Allebach, Purdue Univ. (United States); Vien Cheung, Univ. of Leeds (United Kingdom); Scott J. Daly, Dolby Labs., Inc. (United States); Phil J. Green, Norwegian Univ. of Science and Technology (Norway); Roger D. Hersch, École Polytechnique Fédérale de Lausanne (Switzerland); Choon-Woo Kim, Inha Univ. (Republic of Korea); Michael A. Kriss, MAK Consultants (United States); Fritz Lebowsky, STMicroelectronics (France); Nathan Moroney, HP Labs, HP Inc. (United States); Carinna E. Parraman, Univ. of the West of England (United Kingdom); Marius Pedersen, Norwegian Univ. of Science and Technology (Norway); Shoji Tominaga, Chiba Univ. (Japan); and Stephen Westland, Univ. of Leeds (United Kingdom)

Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications

Monday, January 30, 2017

El 2017 Opening Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

Giga-scale 3D computational microscopy, Laura Waller, University of California, Berkeley (United States)

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). Waller's talk is on computational imaging methods for fast capture of gigapixel-scale 3D intensity and phase images in a commercial microscope that employs illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is high-resolution reconstructions across a large field-of-view, achieving high space-bandwith-time product.

> 3:00 - 3:30 pm Coffee Break

Surface Appearance Modeling and Reproduction Joint Ses

Session Chair: Francisco Imai (United States)

3:30 - 4:50 pm

Regency Ballroom C

This session is jointly sponsored by: Material Appearance 2017 and Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications.

3.30

MAAP-288 Modeling and reproducing effect paints, Gary Meyer and Avery Musbach, University of Minnesota (United States)

3.50 MAAP-289 How to design a recto-verso print displaying different images in various everyday-life lighting conditions, Nicolas Dalloz^{1,2}, Serge Mazauric^{1,3}, Mathieu Hebert¹, and Thierry Fournel¹; ¹University of Lyon, UJM-Saint-Etienne, CNRS, Institut d'Optique Graduate School, ²Institut d'Optique Graduate School, and ³CPE Lyon (France)

MAAP-290

Appearance decomposition and reconstruction of textured fluorescent objects, Shoji Tominaga, Keiji Kato, Keita Hirai, and Takahiko Horiuchi, Chiba University (Japan)

4:30

MAAP-291

Assessing the proper color of translucent materials by an extended two-flux model from measurements based on an integrating sphere,

Lionel Simonot¹, Mathieu Hebert², Serge Mazauric^{2,3}, and Roger Hersch⁴; ¹Université de Poitiers (France), ²Université Jean Monnet de Saint Etienne (France), ³CPE Lyon, Domaine Scientifique de la Doua (France), and ⁴École Polytechnique Fédérale de Lausanne (Switzerland)

Symposium Welcome Reception 5:00 - 6:00 pm Atrium

Tuesday, January 31, 2017

7:15 - 8:45 am Women in Electronic Imaging Breakfast

Color Management

Session Chair: Sophie Triantaphillidou, University of Westminster (United Kingdom)

8:50 - 9:50 am

8:50

Regency Ballroom C

COLOR-026

Wide-gamut mobile-device displays: Gamut-mapping and color enhancement challenges, Reza Safaee-Rad¹ and Jennifer Gille²,

¹Qualcomm (Canada) and ²Qualcomm Technologies, Inc. (United States) 9:10 COLOR-027

Methods of defining a gamut boundary based on a face/vertex encoding, Phil Green¹, Kiran Deshpande², Frans Gaykema³, and William Revie⁴; ¹Norwegian University of Science and Technology (Norway), ²Multi Packaging Solutions (United Kingdom), ³Océ Technologies (the Netherlands), and ⁴FFEI (United Kingdom)

9:30 COLOR-028 Gamut mapping in RGB colour spaces with the iterative ratios diffusion algorithm, Ivar Farup¹ and Carlo Gatta²; ¹Norwegian University of Science and Technology (Norway) and ²Computer Vision Center (Spain)

Color Vision and Deficiency

Session Chair: Sophie Triantaphillidou, University of Westminster (United Kingdom)

9:50 - 10:30 am

Regency Ballroom C

9:50

COLOR-029

Checklist for daltonization methods: Requirements and characteristics of a good recoloring method, Joschua Simon-Liedtke¹, David Flatla² and Eskild Bakken¹; ¹Norwegian University of Science and Technology (Norway) and ²University of Dundee (United Kingdom)

10.10

COLOR-030

On the edge: A scalable daltonization method focusing on color contrasts and color edges, Joschua Simon-Liedtke¹, Ivar Farup¹, and Reiner

Eschbach^{1,2}; ¹Norwegian University of Science and Technology (Norway) and ²Monroe Community College (United States)

> 10:00 am - 7:30 pm Industry Exhibition

> > 10:30 - 10:50 am Coffee Break

Color Vision and Deficiency (continued)

Session Chair: Alessandro Rizzi, Università degli Studi di Milano (Italy)

10:50 - 11:50 am

Regency Ballroom C

10:50 COLOR-033 Estimating appearance differences of 3D objects with an RGB camera, Pei-Li Sun, National Taiwan University of Science and Technology (Taiwan) COLOR-034 11.10 A metric for the evaluation of color perceptual smoothness, Cedric Marchessoux and Johan Rostang, Barco N.V. (Belgium)

COLOR-035 11:30 Towards a perceptually-motivated color space for high dynamic range imaging, Mekides Abebe¹, Tania Pouli², and Chaker Larabi¹; ¹Université de Poitiers (France) and ²Technicolor (United States)

> 11:50 am - 2:00 pm Lunch Break

El 2017 Tuesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as next-generation computational near-eye displays evolve to deliver visual experiences that are better than the real world.

> 3:00 - 3:30 pm Coffee Break

Display and Display Appearance

Session Chair: Fritz Lebowsky, STMicroelectronics (France)

3:30 - 5:10 pm

Regency Ballroom C

3:30

COLOR-036

Color discrimination threshold for medical test devices, Nargess Hassani and Susan Farnand, Rochester Institute of Technology (United States)

3.50

COLOR-037

Content-dependent adaptation in a soft proof matching experiment, Gregory High, Phil Green, and Peter Nussbaum, Norwegian University of Science and Technology (Norway)

4.10

COLOR-038

Comparisons of measures of blurriness in transparent displays,

Chang-Mo Yang, Dong-Hyeok Lee, Kyoung-Soo Park, Young-Tae Kim, and Choon-Woo Kim, Inha University (Republic of Korea)

4:30

COLOR-039

COLOR-040

The smallest projection optics for the vertical shaped ultra short throw projector, Yohei Takano and Hibiki Tatsuno, Ricoh Co., Ltd. (Japan)

4.50

Pareto optimality in primary selection for multiprimary displays, Hao Xie, Carlos Rodriguez-Pardo, and Gaurav Sharma, University of Rochester (United States)

Symposium Demonstration Session 5:30 - 7:30 pm

Grand Peninsula Ballroom E

Wednesday, February 1, 2017

Halftoning and Printing I

Session Chair: Reiner Eschbach, Norwegian University of Science and Technology (Norway) and Monroe Community College (United States)

8:50 - 10:10 am

Regency Ballroom C

Color halftoning based on Neugebauer Primary Area Coverage,

Wanling Jiang¹, Weijuan Xi¹, Utpal Sarkar², Robert Ulichney², and Jan Allebach¹; ¹Purdue University and ²HP Labs, HP Inc. (United States)

9:10

0.50

8.50

COLOR-042

COLOR-041

Color halftoning based on multi-stage, multi-pass, clustered-DBS, Weijuan Xi¹, Tal Frank², Utpal Sarkar², Ben-Shoshan Yotam², Robert Ulichney², and Jan Allebach¹; ¹Purdue University and ²HP Labs, HP Inc. (United States)

9.30 COLOR-043 On large local error accumulation in multilevel error diffusion (JIST-first), Reiner Eschbach^{1,2} and Marius Pedersen¹; ¹Norwegian University of Science

and Technology (Norway) and ²Monroe Community College (United States)

COLOR-044 Edge-preserving error diffusion for multi-toning based on dual quantization, Takuma Kiyotomo¹, Keisuke Hoshino², Yuki Tsukano², Hiroki Kibushi², and Takahiko Horiuchi¹; ¹Chiba University and ²Tokyo Kikai Seisakusho, Ltd. (Japan)

> 10:00 am - 4:00 pm Industry Exhibition 10:10 - 10:50 am Coffee Break

Halftoning and Printing II

Session Chair: Robert Ulichney, HP Labs, HP Inc. (United States)

10:50 am - 12:10 pm

Regency Ballroom C

10:50

COLOR-045

Selecting best ink color for sparse watermark, Alastair Reed¹, Kristyn Falkenstern¹, and Edward Hattenberger²; ¹Digimarc Corporation and ²X-Rite Inc. (United States)

COLOR-046 11.10 Page classification for print imaging pipeline, Shaoyuan Xu¹, Cheng Lu¹, Peter Bauer², Mark Shaw², and Jan Allebach¹; ¹Purdue University and ²HP Inc. (United States)

COLOR

COLOR-047 11:30 Indirect periodic disturbance compensator using feedforward control for

image noises, Satoshi Kaneko, Ricoh Company, Ltd. (Japan)

11:50

COLOR-048

3D halftoning, Ruiyi Mao¹, Utpal Sarkar², Robert Ulichney³, and Jan Allebach¹; ¹Purdue University (United States), ²HP Inc. (Spain), and ³HP Labs, HP Inc. (United States)

> 12:10 - 2:00 pm Lunch Break

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components

> 3:00 - 3:30 pm Coffee Break

Dark Side of Color

Session Chair: Alessandro Rizzi, Università degli Studi di Milano (Italy)

3:30 - 5:10 pm

3.30

Regency Ballroom C

COLOR-049 What makes hue special?, Ivar Farup, Norwegian University of Science and Technology (Norway) 3.50 COLOR-0.50 Revealing the Dark Ages - Imaging erased manuscripts, Keith Knox1 and Roger Easton²; ¹Knox Consulting and ²Rochester Institute of Technology (United States) 4.10 COLOR-051 Image quality for visually impaired?, Sophie Triantaphillidou, University of Westminster (United Kingdom) 4.30 COLOR-052 Lights, camera, metameric failure, Joshua Pines, Technicolor (United States) 4.50 COLOR-053 What we see and what we know: Partners in human vision, John McCann, McCann Imaging (United States)

Symposium Interactive Papers (Poster) Session 5:30 - 7:00 pm Atrium

Thursday, February 2, 2017

Color Image Processing

Session Chair: Gabriel Marcu, Apple Inc. (United States)

8:50 - 10:10 am Regency Ballroom C

COIOR-0.54 8:50 Extraordinary perceptual color stability in low cost, real time color image compression inspired by structure tensor analysis, Fritz Lebowsky and Mariano Bona, STMicroelectronics (France) 9.10 COLOR-055 Sky color enhancement of photographic images, Huanzhao Zeng, Google Inc. (United States) COLOR-0.56 9.30 A novel colour hessian and its applications, Saman Tahery and Mark Drew, Simon Fraser University (Canada) 9:50 COLOR-057 A color image model with applications to denoising, Megan Fuller and

Jae Lim, Massachusetts Institute of Technology (United States)

10:10 - 10:50 am Coffee Break

Spectral Selection and Separation

Session Chair: Marius Pedersen, Norwegian University of Science and Technology (Norway)

10:50 am - 12:10 pm

Regency Ballroom C

10:50 COLOR-058 Addressing the colorimetric redundancy in 11-ink color separation, Daniel Nyström, Paula Zitinski Elias, and Sasan Gooran, Linköping University (Sweden)

COLOR-059

11.10

Spectral band selection using a genetic algorithm based wiener filter estimation method for reconstruction of munsell spectral data, Pierre Gouton, Keivan Ansari, and Jean-Baptiste Thomas, University de Bourgogne (France)

11.30 Illumination and reflectance spectra separation of hyperspectral image data under multiple illumination conditions, Xiaochuan Chen, Mark Drew, and Ze-Nian Li, Simon Fraser University (Canada)

COLOR-061 11:50 Multispectral face recognition using hybrid feature, Pierre Gouton¹, Mamadou Diarra², and Jerome Kablan Adou²; ¹University de Bourgogne (France) and ²Université Félix Houphouet Boigny (Côte d'Ivoire)

> 12:10 - 2:00 pm Lunch Break

Interactive Workshop: How can COLOR imaging provide US with powerful INSIGHTS? Joint Session

Moderator: Fritz Lebowsky, STMicroelectronics (France)

2:00 – 3:30 pm Regency Ballroom C

This session is jointly sponsored by: Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications and Material Appearance 2017.

We would very much like to have you participate in a special session in which we encourage asking questions and exchange ideas that frequently trouble us during research and development projects. The presence of experts in COLOR imaging and perhaps Electronic Imaging at large will provide a unique opportunity of efficiently and lively sharing simple/stupefying ideas enabling fascinating engineering concepts which may also stimulate your own future research and development projects!

COLOR-062 Interactive Workshop: How can color imaging provide us with powerful insights?, Fritz Lebowsky, STMicroelectronics (France)

Meet the Future: A Showcase of Student and Young Professionals Research 3:00 – 5:00 pm Atrium

3:20 – 4:00 pm Coffee Break

Interactive Workshop: How can COLOR imaging provide US with powerful INSIGHTS? (continued) Joint Session

Moderator: Fritz Lebowsky, STMicroelectronics (France)

4:00 - 5:00 pm

Regency Ballroom C

This continuing workshop session is jointly sponsored by: Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications, and Material Appearance 2017.

Computational Imaging XIV

Conference overview

More than ever before, computers and computation are critical to the image formation process. Across diverse applications and fields, remarkably similar imaging problems appear, requiring sophisticated mathematical, statistical, and algorithmic tools. This conference focuses on imaging as a marriage of computation with physical devices. It emphasizes the interplay between mathematical theory, physical models, and computational algorithms that enable effective current and future imaging systems. Contributions to the conference are solicited on topics ranging from fundamental theoretical advances to detailed system-level implementations and case studies. Conference Chairs and Program Committee: Charles A. Bouman, Purdue Univ. (United States), and Robert Stevenson, Univ. of Notre Dame (United States)

Computational Imaging XIV

Monday, January 30, 2017

Scientific Imaging Session Chair: Garth Simpson, Purdue University (United States) 8:50 - 10:30 am Cypress C 8.50 COIMG-453 Deep neural networks for synchrotron X-ray imaging, Francesco De Carlo, Charudatta Phatak, Vincent De Andrade, and Doğa Gürsoy, Argonne National Laboratory (United States) 9.10 COIMG-41.5 Synchrotron x-ray diffraction dynamic sampling for protein crystal centering, Garth Simpson, Purdue University (United States) 9.30 COIMG-416 An iterative method to estimate and recover systematic and random errors in grating based x-ray phase contrast imaging, Teck-Yian Lim¹, Minh Do¹, and Amber Dagel²; ¹University of Illinois at Urbana-Champaign and ²Sandia National Laboratories (United States) 9:50 COIMG-417 A model based neuron detection approach using sparse location priors, Soumendu Majee¹, Dong Hye Ye¹, Gregery Buzzard², and Charles Bouman¹; ¹School of Electrical and Computer Engineering, Purdue University and ²Dept. of Mathematics, Purdue University (United States) 10:10 COIMG-449 Multi-resolution Data Fusion (MDF) for computational electron microscopy, Suhas Sreehari¹, Jeffrey Simmons², Lawrence Drummy², and Charles Bouman¹; ¹Purdue University and ²Air Force Research Laboratory (United States)

> 10:30 - 10:50 am Coffee Break

Tomography

Session Chair: W. Clem Karl, Boston University (United States)

10:50 am - 12:30 PM Cypress C

10.50

COIMG-418

COIMG-419

COIMG-420

High spatial resolution detection method for point light source in scintillator, Kai Xu¹, Tetsuya lizuka², Toru Nakura², and Kunihiro Asada²; ¹The University of Tokyo and ²VLSI Design and Education Center, The University of Tokyo (Japan)

11.10

A randomized approach to reduce metal artifacts in x-ray computed tomography, David Castañón and Parisa Babaheidarian, Boston University (United States)

11:30

Joint segmentation and material recognition in dual-energy CT images, David Castañón and Parisa Babaheidarian, Boston University (United States)

11:50

COIMG-421 MultiGPU acceleration of branchless distance driven projection and backprojection for Clinical Helical CT (JIST-first), Avan Mitra¹, David Politte², Bruce Whiting³, Jeffrey Williamson⁴, and Joseph O'Sullivan¹; ¹Washington University, ²Washington University School of Medicine, ³University of Pittsburg, and ⁴Virginia Commonwealth University (United States)

12:10

COIMG-422 Fast and robust discrete computational imaging, Ahmet Tuysuzoglu¹, Yuehaw Khoo², and W. Clem Karl³; ¹Siemens Healthcare, ²Princeton University, and ³Boston University (United States)

> 12:30 - 2:00 pm Lunch Break

El 2017 Opening Plenary and Symposium Awards Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm Grand Peninsula Ballroom D

Giga-scale 3D computational microscopy, Laura Waller, University of California, Berkeley (United States)

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). Waller's talk is on computational imaging methods for fast capture of gigapixel-scale 3D intensity and phase images in a commercial microscope that employs illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is high-resolution reconstructions across a large field-of-view, achieving high spacebandwith-time product.

> 3:00 - 3:30 pm Coffee Break

Computational Color

Session Chair: Charles Bouman, Purdue University (United States)

3:30 - 4:30 pm

Cypress C 3:30

COIMG-423

COIMG-425

Linear mapping based inverse tone mapping, Dae Eun Kim and Munchurl Kim, Korea Advanced Institute of Science and Technology (Republic of Korea)

3:50

COIMG-424Performance of the 14 skin-colored patches to accurately estimate the human skin, Hayan Choi, Kyungah Choi, and Hyeon-Jeong Suk, Korea

Advanced Institute of Science and Technology (Republic of Korea)

4:10

Skin-representative region in a face for finding true skin color, Hyeon-Jeong Suk, Hayan Choi, and Kyungah Choi, Korea Advanced Institute of Science and Technology (Republic of Korea)

43

Symposium Welcome Reception 5:00 - 6:00 pm Atrium

Tuesday, January 31, 2017

Computational Optics

Session Chair: Stanley Chan, Purdue University (United States)

8:50 - 10:10 am

Cypress C 8.50

COMG-454Atomistic simulations of interface characteristics in materials systems, Jeffrey Rickman, Lehigh University (United States)

9.10

COIMG-426

COIMG-427

COIMG-428

A phase-coded aperture camera with programmable optics, Jieen Chen¹, Michael Hirsch², Rainer Heintzmann³, Bernhard Eberhardt⁴, and Hendrik Lensch¹; ¹University of Tuebingen, ²Max Plank Institute for Intelligent Systems, ³Leibniz Institute of Photonic Technology, and ⁴Stuttgart Media University (Germany)

9:30

Wavefront correction using self-interference incoherent digital

holography, Kiseung Bang¹, Changwon Jang¹, Jonghyun Kim¹, Myung Kim², and Byoungho Lee¹; ¹Seoul National University (Republic of Korea) and ²University of South Florida (United States)

9.50

Non-iterative image reconstruction for single photon image sensors, Stanley Chan, Purdue University (United States)

> 10:00 am - 7:30 pm Industry Exhibition 10:10 - 10:50 am Coffee Break

Computational Photography

Session Chair: Henry Dietz, University of Kentucky (United States)

10:50 am - 12:30 pm

Cypress C

10.50

COIMG-429

COIMG-431

COIMG-432

Single image super-interpolation using adjusted self-exemplars, Hyun-Ho Kim, Jae-Seok Choi, and Munchurl Kim, Korea Advanced Institute of Science and Technology (Republic of Korea)

11.10 COIMG-430 Temporal super-resolution for time domain continuous imaging, Henry Dietz, John Fike, Paul Eberhart, Katie Long, and Clark Demaree, University of Kentucky (United States)

11:30

Edge-aware light-field flow for depth estimation and occlusion detection, Wenhui Zhou¹, Andrew Lumsdaine², Lili Lin³, Wei Zhang³, and Rong Wang³; ¹Hangzhou Dianzi University (China), ²Indiana University (United States), and ³Zhejiang Gongshang University (China)

11:50

Evaluating age estimation using deep convolutional neural nets, Carlos Belver, Ignacio Arganda-Carreras, and Fadi Dornaika, University of the Basque Country (Spain)

12:10

COIMG-452

3-D Shape recovery from real images using a symmetry prior, Vijai Jayadevan, Aaron Michaux, Edward Delp, and Zygmunt Pizlo, Purdue University (United States)

> 12:30 - 2:00 pm Lunch Break

El 2017 Tuesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as next-generation computational near-eye displays evolve to deliver visual experiences that are better than the real world.

> 3:00 - 3:30 pm Coffee Break

Image Analysis

Session Chair: Avideh Zakhor, University of California, Berkeley (United States)

3:30 - 5:30 pm

Cypress C

3:30

3:50

COIMG-433 Augmenting salient foreground detection using Fiedler vector for multiobject segmentation, Michal Kucer¹, Nathan Cahill¹, Alexander Loui², and David Messinger¹; ¹Rochester Institute of Technology and ²Kodak Alaris Inc. (United States)

COIMG-434

Non-destructive localization of overpaintings in Byzantine

miniature illuminations, Alexandra Psarrou¹, Vassiliki Kokla¹, Sophie Triantaphillidou¹, and Lindsay MacDonald²; ¹University of Westminster and ²University College London (United Kingdom)

4.10

COIMG-435

Computing height and width of in situ sorghum plants using 2.5d infrared images, Tavor Baharav, Mohini Bariya, and Avideh Zakhor, University of California, Berkeley (United States)

4:30

COIMG-436

Non-parametric texture synthesis using texture classification, Kyle Ziga¹, Judy Bagchi², Jan Állebach¹, and Fengqing Zhu¹; ¹Purdue University and ²DZine Steps (United States)

COIMG-437 On-the-fly performance evaluation of large-scale fiber tracking, Hongkai Yu¹, Jeffrey Simmons², Craig Przybyla², and Song Wang¹; ¹University of South Carolina and ²Air Force Research Laboratory (United States)

5:10

COIMG-438

Point cloud based approach to biomass feature extraction, Jihui Jin and Avideh Zakhor, University of California, Berkeley (United States)

Symposium Demonstration Session 5:30 – 7:30 pm

Grand Peninsula Ballroom E

Wednesday, February 1, 2017

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 – 3:00 pm

Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

3:00 – 3:30 pm Coffee Break

Computational Imaging XV Interactive Papers Session

5:30 – 7:00 pm Atrium

The following works will be presented at the El 2017 Symposium Interactive Papers Session.

COIMG-439

Non-iterative joint demosaicing and super resolution framework,

Xenya Petrova, Ivan Glazistov, Sergey Zavalishin, Vladimir Kurmanov, Kirill Lebedev, Alexander Molchanov, Andrey Shcherbinin, Gleb Milyukov, and Ilya Kurilin, Samsung R&D Institute Rus (Russian Federation) COIMG-440

Localized high dynamic range plenoptic image compression, Chuan-

Chung Chang¹, Hsin-Hsiang Lo¹, Han-Hsuan Lin¹, Zhi-Rong Fan², Shao-Hsuan Cheng¹, Chih-Hung Lu¹, Fu-Ming Chuang¹, and Jiun-In Guo²; ¹Coretronic Corp. and ²National Chiao Tung University (Taiwan)

COIMG-441

Image-based age estimation: Comparing hand crafted and deep

features, Fadi Dornaika¹, Nada Moukaddem², and Ammar Assoum²; ¹University of the Basque Country (Spain) and ²Lebanese University (Lebanon)

COIMG-442

Compressive light field display using scattering polarizer, Dukho Lee^{1,2}, Byoungho Lee^{1,2}, Seokil Moon^{1,2}, Chang-Kun Lee^{1,2}, and Gang Li^{1,2}; ¹Electrical and Computer Engineering, Seoul National University and ²Optical Engineering and Quantum Electronics Laboratory, Seoul National University (Republic of Korea)

COIMG-443

High-resolution image reconstruction for PET using local and non-local regularizations, Xue Ren and Soo-Jin Lee, Pai Chai University (Republic of Korea)

COIMG-444

3D reconstruction based multiple view depth generation using heterogeneous cameras, Dong-won Shin, Gwangju Institute of Science and Technology (Republic of Korea)

COIMG-445

Deep convolutional neural networks for the classification of snapshot mosaic hyperspectral imagery, Konstantina Fotiadou^{1,2}, Grigorios Tsagkatakis¹, and Panagiotis Tsakalides^{1,2}; ¹FORTH and ²University of Crete (Greece)

COIMG-446

Space-variant smoothing in median-regularized reconstruction for transmission tomography, Ji Eun Jung and Soo-Jin Lee, Pai Chai University (Republic of Korea)

COIMG-447

A viewing direction control camera without mechanical motion based on computational imaging, Daiki Teraya and Tomohiro Yendo, Nagaoka University of Technology (Japan)

COIMG-448

The human sclera and pupil as the calibration targets, Hayan Choi, Kyungah Choi, and Hyeon-Jeong Suk, Korea Advanced Institute of Science and Technology (Republic of Korea)

Computer Vision Applications in Sports 2017

Overview

The advances in computer vision affect how we train, perform, watch, and interact with sports and sport events. For example, using a camera feed and computer vision algorithms, 1) players can enhance their skills, 2) coaches can assess individual and team performance, 3) injuries could be analyzed and avoided, 4) real-time statistics could be generated, and 5) enhanced engaging experience could be delivered to viewers. In the Special Session on Computer Vision Applications in Sports we are interested in understanding how computer vision algorithms can help players train more effectively and sharpen their skills via real-time feedback while training. We also are interested in helping coaches build better teams via monitoring gameplay, performing objective assessment, and avoiding fractions and injuries. For the sports fan, we are looking for systems to build a personalized viewer experience on TV, mobile phones, and wearable devices. Experiences of interest would include (but are not limited to) graphical effects rendering, augmented/virtual reality, and mobile app for off-screen engagement.

Chairs: Mustafa Jaber, NantVision (United States), and Grigorios Tsagkatakis, Institute of Computer Science, FORTH (Greece)

Computer Vision Applications in Sports 2017

Monday, January 30, 2017

Sports Imaging

Session Chairs: Mustafa Jaber, NantVision Inc. (United States), and Grigorios Tsagkatakis, FORTH (Greece)

9:30 - 10:20 am

Cypress B

9:30

Chair Opening Remarks

9.40

CVAS-342 Virtual tracking shots for sports analysis, Stuart Bennett¹, Joan Lasenby¹, and Tony Purnell^{1,2}; ¹University of Cambridge and ²British Cycling (United Kingdom)

10.00

CVAS-343

Aerodynamic analysis via foreground segmentation, Peter Carey¹, Stuart Bennett¹, Joan Lasenby¹, and Tony Purnell^{1,2}; ¹University of Cambridge and ²British Cycling (United Kingdom)

> 10:20 - 10:50 am Coffee Break

Sports Analysis

Session Chairs: Mustafa Jaber, NantVision Inc. (United States), and Grigorios Tsagkatakis, FORTH (Greece)

10:50 am - 12:10 pm

Cypress B

10:50

CVAS-344

Goal! Event detection in sports video, Grigorios Tsagkatakis¹, Mustafa Jaber², and Panagiotis Tsakalides¹; ¹FORTH (Greece) and ²NantVision Inc. (United States)

11.10

CVAS-345 Pose estimation for deriving kinematic parameters of competitive swimmers, Dan Zecha, Christian Eggert, and Rainer Lienhart, University of Augsburg (Germany)

11:30

CVAS-346

Comparison of a virtual game-day experience on varying devices,

Jack Miller, Holly Baiotto, Anastacia MacAllister, Gabriel Evans, Jonathan Schlueter, Melynda Hoover, Vijay Kalivarapu, and Eliot Winer, Iowa State University (United States)

11:50

CVAS-347

Digital playbook - A teaching tool for American football, Mario Vorstandlechner and Margrit Gelautz, Technische Universität Wien (Austria)

> 12:10 - 2:00 pm Lunch Break

El 2017 Opening Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

Giga-scale 3D computational microscopy, Laura Waller, University of California, Berkeley (United States)

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). Waller's talk is on computational imaging methods for fast capture of gigapixel-scale 3D intensity and phase images in a commercial microscope that employs illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is high-resolution reconstructions across a large field-of-view, achieving high space-bandwith-time product.

> 3:00 - 3:30 pm Coffee Break

Keynote: Computer Vision, Robotic Cameras, Sports Applications Session Chairs: Mustafa Jaber, NantVision Inc. (United States), and Grigorios Tsagkatakis, FORTH (Greece) 3:30 - 4:30 pm Cypress B

Automated sports broadcasting, Peter Carr, Disney Research (United States)

Peter Carr is a Senior Research Engineer at Disney Research, Pittsburgh. He received his PhD from the Australian National University (2010), under the supervision of Prof. Richard Hartley. His thesis, "Enhancing Surveillance Video Captured in Inclement Weather", explored single-view depth estimation using graph cuts, as well as real-time image processing on graphics hardware. As part of his earlier PhD work in sports analysis, Carr was a research intern at Mitsubishi Electric Research Labs. He received a Master's in physics from the Centre for Vision Research at York University in Toronto, Canada, and a Bachelor's of Applied Science (engineering physics) from Queen's University in Kingston, Canada.

Symposium Welcome Reception 5:00 - 6:00 pm Atrium

CVAS-348

Digital Photography and Mobile Imaging XIII

Conference overview

Digital photography has revolutionized the world we live in. Both the number of still images and videos taken each year and the capabilities of current imaging devices are unprecedented. The number of cell phones produced each year exceeds one billion and the quality of images produced by them is so high that many people are happy with a cell phone as their only camera. At the same time, other types of cameras also keep improving. Advances in hardware and processing of captured images help to push boundaries of what was previously possible in consumer and line art photography and in the huge range of applications of digital imaging in industry, science, health care, defense, and other areas. Despite the tremendous progress that has been already made, the future promises even more.

This conference serves to bring together researchers, scientists, and engineers working in the fields of traditional, mobile, and computational camera imaging to discuss recent progress in the development of digital cameras and camera modules, with all related areas like optics, sensors, in-camera still image and video processing (including traditional pipeline steps like demosaicing, color correction, and image compression, as well as high dynamic range processing, blur removal, and various other computational imaging techniques), applications of image and video processing, still image and video management and sharing applications, and methods and standards for evaluating the quality of produced images and video and of cameras used for their capture.

This conference includes paper presentations, presentation-only talks, and joint sessions with other Electronic Imaging conferences with overlapping interests.

Awards: Best Paper Award and Best Student Paper Award

Conference Sponsors

BAE SYSTEMS

Conference Chairs: Zhen He, Intel Corp. (United States); Feng Li, GoPro Inc. (United States); and Jon S. McElvain, Dolby Labs., Inc. (United States)

Program Committee: Sebastiano Battiato,

Università degli Studi di Catania (Italy); Kathrin Berkner, Ricoh Innovations, Inc. (United States); Ajit Bopardikar, Samsung R&D Institute India Bangalore Pvt. Ltd. (India); Peter Catrysse, Stanford Univ. (United States); Henry Dietz, Univ. of Kentucky (United States); Giovanni Farinella, Università degli Studi di Catania (Italy); Joyce Farrell, Stanford Univ. (United States); Robert Fiete, Exelis (United States); Boyd Fowler, OminVision Technologies, Inc. (United States); Sergio Goma, Qualcomm Technologies, Inc. (United States); Mirko Guarnera, STMicroelectronics R&D Shenzhen Co. Ltd (China); Bahadir Gunturk, Istanbul Medipol Univ. (Turkey); Paul Hubel, Apple Inc. (United States); Francisco Imai (United States); Pramati Kalwad, National Institute of Technology Karnataka, Surathkal (India); Michael Kriss, MAK Consultants (United States); Jiangtao (Willy) Kuang, Qualcomm Technologies, Inc. (United States); Andrew Lumsdaine, Indiana Univ. (United States); Kevin Matherson, Microsoft Corporation (United States); Jon McElvain, Dolby Laboratories, Inc. (United States); Lingfei Meng, Ricoh Innovations, Inc. (United States); David Morgan-Mar, Canon Information Systems Research Australia Pty Ltd (CISRA) (Australia); Bo Mu, BAE Systems Imaging Solutions (United States); Barbara Pitts, Apple Inc. (United States); Kari Pulli, Intel Corporation (United States); John Reinert-Nash, Lifetouch, Inc. (United States); Jackson Roland, Apple Inc. (United States); Nitin Sampat, Rochester Institute of Technology (United States); Sabine Süsstrunk, École Polytechnique Fédérale de Lausanne (Switzerland); Touraj Tajbakhsh, Apple Inc. (United States); Radka Tezaur, Intel Corporation (United States); Ashok Veeraraghavan, Rice Univ. (United States); Thomas Vogelsang, Rambus Inc. (United States); Michael Wang, Intel Corporation (United States); Dietmar Wueller, Image Engineering GmbH & Co. KG (Germany); and Zhan Yu, Univ. of Delaware (United States)

Digital Photography and Mobile Imaging XIII

Monday, January 30, 2017

Camera Arrays and RGB-D Imaging Algorithms

Session Chairs: Francisco Imai (United States) and Kevin Matherson, Microsoft Corporation (United States)

8:50 - 10:10 am

Grand Peninsula Ballroom A

DPMI-063 8.50 Stabilized high-speed video from camera arrays, Maha El Choubassi and Oscar Nestares, Intel Corporation (United States)

9.10 DPMI-064 Panoramic background estimation from RGB-D videos, Christos Bampis¹, Gowri Somanath², Oscar Nestares², and Jiajie Yao³; ¹The University of Texas at Austin (United States), ²Intel Labs, Intel Corporation (United States), and ³Intel Corporation (China)

9:30

Accurate measurement of point to point distances in 3D camera images, Kalpana Seshadrinathan, Oscar Nestares, and Yi Wu, Intel Corporation (United States)

9:50 DPMI-066 A novel framework for fast MRF optimization, Gowri Somanath, Jiajie Yao, and Yong Jiang, Intel Corporation (United States)

> 10:10 - 10:50 am Coffee Break

Keynote: Accelerated Computational Tools Session Chair: Michael Kriss, MAK Consultants (United States) 10:50 - 11:30 am Grand Peninsula Ballroom A

DPMI-067

DPMI-065

Heterogeneous computational imaging, Kari Pulli, Intel Corporation (United States)

Kari Pulli is a Senior Principal Engineer at Intel Corporation, working as the CTO of the Imaging and Camera Technologies Group. He has a long history in Computational Photography, Computer Vision, and Computer Graphics (earlier jobs include VP of Computational Imaging at Light, Sr. Director at NVIDIA Research, Nokia Fellow), with numerous publications (h-index = 30). Pulli has a PhD from the University of Washington, Seattle. He has also been a researcher / lecturer at Stanford, MIT, and University of Oulu. He has contributed to many multimedia standards at the Khronos Group, including OpenVX, and is a regular speaker and contributor at SIGGRAPH, CVPR, and many other conferences.

Emerging Architectures and Systems

Session Chair: Michael Kriss, MAK Consultants (United States)

11:30 am - 12:30 pm

Grand Peninsula Ballroom A

11.30

DPMI-068

Is there a multi-camera future? (Invited), Timothy Macmillan, Consultant (United States)

Capturing light field video for 6-DOF VR playback (Invited), William Jiang, Lytro Inc. (United States)

12:10

11:50

DPMI-070 Representation and compression for cinematic VR (Invited), Hari Lakshman, Dolby Labs (United States)

12:30 - 2:00 pm Lunch Break

El 2017 Opening Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

Giga-scale 3D computational microscopy, Laura Waller, University of California, Berkeley (United States)

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). Waller's talk is on computational imaging methods for fast capture of gigapixel-scale 3D intensity and phase images in a commercial microscope that employs illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is high-resolution reconstructions across a large field-of-view, achieving high space-bandwith-time product.

> 3:00 - 3:30 pm Coffee Break

Imaging System Assessment

Session Chairs: Joyce Farrell, Stanford University, and Bo Mu, BAE Systems Imaging Solutions (United States)

3:30 - 4:50 pm Grand Peninsula Ballroom A

DPMI-071

Quantifying the luminance ratio of interior and exterior scenes: Challenges and tradeoffs in definitions, current standards, measurement methodologies and instrumentation, capturing capabilities of digital cameras, effects of veiling alare, Fernando Voltolini de Azambuja, Nitin Sampat, and Stephen Viggiano, Rochester Institute of Technology (United States)

3:50

DPMI-072

Sensitivity analysis applied to ISO recommended camera color calibration methods to determine how much of an advantage, if any, does spectral characterization of the camera offer over the chart-based approach, Nitin Sampat, Stephen Viggiano, and Keith Borrino, Rochester Institute of Technology (United States)

4:10

DPMI-073 Perceptual optimization driven by image quality metrics (Invited), Zhou Wang, University of Waterloo (Canada)

4:30

DPMI-074

Looming challenges in mobile imaging quality: New technologies and new markets (Invited), David Cardinal, Cardinal Photo & Extremetech. com (United States)

DPMI-069

Symposium Welcome Reception 5:00 - 6:00 pm Atrium

Tuesday, January 31, 2017

Keynote: Mobile Device Camera IQ Joint Session

Session Chairs: Susan Farnand, Rochester Institute of Technology, and Jackson Roland, Apple Inc. (United States) 8:50 - 9:20 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Quality and System Performance XIV and Digital Photography and Mobile Imaging XIII.

IQSP-249

Towards the development of the IEEE P1858 CPIQ standard – A validation study, Elaine Jin¹, Jonathan Phillips¹, Susan Farnand², Margaret Belska³, Vinh Tran³, Ed Chang¹, Yixuan Wang³, and Benjamin Tseng⁴; ¹Google Inc. (United States), ²Rochester Institute of Technology (United States), ³NVIDIA (United States), and ⁴Apkudo (Australia)

Elaine W. Jin holds a PhD in optical engineering from Zhejiang University in China, and a PhD in psychology from the University of Chicago. She has worked in the imaging industry for 15+ years including employment at Polaroid Corporation, Eastman Kodak Company, Micron Technologies, Aptina Imaging, Marvell Semiconductors, and Intel Corporation. She currently is a staff image scientist at Google, working on developing cutting-edge consumer hardware products. Her primary research interests include imaging systems design and analysis, color imaging, and psychophysics. She has published 22 journal and conference papers, and authored 14 US patents / patent applications. She joined the CPIQ initiative (Camera Phone Image Quality) in 2006, and since then has made major contributions in the development of the softcopy quality ruler method, and the CPIQ metrics for visual noise, texture blur, spatial frequency responses, chroma level, and color uniformity. She currently leads the Color/Tone Subgroup of the IEEE CPIQ Standard Working Group.

Mobile Device Camera IQ Joint Session

Session Chairs: Susan Farnand, Rochester Institute of Technology, and Jackson Roland, Apple Inc. (United States)

9:20 - 10:20 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Quality and System Performance XIV and Digital Photography and Mobile Imaging XIII.

9.20

IQSP-2.50

A methodology for perceptual image quality assessment of smartphone cameras - Color quality, Susan Farnand, Rochester Institute of Technology (United States)

9.40

IQSP-2.51

Assessing the ability of simulated laboratory scenes to predict the image quality performance of HDR captures (and rendering) of exterior scenes using mobile phone cameras, Amelia Spooner¹, Ashley Solter¹, Fernando Voltolini de Azambuja¹, Nitin Sampat¹, Stephen Viggiano¹, Brian Rodricks², and Cheng Lu³; ¹Rochester Institute of Technology, ²SensorSpace, LLC, and ³Intel Corporation (United States)

Cell phone rankings!, Dietmar Wueller, Image Engineering GmbH & Co. KG (Germany)

> 10:00 am - 7:30 pm Industry Exhibition Coffee Break

10:20 - 10:50 am

MTF Joint Session

Session Chairs: Peter Burns, Burns Digital Imaging, and Feng Li, GoPro Inc. (United States)

10:50 am - 12:30 pm

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Quality and System Performance XIV and Digital Photography and Mobile Imaging XIII.

10:50 Characterization of entire imaging plane spatial frequency response, Victor Lenchenkov, Orit Skorka, Stan Micinski, and Radu Ispasoiu, ON

Semiconductor (United States) 11.10 IQSP-254

Reverse-projection method for measuring camera MTF, Stan Birchfield, Microsoft Corporation (United States)

11.30 IQSP-255 Texture MTF from images of natural scenes, Riccardo Branca¹, Sophie Triantaphillidou¹, and Peter Burns²; ¹University of Westminster (United Kingdom) and ²Burns Digital Imaging (United States)

11:50

DPMI-256

IQSP-253

Camera phone texture preservation measurements with modulation transfer function: An alternative approach for noise estimation of random texture chart images, Nitin Suresh^{1,2}, Joshua Pfefer¹, and Quanzeng Wang¹; ¹U.S.

Food and Drug Administration and ²University of Maryland (United States) IQSP-257 12.10

The effects of misregistration on the dead leaves cross-correlation texture blur analysis, Ranga Burada¹, Robert Sumner¹, and Noah Kram²; ¹Imatest, LLC and ²Rochester Institute of Technology (United States)

> 12:30 - 2:00 pm Lunch Break

El 2017 Tuesday Plenary and Symposium Awards Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as next-generation computational near-eye displays evolve to deliver visual experiences that are better than the real world.

> Coffee Break 3:00 - 3:30 pm

DPMI-252

Image Interpolation, Restoration, and Denoising Joint Session

Session Chairs: Karen Egiazarian, Tampere University of Technology (Finland), and Radka Tezaur, Intel Corporation (United States)

3:30 - 5:30 pm

Grand Peninsula Ballroom A

This session is jointly sponsored by: Digital Photography and Mobile Imaging XIII and Image Processing: Algorithms and Systems XV.

3.30 DPMI-083 BM3D-HVS: Content-adaptive denoising for improved visual guality (Invited), Karen Egiazarian^{1,2}, Aram Danielyan², Nikolay Ponomarenko^{1,2}, Alessandro Foi^{1,2}, Oleg leremeiev³, and Vladimir Lukin³; ¹Tampere University of Technology (Finland), ²Noiseless Imaging Oy (Finland), and ³National Aerospace University (Ukraine)

3.50

IPA S-084

Refining raw pixel values using a value error model to drive texture synthesis, Henry Dietz, University of Kentucky (United States)

IPAS-085 Color interpolation based on colorization for RGB-white color filter array, Paul Oh¹, Sukho Lee², and Moon Gi Kang¹; ¹Yonsei University and ²Dongseo University (Republic of Korea)

4.30 IPAS-086 Video frame synthesizing method for HDR video capturing system with four image sensors, Takayuki Yamashita^{1,2} and Yoshihiro Fujita¹; ¹Ehime University and ²NHK (Japan)

4.50

DPMI-088

Robust defect pixel detection and correction for Bayer Imaging Systems, Noha El-Yamany, Intel Corporation (Finland)

Symposium Demonstration Session 5:30 – 7:30 pm Grand Peninsula Ballroom E

Wednesday, February 1, 2017

Keynote: Sharp High-quality Color Interpolation Joint Session

Session Chairs: Kevin Matherson, Microsoft Corporation (United States), and Dietmar Wueller, Image Engineering GmbH & Co. KG (Germany)

8:50 - 9:30 am Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

Conference Chair Opening Remarks

IMSE-077

Bayer pattern and image quality, Jörg Kunze, Basler AG (Germany)

Jörg Kunze has received his PhD in physics from the University of Hamburg (2004). He joined Basler in 1998, where he started as an electronics developer and where he currently is the team leader of New Technology. Kunze serves as an expert for image sensors, camera hardware, noise, color fidelity, 3D- and computational imaging and develops new algorithms for color image signal processing. The majority of the Basler patents name him as inventor.

Input Signal Quality & Characterization Joint Session

Session Chairs: Kevin Matherson, Microsoft Corporation (United States), and Dietmar Wueller, Image Engineering GmbH & Co. KG (Germany)

9:30 - 10:10 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

IMASE-078 Accurate joint geometric camera calibration of visible and far-infrared

cameras, Takashi Shibata^{1,2}, Masayuki Tanaka¹, and Masatoshi Okutomi¹; ¹Tokyo Institute of Technology and ²NEC Corporation (Japan)

9:50

9.30

DPMI-079

DPMI

Interferometric measurement of sensor MTF and crosstalk, Todor Georgiev, Jennifer Gille, Amber Sun, Lyubomir Baev, and Tharun Battula, Qualcomm Technologies, Inc. (United States)

10:00 am – 4:00 pm	Industry Exhibition
10:10 – 10:50 am	Coffee Break

Keynote: Machine Vision Retina Improvement Joint Session

Session Chairs: Thomas Vogelsang, Rambus Inc., and Ralf Widenhorn, Portland State University (United States)

10:50 - 11:30 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

DPMI-080

Silicon retina technology (Invited), Tobi Delbruck, Institute for Neuroinformatics (INI) (Switzerland)

Tobi Delbruck received a PhD from Caltech (1993). He is currently a professor of physics and electrical engineering at ETH Zurich in the Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland, where he has been since 1998. His group, which he coordinates together with Shih-Chii Liu, focuses on neuromorphic event-based sensors and sensory processing. He has co-organized the Telluride Neuromorphic Cognition Engineering summer workshop and the live demonstration sessions at ISCAS and NIPS. Delbruck is past Chair of the IEEE CAS Sensory Systems Technical Committee. He worked on electronic imaging at Arithmos, Synaptics, National Semiconductor, and Foveon and has founded 3 spin-off companies, including inilabs.com, a non-for-profit organization that has distributed hundreds of R&D prototype neuromorphic sensors to more than a hundred organizations around the world. He has been awarded 9 IEEE awards.

Emerging Imaging Sensor & Hardware Joint Session

Session Chairs: Thomas Vogelsang, Rambus Inc., and Ralf Widenhorn, Portland State University (United States)

11:30 - 11:50 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

11:30

DPMI-081

TIK: A time domain continuous imaging testbed using conventional still images and video, Henry Dietz, John Fike, Paul Eberhart, Katie Long, Clark Demaree, and Jong Wu, University of Kentucky (United States)

Keynote: Comparing CMOS Image Sensor Architectures Joint Session Session Chairs: Thomas Vogelsang, Rambus Inc., and Ralf Widenhorn, Portland State University (United States)

11:50 am – 12:40 pm Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

IMSE-082

CMOS image sensor pixel design and optimization, Boyd Fowler, OmniVision Technologies (United States)

Boyd Fowler's research interests include CMOS image sensors, low noise image sensors, noise analysis, data compression, and machine learning and vision. He received his MSEE (1990) and PhD (1995) from Stanford University. After finishing his PhD he stayed at Stanford University as a research associate in the Electrical Engineering Information Systems Laboratory until 1998. In 1998, Fowler founded Pixel Devices International in Sunnyvale California. Between 2005 and 2013, Fowler was CTO and VP of Technology at Fairchild Imaging. He is currently at OmniVision Technologies leading the marketing department. Fowler has authored numerous technical papers, book chapters and patents.

Image Sensors and Imaging Systems 2017 Awards

12:40 – 2:00 pm Lunch Break

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States)

2:00 – 3:00 pm Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

3:00 – 3:30 pm Coffee Break

Digital Photography and Mobile Imaging XIII Interactive Papers Session

5:30 – 7:00 pm Atrium

The following works will be presented at the El 2017 Symposium Interactive Papers Session.

DPMI-075

A Canon hack development kit implementation of time domain

continuous imaging, Katie Long, Clark Demaree, and Henry Dietz, University of Kentucky (United States)

DPMI-076

Advanced HDR fusion method for image sensor with variable pixel

exposure, Timofey Uvarov, OmniVision Technologies, Inc. (United States)

DPMI

The Engineering Reality of Virtual Reality 2017

Conference overview

Virtual and augmented reality systems are evolving. In addition to research, the trend toward content building continues and practitioners find that technologies and disciplines must be tailored and integrated for specific visualization and interactive applications. This conference serves as a forum where advances and practical advice toward both creative activity and scientific investigation are presented and discussed. Research results can be presented and applications can be demonstrated.

Excursion

On Thursday afternoon, we have the **Qlik Field Trip: Showcase for VR, AR, and Visual Analytics Applications.** Todd Margolis will host the ERVR group at Qlik, located a five minute car ride or 30 min walk from the conference. Sign up in advance at the registration desk. Transportation on your own. Conference Chairs and Program Committee: Margaret Dolinsky, Indiana Univ. (United

States), and **Ian E. McDowall**, Fakespace Labs, Inc. (United States)

The Engineering Reality of Virtual Reality 2017

Wednesday, February 1, 2017

The Real World Meets VR: Case Studies

Session Chairs: Margaret Dolinsky, Indiana University, and Ian McDowall, Intuitive Surgical / Fakespace Labs (United States)

9:10 - 10:10 am

Sandpebble A

9:10

ERVR-089 Oculus rift with stereo camera for augmented reality medical intubation training, Kevin Lim, Preetham Suresh, and Jürgen Schulze, University of California, San Diego (United States)

9:30

Virtual reality instructional modules in education based on gaming

metaphor, Sharad Sharma and Emmanuel Ossuetta, Bowie State University (United States)

9.50 FRVR-092 Drawing towards virtual reality, Margaret Dolinsky, Indiana University (United States)

> 10:00 am - 4:00 pm Industry Exhibition

10:10 - 10:50 am Coffee Break

Positioning the Body in VR

Session Chairs: Margaret Dolinsky, Indiana University, and Ian McDowall, Intuitive Surgical / Fakespace Labs (United States)

10:50 am - 12:30 pm

Sandpebble A

10:50

ERVR-093

FRVR-095

ERVR-096

ERVR-090

The Destiny-class CyberCANOE- a surround screen, stereoscopic, cyber-enabled collaboration analysis navigation and observation environment, Noel Kawano, Alberto Gonzalez, Jack Lam, Ryan Theriot, Ken Uchida, Eric Wu, Andrew Guagliardo, Dylan Kobayashi, and Jason

Leigh, University of Hawai'i at Manoa (United States)

11:10

ERVR-094 CAVE versus head-mounted displays: On-going thoughts, Daniel Mestre, CNRS (France)

11:30

Distributed rendering using NVIDIA OptiX, Dylan McCarthy and Jürgen Schulze, University of California, San Diego (United States)

11:50

Laser illuminated projectors and the technological advancements brought forth to immersive environments, Danielle Rains, Dirk Reiners, and Carolina Cruz-Neira, University of Arkansas at Little Rock (United States)

12:10

ERVR-097

New VR navigation techniques to reduce cybersickness, Andras Kemenv^{1,2}, Paul George¹, Frédéric Mérienne¹, and Florent Colombet²; ¹Arts et Métiers ParisTech and ²Renault (France)

> 12:30 - 2:00 pm Lunch Break

El 2017 Wednesday Plenary and Symposium Awards Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat,

Rochester Institute of Technology (United States) 2:00 – 3:00 pm Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

> 3:00 - 3:30 pm Coffee Break

Visualization Facilities Joint Session

Session Chairs: Margaret Dolinsky, Indiana University (United States), and Andrew Woods, Curtin University (Australia)

3:30 - 5:40 pm

Grand Peninsula Ballroom D

This session is jointly sponsored by: Stereoscopic Displays and Applications XXVIII and The Engineering Reality of Virtual Reality 2017.

3.30

SD&A-105

SD&A-106

Designing a cloud-based 3D visualization engine for smart cities, Nicolas Holliman, Stephen Dowsland, Mark Turner, Richard Cloete, and Tom Picton, Newcastle University (United Kingdom)

3:50

Interactive computer graphics, stereo and VR practice at the Electronic Visualization Laboratory University of Illinois at Chicago, Maxine

Brown¹, Jason Leigh², Tom DeFanti³, and Daniel Sandin¹; ¹The University of Illinois at Chicago, ²University of Hawai'i at Manoa, and ³University of California, San Diego (United States)

4:10

ERVR-107

ERVR-108

Designing at the Advanced Visualization Lab at Indiana University, Margaret Dolinsky¹, Eric Wernert², Michael Boyles², and Chris Eller² School of Art and Design, Indiana University and ²Advanced Visualization Lab, Indiana University (United States)

4.30

Exploring Calit2, Jürgen Schulze and Gregory Dawe, University of California, San Diego (United States)

4:50 SD&A-109 3D-Stereoscopic immersive analytics projects at Monash University and University of Konstanz, Björn Sommer^{1,3}, David G. Barnes^{1,4}, Sarah Boyd¹, Thomas Chandler¹, Maxime Cordeil¹, Karsten Klein^{1,3}, Toan Nguyen⁴, Hieu Nim^{1,5}, Kingsley Stephens¹, Dany Vohl², Elliott Wilson¹, Jon McCormack¹, Kim Marriott¹, and Falk Schreiber^{1,3}; ¹Monash University (Australia), ²Swinburne University of Technology (Australia), ³University of Konstanz (Germany), ⁴Monash Immersive Visualization Platform at Monash University (Australia), and ⁵Australian Regenerative Medicine Institute of Monash University (Australia)

5:10

SD&A-110 Image distortions in large-scale immersive display systems - Cylinder and wedge displays, Andrew Woods¹, Joshua Hollick¹, Jesse Helliwell¹, and Paul Bourke²; ¹Curtin University and ²University of Western Australia (Australia)

5.30

SD&A Closing Remarks, Nicolas Holliman, Newcastle University (United Kingdom)

Symposium Interactive Papers (Poster) Session 5:30 - 7:00 pm Atrium

Thursday, February 2, 2017

Keynote: Immersive Visualization Room - Design and Build

Session Chairs: Margaret Dolinsky, Indiana University, and Ian McDowall, Intuitive Surgical / Fakespace Labs (United States) 9:10 - 10:10 am Sandpebble A

FRVR-098

VR journeys from the dark ages to a bright future, Gregory Dawe, University of California, San Diego (United States)

Gregory Dawe, the design engineer who made many iterations of CAVE systems possible, will share his perspective on the progression of virtual reality from the first CRT based CAVE system and how it was enhanced during the digital projector era to where we are now with present day flat panel systems. He will discuss the technological quest to improve brightness, resolution and contrast in the crusade to exceed human acuity.

Qlik Introduction

Session Chair: Margaret Dolinsky, Indiana University (United States)

10:10 - 10:30 am

Sandpebble A

The Qlik Environment, Todd Margolis, Qlik (United States)

10:30 - 10:50 am Coffee Break

Kit and Kaboodle: VR Gear

Session Chairs: Margaret Dolinsky, Indiana University, and Ian McDowall, Intuitive Surgical / Fakespace Labs (United States)

10:50 am - 12:30 pm

Sandpebble A

10:50

The Reality Wall: The aesthetics of reality disambiguation in AR/VR, Patrick Lichty, Zaved University (United States)

11:10

Decoupling of real and digital content in projection based augmented reality systems using time multiplexed image capture (JIST-first), Shoaib Soomro¹, Erdem Ulusoy¹, and Hakan Urey²; ¹Optical Microsystems Laboratory, Koc University and ²Koc University (Turkey)

11:30

A survey: Tools for human motion synthesis, Jie Yan, Bowie State University (United States)

11:50

Exploring body gestures as natural user interface for flying in a virtual reality game with Kinect, Xin Tong and Diane Gromala, Simon Fraser University (Canada)

12.10

ERVR-102

FRVR-100

ERVR-101

Soft robotic glove for kinesthetic haptic feedback in virtual reality

environments, Saurabh Jadhav, Vikas Kannanda, Bocheng Kang, Michael Tolley, and Jürgen Schulze, University of California, San Diego (United States)

> 12:30 - 2:00 pm Lunch Break

Qlik Field Trip: Showcase for VR, AR, and Visual Analytics Applications

Host: Todd Margolis, Qlik (United States) Session Chairs: Margaret Dolinsky, Indiana University, and Ian McDowall, Intuitive Surgical / Fakespace Labs (United States)

2:00 - 5:00 pm

Offsite

Todd Margolis will host the ERVR group at Qlik, located a five minute car ride or 30 min walk from the conference. Sign up in advance at the registration desk. Transportation on your own.

FRVR-103

FRVR-099

Human Vision and Electronic Imaging 2017

Conference overview

The conference on Human Vision and Electronic Imaging explores the role of human perception and cognition in the design, analysis, and use of electronic media systems. Over the years, it has brought together researchers, technologists and artists, from all over the world, for a rich and lively exchange of ideas. We believe that understanding the human observer is fundamental to the advancement of electronic media systems, and that advances in these systems and applications drive new research into the perception and cognition of the human observer. Every year, we introduce new topics through our Special Sessions, centered on areas driving innovation at the intersection of perception and emerging media technologies. The HVEI website (http://hvei.eecs.northwestern.edu) includes additional information and updates.

Awards

Student Best Paper Award Student Paper Honorary Mention Award

Events

Monday evening HVEI Banquet and Talk Thursday evening Museum Field Trip to San Francisco Museum of Modern Art Daily End-of-Day Discussions

Conference Sponsors

Conference Chairs: Bernice E. Rogowitz, Visual Perspectives (United States); Thrasyvoulos N. Pappas, Northwestern Univ. (United States); and Huib de Ridder, Technische Univ. Delft (the Netherlands)

Program Committee: Albert J. Ahumada, NASA Ames Research Center (United States); Jan P. Allebach, Purdue Univ. (United States); Erhardt Barth, Univ. zu Lubeck (Germany); Walter R. Bender, Sugar Labs (United States); Michael H. Brill, Datacolor (United States); Kjell Brunnström, ACREO (Sweden); Claus-Christian Carbon, Univ. of Bamberg (Germany); Damon M. Chandler, Shizuoka Univ. (Japan); Scott J. Daly, Dolby Labs., Inc. (United States); Ulrich Engelke, Commonwealth Scientific and Industrial Research Organisation (Australia); Elena A. Fedorovskaya, Rochester Institute of Technology (United States); James A. Ferwerda, Rochester Institute of Technology (United States); Jennifer L. Gille, Oualcomm Technologies, Inc. (United States); Sergio R. Goma, Oualcomm Technologies, Inc. (United States); Hari Kalva, Florida Atlantic Univ. (United States); Stanley A. Klein, Univ. of California, Berkeley (United States); Patrick Le Callet, Univ. de Nantes (France); Lora T. Likova, The Smith-Kettlewell Eye Research Institute (United States); Monica Lopez-Gonzalez, La Petite Noiseuse Productions (United States); Mark E. McCourt, North Dakota State Univ. (United States); Jeffrey B. Mulliaan, NASA Ames Research Center (United States); Karol Myszkowski, Max-Pianck-Institut für Informatik (Germany); Adar Pelah, Univ. of York (United Kingdom); Éliezer Peli, Schepens Eye Research Institute (United States); Sylvia Pont, Technische Univ. Delft (the Netherlands): Judith A. Redi, Technische Univ. Delft (the Netherlands); Hawley K. Rising, Consultant (United States); Sabine Süsstrunk, École Polytechnique Fédérale de Lausanne (Switzerland); Christopher W. Tyler, The Smith-Kettlewell Eye Research Institute (United States); Andrew B. Watson, NASA Ames Research Center (United States); and Michael A. Webster, Univ. of Nevada, Reno (United States)

Human Vision and Electronic Imaging 2017

Monday, January 30, 2017

Chair Opening Remarks

Session Chairs: Bernice Rogowitz, Visual Perspectives (United States), Thrasyvoulos Pappas, Northwestern University (United States), and Huib de Ridder, Delft University of Technology (the Netherlands) **9:00 – 9:10 am**

Regency Ballroom B

Keynote 1: Human Vision - Unifying Theory from Peripheral Vision Session Chair: Bernice Rogowitz, Visual Perspectives (United States) 9:10 – 10:00 am Regency Ballroom B

HVEI-111

Vision at a glance (Invited), Ruth Rosenholtz, MIT (United States)

Ruth Rosenholtz is a Principal Research Scientist in the Dept. of Brain and Cognitive Sciences at MIT. Her lab studies human vision, including visual search, peripheral vision, perceptual organization, and the impact of visual clutter on task performance. Rosenholtz earned her PhD in electrical engineering and computer science, University of California at Berkeley (1994). Prior to MIT, she held research positions with the (Xerox) Palo Alto Research Center, NASA Ames, and with Utrecht University.

10:00 – 10:30 am Coffee Break

Special Session: Decoding Visual Semantics: Perceptual Modeling and Deep Learning

Session Chairs: Jan Koenderink, Katholieke University Leuven (Belgium), and Ruth Rosenholtz, MIT (United States)

10:30 am - 12:30 pm

Regency Ballroom B

10:30

HVEI-112

Eidolons: Effects of capricious local sign (Invited), Jan Koenderink¹, Andrea van Doorn², Matteo Valsecchi³, and Karl Gegenfurtner³; ¹Katholieke University Leuven (the Netherlands), ²Utrecht University (the Netherlands), and ³Giessen University (Germany)

11:00

HVEI-113

HVFI-114

HVFI-116

Careful methods and measurements for comparisons between men and machines (Invited), Felix Wichmann^{1,2}, David Janssen¹, Robert Geirhos¹, Guillermo Aguilar³, Schütt Heiko¹, Marianne Maertens³, and Matthias Bethge 1; ¹Eberhard Karls Universität Tübingen, ²Max-Planck-Institut für Intelligente Systeme, and ³Technische Universität Berlin (Germany)

11:30

Perceptual and engineering implications of cascaded gain control models (Invited), Eero Simoncelli¹, Valero Laparra^{1,2}, Johannes Ballé¹, and Alexander Berardino¹; ¹New York University (United States) and ²University of Valencia (Spain)

12:00

Emerging visual representations in deep learning networks (Invited), Aude Oliva, MIT (United States) 12:30 – 2:00 pm 🛛 Lunch Break

El 2017 Opening Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) **2:00 – 3:00 pm** Grand Peninsula Ballroom D

Giga-scale 3D computational microscopy, Laura Waller, University of California, Berkeley (United States)

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). Waller's talk is on computational imaging methods for fast capture of gigapixel-scale 3D intensity and phase images in a commercial microscope that employs illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is high-resolution reconstructions across a large field-of-view, achieving high spacebandwith-time product.

3:00 – 3:30 pm Coffee Break

Keynote 2: Media Content Semantics - Transmitting Meaning Session Chair: Thrasyvoulos Pappas, Northwestern University (United States)
3:30 – 4:20 pm
Regency Ballroom B

HVEI-117 Movies and meaning: From low-level features to mind reading (Invited), Sergio Benini, University of Brescia (Italy)

Sergio Benini received his MSc in electronic engineering (cum laude) at the University of Brescia (2000) with a thesis granted by Italian Academy of Science. Between '01 and '03 he was with Siemens Mobile Communications R&D. He received his PhD in information engineering from the University of Brescia (2006), working on video content analysis. During his PhD he spent one year in British Telecom Research, United Kingdom, working in the "Content & Coding Lab." Since 2005 he has been an Assistant Professor at the University of Brescia. In 2012, he cofounded Yonder, a spin-off company specialized in NLP, Machine Learning, and Cognitive Computing.

High Level Vision

Session Chair: Bernice Rogowitz, Visual Perspectives (United States) **4:20 – 4:40 pm** Regency Ballroom B

4.20

HVEI-119

HVE

On the role of color in visual saliency, Sergio Etchebehere¹ and Elena Fedorovskaya²; ¹University Jean Monnet Saint-Etienne (France) and ²Rochester Institute of Technology (United States)

DISCUSSION: From Low-Level Descriptors to Visual Semantics

4:40 – 5:40 pm Regency Ballroom B

Every afternoon at HVEI, authors from the day's papers gather to participate in a dynamic discussion with the audience, moderated by the conference and session chairs. Since the papers and the participants represent diverse disciplines, these interactive sessions are exciting and provocative.

Symposium Welcome Reception 5:00 - 6:00 pm Atrium

Human Vision and Electronic Imaging 2017 Banquet

Hosts: Bernice Rogowitz, Visual Perspectives (United States), Thrasyvoulos Pappas, Northwestern University (United States), and Huib de Ridder, Delft University of Technology (the Netherlands)

7:15 – 10:00 pm Sandpebble C,D

Deep learning for gestalt and gestalt for deep learning (Invited), Stella Yu, University of California, Berkeley (United States)

Please join us for an exciting banquet presentation and the opportunity to interact with fellow colleagues and speakers, in an informal atmosphere. You can sign up for the Banquet now, when you register.

Tuesday, January 31, 2017

Human Vision and Stereoscopic Imaging JOINT SESSION

Session Chairs: Nicolas Holliman, University of Newcastle (United Kingdom), and Thrasyvoulos Pappas, Northwestern University (United States)

8:50 – 10:10 am

Grand Peninsula Ballroom D

This session is jointly sponsored by: Stereoscopic Displays and Applications XXVIII and Human Vision and Electronic Imaging 2017.

8:50

HVEI-378

Depth-compressed expression for providing natural, visual experiences with integral 3D displays, Yasuhito Sawahata and Toshiya Morita, Japan Broadcasting Corporation (Japan)

9:10

HVEI-379

Blind quality prediction of stereoscopic 3D images, Jiheng Wang¹, Qingbo Wu², Abdul Rehman¹, Shiqi Wang¹, and Zhou Wang¹; ¹University of Waterloo (Canada) and ²University of Electronic Science and Technology of China (China)

9:30

Pseudo-haptic by stereoscopic images and effects on muscular activity, Takashi Kawai¹, Fumiya Ohta¹, Sanghyun Kim¹, and Hiroyuki Morikawa^{1,2}; ¹Waseda University and ²Aoyama Gakuin University (Japan)

9:50

SD&A-381

SD&A-380

The effects of proximity cues on visual comfort when viewing stereoscopic contents (JIST-first), Yaohua Xie¹, Danli Wang², and Heng Qiao³; ¹Chinese Academy of Sciences, ²Institute of Software, Chinese Academy of Sciences, and ³Central University of Finance and Economics (China)

10:00 am – 7:30 pm Industry Exhibition

10:10 – 10:40 am Coffee Break

Emerging Issues in Perceptual Image Quality

Session Chair: Huib de Ridder, Delft University of Technology (the Netherlands)

10:40 am - 12:40 pm

Regency Ballroom B

11.20

11:40

10:40 HVEI-120 Interactions between saliency and utility, Edward Scott and Sheila Hemami, Northeastern University (United States)

11:00 HVEF121 Perceptual evaluation of psychovisual rate-distortion enhancement in video coding, Zhengfang Duanmu, Kai Zeng, Zhou Wang, and Mahzar

Eisapour, University of Waterloo (Canada)

HVEI-122

HVFI-123

Balancing Type I errors and statistical power in video quality

assessment, Kjell Brunnstrom^{1,2} and Marcus Barkowsky³; ¹Acreo Swedish ICT AB (Sweden), ²Mid Sweden University (Sweden), and ³University of Nantes (France)

On the perceptual factors underlying the quality of post-compression enhancement of textures, Yusizwan Yaacob, Yi Zhang, and Damon Chandler, Shizuoka University [Japan]

12:00 HVEI-124 **Do gaze disruptions indicate the perceived quality of non-uniformly coded natural scenes?,** Yashas Rai and Patrick Le Callet, University of Nantes (France)

12:20 HVEI-125 **Subjective evaluation of distortions in first-person videos,** Chen Bai and Amy Reibman, Purdue University (United States)

12:40 – 2:00 pm Lunch Break

El 2017 Tuesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States)

2:00 – 3:00 pm Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as next-generation computational near-eye displays evolve to deliver visual experiences that are better than the real world.

3:00 – 3:30 pm Coffee Break

SPECIAL SESSION AND PANEL: Visually Lossless Video Quality for Modern Devices: Research and Industry Perspectives

Panel Moderator: Kjell Brunnstrom, Acreo Swedish ICT AB (Sweden) Panelists: Damon Chandler, Shizuoka University (Japan); Phil Corriveau, Intel Corporation (United States); Scott Daly, Dolby Laboratories (United States); Edward Delp, Purdue University (United States); and James Goel, Qualcomm Inc. (Canada)

3:30 - 4:20 pm

Regency Ballroom B

3.30

HVEI-126

Image and video compression for mobile: Is my screen small enough? (Invited), Edward Delp, Purdue University (United States)

3:40

Business perspectives on perceptually lossless and lossy quality (Invited), Scott Daly, Dolby Laboratories (United States)

3.50

HVEI-128

HVFI-129

HVEI-130

HVFI-127

Usage perspectives on perceptually lossless and lossy quality and assessment (Invited), Philip Corriveau¹, Juliana Knopf¹, Hannah Colett¹, and Shun-nan Yang²; ¹Intel Corporation and ²Pacific University (United States)

4.00

Subjective assessment and the criteria for visually lossless compression (Invited), Laurie Wilcox¹, Robert Allison¹, and James Goel²; ¹York University and ²Qualcomm Inc. (Canada)

4:10 Masked detection of compression artifacts on laboratory, consumer, and mobile displays (Invited), Yi Zhang, Yusizwan Yaacob, and

Damon Chandler, Shizuoka University (Japan)

Moderated Discussion: Visually Lossless Video Quality for Modern **Devices: Research and Industry Perspectives**

Panel Moderator: Kjell Brunnstrom, Acreo Swedish ICT AB (Sweden) Panelists: Damon Chandler, Shizuoka University (Japan); Phil Corriveau, Intel Corporation (United States); Scott Daly, Dolby Laboratories (United States); Edward Delp, Purdue University (United States); and James Goel, Qualcomm Inc. (Canada)

4:20 - 5:20 pm

Regency Ballroom B

The issues raised during this panel discussion, and a review of the resulting discussion, will be summarized in a proceedings manuscript, authored by all the contributing panelists:

4:20

HVEI-131

Industry and business perspectives on the distinctions between visually lossless and lossy video quality: Mobile and large format displays (Invited), Kjell Brunnstrom^{1,2}, Scott Daly³, Damon Chandler⁴, Phil Corriveau⁵, Yi Zhang⁴, Yusizwan Yaacob⁴, Laurie Wilcox⁶, Robert Allison⁶, James Goel⁷, Edward Delp⁸, and Shun-nan Yang⁹; ¹Acreo Swedish ICT AB (Sweden), ²Mid Sweden University (Sweden), ³Dolby Laboratories (United States), ⁴Shizuoka University (Japan), ⁵Intel Corporation (United States), ⁶York University (Canada), ⁷Qualcomm (Canada), ⁸Purdue University (United States), and ⁹Pacific University (United States)

DISCUSSION: Perceptual, Cognitive, and Affective Issues in Image Representation, Compression, and Measurement

5:20 - 6:00 pm

Regency Ballroom B

In this session, authors from the day's papers will gather to participate in a dynamic discussion with the audience, moderated by the conference and session chairs. Since the papers and the participants represent diverse disciplines, interactive session promised to be exciting and provocative.

Symposium Demonstration Session

5:30 - 7:30 pm

Wednesday, February 1, 2017

Computational Models of Human Color, Stereo, and High Dynamic Range

8:50 - 10:10 am

Regency Ballroom B

8:50	HVEI-132
Orientation-ocularity maps: A technique for computer vision, A	lfredo
Restrepo, Universidad de los Andes (Colombia)	

9:10 HVFI-133 Evaluation of color prediction methods in terms of least dissimilar asymmetric matching, Emitis Roshan and Brian Funt, Simon Fraser

University (Canada)

HVFI-134

Characterization of spatiotemporal fluctuation in absorbed light energy by an array of interleaved photosensitive elements, Shahram Peyvandi¹, Vebjorn Ekroll², and Alan Gilchrist¹; ¹Rutgers, The State University of New Jersey (United States) and ²University of Leuven (KU Leuven) (Belgium)

9.50

9:30

HVFI-135

Robust dynamic range computation for high dynamic range content, Vedad Hulusic¹, Giuseppe Valenzise¹, Kurt Debattista², and Frederic Dufaux¹; ¹Télécom ParisTech, Université Paris-Saclay (France) and ²University of Warwick (United Kingdom)

> 10:00 am - 4:00 pm Industry Exhibition 10:10 - 10:30 am Coffee Break

Special Session: Computational Modeling Inspired by Human Vision Session Chair: Christopher Tyler, Smith-Kettlewell Eye Research Institute (United States)

10:30 am – 12:30 pm Regency Ballroom B

(egency ballie

10:30

HVEI-136

GPU-accelerated vision modeling with the HPE cognitive computing toolkit (Invited), Benjamin Chandler, Hewlett Packard Enterprise (United States)

11:00

HVEI-137

A neurally-inspired algorithm for detecting ordinal depth from motion signals in video streams (Invited), Gennady Livitz, Harald Ruda, and Ennio Mingolla, Northeastern University (United States)

11:30

HVEI-138

Computational estimation of scene structure through texture gradient cues (Invited), Christopher Tyler^{1,2} and Ajay Gopi³; ¹Smith-Kettlewell Eye Research Institute (United States), ²City University of London (United Kingdom), and ³University of California, Berkeley (United States)

12:00

HVEI-139

Learning visual representations for active perception (Invited), Bruno Olshausen, Brian Cheung, and Eric Weiss, University of California, Berkeley (United States)

12:30 – 2:00 pm 🛛 Lunch Break

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) **2:00 – 3:00 pm**

Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

3:00 – 3:30 pm Coffee Break

Image Statistics and Perceptual Features

Session Chairs: Bernice Rogowitz, Visual Perspectives (United States), and Huib de Ridder, Delft University of Technology (the Netherlands)

3:30 – 4:50 pm

Regency Ballroom B

3:30

HVEI-140

Simulation of the biological information available for relative position acuity, Haomiao Jiang¹, Nicolas Cottaris², James Golden¹, David Brainard², Joyce Farrell¹, and Brian Wandell¹; ¹Stanford University and ²University of Pennsylvania (United States)

3:50

Can 'crispening' be explained by contrast gain?, David Kane and Marcelo Bertalmio, Universitat Pompeu Fabra (Spain)

4:10

4.30

Defining self-similarity of images using features learned by

convolutional neural networks, Anselm Brachmann and Christoph Redies, Jena University Hospital (Germany)

HVEI-143

HVEI-141

HVFI-142

Determining the influence of image-based cues on human skin gloss

perception, Jing Wang¹, Jim Mayne², Carla Kuesten², Gopa Majmudar², and Thrasyvoulos Pappas¹; ¹Northwestern University and ²Amway Corporation (United States)

Digital Humanities: Humans and/vs. Machines

Session Chair: Thrasyvoulos Pappas, Northwestern University (United States)

4:50 – 5:30 pm

Regency Ballroom B

HVEI-144

HVFI-14.5

Writer identification in modern and historical documents via binary pixel patterns, Kolmogorov-Smirnov test and Fisher's method (JIST-first), Arie Shaus and Eli Turkel, Tel Aviv University (Israel)

5:10

4.50

CNN-based transfer learning for historical Chinese seal character recognition based on artificial random samples, Hong Shang, Wei Fan, Jun Sun, and Satoshi Naoi, Fujitsu Research & Development Center (China)

DISCUSSION: Computational Modeling, Perceptual Features, and Digital Humanities

5:30 – 6:20 pm Regency Ballroom B

In this session, authors from the day's papers will gather to participate in a dynamic discussion with the audience, moderated by the conference and session chairs. Since the papers and the participants represent diverse disciplines, interactive session promised to be exciting and provocative.

Symposium Interactive Papers (Poster) Session 5:30 - 7:00 pm

Thursday, February 2, 2017

Measuring Fatigue and Discomfort

Session Chair: Huib de Ridder, Delft University of Technology (the Netherlands)

8:50 – 9:30 am

Regency Ballroom B

8:50

HVEI-146

Comparison of visual discomfort and visual fatigue between HMD and smartphone, Hyeon-Jeong Suk¹, Jungmin Han¹, and Seon Hee Bae²; ¹Korea Advanced Institute of Science and Technology and ²Hansol Eye Clinic (Republic of Korea)

9:10

HVEI-147

Measuring visually induced motion sickness using wearable devices, Ran Liu^{1,2}, Eli Peli¹, and Alex Hwang¹; ¹Harvard University (United States) and ²Chongging University (China)

Attention, Individual Differences, and Emotion

Session Chair: Bernice Rogowitz, Visual Perspectives (United States)

9:30 - 10:30 am

Regency Ballroom B

9:30

HVEI-148

Developmental changes in ambient and focal visual processing strategies, Onkar Krishna¹, Toshihiko Yamasaki¹, Kiyoharu Aizawa¹, Andrea Helo², and Pia Rama²; ¹The University of Tokyo (Japan) and

²Université Paris Descartes (France)

9:50

HVFI-149

Gaze-contingent center-surround fusion of infrared images to facilitate visual search for human targets (JIST-first), Mackenzie Glaholt and Grace Sim, Defence Research and Development Canada (Canada)

10:10

HVEI-150

Evaluation and prediction of evoked emotions induced by image manipulations, Lin Yuan and Touradj Ebrahimi, EPFL (Switzerland)

> Coffee Break 10:30 - 11:00 am

Special Session: Art and Aesthetics, Part I: Measuring Artistic and **Aesthetic Judgments**

Session Chairs: Claus-Christian Carbon, University of Bamberg (Germany), Elena Fedorovskaya, Rochester Institute of Technology (United States), and Monica Lopez-Gonzalez, La Petite Noiseuse Productions (United States)

11:00 am - 12:30 pm

Regency Ballroom B

11:00

HVFI-1.51

Measurement problems and measurement strategies for capturing the rich experience of art (Invited), Claus-Christian Carbon^{1,2}; ¹University of Bamberg and ²EPAEG (Germany)

11.30

HVFI-1.52

HVFI-1.53

The gist of beauty: An investigation of aesthetic perception in rapidly presented images (Invited), Caitlin Mullin^{1,2}, Gregor Hayn-Leichsenring³, Christoph Redies³, and Johan Wagemans²; ¹Massachusetts Institute of Technology (United States), ²University of Leuven (Belgium), and ³University of Jena (Germany)

12:00

Gaze patterns in art viewing and their dependency on expertise and image characteristics (Invited), Elena Fedorovskava, Sanjana Kapisthalam, and Yingtong Bu, Rochester Institute of Technology (United States)

> 12:30 - 2:00 pm Lunch Break

Special Session: Art and Aesthetics, Part II: Producing Art from the Artists' and Scientists' Perspectives

Session Chairs: Claus-Christian Carbon, University of Bamberg (Germany), Elena Fedorovskaya, Rochester Institute of Technology (United States), and Monica Lopez-Gonzalez, La Petite Noiseuse Productions (United States)

2:00 - 3:30 pm Regency Ballroom B

2:00

2:30

Imaging human vision: An artistic perspective (Invited), Robert

Pepperell, Cardiff Metropolitan University (United Kingdom)

Art training matters: Enhancement of spatial cognition and brain connectivity (Invited), Lora Likova, Laura Cacciamani, and Spero Nicholas, Smith-Kettlewell Eye Research Instituite (United States)

3.00

Trading conversations between science and art: When musical

HVEI-154

HVEI-155

HVEI-156

improvisation enters the dialogue on stage (Invited), Monica Lopez-Gonzalez, La Petite Noiseuse Productions (United States)

Meet the Future: A Showcase of Student and Young Professionals Research 3:00 - 5:00 pm Atrium

> 3:20 - 4:00 pm Coffee Break

DISCUSSION: Embracing the Complexity of Human Experience

3:30 - 4:30 pm Regency Ballroom B

In this session, authors from the day's papers will gather to participate in a dynamic discussion with the audience, moderated by the conference and session chairs. Since the papers and the participants represent diverse disciplines, interactive session promised to be exciting and provocative.

Museum Visit: San Francisco Museum of Modern Art

5:30 - 7:30 pm Offsite

The San Francisco Museum of Modern Art is open again, after a significant multi-year renovation. To celebrate, we will be organizing a Museum Visit and informal dinner party for Friends of HVEI. Members of the HVEI community will provide perceptual and cognitive insights into pieces in the Museum Collection. Everyone is responsible for his or her own transportation, museum entrance fees and dinner. Anyone interested can meet in the Hotel Lobby at 5:00 to arrange shared cab rides or Ubers. The tour begins at 5:30 at the ticket booth in the museum lobby.

Friends of HVEI Casual Dinner

7:30 - 9:30 pm Offsite

This casual dinner follows immediately after the museum visit.

Image Processing: Algorithms and Systems XV

Conference overview

Image Processing: Algorithms and Systems continues the tradition of the past conference Nonlinear Image Processing and Pattern Analysis in exploring new image processing algorithms. It also reverberates the growing call for integration of the theoretical research on image processing algorithms with the more applied research on image processing systems.

Specifically, the conference aims at highlighting the importance of the interaction between linear, nonlinear, and transform-based approaches for creating sophisticated algorithms and building modern imaging systems for new and emerging applications.

Award Best Paper

Conference Chairs: Sos S. Agaian, The Univ. of Texas at San Antonio (United States); Karen O. Egiazarian, Tampere Univ. of Technology (Finland); and Atanas P. Gotchev, Tampere Univ. of Technology (Finland)

Program Committee: Gözde Bozdagi Akar, Middle East Technical Univ. (Turkey); Junior Barrera, Univ. de São Paulo (Brazil); Jenny Benois-Pineau, Bordeaux Univ. (France); Giacomo Boracchi, Politecnico di Milano (Italy); Reiner Creutzburg, Fachhochschule Brandenburg (Germany); Alessandro Foi, Tampere Univ. of Technology (Finland); Paul D. Gader, Univ. of Florida (United States); John C. Handley, Xerox Corp. (United States); Vladimir V. Lukin, National Aerospace Univ. (Ukraine); Vladimir Marchuk, Don State Technical Univ. (Russian Federation); Stephen Marshall, Univ. of Strathclyde (United Kingdom); Alessandro Neri, Radiolabs (Italy); Marek R. Ogiela, AGH Univ. of Science and Technology (Poland); Ljiljana Platisa, Univ. Gent (Belgium); Françoise Prêteux, Mines ParisTech (France); Giovanni Ramponi, Univ. degli Studi di Trieste (Italy); Ivan W. Selesnick, Polytechnic Institute of New York Univ. (United States); and Damir Sersic, Univ. of Zagreb (Croatia)

Image Processing: Algorithms and Systems XV

Tuesday, January 31, 2017

Transform-domain Image Processing

Session Chair: Karen Egiazarian, Tampere University of Technology (Finland)

8:50 - 10:10 am

Cypress B

8:50

IPAS-197

IPAS-198

IPA S-199

Compressed sensing MRI using curvelet sparsity and nonlocal total variation, Ali Pour Yazdanpanah, University of Nevada (United States)

9.10

Brand detection framework in LG wavelet domain, Federica Mangiatordi, Andrea Bernardini, Emiliano Pallotti, and Licia Capodiferro, Fondazione Ugo Bordoni (Italy)

9.30

Texture representations in different basis functions for image synthesis

using system criteria analysis, Viacheslav Voronin¹, Vladimir Ryzhov², Vladimir Marchuk¹, and Karen Egiazarian³; ¹Don State Technical University (Russian Federation), ²Southern Federal University (Russian Federation), and ³Tampere University of Technology (Finland)

9:50

IPAS-200 2-D octonion discrete fourier transform: Fast algorithms, Artyom Grigoryan and Sos Agaian, University of Texas at San Antonio (United States)

10:00 AM – 7:30 pm	Industry Exhibition
10:10 – 10:50 am	Coffee Break

Image Processing Algorithms

Session Chair: Karen Egiazarian, Tampere University of Technology (Finland)

10:50 am - 12:10 pm Cypress B

10:50

IPAS-201

Artifact suppression in compressed images using residual-based deep convolutional network, Woo Hyun Nam, Kiheum Cho, Il Jun Ahn, Yongsup Park, and Tammy Lee, Samsung Electronics Co. Ltd. (Republic of Korea)

11:10 IPAS-202 Full-reference metrics multidistortional analysis, Oleg leremeiev¹, Vladimir Lukin¹, Nikolay Ponomarenko¹, and Karen Egiazarian²; ¹National Aerospace University (Ukraine) and ²Tampere University of Technology (Finland)

11:30

IPAS-203 ICA-based background subtraction method for an FPGA-SoC, Fernando Carrizosa-Corral, Alberto Vázquez-Cervantes, Josué Montes Martínez, Teresa Hernández-Díaz, Jorge Soto-Cajiga, and Hugo Jimenez; Centro de Ingeniería y Desarrollo Industrial (Mexico)

11:50

IPAS-204

A robust line segmentation for Arabic printed text with diacritics,

Khader Mohammad, Birzeit University (Palestine) 12:10 - 2:00 pm Lunch Break

El 2017 Tuesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as next-generation computational near-eye displays evolve to deliver visual experiences that are better than the real world.

3:00 - 3:30 pm Coffee Break

Image Interpolation, Restoration, and Denoising Joint Session

Session Chairs: Karen Egiazarian, Tampere University of Technology (Finland), and Radka Tezaur, Intel Corporation (United States)

3:30 - 5:30 pm

Grand Peninsula Ballroom A

This session is jointly sponsored by: Digital Photography and Mobile Imaging XIII and Image Processing: Algorithms and Systems XV.

DPMI-083

IPAS-085

IPAS-086

BM3D-HVS: Content-adaptive denoising for improved visual quality (Invited), Karen Egiazarian^{1,2}, Aram Danielyan², Nikolay Ponomarenko^{1,2}, Alessandro Foi^{1,2}, Oleg leremeiev³, and Vladimir Lukin³; ¹Tampere University of Technology (Finland), ²Noiseless Imaging Oy (Finland), and ³National Aerospace University (Ukraine)

3:50

3:30

IPAS-084 Refining raw pixel values using a value error model to drive texture synthesis, Henry Dietz, University of Kentucky (United States)

4.10

Color interpolation based on colorization for RGB-white color filter array, Paul Oh¹, Sukho Lee², and Moon Gi Kang¹; ¹Yonsei University and ²Dongseo University (Republic of Korea)

4:30

4.50

Video frame synthesizing method for HDR video capturing system with four image sensors, Takayuki Yamashita^{1,2} and Yoshihiro Fujita¹; ¹Ehime University and ²NHK (Japan)

DPAAL-088

Robust defect pixel detection and correction for Bayer Imaging Systems, Noha El-Yamany, Intel Corporation (Finland)

Symposium Demonstration Session 5:30 - 7:30 pm Grand Peninsula Ballroom E

Wednesday, February 1, 2017

Image Processing Applications

Session Chair: Sos Agaian, University of Texas at San Antonio (United States)

8:50 - 10:10 am

Cypress B

IPAS-205

Water region extraction in thermal and RGB sequences using spatiotemporally-oriented energy features, Amir Ghahremani, Egor Bondarev, and Peter De With, Eindhoven University of Technology (the Netherlands)

9.10

8:50

IPAS-206

Cloud and shadow detection using sequential characteristics on multispectral satellite images, Herman Groot¹, Arjen Oostdijk², Mark van Persie², and Peter De With¹; ¹Eindhoven University of Technology and ²Netherlands Aerospace Centre (the Netherlands)

9.30 IPAS-207 Thermal facial signatures for state assessment during deception, Nilesh Powar¹, Tamera Schneider², Julie Skipper², Douglas Petkie², Vijayan Asari¹, Rebecca Riffle², Matthew Sherwood², and Carl Cross²; ¹University of Dayton and ²Wright State University (United States)

9.50 IPAS-208 Face spoofing detection based on local binary descriptors, Yao-Hong Tsai, Hsuan Chung University (Taiwan)

> 10:00 am - 4:00 pm Industry Exhibition Coffee Break 10:10 - 10:50 am

3D Sensing and Processing

Session Chair: Atanas Gotchev, Tampere University of Technology (Finland)

10:50 - 11:50 am

Cypress B

10.50

IPAS-209

Real-time estimation of the 3D transformation between images with large viewpoint differences in cluttered environments, Dennis van de Wouw^{1,2}, Martin Pieck¹, Gijs Dubbelman¹, and Peter De With¹; ¹Eindhoven University of Technology and ²Vinotion B.V. (the Netherlands)

11.10

IPAS-210

Camera-to-model back-raycasting for extraction of RGBD images from pointclouds, Hani Javan Hemmat¹, Egor Bondarev¹, and Peter De With²; ¹Eindhoven University of Technology and ²Fac EE, SPS-VCA, Eindhoven University of Technology (the Netherlands)

11:30

IPAS-212 Depth image object extraction approach based on improved fractal

dimension, Ting Cao and Weixing Wang, Chang`an Unviersity (China)

11:50 am - 2:00 pm Lunch Break

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

> Coffee Break 3:00 - 3:30 pm

Image Processing: Algorithms and Systems Interactive Papers Session

5:30 - 7:00 pm

The following works will be presented at the El 2017 Symposium Interactive Papers Session.

IPAS-213

Change detection from remote sensing images based on fractional integral and improved FCM, Fengping Wang and Weixing Wang, Chang'an University (China)

IPAS-214

Non-blind image deconvolution using a sampling without replacement, Jaeduk Han, Jonghyun Kim, and Moon Gi Kang, Yonsei University (Republic of Korea)

IPAS-21.5

Alpha-rooting method of gray-scale image enhancement in the

quaternion frequency domain, Artyom Grigoryan, John Aparna, and Sos Agaian, University of Texas at San Antonio (United States)

IPAS-217

What makes HDR the contents more realistic? Peak-luminance enhancement using the loading effect for OLED displays, Jihwan Woo and Seoyoung Lee, Samsung Electronics (Republic of Korea)

IPAS-211

Feature representation learning by rank ordered autoencoder for multi-camera person re-identification, Sergey Makov, Vladimir Frantc, Viacheslav Voronin, and Vladimir Marchuk, Don State Technical University (Russian Federation)

IPAS-087

Search the optimal border for combination of image pairs using neural networks, Evgeny Semenishchev, Don State Technical University (Russian Federation)

Image Quality and System Performance XIV

Conference overview

We live in a visual world. The perceived quality of images is of crucial importance in industrial, medical, and entertaining application environments. Developments in camera sensors, image processing, 3D imaging, display technology, and digital printing are enabling new or enhanced possibilities for creating and conveying visual content that informs or entertains. Wireless networks and mobile devices expand the ways to share imagery.

The power of imaging rests directly on the visual quality of the images and the systems that produce them. As the images are generally intended to be viewed by humans, consideration of the role of human visual perception is intrinsic to the effective assessment of image quality.

This conference brings together engineers and scientists from industry and academia who strive to understand what makes a high-quality image and how to assess the requirements and performance of modern imaging systems. It focuses on both objective and subjective methods for evaluating the perceptual quality of images and includes applications throughout the imaging chain from image capture, through processing, to output, printed or displayed, video or still, 2D or 3D, LDR or HDR.

Awards: Best Student Paper and Best Paper

Conference Sponsors

Conference Chairs: Robin Jenkin, ON Semiconductor Corp. (United States), and Elaine Jin, Google Inc. (United States)

Program Committee: Nicolas Bonnier, Apple Inc. (United States); Alan C. Bovik, Univ. of Texas at Austin (United States); Peter D. Burns, Burns Digital Imaging (United States); Luke C. Cui, Amazon (United States); Susan P. Farnand, Rochester Institute of Technology (United States); Robert D. Fiete, Exelis (United States); Frans Gaykema, Océ Technologies B.V. (the Netherlands); Jukka Häkkinen, Üniv. of Helsinki (Finland); Dirk W. Hertel, E Ink Corp. (United States); Sang Ho Kim, SAMSUNG Electronics Co., Ltd. (Republic of Korea); Mohamed-Chaker Larabi, Univ. of Poitiers (France); Toshiya Nakaguchi, Chiba Univ. Uapan); Göte S. Nyman, Univ. of Helsinki (Finland); Stuart W. Perry, University of Technology Sydney (Australia); Jonathan B. Phillips, Google Inc. (United States); Reza Safaee-Rad, Qualcomm Technologies Inc. (Canada); and Sophie Triantaphillidou, Univ. of Westminster (United Kingdom)

Monday, January 30, 2017

No Reference Quality Measurement

Session Chair: Robin Jenkin, ON Semiconductor (United States)

8:50 - 10:10 am

Harbour

8:50 IQSP-218 Blind image quality assessment using multiscale local binary patterns (JIST-first), Pedro Garcia Freitas, Welington Akamine, and Mylène Farias, University of Brasilia (Brazil)

9:10 IQSP-219 Dimension reduction-based attributes selection in no-reference learningbased image quality algorithms, Christophe Charrier¹, Abdelhakim Saadane², and Christine Fernandez Maloigne³; ¹Normandie University, ²Université de Nantes, and ³XLIM (France)

9:30

IQSP-220

GPGPU based implementation of a high performing No Reference (NR)- IQA algorithm, BLIINDS-II, Aman Yadav¹, Sohum Sohoni¹, and Damon Chandler²; ¹Arizona State University (United States) and ²Shizuoka University (Japan)

9.50

IQSP-221

No-reference image contrast assessment based on just-noticeabledifference, Minsub Kim, Ki Sun Song, and Moon Gi Kang, Yonsei University (Republic of Korea)

> 10:10 - 10:50 am Coffee Break

Keynote: Automated Video Quality Measurement and Application Session Chair: Elaine Jin, Google Inc. (United States) 10:50 - 11:30 am Harbour

10SP-222

How to use video quality metrics for something other than video compression, Anil Kokaram, Google/YouTube (United States)

Anil Kokaram is the Engineering Manager for the media algorithms team in YouTube. The team is responsible for developing video processing algorithms for quality improvement in various pipelines. Kokaram is also a Professor at Trinity College Dublin, Ireland and continues to supervise a small number of students at www.sigmedia. tv in the EE Dept there. His main expertise is in the broad areas of DSP for Video Processing, Bayesian Inference, and motion estimation. He has published more than 100 refereed papers in these areas. In 2007 he was awarded a Science and Engineering Academy Award for his work in video processing for post-production applications. He was founder of a company (GreenParrotPictures) producing video enhancement software that was acquired by Google in 2011. He is a former Associate Editor of the IEEE Transactions on CCts and Systems for Video Technology and IEEE Transactions on Image Processing.

Machine Learning and Implementation of Quality Metrics

Session Chair: Elaine Jin, Google Inc. (United States)

11:30 am - 12:30 pm Harbour

11:30 IQSP-223 MS-UNIQUE: Multi-model and sharpness-weighted unsupervised image

quality estimation, Mohit Prabhushankar, Dogancan Temel, and Ghassan AlRegib, Georgia Institute of Technology (United States)

11:50 IQSP-224 Microarchitectural analysis of a GPU implementation of the most apparent distortion image quality assessment algorithm, Vignesh

Kannan^{1,2}, Joshua Holloway¹, Sohum Sohoni¹, and Damon Chandler²; ¹Arizona State University (India) and ²Shizuoka University (Japan)

12.10

10SP-225

Image quality assessment by comparing CNN features between images (JIST-first), Seved Ali Amirshahi¹, Marius Pedersen², and Stella Yu¹; ¹University of California, Berkeley (United States) and ²Norwegian University of Science and Technology (Norway)

> 12:30 - 2:00 pm Lunch Break

El 2017 Opening Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

Giga-scale 3D computational microscopy, Laura Waller, University of California, Berkeley (United States)

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). Waller's talk is on computational imaging methods for fast capture of gigapixel-scale 3D intensity and phase images in a commercial microscope that employs illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is high-resolution reconstructions across a large field-of-view, achieving high space-bandwithtime product.

Novel Tools

Session Chair: Luke Cui, Amazon (United States)

3:30 - 4:50 pm

Harbour

3.30

10SP-226

Potential contrast - A new image quality measure, Arie Shaus, Shira Faigenbaum-Golovin, Barak Sober, Eli Turkel, and Eli Piasetzky, Tel Aviv University (Israel)

^{3:00 - 3:30} pm Coffee Break

3:50

IQSP-227

Observer calibrator for color vision research, Zhen Zhou, Anthony DoVale, Ben Grotton, Kevin Kruse, Alex Skinner, Susan Farnand, and Mark Fairchild, Rochester Institute of Technology (United States)

4.10 IQSP-228 Knowledge based taxonomic scheme for full reference objective image quality measurement models (JIST-first), Atidel Lahoulou¹, Chaker Larabi², Azeddine Beghdadi³, Emmanuel Viennet³, and Ahmed Bouridane⁴; ¹University of Jijel (Algeria), ²Université de Poitiers (France), ³Université Paris 13 (France), and ⁴Northumbria University (United Kingdom)

4:30 IQSP-229 A RGB-NIR data set for evaluating dehazing algorithms, Julia Lüthen¹, Julian Wörmann², Martin Kleinsteuber², and Johannes Steurer¹; ¹ARRI Cinetechnik and ²Technische University München (Germany)

Symposium Welcome Reception 5:00 - 6:00 pm

Tuesday, January 31, 2017

Keynote: Mobile Device Camera IQ Joint Session

Session Chairs: Susan Farnand, Rochester Institute of Technology, and Jackson Roland, Apple Inc. (United States) 8:50 - 9:20 am Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Quality and System Performance XIV and Digital Photography and Mobile Imaging XIII.

IQSP-249 Towards the development of the IEEE P1858 CPIQ standard - A validation study, Elaine Jin¹, Jonathan Phillips¹, Susan Farnand² Margaret Belska³, Vinh Tran³, Ed Chang¹, Yixuan Wang³, and Benjamin Tseng⁴; ¹Google Inc. (United States), ²Rochester Institute of Technology (United States), ³NVIDIA (United States), and ⁴Apkudo (Australia)

Elaine W. Jin holds a PhD in optical engineering from Zhejiang University in China, and a PhD in psychology from the University of Chicago. She has worked in the imaging industry for 151 years including employment at Polaroid Corporation, Eastman Kodak Company, Micron Technologies, Aptina Imaging, Marvell Semiconductors, and Intel Corporation. She currently is a staff image scientist at Google, working on developing cutting-edge consumer hardware products. Her primary research interests include imaging systems design and analysis, color imaging, and psychophysics. She has published 22 journal and conference papers, and authored 14 US patents / patent applications. She joined the CPIQ initiative (Camera Phone Image Quality) in 2006, and since then has made major contributions in the development of the softcopy quality ruler method, and the CPIQ metrics for visual noise, texture blur, spatial frequency responses, chroma level, and color uniformity. She currently leads the Color/Tone Subgroup of the IEEE CPIQ Standard Working Group.

Mobile Device Camera IQ Joint Session

Session Chairs: Susan Farnand, Rochester Institute of Technology, and Jackson Roland, Apple Inc. (United States)

9:20 - 10:20 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Quality and System Performance XIV and Digital Photography and Mobile Imaging XIII.

9:20

IQSP-250

A methodology for perceptual image quality assessment of smartphone cameras - Color quality, Susan Farnand, Rochester Institute of Technology (United States)

9:40

IQSP-2.51

Assessing the ability of simulated laboratory scenes to predict the image quality performance of HDR captures (and rendering) of exterior scenes using mobile phone cameras, Amelia Spooner¹, Ashley Solter¹, Fernando Voltolini de Azambuja¹, Nitin Sampat¹, Stephen Viggiano¹, Brian Rodricks², and Cheng Lu³; ¹Rochester Institute of Technology, ²SensorSpace, LLC, and ³Intel Corporation (United States)

DPMI-252 Cell phone rankings!, Dietmar Wueller, Image Engineering GmbH & Co. KG (Germany)

> 10:00 am - 7:30 pm Industry Exhibition 10:20 - 10:50 am Coffee Break

MTF Joint Session

Session Chairs: Peter Burns, Burns Digital Imaging, and Feng Li, GoPro Inc. (United States)

10:50 am - 12:30 pm

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Quality and System Performance XIV and Digital Photography and Mobile Imaging XIII.

10:50

IQSP-253

Characterization of entire imaging plane spatial frequency response, Victor Lenchenkov, Orit Skorka, Stan Micinski, and Radu Ispasoiu, ON Semiconductor (United States)

11:10

IQSP-254 Reverse-projection method for measuring camera MTF, Stan Birchfield, Microsoft Corporation (United States)

11:30 IQSP-255 Texture MTF from images of natural scenes, Riccardo Branca¹, Sophie Triantaphillidou¹, and Peter Burns²; ¹University of Westminster (United Kingdom) and ²Burns Digital Imaging (United States)

11:50 DPMI-256 Camera phone texture preservation measurements with modulation transfer function: An alternative approach for noise estimation of random texture chart images, Nitin Suresh^{1,2}, Joshua Pfefer¹, and

Quanzeng Wang¹; ¹U.S. Food and Drug Administration and ²University of Maryland (United States)

12:10

IQSP-257 The effects of misregistration on the dead leaves cross-correlation texture blur analysis, Ranga Burada¹, Robert Sumner¹, and Noah Kram²; ¹Imatest, LLC and ²Rochester Institute of Technology (United States)

> 12:30 - 2:00 pm Lunch Break

67

El 2017 Tuesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States)

2:00 – 3:00 pm

Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as nextgeneration computational near-eye displays evolve to deliver visual experiences that are better than the real world.

3:00 – 3:30 pm Coffee Break

Systems Measurements

Session Chair: Frans Gaykema, Océ Technologies (the Netherlands)

3:30 – 5:30 pm

Harbour

3:30

IQSP-230

Towards a quantitative evaluation of multi-imaging systems, Anna-Cecilia Vlachomitrou, DxO (France)

3:50

IQSP-231

Resolution enhancement through superimposition of projected images: An evaluation of the image quality, Svein Arne Hansen¹, Muhammad Nadeem Akram¹, Jon Yngve Hardeberg², and Oyvind Svensen³; ¹University College of Southeast Norway, ²Norwegian University of Science and Technology, and ³Barco (Norway)

4:10

Evaluation of major factors affecting spatial resolution of gamma-rays camera, Hongwei Xie, Institute of Nuclear Physics and Chemistry (China)

4:30

IQSP-233

IQSP-232

Development and image quality evaluation of 8K high dynamic range cameras with hybrid log-gamma, Ryohei Funatsu, Kazuya Kitamura, Toshio Yasue, Daiichi Koide, and Hiroshi Shimamoto, NHK (Japan Broadcasting Corporation) (Japan)

4:50 IQSP-234 **Detection of streaks caused by dust in the sheetfed scanners,** Daulet Kenzhebalin¹, Xing Liu¹, Ni Yan¹, Peter Bauer², and Jan Allebach¹; ¹Purdue

University and ²HP Inc. (United States) 5:10 Effect of dark current distribution on image quality, Orit Skorka, Pulla

Effect of dark current distribution on image quality, Ont Skorka, Pulla Reddy Ailuri, Leo Anzagira, and Radu Ispasoiu, ON Semiconductor (United States)

Symposium Demonstration Session 5:30 – 7:30 pm Grand Peninsula Ballroom E

Wednesday, February 1, 2017

Print Quality

Session Chair: Chaker Larabi, Université de Poitiers (France)

9:10 – 9:50 am Harbour

9:10

Feature ranking and selection used in a machine learning framework for predicting uniformity of printed pages, Minh Nguyen and Jan Allebach, Purdue University (United States)

9:30 IQSP-239 **Real-time print quality diagnostics,** Zuguang Xiao¹, Minh Nguyen^{1,2}, Eric Maggard³, Mark Shaw³, Jan Allebach¹, and Amy Reibman¹; ¹Purdue University, ²Duos Technologies, and ³HP Inc. (United States)

> 10:00 am - 4:00 pm Industry Exhibition 10:10 - 10:50 am Coffee Break

Display

Session Chair: Sophie Triantaphillidou, University of Westminster (United Kingdom)

10:50 am - 12:10 pm

Harbour

IQSP-240

10SP-238

UHD quality analyses at various viewing conditions, Chulhee Lee, Sangwook Baek, Sungwook Youn, Seongyoun Woo, and Jeongyeol Baek, Yonsei University (Republic of Korea)

11:10

IQSP-241

IQSP-242

105P-2/13

Image quality assessment for holographic display, Wontaek Seo, Hoon Song, Jungkwuen An, Juwon Seo, Geeyoung Sung, Yun-Tae Kim, Chil-Sung Choi, Sunil Kim, Hojung Kim, Yongkyu Kim, Young Kim, Yunhee Kim, Hong-Seok Lee, and Sungwoo Hwang, Samsung Advanced Institute of Technology (Republic of Korea)

11:30

Subjective viewer preference model for automatic HDR down conversion, Lucien Lenzen and Mike Christmann, Hochschule RheinMain (Germany)

11:50

A foveated just noticeable difference model for virtual reality, Yuqiao

Deng, Yingxue Zhang, Daiqin Yang, and Zhenzhong Chen, Wuhan University (China)

12:10 – 2:00 pm Lunch Break

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States)

2:00 - 3:00 pm

Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

3:00 - 3:30 pm Coffee Break

Camera 3A

Session Chair: Jonathan Phillips, Google Inc. (United States)

3:30 - 4:50 pm

Harbour

3:30

IQSP-244 A framework for auto-exposure subjective comparison, Seungseok Oh¹, Clayton Passmore^{1,2}, Bobby Gold¹, Taylor Skilling^{1,3}, Sean Pieper¹, Taek Kim¹, and Margaret Belska¹; ¹NVIDIA (United States), ²University of Waterloo (Canada), and ³Northeastern University (United States)

IQSP-245 Autofocus measurement for imaging devices, Pierre Robisson, DxO (France)

4:10 IQSP-246 Auto Focus Performance - What can we expect from today's cameras?, Uwe Artmann, Image Engineering GmbH & Co KG (Germany)

4.30

IQSP-247 Autofocus analysis: Latency and sharpness, Katrina Passarella, Brett Frymire, and Ed Chang, Google, Inc (United States)

Panel: Image Quality Discussion

Panel Moderators: Robin Jenkin, ON Semiconductor, and Elaine Jin, Google Inc. (United States) 4:50 - 5:30 pm

Harbour

Image Quality and System Performance XIV Interactive Papers Session

5:30 - 7:00 pm

Atrium

The following works will be presented at the EI 2017 Symposium Interactive Papers Session.

IQSP-248

Estimation and compensation of reconstructed image in digital

holographic display, Hyun-Eui Kim, Electonics and Telecommunications Research Institute (Republic of Korea)

IQSP-236

Solid-mottle method for measuring in laser-printers, Daegun Ko, Samsung Electronics (Republic of Korea)

Image Sensors and Imaging Systems 2017

Conference overview

Solid state optical sensors and solid state cameras have established themselves as the imaging systems of choice for many demanding professional applications such as scientific and industrial applications. The advantages of low-power, low-noise, high-resolution, high-geometric fidelity, broad spectral sensitivity, and extremely high quantum efficiency have led to a number of revolutionary uses.

This conference aims at being a place of exchanges and at giving the opportunity to a quick publication of new works in the areas of solid state detectors, solid state cameras, new optical concepts, and novel applications. To encourage young talent, a best student paper contest is organized.

Awards: Best Paper, Best Student Paper

Conference Sponsors

Program Committee: Morley M. Blouke,

Portland State Univ. (retired) (United States); Erik Bodegom, Portland State Univ. (United States); Nick Bulitka, Lumenaera Corp. (Canada); Calvin Chao, Taiwan Semiconductor Manufacturing Company (Taiwan); Glenn H. Chapman, Simon Fraser Univ. (Canada); James A. DiBella, Imperx (United States); Antoine Dupret, Commissariat à l'Énergie Atomique (France); Boyd A. Fowler, OminVision Technologies, Inc. (United States); Bumsuk Kim, Samsung Electronics Co., Ltd (Republic of Korea); Rihito Kuroda, Tohoku Univ. (Japan); Kevin J. Matherson, Microsoft Corp. (United States); Arnaud Peizerat, Commissariat à l'Énergie Atomique (France); Clemenz Portmann, Google Inc. (United States); Alice L. Reinheimer, e2v (United States); Gilles Sicard, Commissariat a l'Energie Atomique (France); Nobukazu Teranishi, Univ. of Hyogo (Japan); Jean-Michel Tualle, Univ. Paris 13 (France); Orly Yadid-Pecht, Univ. of Calgary (Canada); and Xinyang Wang, GPIXEL (China)

Image Sensors and Imaging Systems 2017

Wednesday, February 1, 2017

Keynote: History and Standards for Automotive Vision Systems Performance Joint Session

Session Chairs: Kevin Matherson, Microsoft Corporation (United States), and Dietmar Wueller, Image Engineering GmbH & Co. KG (Germany)

8:50 – 9:30 am Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

Conference Chair Opening Remarks

IMSE-077

Bayer pattern and image quality, Jörg Kunze, Basler AG (Germany)

Jörg Kunze has received his PhD in physics from the University of Hamburg (2004). He joined Basler in 1998, where he started as an electronics developer and where he currently is the team leader of New Technology. Kunze serves as an expert for image sensors, camera hardware, noise, color fidelity, 3D- and computational imaging and develops new algorithms for color image signal processing. The majority of the Basler patents name him as inventor.

Input Signal Quality & Characterization Joint Session

Session Chairs: Kevin Matherson, Microsoft Corporation (United States), and Dietmar Wueller, Image Engineering GmbH & Co. KG (Germany)

9:30 - 10:10 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

9:30

Accurate joint geometric camera calibration of visible and far-infrared

cameras, Takashi Shibata^{1,2}, Masayuki Tanaka¹, and Masatoshi Okutomi¹; ¹Tokyo Institute of Technology and ²NEC Corporation (Japan)

9:50

Interferometric measurement of sensor MTF and crosstalk, Todor Georgiev, Jennifer Gille, Amber Sun, Lyubomir Baev, and Tharun Battula, Qualcomm Technologies, Inc. (United States)

10:00 am - 4:00 pm Industry Exhibition

Keynote: Machine Vision Retina Improvement Joint Session

Session Chairs: Thomas Vogelsang, Rambus Inc., and Ralf Widenhorn, Portland State University (United States) **10:50 – 11:30 am**

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

DPMI-080

Silicon retina technology (Invited), Tobi Delbruck, Institute for Neuroinformatics (INI) (Switzerland)

Tobi Delbruck (IEEE M'99-SM'06-F'13) received a PhD from Caltech (1993). He is currently a professor of physics and electrical engineering at ETH Zurich in the Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland, where he has been since 1998. His group, which he coordinates together with Shih-Chii Liu, focuses on neuromorphic event-based sensors and sensory processing. He has coorganized the Telluride Neuromorphic Cognition Engineering summer workshop and the live demonstration sessions at ISCAS and NIPS. Delbruck is past Chair of the IEEE CAS Sensory Systems Technical Committee. He worked on electronic imaging at Arithmos, Synaptics, National Semiconductor, and Foveon and has founded 3 spin-off companies, including inilabs.com, a non-for-profit organization that has distributed hundreds of R&D prototype neuromorphic sensors to more than a hundred organizations around the world. He has been awarded 9 IEEE awards.

Emerging Imaging Sensor & Hardware Joint Session

Session Chairs: Thomas Vogelsang, Rambus Inc., and Ralf Widenhorn, Portland State University (United States)

11:30 - 11:50 am

Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

11:30

IMSE-078

DPMI-079

DPMI-081

TIK: A time domain continuous imaging testbed using conventional still images and video, Henry Dietz, John Fike, Paul Eberhart, Katie Long, Clark Demaree, and Jong Wu, University of Kentucky (United States)

Keynote: Comparing CMOS Image Sensor Architectures Joint Session

Session Chairs: Thomas Vogelsang, Rambus Inc., and Ralf Widenhorn, Portland State University (United States)

11:50 am – 12:40 pm Grand Peninsula Ballroom A

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Digital Photography and Mobile Imaging XIII.

IMSE-082

CMOS image sensor pixel design and optimization, Boyd Fowler, OmniVision Technologies (United States)

Boyd Fowler's research interests include CMOS image sensors, low noise image sensors, noise analysis, data compression, and machine learning and vision. He received his MSEE (1990) and PhD (1995) from Stanford University. After finishing his PhD he stayed at Stanford University as a research associate in the Electrical Engineering Information Systems Laboratory until 1998. In 1998, Fowler founded Pixel Devices International in Sunnyvale California. Between 2005 and 2013, Fowler was CTO and VP of Technology at Fairchild Imaging. He is currently at OmniVision Technologies leading the marketing department. Fowler has authored numerous technical papers, book chapters and patents.

Image Sensors and Imaging Systems 2017 Awards

12:40 – 2:00 pm 🛛 Lunch Break

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 – 3:00 pm

Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

3:00 – 3:30 pm Coffee Break

High Performance Imaging

Session Chairs: Rihito Kuroda, Tohoku University (Japan), and Alice Reinheimer, e2v (United States)

3:30 – 5:00 pm

3.30

Grand Peninsula Ballroom A

IMSE-178

High sensitivity and high readout speed electron beam detector using steep pn Junction Si diode for low acceleration voltage, Yasumasa Koda, Rihito Kuroda, Masaya Hara, Hiroyuki Tsunoda, and Shigetoshi Sugawa, Tohoku University (Japan)

3:50 IMSE-179 **A full-resolution 8K single-chip portable camera system,** Tomohiro Nakamura, Takahiro Yamasaki, Ryohei Funatsu, and Hiroshi Shimamoto, NHK Science and Technology Research Laboratories (Japan)

4:10 IMSE-180 Filter selection for multispectral imaging optimizing spectral, colorimetric and image quality, Yixuan Wang, Rochester Institute of Technology (United States)

4:30 IMSE-181 **The challenge of shot-noise limited speckle patterns statistical analysis,** Jean-Michel Tualle, Kinia Barjean, Eric Tinet, and Dominique Ettori,

University Paris 13 (France)

4:50 IMSE-182 Overview of machine vision standards, Arnaud Darmont, APHESA SPRL (Belgium)

Image Sensors and Imaging Systems 2017 Interactive Papers Oral Previews

Session Chairs: Arnaud Darmont, APHESA SPRL (Belgium), and Ralf Widenhorn, Portland State University (United States)

5:00 – 5:30 pm

Grand Peninsula Ballroom A

In this session interactive poster authors will each provide a brief oral preview of their poster presentation, which will be presented fully in the Image Sensors and Imaging Systems 2017 portion of the Symposium Interactive Papers Session at 5:30 pm on Wednesday.

5:00

Session Chair Remarks

5:10

IMSE-183

IMSE-184

Hot pixel rate behavior as pixel sizes go to 1 micron, Glenn Chapman¹, Rahul Thomas¹, Israel Koren², and Zahava Koren²; ¹Simon Fraser University (Canada) and ²University of Massachusetts Amherst (United States)

. .

Performance evaluation of the thick pinhole gamma rays diagnostic system, Hongwei Xie, Institute of Nuclear Physics and Chemistry (China)

Symposium Interactive Papers (Poster) Session 5:30 – 7:30 pm Atrium

Thursday, February 2, 2017

Sensor Design and Technology

Session Chairs: Arnaud Peizerat, CEA, and Jean-Michel Tualle, University Paris 13 (France)

8:50 - 9:50 am

Harbour

8:50

IMSE-185

Octagonal CMOS image sensor for endoscopic applications, Elena Reis, Alice Andrade, Martin Wäny, Pedro Santos, Ricardo M. Sousa, and Natércia Sousa, Awaiba, Ida (Portugal)

9.10

IMSE-186

IMSE-187

Optimization of CMOS image sensor utilizing variable temporal multisampling partial transfer technique to achieve full-frame high dynamic range with superior low light and stop motion capability, Salman Kabir, Craig Smith, Gerrit Barnard, Alex Schneider, Frank Armstrong, Michael Guidash, Thomas Vogelsang, and Jay Endsley, Rambus Inc. [United States]

9.30

A lateral electric field charge modulator with bipolar-gates for timeresolved imaging, Yuki Morikawa, Keita Yasutomi, Shoma Imanishi, Taishi Takasawa, Keiichiro Kagawa, Nobukazu Teranishi, and Shoji Kawahito, Shizuoka University (Japan)

Keynote: Sensor design and technology

Session Chairs: Arnaud Peizerat, CEA, and Jean-Michel Tualle, University Paris 13 (France) 9:50 - 10:20 am Harbour

IMSE-188

A 128x128, 34µm pitch, 8.9mW, 190mK NETD, TECless Uncooled IR bolometer image sensor with columnwise processing, Laurent Alacoque¹, Sébastien Martin¹, Wilfried Rabaud¹, Édith Beigné¹, and

Antoine Dupret²; ¹Minatec Campus and ²CEA (France)

Laurent Alacoque was born in Lyon, France in 1974, He received the engineering degree in electronics and information processing from the Ecole Superieure de Chimie Physique et Electronique of Lyon (ESCPE) (1998). In the same year, he joined the Institut National de Sciences Appliquees (INSA) on Villeurbanne Campus for a PhD on the application of Asynchronous Logic to Analogue-Digital Conversion. He received his PhD (2002), and joined the CEA-Leti in 2003, first as a postdoctoral student and then as a member of the smart-imaging laboratory. Since then, his work focuses on the imaging chain, from pixel level design, imager-specific Analogue-Digital Conversion, to Image Signal Processing algorithms.

> 10:20 - 10:50 am Coffee Break

Noise and Performance

Session Chairs: Boyd Fowler, OmniVision Technologies (United States), and Gilles Sicard, CEA (France)

10:50 - 11:50 am

Harbour 10.50

IMASE-189 Residual bulk image characterization using photon transfer techniques,

Richard Crisp, Etron Technology America (United States)

11:10

IMSF-190 RTS and photon shot noise reduction based on maximum likelihood estimate with multi-aperture optics and semi-photon-counting-level CMOS image sensors, Haruki Ishida¹, Keiichiro Kagawa¹, Min Seo¹

Takashi Komuro², Bo Zhang¹, Taishi Takasawa¹, Keita Yasutomi¹, and Shoji Kawahito¹; ¹Shizuoka University and ²Saitama University (Japan)

11:30

IMSE-191 Linearity analysis of a CMOS image sensor, Fei Wang¹ and Albert Theuwissen^{1,2}; ¹Technische University Delft (the Netherlands) and ²Harvest Imaging (Belgium)

Keynote: History and Standards for Automotive Vision Systems Performance Joint Sessio

Session Chairs: Arnaud Darmont, APHESA SPRL (Belgium), Ralf Widenhorn, Portland State University (United States), and Buyue Zhang, Intel Corp. (United States) 11:50 am - 12:30 pm

This session is jointly sponsored by: Image Sensors and Imaging Systems 2017 and Autonomous Vehicles and Machines 2017.

Automotive imaging, Patrick Denny, Valeo (Ireland)

IMSE-196

Patrick Denny is a Senior Research Engineer and a Valeo Senior Expert and has worked for the last 15 years at Valeo Vision Systems, Ireland. He received his PhD in physics (2000) from the National University of Ireland, Galway, where he is also Adjunct Professor of Automotive Electronics. Denny has in excess of 20 years experience in scientific and technological development internationally, designing, innovating and developing automotive imaging technologies for BMW, Jaguar Land Rover, Daimler, VW, and other OEMs. His research interests include several aspects of automotive vision system image quality, sensor components, algorithmic design, systems, machine learning and data analytics.

> 12:30 - 2:00 pm Lunch Break

Image and Sensor Applications

Session Chairs: Glenn Chapman, Simon Fraser University (Canada), and Xinyang Wang, Gpixel Inc. (China)

2:00 – 2:40 pm

Harbour

2:00

IMSE-192

FPGA platform for testing a real-time tone-mapping algorithm based on a Mantissa-exponent representation, Ulian Shahnovich and Orly Yadid-Pecht, University of Calgary (Canada)

2:20

IMSE-194

Fast, low-complex, non-contact motion encoder based on the NSIP concept, Anders Astrom¹ and Robert Forchheimer²; ¹Combitech AB and ²Linkoping University (Sweden)

Keynote: Image Sensors for Devices of Internet of Things

Session Chairs: Arnaud Darmont, APHESA SPRL (Belgium), and Ralf Widenhorn, Portland State University (United States) **2:40 – 3:20 PM**

IMSE-195

In the quest of vision-sensors-on-chip: Pre-processing sensors for data reduction, Angel Rodríguez-Vázquez, Universidad de Sevilla (Spain)

Ángel Rodriguez-Vazquez (IEEE Fellow, 1999) conducts research on the design of analog and mixed-signal front-ends for sensing and communication, including smart imagers, vision chips and low-power sensory-processing microsystems. He received his Bachelor's (University of Seville, 1976) and PhD in physics-electronics (University of Seville, 1982) with several national and international awards, including the IEEE Rogelio Segovia Torres Award (1981). After research stays at UC Berkeley and Texas A&M University, he became a Full Professor of Electronics at the University of Sevilla in 1995. He co-founded the Institute of Microelectronics of Sevilla, under the umbrella of the Spanish Council Research (CSIC) and the University of Sevilla and started a research group on Analog and Mixed-Signal Circuits for Sensors and Communications. In 2001 he was the main promotor and co-founder of the start-up company AnaFocus Ltd. and served as CEO, on leave from the University, until June 2009, when the company reached maturity as a worldwide provider of smart CMOS imagers and vision systems-on-chip. He has authored 11 books, 36 additional book chapters, and some 150 journal articles in peer-review specialized publications. He was elected Fellow of the IEEE for his contributions to the design of chaos-based communication chips and neuro-fuzzy chips. His research work has received some 6,954 citations; he has an h-index of 42 and an i10-index of 143.

Meet the Future: A Showcase of Student and Young Professionals Research 3:00 – 5:00 pm

Atrium

3:20 – 4:00 pm Coffee Break

IMSE

Electronic Imaging 2017

Imaging and Multimedia Analytics in a Web and Mobile World 2017

Conference overview

The recent progress in web, social networks, and mobile capture and presentation technologies has created a new wave of interest in imaging and multimedia topics, from multimedia analytics to content creation and repurposing, from engineering challenges to aesthetics and legal issues, from content sharing on social networks to content access from Smart Phones with cloud-based content repositories and services. Compared to many subjects in traditional imaging, these topics are more multi-disciplinary in nature. This conference provides a forum for researchers and engineers from various related areas, both academic and industrial to exchange ideas and share research results in this rapidly evolving field.

Conference Chairs: Jan P. Allebach, Purdue Univ. (United States); Zhigang Fan, Apple Inc. (United States); and Qian Lin, Hp Labs, Hp Inc. (United States);

Program Committee: Gady Agam,

Illinois Institute of Technology (United States); Vijayan K. Asari, Univ. of Dayton (United States); Reiner Fageth, CEWE Stifung & Co. KGaA (Germany); Yi Fang, New York Univ. Abu Dhabi (United States); Michael J. Gormish, Ricoh Innovations, Inc. (United States); Yandong Guo, Microsoft Corp. (United States); Ali Jahanian, MIT CSAIL Lab (United States); Ramakrishna Kakarola, Picartio Inc. (United States); Xiaofan Lin, A9.com, Inc. (United States); Changsong Liu, Tsinghua Univ. (China); Yung-Hsiang Lu, Purdue Univ. (United States); Binu Nair, Univ. of Dayton Research Institute (United States); Mu Qiao, Shutterfly, Inc. (United States); Alastair M. Reed, Digimarc Corp. (United States); Andreas Savakis, RIT (United States); Bin Shen, Google Inc. (United States); Wiley H. Wang, Ditto.com (United States); Jane You, The Hong Kong Polytechnic Univ. (Hong Kong, China); and Buyue Zhang, Intel Corporation (United States)

Imaging and Multimedia Analytics in a Web and Mobile World 2017

Wednesday, February 1, 2017

Keynote: Web Scale Multimedia Analysis I

Session Chair: Jan Allebach, Purdue University (United States) 9:10 - 10:10 am Cypress A

IMAWM-157

The internet on things: Delivering augmented reality experiences in context, Michael Gormish, Blippar (United States)

Michael Gormish is Principal Scientist at Blippar on the infrastructure team working on image retrieval and multiple computer vision products. Gormish is an image processing and computer vision scientist and engineer who invented algorithms used in products including video games, digital cinema, satellite and medical image acquisition and transport. He earned a PhD in electrical engineering dealing with image and data compression from Stanford University. In his twenty year career at Ricoh, he led several aspects of the JPEG 2000 standardization and provided key inventions used in photocopiers, digital cameras, tablets and imaging services. He was awarded the status of Ricoh Patent Master for being a co-inventor on more than 100 US patents. He has served the research community as an Associate Editor of the IEEE Signal Processing Magazine, Associate Editor of the Journal of Electronic Imaging, Program Chair of the Document Engineering Conference, and technical committee member and reviewer for numerous conferences and journals. Currently he is interested changing the world via mobile image understanding.

> 10:00 am - 4:00 pm Industry Exhibition 10:10 - 10:50 am Coffee Break

Web Scale Multimedia Analysis II

Session Chair: Binu Nair, University of Dayton Research Institute (United States)

10:50 am - 12:30 pm Cypress A

10.50

MS-Celeb-1M: A review of large-scale face recognition (Invited), Yandong Guo and Lei Zhang, Microsoft Research (United States)

IMAWM-159 11.30 Evaluation of Hadoop and HPCC for multimedia big data analysis, Vishnu Chinta, Hari Kalva, and Borko Furht, Florida Atlantic University (United States)

IMAWM-160 11.50 Creating the world's largest real-time camera network, Ryan Dailey, Shengli Sui, Chan Wengyan, Thomas Norling, Sanghyun Joo, and Yung-Hsiang Lu, Purdue University (United States)

12.10 IMAWM-161 Multimedia instant messaging with real-time attribute-based encryption, Xunyu Pan and Christopher Gill, Frostburg State University (United States)

> 12:30 - 2:00 pm Lunch Break

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

> 3:00 - 3:30 pm Coffee Break

Deep Learning

Session Chair: Zhigang Fan, Apple Inc. (United States)

3:30 - 4:50 pm

Cypress A

3:30

Distracted driver detection: Deep learning vs handcrafted features, Murtadha Hssayeni, Sagar Saxena, Raymond Ptucha, and Andreas Savakis, Rochester Institute of Technology (United States)

3.50

IMAWM-163 Logo recognition using data augmentation techniques, Daniel Mas Montserrat¹, Qian Lin², Jan Allebach¹, and Edward Delp¹; ¹Purdue University and ²HP Labs, HP Inc. (United States)

4:10

IMAWM-158

IMAWM-164

IMAWM-162

Detection and characterization of Coordinate Measuring Machine (CMM) probes using deep networks for improved quality assurance of machine parts, Binu Nair¹, Vidur Prasad², and Nilesh Powar¹; ¹University of Dayton Research Institute and ²University of Michigan (United States)

4:30 IMAWM-165 Robust head detection with CNN, Ming Chen¹, Qian Lin², Fengging Zhu¹, and Jan Allebach¹; ¹Purdue University and ²HP Labs, HP Inc. (United States)

Symposium Interactive Papers (Poster) Session 5:30 – 7:00 pm Atrium

Thursday, February 2, 2017

Multimedia Analysis

Session Chair: Reiner Fageth, CEWE Stiftung & Co. KGAA (Germany)

8:50 - 10:30 am

Cypress A

8:50 IMAWM-166 **Analytics for body worn cameras (Invited),** Quanfu Fan, Thomas J. Watson Research Center (United States)

9:30 IMAWM-167 **Click-based interactive segmentation with graph cut**, Chun-Jung Tai¹, Tongyang Liu¹, Judy Bagchi², Fengqing Zhu¹, and Jan Allebach¹; ¹Purdue University and ²DzineSteps (United States)

9:50 IMAWVM-168 **Drone Detection by acoustic signature identification**, Andrea Bernardini, Federica Mangiatordi, Emiliano Pallotti, and Licia Capodiferro, Fondazione Ugo Bordoni (Italy)

10:10 IMAWM-169 **Aesthetics of fashion photographs: Effect on user preferences**, Zhi Li¹, Shuheng Lin¹, Yang Cheng¹, Gautam Golwala², Sathya Sundaram², and Jan Allebach¹; ¹Purdue University and ²Poshmark Inc. (United States)

10:30 – 10:50 am Coffee Break

Face / Body Detection and Recognition

Session Chair: Andreas Savakis, Rochester Institute of Technology (United States)

10:50 am - 12:10 pm

Cypress A

10:50

IMAWM-170

Local boosted features for illumination invariant face recognition, Almabrok Essa and Vijayan Asari, University of Dayton (United States)

 11:10
 IMAWM-171

 High precision 3D reconstruction of the human face, Michael Wang,

Daran He, Frankie Li, Wiley Wang, and Sergey Surkov, Ditto Technologies (United States)

11:30

IMAWM-172

IMAWM-173

IMAWM-174

IMAWM-176

Chromatic domain phase features with gradient and texture for efficient human detection, *Hussin Ragb*, *University of Dayton (United States)*

11:50

A real-time smile elegance detection system: A feature-level fusion and ranking SVM based approach, Lili Lin¹, Yiwen Zhang¹, Weini Zhang¹, Xinxin Liu¹, Yan Yan¹, and Tianli Yu²; ¹Department of Computer Science, Xiamen University (China) and ² Independent Consultant (United States)

12:10 – 2:00 pm 🛛 Lunch Break

Analytics for Mobile Applications

Session Chair: Qian Lin, HP Labs, HP Inc. (United States)

2:00 - 3:20 pm

Cypress A

2:00

MU, the ultra mobile visual analytic sensor for toys and IOTs, Tianli Yu, Morpx Inc. (United States)

2:20 IMAWM-175 **An imaging approach to online progressive addition lens retrieval**, Qin Li¹, Ruohan Zhan², Zhenhua Guo³, and Jane You²; ¹The Shenzhen Institute of Information Technology (China), ²The Hong Kong Polytechnic University (Hong Kong), and ³Graduate School at Shenzhen, Tsinghua University (China)

2:40

Are mobile phones changing the order behavior and content for printed photo products?, Reiner Fageth, CEWE Stiftung & Co. KGAA (Germany)

3:00 IMAWM-177 **Texture re-rendering tool for re-mixing indoor scene images,** Tongyang Liu¹, Chun-Jung Tai¹, Fengging Zhu¹, Judy Bagchi², and Jan Allebach¹; ¹Purdue University and ²DzineSteps (United States)

Meet the Future: A Showcase of Student and Young Professionals Research 3:00 – 5:00 pm Atrium

3:20 – 4:00 pm Coffee Break

Intelligent Robotics and Industrial Applications using Computer Vision 2017

Conference overview

This conference brings together real-world practitioners and researchers in intelligent robots and computer vision to share recent applications and developments. Topics of interest include the integration of imaging sensors supporting hardware, computers, and algorithms for intelligent robots, manufacturing inspection, characterization, and/or control.

The decreased cost of computational power and vision sensors has motivated the rapid proliferation of machine vision technology in a variety of industries, including aluminum, automotive, forest products, textiles, glass, steel, metal casting, aircraft, chemicals, food, fishing, agriculture, archaeological products, medical products, artistic products, etc. Other industries, such as semiconductor and electronics manufacturing, have been employing machine vision technology for several decades. Machine vision supporting handling robots is another main topic. With respect to intelligent robotics another approach is sensor fusion – combining multi-modal sensors in audio, location, image and video data for signal processing, machine learning and computer vision, and additionally other 3D capturing devices.

There is a need of accurate, fast, and robust detection of objects and their position in space. Their surface, the background and illumination is uncontrolled, in most cases the objects of interest are within a bulk of many others. For both new and existing industrial users of machine vision, there are numerous innovative methods to improve productivity, quality, and compliance with product standards. There are several broad problem areas that have received significant attention in recent years. For example, some industries are collecting enormous amounts of image data from product monitoring systems. New and efficient methods are required to extract insight and to perform process diagnostics based on this historical record. Regarding the physical scale of the measurements, microscopy techniques are nearing resolution limits in fields such as semiconductors, biology, and other nanoscale technologies. Techniques such as resolution enhancement, model-based methods, and statistical imaging may provide the means to extend these systems beyond current capabilities. Furthermore, obtaining real-time and robust measurements in-line or at-line in harsh industrial environments is a challenge for machine vision researchers, especially when the manufacturer cannot make significant changes to their facility or process. Conference Chairs: Henry Y.T. Ngan, Hong Kong Baptist Univ. (China); Kurt Niel, Upper Austria Univ. of Applied Sciences (Austria); and Juha Röning, Univ. of Oulu (Finland)

Program Committee: Philip Bingham, Oak Ridge National Laboratory (United States); Ewald Fauster, Montan Universitat Leoben (Austria); Daniel Fecker, Technische Univ. Braunschweig (Germany); Steven Floeder, 3M Company (United States); David Fofi, Univ. de Bourgogne (France); Shaun Gleason, Oak Ridge National Lab (United States); B. Keith Jenkins, The Univ. of Southern California (United States); Olivier Laligant, Univ. de Bourgogne (France); Edmund Lam, The Univ. of Hong Kong (Hong Kong, China); Dah-Jye Lee, Brigham Young Univ. (United States); Junning Li, Keck School of Medicine, Univ. of Southern California (United States); Wei Liu, The Univ. of Sheffield (United Kingdom); Charles McPherson, Draper Laboratory (United States); Fabrice Meriaudeau, Univ. de Bourgogne (France); Yoshihiko Nomura, Mie Univ. (Japan); Lucas Paletta, JOANNEUM RESEARCH Forschungsgesellschaft mbH (Austria); Vincent Paquit, Oak Ridge National Laboratory (United States); Daniel Raviv, Florida Atlantic Univ. (United States); Hamed Sari-Sarraf, Texas Tech Univ. (United States); Ralph Seulin, Univ. de Bourgogne (France); Christophe Stolz, Univ. de Bourgogne (France); Svorad Štolc, AIT Austrian Institute of Technology GmbH (Austria); Bernard Theisen, U.S. Army Tank Automotive Research, Development and Engineering Center (United States); Seung-Chul Yoon, United States Department of Agriculture Agricultural Research Service (United States); Gerald Zauner, FH OÖ-Forschungs & Entwicklungs GmbH (Austria); and Dili Zhang, Monotype Imaging (United States)

Intelligent Robotics and Industrial Applications using Computer Vision 2017

Wednesday, February 1, 2017

Autonomous Robotics

Session Chair: Juha Röning, University of Oulu (Finland)

8:50 - 10:10 am

Cypress C

8.50 IRIACV-258 Efficient visual loop closure detection via moment based global image descriptors, Can Erhan¹, Evangelos Sariyanidi², Onur Sencan¹, and Hakan Temeltas¹; ¹Istanbul Teknik Üniv. (Turkey) and ²Queen Mary, University of London (United Kingdom)

9:10 IRIACV-259 Real-time mobile robot navigation based on stereo vision and low-cost GPS, Soonhac Hong, Ming Li, Miao Liao, and Peter van Beek, Sharp Labs of America (United States)

9.30 IRIACV-260 The acceleration effect to the perception of velocity difference in passive elbow flexion movement, Fumihiro Akatsuka and Yoshihiko Nomura, Mie University (Japan)

IRIACV-261 0.50 Targeted intelligent autonomous robotics contest: The European Roboathlon, Juha Röning, University of Oulu (Finland)

> 10:00 am - 4:00 pm Industry Exhibition 10:10 - 10:50 am Coffee Break

Machine Vision and Imaging

Session Chair: Kurt Niel, University of Applied Sciences Upper Austria (Austria)

10:50 am - 12:30 pm

Cypress C

10:50

IRIACV-262 Application of big data analytics for recognition of microbial colonies from hyperspectral images, Seung-Chul Yoon, Kurt Lawrence, Bosoon Park, and Gary Gamble, US Department of Agriculture-Agricultural Research Service (United States)

11:10

Weaving pattern recognition of ancient Chinese textiles by regular bands analysis, Connie C.W. Chan, K. S. (Sammy) Li, and Henry Ngan,

Hong Kong Baptist University (Hong Kong)

11:30

Finding a needle in a haystack: Recognizing surgical instruments through vision and manipulation, Tian Zhou and Juan Wachs, Purdue University (United States)

11:50 IRIACV-265 Automatic detection of plant roots in multispectral images, Nisha Srinivas, Justin Baba, Colleen Iverson, Joanne Childs, Richard Norby, and Vincent Paquit, Oak Ridge National Laboratory (United States)

12:10

IRIACV-266

Education in industrial machine vision in Upper Austria University of Applied Sciences (bachelor/master) with respect to the needs by the European industry and automation engineering, Kurt Niel, University of Applied Sciences Upper Austria (Austria)

> 12:30 - 2:00 pm Lunch Break

El 2017 Wednesday Plenary and Symposium Awards
Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat,
Rochester Institute of Technology (United States)
2:00 – 3:00 pm
Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

> 3:00 - 3:30 pm Coffee Break

Pattern Recognition and Inspection

Session Chair: Henry Ngan, Hong Kong Baptist University (Hong Kong)

3:30 - 5:30 pm

Cypress C

3:30

Unsupervised video segmentation and its application to region-based local contrast enhancement, Sungbum Park¹, Woo-sung Shim¹, and Yong Seok Heo²; ¹Samsung and ²Ajou University (Republic of Korea)

3:50

IRIACV-263

IRIACV-264

IRIACV-268

IRIACV-267

High-precision 3D sensing with hybrid light field & photometric stereo approach in multi-line scan framework, Doris Antensteiner¹, Svorad Štolc¹, Kristián Valentín¹, Bernhard Blaschitz¹, Reinhold Huber-Mörk¹, and Thomas Pock^{1,2}; ¹AIT Austrian Institute of Technology GmbH and ²Graz University of Technology (Austria)

4:10

IRIACV-269

Line-scan stereo using binary descriptor matching and regularization, Svorad Štolc, Kristián Valentín, Bernhard Blaschitz, and Reinhold Huber-Mörk, AIT Austrian Institute of Technology GmbH (Austria)

IRIACV

4:30

IRIACV-270

Traffic Camera Dangerous Driver Detection (TCD3 ™): Contextually aware heuristic feature & OFA density-based computer vision with movement machine learning analysis of live streaming traffic camera footage to identify anomalous & dangerous driving, Vidur Prasad, University of Michigan (United States)

4:50

IRIACV-271

An in-situ defect detection system for Big Area Additive Manufacturing using laser profilometry, Michael Goin¹, Vincent Paquit², Andrzej Nycz², Brian Post², Peter Lloyd², Randall Lind², and Lonnie Love²; ¹University of Tennessee and ²Oak Ridge National Laboratory (United States)

5:10 IRIACV-272 Outlier detection in large-scale traffic data by naïve bayes method and Gaussian mixture model method, Philip Lam¹, Lili Wang¹, Henry Ngan¹, Nelson H.C. Yung², and Anthony G. O. Yeh²; ¹Hong Kong Baptist University and ²The University of Hong Kong (Hong Kong)

Symposium Interactive Papers (Poster) Session 5:30 – 7:30 pm Atrium

Electronic Imaging 2017

Material Appearance 2017

Conference overview

The rapid and continuous development of rendering devices such as displays and printers offers interesting challenges related to how materials are understood. Over the years, researchers from different disciplines have studied the interaction of incident light with the texture and surface geometry of a given object, as well as the optical properties of distinct materials. Thanks to those efforts, we have been able to render with high accuracy 2.5D and 3D objects and scenes.

Given the day-to-day technological improvements of materials and devices along with the advances in the areas of visual and tactile perception, modeling how light interacts with materials and techniques for measuring material properties, the field of material appearance is in constant evolution.

This conference offers the possibility to share research results and establish new collaborations among academic and industrial researchers from these related fields.

Award: Best Student Paper

Conference Sponsor

Program Committee: Jan P. Allebach, Purdue Univ. (United States); Susan P. Farnand, Rochester Institute of Technology (United States); Roland Fleming, Justus-Liebig-Universitiit Giessen (Germany); Jon Yngve Hardeberg, Norwegian Univ. of Science and Technology (Norway); Matthias B. Hullin, Univ. Bonn (Germany); Susanne Klein, Hewlett-Packard Ltd. (United Kingdom); Gary Meyer, Univ. of Minnesota (United States); Gael Obein, Conservatoire National des Arts et Metiers (France); Maria Ortiz Segovia, Océ Print Logic Technologies (France); Carinna Parraman, Univ. of the West of England (United Kingdom); Holly Rushmeier, Yale Univ. (United States); Sabine Süsstrunk, École Polytechnique Fédérale de Lausanne (Switzerland); Shoji Tominaga, Chiba Univ. (Japan); Philipp Urban, Fraunhofer Institute for Computer Graphics Research IGD (Germany); and Gregory Ward, Dolby Labs., Inc. (United States)

Material Appearance 2017

Monday, January 30, 2017

Surface Measurement and Lighting Systems

Session Chairs: Mathieu Hebert, Université Jean Monnet de Saint Etienne (France), Francisco Imai, (United States), and Ingeborg Tastl, HP Labs, HP Inc. (United States)

10:50 am - 12:10 pm Regency Ballroom C

10.50

MAAP-273

Comparison between angularly and spectrally resolved gloss measurements with gloss measurements carried out on a national reference goniometer for gloss calibration, Renee Charriere^{1,2} and Maria Nadal¹; ¹National Institute for Standards and Technology (United States) and ²Ecole des Mines de Saint-Etienne (France)

11:10

MAAP-274

A normal vector and BTF profile measurement system using a correlation camera and scanning dome illumination, Akira Kimachi, Motonori Doi, and Shogo Nishi, Osaka Electro-Communication University (Japan)

11:30

MAAP-275 Polarimetric multispectral bidirectional reflectance distribution function measurements using a Fourier transform instrument, Pierre Boher, Thierry Leroux, Ludivine Cave, Thibault Bignon, and Véronique Collomb-Patton, ELDIM (France)

11:50

MAAP-276

Optimal LED selection for multispectral lighting reproduction, Chloe LeGendre, Xueming Yu, and Paul Debevec, USC Institute for Creative Technologies (United States)

> 12:10 - 2:00 pm Lunch Break

El 2017 Opening Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

Giga-scale 3D computational microscopy, Laura Waller, University of California, Berkeley (United States)

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). Waller's talk is on computational imaging methods for fast capture of gigapixel-scale 3D intensity and phase images in a commercial microscope that employs illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is highresolution reconstructions across a large field-of-view, achieving high space-bandwith-time product.

Surface Appearance Modeling and Reproduction Joint Session

Session Chair: Francisco Imai (United States)

3:30 - 4:50 pm

Regency Ballroom C

This session is jointly sponsored by: Material Appearance 2017 and Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications.

3.30 MAAP-288 Modeling and reproducing effect paints, Gary Meyer and Avery Musbach, University of Minnesota (United States)

3:50 MAAP-289 How to design a recto-verso print displaying different images in various everyday-life lighting conditions, Nicolas Dalloz^{1,2}, Serge Mazauric^{1,3}, Mathieu Hebert¹, and Thierry Fournel¹; ¹University of Lyon, UJM-Saint-Etienne, CNRS, Institut d'Optique Graduate School, ²Institut d'Optique Graduate School, and ³CPE Lyon (France)

MAAP-290 4:10 Appearance decomposition and reconstruction of textured fluorescent objects, Shoji Tominaga, Keiji Kato, Keita Hirai, and Takahiko Horiuchi, Chiba University (Japan)

4:30 MAAP-291 Assessing the proper color of translucent materials by an extended two-flux model from measurements based on an integrating sphere, Lionel Simonot¹, Mathieu Heberf², Serge Mazauric^{2,3}, and Roger Hersch⁴; ¹Université de Poitiers (France), ²Université Jean Monnet de Saint Etienne

(France), ³CPE Lyon, Domaine Scientifique de la Doua (France), and ⁴École Polytechnique Fédérale de Lausanne (Switzerland)

Symposium Welcome Reception 5:00 - 6:00 pm

Atrium

9:10

Tuesday, January 31, 2017

Surface Appearance Assessment and Digital Methods I Joint Session

Session Chair: Greg Ward, Dolby Laboratories (United States)

9:10 - 10:10 am

Grand Peninsula Ballroom C

This session is jointly sponsored by: Material Appearance 2017 and 3D Image Processing, Measurement (3DIPM), and Applications 2017.

Graininess appearance of goniochromatic samples in lighting cabinets, Paola Iacomussi, Michela Radis, and Giuseppe Rossi, INRIM (Italy)

MAAP-282

MAAP-283 9:30 Measurement and evaluation method of orange peel, Takuroh Sone and Shuhei Watanabe, Ricoh Company, Ltd. (Japan)

9:50

MAAP-284

Enhanced RTI for gloss reproduction, Peter Fornaro, Andrea Bianco, and Lukas Rosenthaler, Universitiy of Basel (Switzerland)

> 10:00 am - 7:30 pm Industry Exhibition

10:10 - 10:50 am Coffee Break

Surface Appearance Assessment and Digital Methods II Joint Session

Session Chair: Mathieu Hebert, Université Jean Monnet de Saint Etienne (France)

10:50 - 11:30 am

Grand Peninsula Ballroom C

This session is jointly sponsored by: Material Appearance 2017 and 3D Image Processing, Measurement (3DIPM), and Applications 2017.

10.50

MAAP-285

Consistent tool-independent virtual material appearance, Dar'va Guarnera¹, Giuseppe Claudio Guarnera¹, Cornelia Denk², and Mashhuda Glencross^{1,3}; ¹Loughborough University (United Kingdom), ²BMW Research (Germany), and ³Switch That Limited (United Kingdom)

11:10

MAAP-286 Interactive object surface retexturing using perceptual quality indexes, Keita Hirai, Wataru Suzuki, Yoshimitsu Yamada, and Takahiko Horiuchi, Chiba University (Japan)

> 11:30 am - 2:00 pm Lunch Break

El 2017 Tuesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as next-generation computational near-eye displays evolve to deliver visual experiences that are better than the real world.

> 3:00 - 3:30 pm Coffee Break

Keynote: Communicating Material Appearance Session Chair: Ingeborg Tastl, HP Labs, HP Inc. (United States)

3:30 - 4:10 pm Grand Peninsula Ballroom C

MAAP-277

The future of material communication via the Appearance Exchange Format (AxF), Marc Ellens, Gero Mueller, and Francis Lamy, X-Rite, Inc. (United States)

Marc S. Ellens is a Senior Research Scientist with X-Rite-Pantone in Grand Rapids, MI. He received his BS in mathematics and computer science from Calvin College, and his PhD in computer aided geometric design from the University of Utah. In the past, Ellens has worked on CNC programming and at Lectra System's developing design applications for the textile industry. Now at X-Rite for more than 10 years, he has been involved in research and development efforts beyond color toward the capture and reproduction of appearance. Ellens has presented at the NVIDIA GPU Technology conference, Autodesk's Automotive Innovation Forums, and the IS&T Electronic Imaging Conference. He is named in three patents related to material visualization and reproduction.

Material Characterization

Session Chair: Ingeborg Tastl, HP Labs, HP Inc. (United States)

4:10 - 5:30 pm

Grand Peninsula Ballroom C

4.10

MAAP-278 Material with visual effects: Study of the gonioapparency of the

anodized titanium, Quentin Cridling^{1,2}, Renee Charriere¹, Maria Pia Pedeferri², Maria Vittoria Diamanti², and David Delafosse¹; ¹Ecole des Mines de Saint Etienne (France), and ²Politecnico di Milano (Italy)

4.30

Adapted modulation transfer function method for characterization and improvement of 2.5D printing, Marine Page^{1,2,3}, Clotilde Boust², Gaël Obein³, Annick Razet³, and Maria Ortiz Segovia¹; ¹Océ - Canon Group, ²Centre de Recherche et de Restauration des Musées de France, and ³Conservatoire National des Arts et Métiers (France)

4.50

Evaluating an image based multi-angle measurement setup using different reflection models, Aditya Sole, Ivar Farup, and Peter Nussbaum,

Norwegian University of Science and Technology (Norway)

MAAP-281 5:10 Model-based skin pigment cartography by high-resolution hyperspectral imaging (JIST-first), Pierre Seroul¹, Mathieu Hebert², Marie Cherel¹,

Romain Vernet $^{\rm l}$, and Matthieu Jomier $^{\rm l}$; $^{\rm l}Newtone$ Technologies and ²Université Jean Monnet de Saint Etienne (France)

Symposium Demonstration Session 5:30 – 7:30 pm Grand Peninsula Ballroom E

MAAP-279

MAAP-280

Thursday, February 2, 2017

Interactive Workshop: How can COLOR imaging provide US with powerful INSIGHTS? Joint Session

Moderator: Fritz Lebowsky, STMicroelectronics (France)

2:00 – 3:30 pm Regency Ballroom C

This session is jointly sponsored by: Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications and Material Appearance 2017.

We would very much like to have you participate in a special session in which we encourage asking questions and exchange ideas that frequently trouble us during research and development projects. The presence of experts in COLOR imaging and perhaps Electronic Imaging at large will provide a unique opportunity of efficiently and lively sharing simple/ stupefying ideas enabling fascinating engineering concepts which may also stimulate your own future research and development projects!

COLOR-062

Interactive Workshop: How can color imaging provide us with powerful insights?, Fritz Lebowsky, STMicroelectronics (France)

Meet the Future: A Showcase of Student and Young Professionals Research 3:00 – 5:00 pm Atrium

3:20 – 4:00 pm Coffee Break

Interactive Workshop: How can COLOR imaging provide US with powerful INSIGHTS? (continued) Joint Session

Moderator: Fritz Lebowsky, STMicroelectronics (France)

4:00 – 5:00 pm

Regency Ballroom C

This continuation of the workshop session is jointly sponsored by: Color Imaging XXII: Displaying, Processing, Hardcopy, and Applications, and Material Appearance 2017.

Electronic Imaging 2017

Media Watermarking, Security, and Forensics 2017

Conference overview

The ease of capturing, manipulating, distributing, and consuming digital media (e.g. images, audio, video, graphics, and text) has raised a number of important security challenges to the forefront. These issues have prompted significant research and development activities in the areas of digital watermarking, steganography, data hiding, forensics, media identification, and encryption to protect the authenticity, security, and ownership of media objects. Research results in these areas have translated into new paradigms and applications to monetize media objects without violating their ownership rights.

The Media Watermarking, Security, and Forensics conference is a premier destination for disseminating high-quality, cutting-edge research in these areas. The conference provides an excellent venue for researchers and practitioners to present their innovative work as well as to keep abreast with the latest developments in watermarking, security, and forensics. A unique feature of the conference is that the submission process only requires a structured abstract describing the work in progress, with the full paper to be submitted only a few weeks before the event. This allows researchers to present early results and fresh ideas from the laboratory to motivate new research directions in a timely manner.

A strong focus on how research results are applied in practice by the industry gives the conference its unique flavor.

Conference Chairs: Adnan M. Alattar, Digimarc Corp. (United States), and Nasir D. Memon, Tandon School of Engineering, New York Univ. (United States)

Program Committee: Mauro Barni, Univ. degli Studi di Siena (Italy); Sebastiane Battiato, Univ. degli Studi di Catania (Italy); Marc Chaumont, Lab. d'Informatique de Robotique et de Microelectronique de Montpellier (France); Scott A. Craver, Binghamton Univ. (United States); Edward J. Delp, Purdue Univ. (United States); Jana Dittmann, Otto-von-Guericke-Univ. Magdeburg (Germany); Gwenaël Doërr, ContentArmor SAS (France); Maha El Choubassi, Intel Corporation (United States); Jessica Fridrich, Binghamton Univ. (United States); Anthony T. S. Ho, Univ. of Surrey (United Kingdom); Jiwu Huang, Sun Yat-Sen Univ. (China); Andrew D. Ker, Univ. of Oxford (United Kingdom); Matthias Kirchner, Binghamton Univ. (United States); Alex C. Kot, Nanyang Technological Univ. (Singapore); Chang-Tsun Li, The Univ. of Warwick (United Kingdom); William Puech, Laboratory d'Informatique de Robotique et de Microelectronique de Montpellier (France); Anderson Rocha, Univ. of Campinas (Brazil); Husrev Taha Sencar, TOBB Univ. of Economics and Technology (Turkey); Gaurav Sharma, Univ. of Rochester (United States); Yun Qing Shi, New Jersey Institute of Technology (United States); Ashwin Swaminathan, Magic Leap, Inc. (United States); Robert Ulichney, HP Labs, HP Inc. (United States); Claus Vielhauer, Univ. Magdeburg (Germany); Svyatoslav V. Voloshynovskiy, Univ. de Genève (Switzerland); and Chang Dong Yoo, Korea Advanced Institute of Science and Technology(Republic of Korea)

Media Watermarking, Security, and Forensics 2017

Monday, January 30, 2017

Keynote 1: Media Forensics Session Chair: Adnan Alattar, Digimarc Corporation (United States) 8:50 – 10:10 am Regency Ballroom A

MWSF-316

The nimble challenges for media forensics, P. Jonathon Phillips, National Institute of Standards and Technology (NIST) (United States)

Jonathon Phillips is a leading technologist in the fields of computer vision, biometrics, and face recognition. He is at National Institute of Standards and Technology (NIST), where he runs challenge problems and evaluations to advance biometric technology. His previous efforts include the Iris Challenge Evaluations (ICE), the Face Recognition Vendor Test (FRVT), the Face Recognition Grand Challenge and FERET. From 2000-2004, Phillips was assigned to DARPA. For his work on the FRVT 2002 he was awarded the Dept. of Commerce Gold Medal. His work has been reported in the New York Times, the BBC, and the Economist. He has appeared on NPR's Science Friday show. In an Essential Science Indicators analysis of face recognition publication over the past decade, Phillips' work ranks at #2 by total citations and #1 by cites per paper. In 2013, he won the inaugural Mark Everingham Prize. He is a fellow of the IEEE and IAPR.

> 10:10 - 10:30 am Coffee Break

Watermarking

Session Chair: William Puech, University of Montpellier (France)

10:30 - 11:45 am

Regency Ballroom A

10:30

MWSF-317

MWSF-319

MWSF-320

Embedding information into objects fabricated with 3-D printers by forming fine cavities inside them, Masahiro Suzuki¹, Piyarat Silapasuphakornwong¹, Pailin Dechrueng², Soravit Techavichian² Hideyuki Torii¹, and Kazutake Uehira¹; ¹Kanagawa Institute of Technology (Japan) and ²Chulalongkorn University (Thailand)

10:55

High-capacity reversible data hiding in encrypted images using MSB prediction, Pauline Puteaux and William Puech, University of Montpellier (France)

11:20

The A Priori knowledge based secure payload estimation for additive model, Sai Ma^{1,2}, Xianfeng Zhao^{1,2}, Qingxiao Guan^{1,2}, and Chengduo Zhao^{1,2}; ¹Institute of Information Engineering, Chinese Academy of Sciences and ²University of Chinese Academy of Sciences (China)

> 11:45 am - 2:00 pm Lunch Break

El 2017 Opening Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm Grand Peninsula Ballroom D

Giga-scale 3D computational microscopy, Laura Waller, University of California, Berkeley (United States)

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). Waller's talk is on computational imaging methods for fast capture of gigapixel-scale 3D intensity and phase images in a commercial microscope that employs illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is highresolution reconstructions across a large field-of-view, achieving high space-bandwith-time product.

> 3:00 - 3:30 pm Coffee Break

Encryption

Session Chair: Gaurav Sharma, University of Rochester (United States)

3:30 - 4:50 pm Regency Ballroom A

3.30 MWSF-321 Benefits of combining forensic image creation and file carving, Martin Steinebach, Fraunhofer SIT (Germany) 3:55 MWSF-322 Codec-embedded MP3 partial encryption for DRM, Martin Steinebach, Fraunhofer SIT (Germany) 4.20 MWSF-323 How to recompress a JPEG crypto-compressed image?, Vincent Itier¹ and William Puech²; 1LIRMM and ²University of Montpellier (France)

Symposium Welcome Reception 5:00 - 6:00 pm

Tuesday, January 31, 2017

Deep Learning Steganalysis

Session Chair: Jessica Fridrich, SUNY Binghamton (United States)

8:50 - 10:10 am Regency Ballroom A

8:50

MWSF-324 Pre-training via fitting deep neural network to rich-model features extraction procedure and its effect on deep learning for steganalysis, Jishen Zeng, Shunguan Tan, Bin Li, and Jiwu Huang, Shenzhen University (China)

86

9:15

MWSF-325

Histogram layer, moving convolutional neural networks towards feature-based steganalysis, Vahid Sedighianaraki and Jessica Fridrich, Binghamton University (United States)

9:40

MWSF-326 Model based steganography with precover, Tomas Denemark and Jessica Fridrich, SUNY Binghamton (United States)

> 10:00 am - 7:30 pm Industry Exhibition 10:10 - 10:30 am Coffee Break

CNN and RNN Forensics

Session Chair: Marc Chaumont, LIRMM Montpellier France (France)

10:30 am - 12:10 pm

Regency Ballroom A

10.30

MWSF-327

A preliminary study on convolutional neural networks for camera model identification, Luca Bondi¹, David Güera Cobo², Luca Baroffio¹, Paolo Bestagini¹, Edward Delp², and Stefano Tubaro¹; ¹Politecnico di Milano (Italy) and ²Purdue University (United States)

10:55 MWSF-328 Design principles of convolutional neural networks for multimedia forensics, Belhassen Bayar and Matthew Stamm, Drexel University (United States)

11.20

Image recapturing detection with convolutional and recurrent neural network, Haoliang Li, Shiqi Wang, and Alex Kot, Nanyang Technological University (Singapore)

11:45

MWSF-330

M/M/SE-320

Autoencoder with recurrent neural networks for video forgery

detection, Dario D'Avino, Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva, University Federico II of Naples (Italy)

> 12:10 - 2:00 pm Lunch Break

El 2017 Tuesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as next-generation computational near-eye displays evolve to deliver visual experiences that are better than the real world.

> 3:00 - 3:30 pm Coffee Break

Keynote 2: Camera Verification in Practice

Session Chair: Nasir Memon, New York University (United States) 3:30 - 4:30 pm Regency Ballroom A

MWSF-339

PRNU in practice, Walter Bruehs, Federal Bureau of Investigation (United States)

Walter E. Bruehs is employed by the Federal Bureau of Investigation as the Supervisory Photographic Technologist in the Forensic Audio, Video, and Image Analysis Unit, where he is an Examiner of Questioned Photographic Evidence. Part of Bruehs' responsibilities focus on seeking out and researching emerging digital imaging technologies as they apply to the Forensic arena. He heads a program designed to identify digital images to digital cameras or to other sets of digital images, based on the sensor noise of the capture device. He has a MS in electrical engineering from the University of Maine at Orono, as well as a BS in electrical engineering from Clarkson University. Prior to working at the FBI, he worked as an Imaging Scientist in the research labs of the Eastman Kodak Company, where he co-authored a patent, "Method and System for Improving an Image Characteristic Based on Image Content.'

Media Watermarking, Security, and Forensics Program **Committee Meeting**

4:40 - 6:00 pm Regency Ballroom A

Symposium Demonstration Session 5:30 - 7:30 pm

Grand Peninsula Ballroom E

Wednesday, February 1, 2017

Sensor Noise Forensics

Session Chair: Robert Ulichney, HP Labs, HP Inc. (United States)

8:50 - 10:10 am Regency Ballroom A

8:50 MWSF-331	
on mobile phones, Chiara Galdi ¹ , Frank Hartung ² , and Jean-Luc Duaelav ¹ : ¹ Eurecom (France) and ² FH Aachen (Germany)	
9:15 MWSF-332	

9:15

Linear filter kernel estimation based on digital camera sensor noise, Chang Liu and Matthias Kirchner, Binghamton University (United States)

9:40 MWSF-333 PRNU-based forgery detection with discriminative random fields, Sujoy Chakraborty and Matthias Kirchner, Binghamton University (United States)

10:00 am - 4:00 pm Industry Exhibition 10:10 - 10:30 am Coffee Break

Forensics & Authentication

Session Chair: Matthias Kirchner, Binghamton University (United States)

10:30 am - 12:15 pm

Regency Ballroom A

10:30

MWSF-335

Sensitivity of different correlation measures to print-and-scan process, *Iuliia Tkachenko¹, Christophe Destruel¹, Olivier Strauss², and William Puech²; 'Authentication Industries and ²University of Montpellier (France)*

10:55 MWSF-336 Scalable processing history detector for JPEG images, Mehdi Boroumand and Jessica Fridrich, SUNY Binghamton (United States)

 11:20
 MWSF-337

 Deciphering severely degraded license plates, Shruti Agarwal, Du Tran, Lorenzo Torresani, and Hany Farid, Dartmouth College (United States)

 11:45
 MWSF-338

 PCB surface fingerprints based counterfeit detection of electronic

devices, Taswar Iqbal¹ and Kai-Dietrich Wolf²; ¹Ex-memeber ISS and ²University of Wuppertal, Institute for Security Sytems (Germany)

12:10

Conference Closing Remarks

12:15 – 2:00 pm Lunch Break

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) **2:00 – 3:00 pm** Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

3:00 – 3:30 pm Coffee Break

Symposium Interactive Papers (Poster) Session 5:30 – 7:00 pm Atrium

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017

Conference overview

The goal of this conference is to provide an international forum for presenting recent research results on multimedia for mobile devices and to bring together experts from both academia and industry for a fruitful exchange of ideas and discussion on future challenges. The authors are encouraged to submit work-in-progress papers as well as updates on previously reported systems. Outstanding papers may be recommended for the publication in the *Journal Electronic Imaging or Journal of Imaging Science and Technology*.

Awards: Best Paper and Best Student Paper

Conference Chairs: David Akopian, The Univ. of Texas at San Antonio (United States) and Reiner Creutzburg, Fachhochschule Brandenburg (Germany)

Program Committee: John Adcock, FX Palo Alto Laboratory Inc. (United States); Sos Agaian, The Univ. of Texas at San Antonio (United States); Faouzi Alaya Cheikh, Norwegian Univ. of Science and Technology (Norway); Noboru Babaguchi, Osaka Univ. (Japan); Nina Bhatti, HP Inc. (United States); C.L. Philip Chen, Univ. of Macau (Macao); Chang Wen Chen, The State Univ. of New York at Buffalo (United States); David Cook, Consultant (Namibia); Matthew Cooper, FX Palo Alto Laboratory (United States); Kenneth Crisler, Motorola, Inc. (United States); Francesco De Natale, Univ. degli Studi di Trento (Italy); Alberto Del Bimbo, Univ. degli Studi di Firenze (Italy); Stefan Edlich, Technische Fachhochschule Berlin (Germany); Atanas Gotchev, Tampere Univ. of Technology (Finland); Alan Hanjalic, Technische Univ. Delft (the Netherlands); Alexander Hauptmann, Carnegie Mellon Univ. (United States); Winston Hsu, National Taiwan Univ. (Taiwan); Gang Hua, Stevens Institute of Technology (United States); Catalin Lacatus, Qualcomm Technologies, Inc. (United States); Xin Li, West Virginia Univ. (United States); Qian Lin, HP Inc. (United States); Gabriel Marcu, Apple Inc. (United States); Vasileios Mezaris, Informatics and Telematics Institute (Greece); Chong-Wah Ngo, City Univ. of Hong Kong (China); Sethuraman Panchanathan, Arizona State Univ. (United States); Kari Pulli, Intel Corporation (United States); Yong Rui, Microsoft Corporation (China); Olli Silvén, Univ. of Oulu (Finland): John Smith, IBM Thomas I. Watson Research Center (United States); Hari Sundaram, Arizona State Univ. (United States); Jarmo Takala, Tampere Univ. of Technology (Finland); Marius Tico, Apple, Inc. (United States); Meng Wang, National Univ. of Singapore (Singapore); Rong Yan, Facebook Inc. (United States); and Jun Yang, Facebook Inc. (United States)

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017

Wednesday, February 1, 2017

Mobile Sensors, Localization, and Applications

Session Chair: David Akopian, The University of Texas at San Antonio (United States)

8:50 - 10:10 am

Grand Peninsula Ballroom B

8.50

MOBMU-292 Introduction to WLAN-fingerprinting based indoor localization, David Akopian, Ali Khalajmehrabadi, and Nikolaos Gatsis, The University of Texas at San Antonio (United States)

9:10

MOBMU-299 Android door and window image based measurements, Khader Mohammad, Birzeit University (Palestine)

9:30

MOBMU-293

Usability of smart mobile micro photonic sensor systems for industrial and non-industrial quality assurance, Paul-Gerald Dittrich^{1,2} and Dietrich Hofmann¹; ¹Technologie⁻ und Innovationspark Jena GmbH and ²Technische Universität Ilmenau (Germany)

9.50 MOBMU-294 Blackmagic production camera raw color investigation by spectral analysis of Macbeth color charts, Eberhard Hasche, Patrick Ingwer, Reiner Creutzburg, Thomas Schrader, Frederick Laube, and Timo Sigwarth,

Technische Hochschule Brandenburg - Brandenburg University of Applied Sciences (Germany)

10:10

MOBMU-295

Liquid crystal lens characterization for integrated depth sensing and all in focus imaging application, Simon Emberger¹, Laurent Alacoque¹, Antoine Dupret², Jean Louis de Bougrenet de la Tocnaye³, Capucine Lecat-Mathieu de Boissac¹, and Nicolas Fraval⁴; ¹LETI, CEA, ²LIST-Léti, CEA, ³Telecom Bretagne, and ⁴Evosens (France)

10:00 am – 4:00 pm	Industry Exhibition
10:30 – 11:00 am	Coffee Break

Emerging Applications and Methods

Session Chair: Reiner Creutzburg, Brandenburg University of Applied Sciences (Germany)

11:00 am - 12:40 pm

Grand Peninsula Ballroom B

11:00

MOBMU-296

High quality virtual lighting using image-based-lighting and projection onto meshes generated from Lidar and SfM Point Clouds, Eberhard Hasche, Patrick Ingwer, Fabian Gassen, and Reiner Creutzburg, Technische Hochschule Brandenburg (Germany)

11.20

A billion words to remember, George Nagy, Rensselaer Polytechnic Institute (United States)

11:40 MOBMU-298 Demographic prediction based on mobile user data, Lyubov

Podoynitsina, Alexander Romanenko, and Konstantin Kryzhanovskiy, Samsung R&D Institute (Russian Federation)

12.00

MOBMU-300

MOBMU-297

Optimizing video transmission for mobile devices, Chulhee Lee¹ Sangwook Baek², Guiwon Seo², Kyung-Won Kang², and Jaein Ryu¹; ¹Yonsei University and ²Yonsei University (Republic of Korea)

12:20

MOBMU-308 Comparative visualization of the geometry of a hollow box girder using 3D-LiDAR - Part 2: Reconstruction of a 3D geometric model, Stefan

Maack¹, Jenny Knackmuss², and Reiner Creutzburg²; ¹Bundesanstalt für Materialprüfung and ²Technische Hochschule Brandenburg (Germany)

> 12:40 - 2:00 pm Lunch Break

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, highquality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

> 3:00 - 3:30 pm Coffee Break

Mobile Security, Safety, Privacy, Forensics

Session Chair: David Akopian, The University of Texas at San Antonio (United States)

3:30 – 4:50 am

Grand Peninsula Ballroom B

3:30 MOBMU-301 Investigation of three security relevant aspects of Android eHealth Apps - Permissions, storage properties, and data transmission, Jenny Knackmuss¹, Eric Clausing², and Reiner Creutzburg¹; ¹Technische Hochschule Brandenburg and ²AV-Test GmbH (Germany)

3:50 MOBMU-302 **Privacy issues in mobile health applications - Assessment of current Android Health Apps,** Anett Hoppe¹, Jenny Knackmuss², Maik Morgenstern¹, and Reiner Creutzburg²; ¹AV-Test GmbH and ²Technische Hochschule Brandenburg (Germany)

4:10 MOBMU-303 **A forensic mobile application designed for both steganalysis and steganography in digital images,** Enping Li¹ and Jun Yu²; ¹Bridgewater State University and ²Marvell Semiconductors, Inc. (United States)

4:30 MOBMU-304 **Pokemon Go - A forensic analysis,** Reiner Creutzburg, Technische Hochschule Brandenburg (Germany)

Mobile Computing and Data Processing

Session Chair: Reiner Creutzburg, Brandenburg University of Applied Sciences (Germany)

4:50 - 5:30 pm

Grand Peninsula Ballroom B

4:50 MOBMU-305 **Computation of equidistant curve for the image with blurred contours,** Evgeny Semenishchev and Viacheslav Voronin, Don State Technical University (Russian Federation)

5:10 MOBMU-306 **Prune the convolutional neural networks with Sparse Shrink,** Xin Li and Changsong Liu, Tsinghua University (China)

Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2017 Interactive Papers Session

5:30 - 7:00 pm

Atrium The following works will be presented at the El 2017 Symposium Interactive Papers Session.

MOBMU-307

Automated segmentation of ophthalmological OCT images, Friedrich Müller¹ and Reiner Creutzburg²; ¹Nürnberger Str. 24a and ²Technische Hochschule Brandenburg (Germany)

MOBMU-309

Concept for software-based configuration of the organizational and

technical security of a company of arbitrary size, Thomas Möller¹, Tanja Leschke¹, Knut Bellin², and Reiner Creutzburg²; ¹Assecor GmbH and ²Technische Hochschule Brandenburg (Germany)

MOBMU-310

Facilitated polling approach for SMS and IP messaging applications, Shruti Mahadik, Rodrigo Escobar, Sahak Kaghyan, and David Akopian, The University of Texas at San Antonio (United States)

MOBMU-311

A multi-platform characterization of delays inherent in Message Queue Telemetry Transport (MQTT) communications, Brian Bendele and David Akopian, The University of Texas San Antonio (United States)

MOBMU-312

Semi-automatic generation of multilingual lecture notes - Wikipedia books on different subjects in various languages, Reiner Creutzburg, Technische Hochschule Brandenburg (Germany)

MOBMU-313

The strange world of keyloggers - An overview, *Reiner Creutzburg, Technische Hochschule Brandenburg (Germany)*

MOBMU-314

The study of algorithms reducing the level of out-of-band radiation and inter carrier interference of the OFDM signal, Valentin Fedosov¹, Anna Lomakina¹, Andrey Legin¹, Danila Kovtun¹, and Viacheslav Voronin²; ¹South Federal University and ²Don State Technical University (Russian Federation)

MOBMU-315

Two-tier state-machine programming for messaging applications,

Jafet Morales, Rodrigo Escobar, Sahak Kaghyan, Girish Vaidyanathan Natarajan, and David Akopian, The University of Texas at San Antonio (United States)

Electronic Imaging 2017

Stereoscopic Displays and Applications XXVIII

Conference overview

The World's Premier Conference for 3D Innovation

The Stereoscopic Displays and Applications conference (SD&A) focuses on developments covering the entire stereoscopic 3D imaging pipeline from capture, processing, and display to perception. The conference brings together practitioners and researchers from industry and academia to facilitate an exchange of current information on stereoscopic imaging topics. A highly-popular conference demonstration session provides authors with a perfect additional opportunity to showcase their work. Large-screen stereoscopic projection is available, and presenters are encouraged to make full use of these facilities during their presentations. Publishing your work at SD&A offers excellent exposure—across all publication outlets, SD&A has the highest proportion of papers in the top 100 cited papers in the stereoscopic imaging field (Google Scholar, May 2013).

Awards: Best use of stereoscopy in a presentation, Best film (animation) and Best film (live action)

Events: Monday evening 3D Theater

Conference Sponsors

Conference Chairs: Andrew J. Woods, Curtin Univ. (Australia); Gregg E. Favalora, Draper (United States); Nicolas S. Holliman, Newcastle Univ. (United Kingdom); and Takashi Kawai, Waseda Univ. (Japan)

Program Committee: Neil A. Dodgson, Victoria Univ. of Wellington (New Zealand); Davide Gadia, Univ. degli Studi di Milano (Italy); Hideki Kakeya, Univ. of Tsukuba (Japan); Stephan R. Keith, SRK Graphics Research (United States); Michael Klug, Magic Leap, Inc. (United States); John D. Stern, Intuitive Surgical, Inc. (Retired) (United States); and Chris Ward, Lightspeed Design, Inc. (United States)

Founding Chair: John 0. Merritt, The Merritt Group (United States)

Stereoscopic Displays and Applications XXVIII

Monday, January 30, 2017

Stereoscopic Human Factors and Applications

Session Chair: Takashi Kawai, Waseda University (Japan)

8:50 - 10:20 am

Grand Peninsula Ballroom D

SD&A-353 8.50 Expert viewers' preferences for higher frame rate 3D film (JIST-first), Robert Allison¹, Laurie Wilcox², Roy Anthony³, John Helliker⁴, and Bert Dunk⁴; ¹York University, ²Centre for Vision Research, York University, ³Christie Digital, and ⁴Sheridan College (Canada)

9:10

SD&A-354

Investigating aircrew depth perception standards using a stereoscopic simulation environment, Marc Winterbottom¹, Charles Lloyd², James Gaska¹, Logan Williams¹, Elizabeth Shoda³, and Steven Hadley¹; ¹U.S. Air Force School of Aerospace Medicine, ²Visual Performance LLC, and ³Wyle Laboratories (United States)

9:30 SD&A-355 Estimation of altitude in stereoscopic-3D versus 2D real-world scenes,

Lesley Deas¹, Robert Allison¹, Brittney Hartle¹, Elizabeth Irving², Mackenzie Glaholt³, and Laurie Wilcox¹; ¹York University, ²University of Waterloo, and ³Defence Research and Development Canada (Canada)

9.50

SD&A-356

Study of objective parameters of 3D visual fatigue based on analysis of salient area, Minghan Du, Yue Liu, Yongtian Wang, and Bochao Zou, Beijing Institute of Technology (China)

10:10

SD&A Opening Remarks, Andrew Woods, Curtin University (Australia)

10:20 - 10:50 am Coffee Break

Autostereoscopic Displays I

Session Chair: Gregg Favalora, Draper (United States)

10:50 am - 12:30 pm

Grand Peninsula Ballroom D

10.50

SD&A-357

Architectures and codecs for real-time light field streaming (JIST-first), Péter Kovács^{1,2}, Alireza Zare^{1,3}, Tibor Balogh², Robert Bregovic¹, and Atanas Gotchev¹; ¹Tampere University of Technology (Finland), ²Holografika (Hungary), and ³Nokia Technologies (Finland)

11.10

SD&A-358

Wide viewing angle projection-type integral 3D display system with multiple UHD projectors, Hayato Watanabe, Masahiro Kawakita, Naoto Okaichi, Hisayuki Sasaki, Masanori Kano, Jun Arai, and Tomoyuki Mishina, Science and Technology Research Laboratories, NHK (Japan Broadcasting Corporation) (Japan)

11:30

SD&A-3.59 A novel hardware based method for multiview glassless 3D display, Laurence Lujun Chen, 4D perception LLC (United States)

11:50

SD&A-360

SD&A-361

Multilevel light modulation of three-dimensional magneto-optic spatial light modulator using optically addressing method, Kazuki Nakamura¹, Kazuki Yamazaki¹, Hiroyuki Takagi¹, Taichi Goto^{1,2}, Pang Boey Lim¹, Hironaga Uchida¹, and Mitsuteru Inoue¹; ¹Toyohashi University of Technology and ²JST PRESTO (Japan)

12:10

Integral three-dimensional display with high image quality using multiple flat-panel displays, Naoto Okaichi, Hayato Watanabe, Hisayuki Sasaki, Jun Arai, Masahiro Kawakita, and Tomoyuki Mishina, Science and Technology Research Laboratories, NHK (Japan Broadcasting Corporation) (Japan)

> 12:30 - 2:00 pm Lunch Break

El 2017 Opening Plenary and Symposium Awards Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm Grand Peninsula Ballroom D

Giga-scale 3D computational microscopy, Laura Waller, University of California, Berkeley (United States)

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). Waller's talk is on computational imaging methods for fast capture of gigapixel-scale 3D intensity and phase images in a commercial microscope that employs illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is high-resolution reconstructions across a large field-of-view, achieving high space-bandwith-time product.

> 3:00 - 3:30 pm Coffee Break

SD&A Keynote I: 3D and VR on a User's Desk

Session Chair: Andrew Woods, Curtin University (Australia) 3:30 - 4:30 pm

Grand Peninsula Ballroom D

SD&A-362

Stereoscopic displays, tracking, interaction, education, and the web, David Chavez, zSpace, Inc. (United States)

David Chavez brings 20 years of experience in start-up companies, working with technologies ranging from GSM infrastructure to laptops, printers, PDAs and smartphones, in both consumer and commercial product spaces. He has managed product development teams through the full range of the product life cycle, from initial concept to volume production. Chavez has extensive experience working with suppliers and manufacturing partners worldwide, with a particular emphasis in Asia. He has held various positions in product development organizations such as pen-based computer companies GO & EO, Hewlett Packard, and Handspring.

Symposium Welcome Reception 5:00 – 6:00 pm Atrium

SD&A Conference 3D Theater

Session Chairs: John Stern, Intuitive Surgical, Inc. (United States), Chris Ward, Lightspeed Design, Inc. (United States), and Andrew Woods, Curtin University (Australia)

6:00 - 7:30 pm

Grand Peninsula Ballroom D

This ever-popular session of each year's Stereoscopic Displays and Applications Conference showcases the wide variety of 3D content that is being produced and exhibited around the world. All 3D footage screened in the 3D Theater Session is shown in high-quality polarized 3D on a large screen. The final program will be announced at the conference and 3D glasses will be provided.

Tuesday, January 31, 2017

7:15 - 8:45 am Women in Electronic Imaging Breakfast

Human Vision and Stereoscopic Imaging Joint Session

Session Chairs: Nicolas Holliman, University of Newcastle (United Kingdom), and Thrasyvoulos Pappas, Northwestern University (United States)

8:50 - 10:10 am

Grand Peninsula Ballroom D

This session is jointly sponsored by: Stereoscopic Displays and Applications XXVIII and Human Vision and Electronic Imaging 2017.

8.50

HVFI-378

Depth-compressed expression for providing natural, visual experiences with integral 3D displays, Yasuhito Sawahata and Toshiya Morita, Japan Broadcasting Corporation (Japan)

9:10

HVEI-379

SD&A-381

Blind quality prediction of stereoscopic 3D images, Jiheng Wang¹, Qingbo Wu², Abdul Rehman¹, Shiqi Wang¹, and Zhou Wang¹ ¹University of Waterloo (Canada) and ²University of Electronic Science and Technology of China (China)

9:30 SD&A-380 Pseudo-haptic by stereoscopic images and effects on muscular

activity, Takashi Kawai¹, Fumiya Ohta¹, Sanghyun Kim¹, and Hiroyuki

Morikawa^{1,2}; ¹Waseda University and ²Aoyama Gakuin University (Japan)

9.50

The effects of proximity cues on visual comfort when viewing stereoscopic contents (JIST-first), Yaohua Xie¹, Danli Wang², and Heng Qiao³; ¹Chinese Academy of Sciences, ²Institute of Software, Chinese Academy of Sciences, and ³Central University of Finance and Economics (China)

> 10:00 am - 7:30 pm Industry Exhibition

10:10 - 10:50 am Coffee Break

Autostereoscopic Displays II

Session Chair: Michael Klug, Magic Leap, Inc. (United States)

10:50 am - 12:30 pm

Grand Peninsula Ballroom D

10:50

See-through projection 3D display using time-division multiplexing, Masahiro Kajimoto, Hiroki Kamoshita, and Tomohiro Yendo, Nagaoka University of Technology (Japan)

11:10

SD&A-364

SD&A-366

SD&A-363

Flat autostereoscopic 3D display with enhanced resolution using a static color filter barrier, Silvio Jurk, Mathias Kuhlmey, Roland Bartmann, Bernd Duckstein, and René de la Barré, Fraunhofer Heinrich-Hertz-Institute (Germany)

SD&A-365

Portrait and landscape mode convertible stereoscopic display using parallax barriers, Yusuke Minami, Saki Osafune, Goro Hamagishi, Kayo Yoshimoto, and Hideya Takahashi, Osaka City University (Japan)

11:50

11.30

Digital holographic display with two-dimensional and threedimensional convertible feature by high speed switchable diffuser, Keehoon Hong, Yongjun Lim, Kwan-Jung Oh, and Hyon-Gon Choo,

Electronics and Telecommunications Research Institute (Republic of Korea) 12:10 SD&A-382

A low-cost static volumetric display based on layered high incidence angle scattering, Shawn Frayne, Looking Glass Factory, Inc. (United States)

> 12:30 - 2:00 pm Lunch Break

El 2017 Tuesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as next-generation computational near-eye displays evolve to deliver visual experiences that are better than the real world.

> 3:00 - 3:30 pm Coffee Break

Stereo-cameras and Stereo-matching

Session Chair: Neil Dodgson, University of Cambridge (United Kingdom)

3:30 - 4:30 pm

Grand Peninsula Ballroom D

3:30 SD&A-367 **Real time depth estimation method using hybrid camera system,** *Eu-Tteum Baek and Yo-Sung Ho, Gwangju Institute of Science and Technology (Republic of Korea)*

3:50 SD&A-368 **Pixel based adaptive normalized cross correlation for illumination invariant stereo matching,** Yong-Jun Chang and Yo-Sung Ho, Gwangju Institute of Science and Technology (Republic of Korea)

4:10 SD&A-369 **Guide image filtering based disparity range control in stereo vision,** Ji-Hun Mun and Yo-Sung Ho, Gwangju Institute of Science and Technology (Republic of Korea)

DISCUSSION: SD&A Forum

Moderator: Neil Dodgson, University of Cambridge (United Kingdom)

4:30 – 5:30 pm Grand Peninsula Ballroom D

This session is a chance for a hot topic to be discussed by a panel of distinguished guests. Topic and panelists to be announced.

Symposium Demonstration Session 5:30 – 7:30 pm

Wednesday, February 1, 2017

Stereoscopic Image Quality

Session Chair: Björn Sommer, University of Konstanz (Germany)

8:50 - 10:10 am

Grand Peninsula Ballroom D

8:50

SD&A-340

Sharpness mismatch and 6 other stereoscopic artifacts measured on 10 Chinese S3D movies, Dmitriy Vatolin, Lomonosov Moscow State University (Russian Federation)

9:10 SD&A-370 **Bringing 3DMap to the 21st century,** Stephan Keith¹ and Andrew Woods²; ¹Independent Consultant (United States) and ²Curtin University (Australia)

9:30 SD&A-371 Subjective and objective study of the relation between 3D and 2D views based on depth and bit rate, Balasubramanyam Appina, IIT Hyderabad (India)

9:50

SD&A-373

Improved depth of field analysis of multilayer displays, Hironobu Gotoda, National Institute of Informatics (Japan)

> 10:00 am – 4:00 pm Industry Exhibition 10:10 – 10:50 am Coffee Break

3D Developments

Session Chair: Takashi Kawai, Waseda University (Japan)

10:50 - 11:30 am

Grand Peninsula Ballroom D

10:50 SD&A-374 **Stereo rendering of photorealistic precipitation,** Syed Hussain and David McAllister, North Carolina State University (United States)

11:10 SD&A-372 **Utilization of stereoscopic 3D images in elementary school social studies classes,** Takashi Shibata¹, Yoshiki Ishihara¹, Kazunori Sato^{2,3}, and Ryohei Ikejiri⁴; ¹Tokyo University of Social Welfare, ²Takaido-higashi Elementary School, ³Tohoku University, and ⁴The University of Tokyo (Japan)

SD&A Keynote II: 360° Multi-Camera Content Creation
Session Chair: Gregg Favalora, Draper (United States)
11:30 am – 12:30 pm
Grand Peninsula Ballroom D

SD&A-375

360° 3D capture: Meeting the need in VR, Timothy Macmillan¹ and David Newman²; ¹Consultant and ²GoPro Inc. (United States)

Tim MacMillan is an award-winning photographic artist whose career with Camera Array systems began in the 1980's. In the 1990's he established Time-Slice Films Ltd. to produce content and innovate array technology for clients such as the BBC, Sky TV, Discovery Channel, and many others. His distinctive approach has been influential in the development of special effects widely used today. MacMillan's work spans both the artistic and technical, with his early camera technology now in the (United Kingdom) Science Museum. As well as architecting and designing Array systems, he has also worked in HD Broadcast Product Development with Grass Valley Cameras, and is currently Senior Manager of Advanced Products at GoPro Cameras.

12:30 – 2:00 pm Lunch Break

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States)

2:00 – 3:00 pm

Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components – all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

3:00 – 3:30 pm Coffee Break

Visualization Facilities Joint Session

Session Chairs: Margaret Dolinsky, Indiana University (United States), and Andrew Woods, Curtin University (Australia)

3:30 - 5:40 pm

Grand Peninsula Ballroom D

This session is jointly sponsored by: Stereoscopic Displays and Applications XXVIII and The Engineering Reality of Virtual Reality 2017.

3:30 SD&A-105 **Designing a cloud-based 3D visualization engine for smart cities,** Nicolas Holliman, Stephen Dowsland, Mark Turner, Richard Cloete, and Tom Picton, Newcastle University (United Kingdom)

3:50

Interactive computer graphics, stereo and VR practice at the Electronic Visualization Laboratory University of Illinois at Chicago, Maxine Brown¹, Jason Leigh², Tom DeFanti³, and Daniel Sandin¹; ¹The University of Illinois at Chicago, ²University of Hawai'i at Manoa, and ³University of California, San Diego (United States)

4:10

. ...

Designing at the Advanced Visualization Lab at Indiana University, Margaret Dolinsky¹, Eric Wernert², Michael Boyles², and Chris Eller²;

¹School of Art and Design, Indiana University and ²Advanced Visualization Lab, Indiana University (United States)

4:30 ERVR-108 Exploring Calit2, Jürgen Schulze and Gregory Dawe, University of California, San Diego (United States)

4:50

SD&A-109

SD&A-106

ERVR-107

3D-Stereoscopic immersive analytics projects at Monash University and University of Konstanz, Björn Sommer^{1,3}, David G. Barnes^{1,4}, Sarah Boyd¹, Thomas Chandler¹, Maxime Cordeil¹, Karsten Klein^{1,3}, Toan Nguyen4, Hieu Nim^{1,5}, Kingsley Stephens¹, Dany Vohl², Elliott Wilson¹, Jon McCormack¹, Kim Marriott¹, and Falk Schreiber^{1,3}; ¹Monash University (Australia), ²Swinburne University of Technology (Australia), ³University of Konstanz (Germany), ⁴Monash Immersive Visualization Platform at Monash University (Australia), and ⁵Australian Regenerative Medicine Institute of Monash University (Australia)

5:10

Image distortions in large-scale immersive display systems – Cylinder

and wedge displays, Andrew Woods¹, Joshua Hollick¹, Jesse Helliwell¹, and Paul Bourke²; ¹Curtin University and ²University of Western Australia (Australia)

5:30

SD&A Closing Remarks, Nicolas Holliman, Newcastle University (United Kingdom)

Stereoscopic Displays and Applications XXVIII Interactive Papers Session

5:30 - 7:00 pm

Atrium

The following works will be presented at the El 2017 Symposium Interactive Papers Session.

SD&A-376

SD&A-110

Analysis of retinal images for retinal projection type super multi-view

3D head-mounted display, Takashi Emoto, Tadayuki Konda, Kayo Yoshimoto, and Hideya Takahashi, Osaka City University (Japan)

SD&A-377

A new design and algorithm for lenticular lenses display, René de la Barré, Roland Bartmann, Mathias Kuhlmey, Bernd Duckstein, and Silvio Jurk, Fraunhofer HHI (Germany)

Electronic Imaging 2017

Surveillance: Applications and Algorithms 2017

Overview

With the advent of low-cost/high-performance video sensors, imaging platforms, and computational equipment, it has become increasingly possible to process video streams in real-time on affordable cloud computational servers, desktop systems, and various hand held mobile devices. Applications of these technologies are changing the landscape in security and surveillance systems. Automated video understanding can enhance surveillance/ monitoring systems beyond what is possible for human operators alone. These systems are being developed to maintain long-term surveillance on large numbers of video streams for various applications with minimal or no manual intervention. In addition, automated systems can coordinate multiple cameras and provide "synopsis" views of activities that can be used to predict/analyze potential events pre or post mortem. Over the past two decades, various video analytics algorithms have been proposed for autonomous understanding of events for a variety of surveillance applications. While most of the earlier solutions started from raw data and followed with the interpretation at increasing levels of semantic complexity, more recent techniques attempt to bridge the gap between signal-level and semantic level processing. Technological solutions to problems in surveillance have the potential for significant societal impacts on many fronts from airport/stadium/building/city security to patient/ elderly care. There is an emerging global effort to develop effective surveillance systems. This Special Session Call for Papers is intended to bring together world class researchers and practitioners that develop and deploy imaging and video technologies to enable novel solutions in the surveillance and security arenas.

Chair: Sreenath Rao Vantaram, Intel Corporation (United States)

Surveillance: Applications and Algorithms 2017 Session

Tuesday, January 31, 2017

Surveillance: Applications and Algorithms Topics

Session Chair: Sreenath Vantaram, Intel Corporation (United States)

8:50 - 10:20 am

Harbour

8:50

Chair Opening Remarks

9:00 SRV-349 **Traffic light recognition and dangerous driving events detection from surveillance video of vehicle camera,** Haike Guan, Ryohsuke Kasahara, and Tomoaki Yano, Ricoh Company, Ltd. [Japan] 9:20 SRV-350

A combined HOG and deep convolution network cascade for pedestrian detection, Yuriy Lipetski and Oliver Sidla, SLR Engineering GmbH (Austria)

9:40 SRV-352 **A multi-scale approach to skin pixel detection,** Siddharth Roheda¹ and Hari Kalva²; ¹North Carolina State University and ²Florida Atlantic University (United States)

10:00 SRV-351 Detecting and estimating sound events locations through a microphone array, Josafat Martínez-García, Beatriz Juárez-Arreortúa, Alberto Vázquez-Cervantes, and Hugo Jimenez, Centro de Ingeniería y Desarrollo Industrial (Mexico)

> 10:00 am – 7:30 pm Industry Exhibition 10:20 – 10:50 am Coffee Break

El 2017 Tuesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) **2:00 – 3:00 pm** Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as nextgeneration computational near-eye displays evolve to deliver visual experiences that are better than the real world.

3:00 – 3:30 pm Coffee Break

Symposium Demonstration Session 5:30 – 7:30 pm Grand Peninsula Ballroom E

Visual Information Processing and Communication VIII

Conference overview

Processing, storage, and transmission of many types of visual information, including photos and stereo images, video, graphics, light fields, volumetric, spectral, etc., have become important engineering areas that attract interdisciplinary research interest. This conference is designed as a forum for presenting important research results as well as applications.

Topics include:

- Compression of visual information: image, video, graphics, and light-field coding, compression standards, very-low bit rate coding, high quality image/video/graphics coding, volumetric data coding
- Media over networks: media streaming, video over wireless networks, error resilience, scalability, quality of service, cross-layer optimization for improved media delivery, streaming media delivery networks
- Visual information processing: filtering, interpolation (e.g. deinterlacing, frame-rate conversion), restoration, compressed-domain processing, superresolution, multimodal media processing
- Visual information representations: multiresolution analysis, subbands, wavelets, sparse decompositions for visual data, related estimation, analysis, and reconstruction algorithms
- Pattern matching of visual data: machine learning, augmented reality, mobile applications
- Object-based methods: segmentation and tracking, feature extraction
- Synthetic imaging and rendering: stereo, multiview and 3D video, synthetic image/video and graphics representations, 3D and animated 3D models, virtual reality, visualization and display techniques
- Application systems: DTV, electronic cinema, multimedia content retrieval, man-machine interface, imaging/video surveillance
- Media system design: hardware and software architectures and implementation issues, scalable computations, low-power implementations, multicore algorithm design
- Compression of medical imaging information
- Other timely topics related to visual information communication and processing

Conference Chairs: Edward Delp, Purdue Univ. (United States); and Robert L. Stevenson, Univ. of Notre Dame (United States)

Program Committee: John Apostolopoulos,

HP Inc. (United States); Vasudev Bhaskaran, Qualcomm Technologies, Inc. (United States); Mireille Boutin, Purdue Univ. (United States); Chang Wen Chen, The State Univ. of New York at Buffalo (United States); Gerard de Haan, Philips Research Nederland B.V. (the Netherlands); Eric Dubois, Univ. of Ottawa (Canada); Frederic Dufaux, Télécom ParisTech (France); Keigo Hirakawa, Univ. of Dayton (United States); Marta Karczewicz, Qualcomm Technologies, Inc. (United States); Lisimachos Kondi, Univ. of Ioannina (Greece); Janusz Konrad, Boston Univ. (United States); Chun-Chieh Jay Kuo, The Univ. of Southern California (United States); Peyman Milanfar, Univ. of California, Santa Cruz (United States); Antonio Ortega, The Univ. of Southern California (United States); Thrasyvoulos Pappas, Northwestern Univ. (United States); William Pearlman, Rensselaer Polytechnic Institute (United States); Fernando Pereira, Instituto de Telecomunicações (Portugal); Béatrice Pesquet-Popescu, Télécom Paris Tech (France); Majid Rabbani, Consultant (United States); Eli Saber, Rochester Institute of Technology (United States); Amir Said, Qualcomm Technologies Inc. (United States); Dan Schonfeld, Univ. of Illinois at Chicago (United States); Andrew Segall, Sharp Labs of America, Inc. (United States); Gaurav Sharma, Univ. of Rochester (United States); Andrew Tescher, AGT Associates (United States); Anthony Vetro, Mitsubishi Electric Research Labs (United States); John Woods, Rensselaer Polytechnic Institute (United States); and Wenwu Zhu, Tsinghua Univ. (China)

Visual Information Processing and Communication VIII

Monday, January 30, 2017

Image and Video Compression

10:50 am - 12:30 pm Cypress A

10.50

VIPC-398

VIPC-400

A fast TU mode decision algorithm based on residual difference for HEVC, Nian-Rong Li¹, Kai-Wen Liang¹, Zong-Yi Chen¹, Hui-Yu Jiang¹, Jiunn-Tsair Fang², and Pao-Chi Chang¹; ¹National Central University and ²Ming Chuan University (Taiwan)

11:10 VIPC-399 A fast intra mode decision algorithm for HEVC, Weihang Liao, Daigin Yang, and Zhenzhong Chen, Wuhan University (China)

11:30

Diamond frequency domain inter frame motion estimation for HEVC, Abdelrahman Abdelazim¹, Ahmed Hamza², Mohamed Hefeida¹, and Djamel Ait-Boudaoud²; ¹The American University of the Middle East (Kuwait) and ²University of Portsmouth (United Kingdom)

11:50 VIPC-401 Compression of infrared images, Claire Mantel and Soren Forchhammer, Denmark Technical University (Denmark)

12.10 VIPC-402 Graph regularized sparse coding by modified online dictionary learning, Lingdao Sha, Jing Wang, and Dan Schonfeld, University of Illinois at Chicago (United States)

> 12:30 - 2:00 pm Lunch Break

El 2017 Opening Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 - 3:00 pm

Grand Peninsula Ballroom D

Giga-scale 3D computational microscopy, Laura Waller, University of California, Berkeley (United States)

Laura Waller is the Ted Van Duzer Endowed Assistant Professor of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. She is a Senior Fellow at the Berkeley Institute of Data Science, and received her BS (2004), MEng (2005), and PhD (2010) in EECS from the Massachusetts Institute of Technology (MIT). Waller's talk is on computational imaging methods for fast capture of gigapixel-scale 3D intensity and phase images in a commercial microscope that employs illumination-side and detection-side coding of angle (Fourier) space with simple hardware and fast acquisition. The result is high-resolution reconstructions across a large field-of-view, achieving high spacebandwith-time product.

> 3:00 - 3:30 pm Coffee Break

Segmentation

3:30 - 4:30 pm

Cypress A

3.30 VIPC-403 A coarse-to-fine framework for video object segmentation, Chi Zhang¹ and Alexander Loui²; ¹Rochester Institute of Technology and ²Kodak Alaris Inc. (United States)

3:50 VIPC-404 A fast and accurate segmentation method for medical images, Jiatao Wu, Yong Li, Chunxiao Fan, and Hongbin Jin, Beijing University of Posts and Telecommunications (China)

4.10 VIPC-405 Adaptive combination of local motion, appearance, and shape for video segmentation (JIST-first), Soochahn Lee¹, Woo-sung Shim², and Se-hoon Kim²; ¹Soonchunhyang University and ²Samsung Electronics (Republic of Korea)

Symposium Welcome Reception 5:00 - 6:00 pm

Tuesday, January 31, 2017

Techniques for Image and Video Processing

8:50 - 10:10 am Cypress A

8.50

Improvement of infrared image based on directional anisotropic

wavelet transform, Hongbin Jin¹, Chunxiao Fan¹, Quanxin Wang² and Yong Li¹; ¹Beijing University of Posts and Telecommunications and ²Ultimedical, Inc (China)

9:10

VIPC-407 New diamond half-pel hexagon serach algorithm for block matching motion estimation, Abdelrahman Abdelazim¹, Ahmed Hamza², Bassam Noaman¹, and Djamel Ait-Boudaoud²; ¹The American University of the Middle East (Kuwait) and ²University of Portsmouth (United Kingdom)

9:30

VIPC-408

VIPC-406

Self-example-based edge enhancement algorithm for around view monitor images, Dong Yoon Choi¹, Ji Hoon Choi¹, Jin Wook Choi², and Byung Cheol Song¹; ¹Inha University and ²Hyundai Motor Company (Republic of Korea)

9.50

Adaptive multireference prediction using a symmetric framework, Zoe Liu¹, Debargha Mukherjee¹, Wei-Ting Lin², Paul Wilkins¹, Jingning

Han¹, Yaowu Xu¹, and James Bankoski¹; ¹Google Inc. and ²University of California, Santa Barbara (United States)

10:00 am - 7:30 pm Industry Exhibition 10:10 - 10:50 am Coffee Break

VIPC-409

100

Databases and Classification

10:50 - 11:30 am

Cypress A

10:50

VIPC-411

Semi-supervised learning feature representation for historical Chinese character recognition, Xiaoyi Yu, Wei Fan, and Jun Sun, Fujitsu R&D Co. Limited (China)

11:10

VIPC-412

Document image classification on the basis of layout information, Sergey Zavalishin^{1,2}, Andrey Bu³, Ilya Kurilin¹, and Michael Rychagov¹; ¹Samsung R&D Institute Russia, ²Ryazan State Radio Electronics University (RSREY), and ³Kaspersky Lab (Russian Federation)

11:30 am – 2:00 pm 🛛 Lunch Break

El 2017 Tuesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 – 3:00 pm

Grand Peninsula Ballroom D

VR 2.0: Making virtual reality better than reality, Gordon Wetzstein, Stanford University (United States)

Gordon Wetzstein is an Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science, at Stanford University, and leads the Stanford Computational Imaging Group. He received a PhD in computer science from the University of British Columbia (2011) where his doctoral dissertation focused on computational light modulation for image acquisition and display. In his talk, Wetzstein explores the frontiers of VR systems engineering. Eventually, VR/ AR systems will redefine communication, entertainment, education, collaborative work, simulation, training, telesurgery, and basic vision research, as next-generation computational near-eye displays evolve to deliver visual experiences that are better than the real world.

3:00 – 3:30 pm Coffee Break

Symposium Demonstration Session 5:30 – 7:30 pm Grand Peninsula Ballroom E

Electronic Imaging 2017

Visualization and Data Analysis 2017

Conference overview

The Conference on Visualization and Data Analysis (VDA) 2017 covers all research and development and application aspects of data visualization and visual analytics. Since the first VDA conference was held in 1994, the annual event has grown steadily into a major venue for visualization researchers and practitioners from around the world to present their work and share their experiences.

Award: Kostas Pantazos Memorial Award for Outstanding Paper

Conference Sponsor

Conference Chairs: Thomas Wischgoll, Wright State Univ. (United States); Song Zhang, Mississippi State Univ. (United States); and David Kao, NASA Ames Research Center (United States)

Program Committee: Madjid Allili, Bishop's Univ. (Canada); Wes Bethel, Lawrence Berkeley National Lab. (United States); Abon Chaudhuri, WalmartLabs (United States); Yi-Jen Chiang, New York Univ. (United States); Hank Childs, Univ. of Oregon (United States); Jaegul Choo, Korea Univ. (Republic of Korea); Joseph Cottam, Indiana Univ. (United States); Sussan Einakian, Univ. of Alabama in Huntsville (United States); Christoph Garth, Technische Univ. Kaiserslautern (Germany); John Gerth, Stanford Univ. (United States); Matti Gröhn, Finnish Institute of Occupational Health (Finland); Christopher Healey, North Carolina State Univ. (United States); Mario Hlawitschka, Univ. of Leipzig (Germany); Halldor Janetzko, Univ. of Konstanz (Germany); Ming Jiang, Lawrence Livermore National Laboratory (United States); Alark Joshi, Univ. of San Francisco (United States); Andreas Kerren, Linnaeus Univ. (Sweden); Robert Lewis, Washington State Univ. (United States); Peter Lindstrom, Lawrence Livermore National Laboratory (United States); Lars Linsen, Jacobs Univ. Bremen GmbH (Germany); Zhanping Liu, Old Dominion Univ. (United States); Aidong Lu, Univ. of North Carolina at Charlotte (United States); G. Elisabeta Marai, Univ. of Illinois at Chicago (United States); Richard May, Pacific Northwest National Lab. (United States): Joerg Meyer, Magic Leap, Inc. (United States); Harald Obermaier, Univ. of California, Davis (United States); **Donald Pellegrino,** The Dow Chemical Co. (United States); Theresa-Marie Rhyne, Computer Graphics and E-Learning (United States); René Rosenbaum, meeCoda (Germany); Jibonananda Sanyal, Oak Ridge National Lab. (United States); Pinaki Sarder, Univ. of Buffalo (United States); Graig Sauer, Towson Univ. (United States); Inga Scheler, Technische Univ. Kaiserslautern (Germany); Jürgen Schulze, Univ. of California, San Diego (United States); Christopher Shaw, Simon Fraser Univ. (Canada); Chad Steed, Oak Ridge National Laboratory (United States); Kalpathi Subramanian, Univ. of North Carolina at Charlotte (United States); Shigeo Takahashi, Univ. of Aizu (Japan); Chaoli Wang, Michigan Technological Univ. (United States); Tino Weinkauf, Royal Institute of Technology (Sweden); Jie Yan, Bowie State Univ. (United States); Hsu-Chun Yen, National Taiwan Univ. (Taiwan); Leishi Zhang, Middlesex Univ. London (United Kingdom); Wenjin Zhou, Oakand Univ. (United States); and Caroline Ziemkiewicz, Brown Univ. (United States)

Wednesday, February 1, 2017

El 2017 Wednesday Plenary and Symposium Awards

Session Chairs: Joyce E. Farrell, Stanford University, and Nitin Sampat, Rochester Institute of Technology (United States) 2:00 – 3:00 pm

Grand Peninsula Ballroom D

Designing VR video camera systems, Brian Cabral, Facebook, Inc. (United States)

Brian Cabral is Director of Engineering at Facebook, leading the Surround 360 VR camera team, specializing in computational photography, computer vision, and computer graphics. He has published a number of papers in the area of computer graphics and imaging including the pioneering Line Integral Convolution algorithm. Cabral discusses developing Facebook Surround 360, an open, high-quality 3D-360 video capture system. VR video capture systems are composed of multiple optical and digital components - all of which must operate as if they are one seamless optical system. The design of VR video cameras, optical choices, SNR, etc., require a new set of technologies and engineering approaches, with tight coupling to the computational system components.

3:00 – 3:30 pm Coffee Break

Keynote: Topological Data Analysis

Session Chair: Thomas Wischgoll, Wright State University (United States) **3:30 – 4:30 pm**

VDA-383

Topological analysis at the extreme scale: Finding features in large data sets, Gunther Weber, Lawrence Berkeley National Laboratory and University of California, Davis (United States)

Gunther Weber is a Staff Scientists in LBNL's Computational Research Division and an Adjunct Associate Professor of Computer Science at UC Davis. His research interests include computer graphics, scientific visualization, topological data analysis methods, parallelization of visualization algorithms, hierarchical data representation methods, and bioinformatics. Prior to joining LBNL, Weber worked as a Project Scientist at the Institute for Data Analysis and Visualization (IDAV) at UC Davis focusing on visualization of three-dimensional gene expression data (with researchers of LBNL's Genomics and Life Sciences divisions), topological exploration of scalar data, and visualization of brain imaging data and experimental earthquake data. Weber earned his PhD in computer science, from the University of Kaiserslautern, Germany (2003).

Visualization and Data Analysis 2017 Interactive Papers Oral Previews

Session Chair: Thomas Wischgoll, Wright State University (United States)

4:30 – 4:50 pm Cypress B

In this session interactive poster authors will each provide a brief oral preview of their poster presentation, which will be presented fully in the Visualization and Data Analysis 2017 portion of the Symposium Interactive Papers Session at 5:30 pm on Wednesday.

4:30

4.36

An interactive tool for Analyzing the Correlation, Uncertainty, and Clustering (ACUC) over ensembles in climate dataset, Najmeh Abedzadeh, Mississippi State University (United States)

Roeuzaden, Triississippi Sidle Oniversity (Onlied S

Analysis enhanced particle-based flow visualization, Lieyu Shi, Lei Zhang, Wei Cao, and Guoning Chen, University of Houston (United States) 4:42 VDA-450

Constellations of movement: An interactive application to visualise research in motor imagery decoding, Jennifer Rogers¹, Matthieu Poyade¹, and Frank Pollick²; ¹Glasgow School of Art and ²University of Glasgow

Panel: Application Papers: What are they and how should they be evaluated?

Panel Moderator: Gunther Weber, Lawrence Berkeley National Laboratory (United States) **4:50 – 5:30 pm**

Cypress B

(United Kingdom)

This panel will start a discussion in the community about what goals an application paper ought to have, what its main contributions to the state of art of visualization should be, and how it ought to be evaluated by reviewers. How do we as a community generate clear evaluation criteria for this type of paper?

Symposium Interactive Papers (Poster) Session 5:30 – 7:00 pm Atrium

Thursday, February 2, 2017

Information Visualization

Session Chair: Song Zhang, Mississippi State University (United States)

8:50 – 10:10 am

Cypress B

8.50

9:10

VDA-386

Declarative guide creation, Joseph Cottam and Andrew Lumsdaine, Indiana University (United States)

Research IGD (Germany)

VDA-387

VDA-388

Visual-interactive semi-supervised labeling of human motion capture data, Jürgen Bernard¹, Eduard Dobermann¹, Anna Vögele², Björn Krüger³, Jörn Kohlhammer⁴, and Dieter Fellner¹; ¹Technische University Darmstadt (Germany), ²University of Bonn (Germany), ³Gokhale Method Institute (United States), and ⁴Fraunhofer Institute for Computer Graphics

9:30

30

Visual-interactive creation and validation of text clustering workflows to explore document collections, Tobias Ruppert¹, Michael Staab², Andreas Bannach¹, Hendrik Lücke-Tieke¹, Jürgen Bernard², Arjan Kuijper^{1,2}, and Jörn Kohlhammer^{1,2}; ¹Fraunhofer Institute for Computer Graphics Research IGD and ²Technische University Darmstadt (Germany)

VDA-384

VDA-38.5

9:50

VDA-389

AssisTag: Seamless integration of content-based and keyword-based image exploration for category search (JIST-first), Kazuyo Mizuno, Daisuke Sakamoto, and Takeo Igarashi, The University of Tokyo (Japan)

> 10:10 - 10:50 am Coffee Break

Virtual Reality

Session Chair: Song Zhang, Mississippi State University (United States)

10:50 - 11:30 am

Cypress B

10:50

VDA-390 Megacity: A collaborative virtual reality environment for emergency response, training, and decision making, Sharad Sharma¹, Phillip Devreaux¹, David Scribner², Jock Grynovicki², and Peter Grazaitis²; ¹Bowie State University and ²Army Research Laboratory (United States)

11.10

Display systems for visualization and simulation in virtual environments, Thomas Wischgoll, Wright State University (United States)

Scientific Visualization

Session Chair: David Kao, NASA Ames Research Center (United States)

11:30 am - 12:10 pm

Cypress B

11:30

VDA-392

VDA-393

VDA-391

Ray traced volume clipping using multi-hit BVH Traversal, Stefan Zellmann¹, Mauritius Hoevels², and Ulrich Lang¹; ¹University of Cologne and ²University Hospital of Cologne (Germany)

11:50

Effectiveness of feature-driven storytelling in 3D time-varying data visualization (JIST-first), Aidong Lu, Li Yu, and Lane Harrison, University of North Carolina at Charlotte (United States)

> 12:10 - 2:00 pm Lunch Break

Graphs and Hierarchies

Session Chair: Thomas Wischgoll, Wright State University (United States)

2:00 - 2:40 pm

Cypress B

2:00 VDA-394 A visual and statistical benchmark of graph sampling methods, Fangyan Zhang¹, Song Zhang¹, and Pak Wong²; ¹Mississippi State University and

²Pacific Northwest National Laboratory (United States)

2:20

Inferring partial orders of nodes for hierarchical network layout (JIST-first), Hsiang-Yun Wu¹, Shigeo Takahashi², Hiroko Miyamura³, Satoshi Ohzahata⁴, and Akihiro Nakao⁵; ¹Keio University, ²University

of Aizu, ³Japan Atomic Energy Agency, ⁴The University of Electro-Communications, and ⁵The University of Tokyo (Japan)

Flow Visualization

Session Chair: David Kao, NASA Ames Research Center (United States)

2:40 - 3:20 pm

Cypress B

2:40

VDA-396 Closest point sparse octree for surface flow visualization, Mark Kim and Charles Hansen, University of Utah (United States)

3:00

VDA-397

VDA-395

Accelerating advection via approximate block exterior flow maps, Ryan Bleile¹, Linda Sugiyama², Christoph Garth³, and Hank Childs¹; ¹University of Oregon (United States), ²Massachusetts Institute of Technology (United States), and ³University of Kaiserslautern (Germany)

Meet the Future: A Showcase of Student and Young Professionals Research 3:00 - 5:00 pm

> 3:20 - 4:00 pm Coffee Break

Short Courses

Sunday, January 29, 2017

NEW for 2017 El01: Stereoscopic Display Application Issues

Instructors: John Merritt, The Merritt Group (United States) and Andrew Woods, Curtin University (Australia)

8:00 am - 5:45 pm (8 hours)

Course Level: Intermediate

Fee: Member fee*: \$465 / Non-member fee: \$510 / Student fee: \$185 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

When correctly implemented, stereoscopic 3D video displays can provide significant benefits in many areas, including endoscopy and other medical imaging, remote-control vehicles and telemanipulators, stereo 3D CAD, molecular modeling, 3D computer graphics, 3D visualization, and video-based training. This course conveys a concrete understanding of basic principles and pitfalls that should be considered in transitioning from 2D to 3D displays, and in testing for performance improvements. In addition to the traditional lecture sessions, there is a "workshop" session to demonstrate stereoscopic hardware and 3D imaging/display principles, emphasizing the key issues in an ortho-stereoscopic video display setup, and showing video from a wide variety of applied stereoscopic imaging systems.

Benefits:

- List critical human factors guidelines for stereoscopic display configuration & implementation.
- Calculate optimal camera focal length, separation, display size, and viewing distance to achieve a desired level of depth acuity.
- Calculate comfort limits for focus/fixation mismatch and on-screen parallax values, as a function of focal length, separation, convergence, display size, and viewing distance factors.
- Set up a large-screen stereo display system using AV equipment readily available at most conference sites for slides and for full-motion video.
- Evaluate the trade-offs among currently available stereoscopic display technologies for your proposed applications.
- List the often-overlooked side-benefits of stereoscopic displays that should be included in a cost/benefit analysis for proposed 3D applications.
- Avoid common pitfalls in designing tests to compare 2D vs. 3D displays.
 Calculate and demonstrate the distortions in perceived 3D space due to
- Calculate and demonstrate the distortions in perceived 3D space due to camera and display parameters.
- Design and set up an orthostereoscopic 3D imaging/display system.
- Understand the projective geometry involved in stereo modeling.
- Understand the trade-offs among currently available stereoscopic display system technologies and determine which will best match a particular application.

Intended Audience: Engineers, scientists, and program managers involved with video display systems for applications such as: medical imaging & endoscopic surgery, simulators & training systems, teleoperator systems (remote-control vehicles & manipulators), computer graphics, 3D CAD systems, data-space exploration and visualization, and virtual reality.

John O. Merritt is a display systems consultant at The Merritt Group, Williamsburg, MA, with more than 25 years' experience in the design and human-factors evaluation of stereoscopic video displays for telepresence and telerobotics, scientific visualization, and medical imaging. Andrew J. Woods is manager of the Curtin HIVE visualization facility and a research engineer at Curtin University's Centre for Marine Science and Technology in Perth, Western Australia. He has more than 20 years of experience working on the design, application, and evaluation of stereoscopic image and video capture and display equipment.

EIO2: Introduction to Image Quality Testing: Targets, Software, and Standards

Instructors: Peter Burns, Burns Digital Imaging (United States) and Don Williams, Image Science Associates (United States)

8:00 - 10:00 am (2 hours)

Course Level: Introductory

Fee: Member fee*: \$165 / Non-member fee: \$195 / Student fee: \$60 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

This course introduces imaging performance evaluation for image capture and provides a foundation for more advanced topics, e.g., system characterization and performance benchmarking. We adopt a scenario-based approach by describing several situations where imaging performance needs evaluation. Each of these, from design to quality assurance for manufacturing, is addressed in terms of suggested methods, color test charts, and standard reporting. For several important attributes, we describe international standards, guidelines, and current best practice. We demonstrate how testing standards can be adapted to evaluate capture devices ranging from cameras to scientific detectors. Examples are drawn from various applications, including consumer, museum, mobile, and clinical imaging.

Benefits:

- Understand the difference between imaging performance and image quality.
- Describe performance standards, guidelines, and current best practices.
- Understand how color-encoding, image resolution, distortion, and noise are evaluated.
- Compare various commercial analysis software products and (color, resolution) test charts.
- Select evaluation methods and test targets to meet your project needs.
- Identify sources of system variability and understand measurement error.

Intended Audience: This course is intended for a wide audience: image scientists, quality engineers, and others evaluating digital camera and scanner performance. No background in imaging performance (optical distortion, color-error, MTF, etc.) evaluation will be assumed.

Peter Burns is a consultant working in imaging system evaluation, modeling, and image processing. Previously he worked for Carestream Health, Xerox, and Eastman Kodak. A frequent instructor and speaker at technical conferences, he has contributed to several imaging standards. He has taught imaging courses at Kodak, SPIE, and IS&T technical conferences, and at the Center for Imaging Science, RIT.

Don Williams, founder of Image Science Associates, was with Kodak Research Laboratories. His work focuses on quantitative signal and noise performance metrics for digital capture imaging devices and imaging fidelity issues. He co-leads the TC 42 standardization efforts on digital print and film scanner resolution (ISO 16067-1, ISO 16067-2), scanner dynamic range (ISO 21550), and is the editor for the second edition to digital camera resolution (ISO 12233).

EIO3: Concepts, Procedures, and Practical Aspects of Measuring Resolution in Mobile and Compact Imaging Devices and the Impact of Image Processing

Instructors: Uwe Artmann, Image Engineering GmbH & Co KG (Germany) and Kevin Matherson, Microsoft Corporation (United States)

8:00 - 10:00 am (2 hours)

Course Level: Introductory/Intermediate

Fee: Member fee*: \$165 / Non-member fee: \$195 / Student fee: \$60 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

Resolution is often used to describe image quality of electronic imaging systems. Components of an imaging system such as lenses, sensors, and image processing impact the overall resolution and image quality achieved in devices such as digital and mobile phone cameras. While image processing can in some cases improve the resolution of an electronic camera, it can also introduce artifacts as well. This course is an overview of spatial resolution methods used to evaluate electronic imaging devices and the impact of image processing on the final system resolution. The course covers the basics of resolution and impacts of image processing, international standards used for the evaluation of spatial resolution, and practical aspects of measuring resolution in electronic imaging devices such as target choice, lighting, sensor resolution, and proper measurement techniques.

Benefits:

- Understand terminology used to describe resolution of electronic imaging devices.
- Describe the basic methods of measuring resolution in electronic imaging devices and their pros and cons.
- Understand point spread function and modulation transfer function.
- Learn slanted edge spatial frequency response (SFR).
- Learn Siemens Star SFR.
- Contrast transfer function.
- Difference between and use of object space and image space resolution.
- Describe the impact of image processing functions on spatial resolution.
- Understand practical issues associated with resolution measurements.
- Understand targets, lighting, and measurement set up.
- Learn measurement of lens resolution and sensor resolution.
- Appreciate RAW vs. processed image resolution measurements.
- Learn cascade properties of resolution measurements.
- Understand measurement of camera resolution.
- Understand the practical considerations when measuring real lenses.

Intended Audience: Managers, engineers, and technicians involved in the design and evaluation of image quality of digital cameras, mobile cameras, video cameras, and scanners would benefit from participation. Technical staff of manufacturers, managers of digital imaging projects, as well as journalists and students studying image technology are among the intended audience.

Kevin J. Matherson is a director of optical engineering at Microsoft Corporation working on advanced optical technologies for consumer products. Prior to Microsoft, he participated in the design and development of compact cameras at HP and has more than 15 years of experience developing miniature cameras for consumer products. His primary research interests focus on sensor characterization, optical system design and analysis, and the optimization of camera image quality. Matherson holds a Masters and PhD in optical sciences from the University of Arizona. Uwe Artmann studied photo technology at the University of Applied Sciences in Cologne following an apprenticeship as a photographer and finished with the German 'Diploma Engineer'. He is now the CTO at Image Engineering, an independent test lab for imaging devices and manufacturer of all kinds of test equipment for these devices. His special interest is the influence of noise reduction on image quality and MTF measurement in general.

NEW for 2017 EI04: Electronic Imaging of Secure Documents

Instructor: Alan Hodgson, Alan Hodgson Consulting Ltd. (United Kingdom)

8:00 - 10:00 am (2 hours)

Course Level: Introductory

Fee: Member fee*: \$165 / Non-member fee: \$195 / Student fee: \$60 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

This short course highlights the opportunities for electronic imaging technology in the broad secure documents market. There are specific opportunities for a broad range of electronic imaging technologies for the inspection and verification of a wide selection of secure documents.

For the purposes of this short course we consider the market for secure documents to encompass brand protection, packaging, and high security documents. The course is illustrated with examples from the high security end as personal identification documents provide a great illustration of the features and challenges in this sector.

This course is a mirror of one given to the high security printing community on the threats and opportunities that the technologies presented at this conference bring to secure documents. The benefits that this interaction brings is that the course is tuned to reflect the needs and opportunities for both communities.

Benefits:

- Understand the fundamentals driving security printing opportunities.
- Identify opportunities for electronic imaging solutions in this market segment.
- Gain an overview of how mobile imaging, machine vision, and multispectral characterization can be used in the security print market sector.

Intended Audience: Imaging scientists, systems developers, and engineers who are looking for applications of their technology in the field of security documents, from brand protection to personal identification. It is likely to be of particular interest to those with a background in visual perception, mobile imaging, and image processing as these will figure as potential application areas in this short course.

Alan has 35 years' experience in imaging science and printing, initially from the photography industry. Working on holography and scientific imaging he made the transition to digital imaging through astrophotography, conservation and security printing. He recently spent seven years at 3M, specializing in print solutions for high security documents such as passports and identity cards. He has since returned to his consultancy business, working on projects that include security, imaging, and printed electronics applications. Alan has a BSc in colour chemistry and a PhD in instrumentation, both from the department of chemistry at the University of Manchester. After a 30 year gap he has returned to the university as a Visiting Academic, investigating technology opportunities for secure documents. He is immediate Past President of IS&T and a Fellow of The Royal Photographic Society.
EI05: Advanced Image Enhancement and Deblurring

Instructor: Majid Rabbani, Consultant (United States)

8:00 am - 12:15 pm (4 hours)

Course Level: Advanced

Fee: Member fee*: \$260 / Non-member fee: \$290 / Student fee: \$90 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

This course explains some of the advanced algorithms used for contrast enhancement, noise reduction, and sharpening and deblurring of still images and video. Applications include consumer and professional imaging, medical imaging, forensic imaging, surveillance, and astronomical imaging. Many image examples complement the technical descriptions.

Benefits:

- Understand advanced algorithms used for contrast enhancement such as CLAHE, Photoshop Shadows/Highlights, and Dynamic Range Compression (DRC).
- Understand advanced techniques used in image sharpening such as advanced variations of nonlinear unsharp masking, etc.
- Understand recent advancements in image noise removal, such as bilateral filtering and nonlocal means.
- Understand how motion information can be utilized in image sequences to improve the performance of various enhancement techniques.
- Understand Wiener filtering and its variations for performing image deblurring (restoration).

Intended Audience: Scientists, engineers, and technical managers who need to understand and/or apply the techniques employed in digital image processing in various products in a diverse set of applications such as medical imaging, professional and consumer imaging, forensic imaging, etc. will benefit from this course. Some knowledge of digital filtering (convolution) and frequency decomposition is necessary for understanding the deblurring concepts.

Majid Rabbani has 35 years of experience in digital imaging. After a 33-year career at Kodak Research labs, he retired in 2016 with the rank of Kodak Fellow. Currently, he is a visiting professor at Rochester Institute of Technology (RIT). He is the co-recipient of the 2005 and 1988 Kodak C. E. K. Mees Awards and the correcipient of two Emmy Engineering Awards (1990 and 1996). He has 44 issued US patents and is the co-author of the book Digital Image Compression Techniques published in 1991 and the creator of six video/CDROM courses in the area of digital imaging. Rabbani is a Fellow of SPIE and IEEE and a Kodak Distinguished Inventor. He has been an active educator in the digital imaging community for the past 30 years.

EIO6: Fundamentals of Deep Learning

Instructor: Raymond Ptucha, Rochester Institute of Technology (United States)

8:00 am - 12:15 pm (4 hours)

Course Level: Intermediate. Basic machine learning exposure and prior experience programming using a scripting language helpful.

Fee: Member fee*: \$260 / Non-member fee: \$290 / Student fee: \$90 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

Deep learning has been revolutionizing the machine learning community winning numerous competitions in computer vision and pattern recognition. Success in this space spans many domains including object detection, classification, speech recognition, natural language processing, action recognition and scene understanding. In some cases, results are on par with and even surpassing the abilities of humans. Activity in this space is pervasive, ranging from academic institutions to small startups to large corporations. This short course encompasses the two hottest deep learning fields: convolutional neural networks (CNNs) and recurrent neural networks (RNNs), and then gives attendees hands-on training on how to build custom models using popular open source deep learning frameworks. CNNs are end-to-end, learning low level visual features and classifier simultaneously in a supervised fashion, giving substantial advantage over methods using independently solved features and classifiers. RNNs inject temporal feedback into neural networks. The best performing RNN framework, Long Short Term Memory modules, are able to both remember long term sequences and forget more recent events. This short course describes what deep networks are, how they evolved over the years, and how they differ from competing technologies. Examples are given demonstrating their widespread usage in imaging, and as this technology is described, indicating their effectiveness in many applications.

There are an abundance of approaches to getting started with deep learning, ranging from writing C++ code to editing text with the use of popular frameworks. After understanding how these networks are able to learn complex systems, a hands-on portion provided by NVIDIA's Deep Learning Institute, we demonstrate usage with popular open source utilities to build state-of-the-art models. An overview of popular network configurations and how to use them with frameworks is discussed. The session concludes with tips and techniques for creating and training deep neural networks to perform classification on imagery, assessing performance of a trained network, and modifications for improved performance.

Benefits:

- To become familiar with deep learning concepts and applications.
- To understand how deep learning methods, specifically convolutional neural networks and recurrent neural networks work.
- To gain hands-on experience building, testing, and improving the performance of deep networks using popular open source utilities.

Intended Audience: The short course is intended for engineers, scientists, students, and managers interested in acquiring a broad understanding of deep learning. Prior familiarity with basics of machine learning and a scripting language are helpful.

Raymond Ptucha is an assistant professor in computer engineering at the Rochester Institute of Technology specializing in machine learning, computer vision, robotics, and embedded control. Ptucha was a research scientist with Eastman Kodak Company for 20 years where he worked on computational imaging algorithms and was awarded 26 US patents with another 23 applications on file. He graduated from SUNY/Buffalo with a BS in computer science (1988) and a BS in electrical engineering (1989). He earned a MS in image science (2002) and PhD in computer science from RIT (2013). He was awarded an NSF Graduate Research Fellowship in 2010 and his PhD research earned the 2014 Best RIT Doctoral Dissertation Award. Ptucha is a passionate supporter of STEM education and is an active member of his local IEEE chapter and FIRST robotics organizations.

El08: 3D Imaging

Instructor: Gady Agam, Illinois Institute of Technology (United States)

8:00 am - 12:15 pm (4 hours)

Course Level: Introductory

Fee: Member fee*: \$260 / Non-member fee: \$290/ Student fee: \$90 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

The purpose of this course is to introduce algorithms for 3D structure inference from 2D images. In many applications, inferring 3D structure from 2D images can provide crucial sensing information. The course begins by reviewing geometric image formation and mathematical concepts that are used to describe it, and then moves to discuss algorithms for 3D model reconstruction.

The problem of 3D model reconstruction is an inverse problem in which we need to infer 3D information based on incomplete (2D) observations. We discuss reconstruction algorithms which utilize information from multiple views. Reconstruction requires the knowledge of some intrinsic and extrinsic camera parameters and the establishment of correspondence between views. Also discussed are algorithms for determining camera parameters (camera calibration) and for obtaining correspondence using epipolar constraints between views. The course introduces relevant 3D imaging software components available through the industry standard OpenCV library.

Benefits:

- Describe fundamental concepts in 3D imaging.
- Develop algorithms for 3D model reconstruction from 2D images.
- Incorporate camera calibration into your reconstructions.
- Classify the limitations of reconstruction techniques.
- Use industry standard tools for developing 3D imaging applications.

Intended Audience: Engineers, researchers, and software developers who develop imaging applications and/or use camera sensors for inspection, control, and analysis. The course assumes basic working knowledge concerning matrices and vectors.

Gady Agam is an associate professor of computer science at the Illinois Institute of Technology. He is the director of the visual computing lab at IIT which focuses on imaging, geometric modeling, and graphics applications. He received his PhD from Ben-Gurion University in 1999.

EI09: Color and Calibration in Mobile Imaging Devices

Instructors: Uwe Artmann, Image Engineering GmbH & Co KG (Germany) and Kevin Matherson, Microsoft Corporation (United States)

10:15 am - 12:15 pm (2 hours)

Course Level: Introductory/Intermediate

Fee: Member fee*: \$165 / Non-member fee: \$195 / Student fee: \$60 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

When an image is captured using a digital imaging device it needs to be rendered. For consumer cameras this processing is done within the camera and covers various steps like dark current subtraction, flare compensation, shading, color compensation, demosaicing, white balancing, tonal and color correction, sharpening, and compression. Each of these steps have a significant influence on image quality. In order to design and tune cameras, it is important to understand how color camera hardware varies as well as the methods that can be used to calibrate such variations. This course provides the basic methods describing the capture and processing of a color camera image. Participants get to examine the basic color image capture and how calibration can improve images using a typical color imaging pipeline. In the course, participants are shown how raw image data influences color transforms and white balance. The knowledge acquired in understanding the image capture and calibration process can used to understand tradeoffs in improving overall image quality.

Benefits:

- Understand how hardware choices in compact cameras impact calibrations and the type of calibrations performed and how such choices can impact overall image quality.
- Describe basic image processing steps for compact color cameras.
- Understand calibration methods for mobile camera modules.

- Describe the differences between class calibration and individual module calibration.
- Understand how spectral sensitivities and color matrices are calculated.Describe required calibration methods based on the hardware chosen
- and the image processing used.
- Appreciate artifacts associated with color shading and incorrect calibrations.
- Learn about the impacts of pixel saturation and the importance of controlling it on color.
- Learn about the impact of tone reproduction on perceived color (skin tone, memory colors, etc.)

Intended Audience: People involved in the design and image quality of digital cameras, mobile cameras, and scanners would benefit from participation. Technical staff of manufacturers, managers of digital imaging projects, as well as journalists and students studying image technology are among the intended audience.

Kevin J. Matherson is a director of optical engineering at Microsoft Corporation working on advanced optical technologies for consumer products. Prior to Microsoft, he participated in the design and development of compact cameras at HP and has more than 15 years of experience developing miniature cameras for consumer products. His primary research interests focus on sensor characterization, optical system design and analysis, and the optimization of camera image quality. Matherson holds a masters and PhD in optical sciences from the University of Arizona.

Uwe Artmann studied Photo Technology at the University of Applied Sciences in Cologne following an apprenticeship as a photographer, and finished with the German 'Diploma Engineer'. He is now CTO at Image Engineering, an independent test lab for imaging devices and manufacturer of all kinds of test equipment for these devices. His special interest is the influence of noise reduction on image quality and MTF measurement in general.

EI10: High-Dynamic-Range Imaging in Cameras, Displays, and Human Vision

Instructors: John McCann, McCann Imaging (United States) and Alessandro Rizzi, Università degli Studi di Milano (Italy)

10:15 am - 12:15 pm (2 hours)

Course Level: To Intermediate

Fee: Member fee*: \$165 / Non-member fee: \$195 / Student fee: \$60 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

Recent advances in television and displays emphasize HDR technology. High-dynamic range (HDR) imaging records and displays more information than conventional imaging. Non-uniform illumination increases the range of light from a scene. HDR techniques are often associated with recording natural images, such as the Ansel Adams's Zone system. After a detailed description of the dynamic range problem in image acquisition, this course focuses on standard methods of creating and manipulating HDR images, replacing myths with measurements of scenes, camera images, and visual appearances. The course presents measurements about the limits of accurate camera acquisition (range and color) and the usable range of light for displays presented to human vision. It discusses the principles of tone rendering and the role of HDR spatial comparisons.

Benefits:

- Explore the history of HDR imaging.
- Understand dynamic range and quantization: the 'salame' metaphor.
- Compare single and multiple-exposures for scene capture.
- Measuring optical limits in acquisition and visualization.

- Discover relationships between HDR range and scene dependency; the effect of glare.
- Discuss the limits of RAW scene capture in LDR and normal scenes.
- Learn about techniques to verify reciprocity and linearity limits.
- Learn about scene dependent glare in RAW image capture.
- Explore the limits of our vision system on HDR.
- Calculate retinal luminance.
- Identify tone-rendering problems and spatial methods.
- Review recent advances in HDR television and cinema.

Intended Audience: Students, color scientists, imaging researchers, medical imagers, software and hardware engineers, photographers, cinematographers, and production specialists interested in using HDR in imaging applications.

Alessandro Rizzi has studied the field of digital imaging and vision since 1990. His main research topic is the use of color information in digital images with particular attention to color perception mechanisms. He is a full professor at the Dept. of Computer Science at University of Milano teaching fundamentals of digital imaging and colorimetry. He is one of the founders of the Italian Color Group and member of several program committees of conferences related to color and digital imaging.

John McCann received a degree in biology from Harvard College (1964). He worked in, and managed, the Vision Research Laboratory at Polaroid from 1961 to 1996. He has studied human color vision, digital image processing, large format instant photography, and the reproduction of fine art. His publications and patents have studied Retinex theory, color constancy, color from rod/cone interactions at low light levels, appearance with scattered light, and HDR imaging. He is a Fellow of IS&T and the Optical Society of America (OSA). He is a past President of IS&T and the Artists Foundation, Boston. He is the IS&T/OSA 2002 Edwin H. Land Medalist and IS&T 2005 Honorary Member.

NEW for 2017 El12: Psychophysics Lab: In Depth and Step-by-Step

Instructor: Stephen Viggiano, RIT School of Photographic Arts and Sciences (United States)

10:15 am - 12:15 pm (2 hours)

Course Level: Introductory

Fee: Member fee*: \$165 / Non-member fee: \$195 / Student fee: \$60 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

Learn how to use human observations to assess image quality and get hands-on experience doing it. After an introduction/review of psychometric image preference assessment, complete step-by-step instructions will be given for two different types of experiments. A hands-on experience is the focus of the tutorial. Rank-order and graphical scaling image preference experiments are conducted and analyzed using ordinary spreadsheet software. Error bars are computed and range tests run so that the stimuli may be placed in groups not statistically significantly different from each other.

Benefits:

- Construct an image preference scale from rank-order and graphical scaling experiments.
- Establish statistical significance between different alternatives.
- Understand results of these type experiments presented by others.
- Recognize the advantages (and disadvantages) of these experiment types over other methods.
- Ávoid pitfalls in older analysis methods.

Intended Audience: The course assumes no prior experience with psychometric-based image preference/quality assessment, so those new to psychometrics can expect to understand the material; all that's assumed is a passing familiarity (perhaps from a previous life) with basic statistics. However, because the focus is on the hands-on activities, even those familiar with psychometrics who wish to bring their knowledge up to date are encouraged to attend. If you're using paired comparison and want to learn a faster, more efficient way, or if you've tried rank-order in the past but are unfamiliar with modern analysis techniques, or have been wary of unreasonable assumptions (which are avoided in this modern analysis protocol), you should attend this tutorial. Scientific, engineering, and marketing personnel will all benefit from this hands-on experience.

J. A. Stephen Viggiano, PhD, is assistant professor in photographic sciences at Rochester Institute of Technology's School of Photographic Arts and Sciences, and was Principal and Founder of Acolyte Color Research, a consulting and research firm specializing in solutions to problems in color science and technology. Viggiano has taught statistics at RIT's School of Mathematical Sciences and graduate faculty at RIT's School of Printing Management and Sciences. He was employed by RIT Research Corporation until its closing in 2001, where he had risen to the position of Principal Imaging Scientist. He has presented this workshop as part of graduate-level courses at RIT, as well as for corporate and government clients.

NEW for 2017 EI13: Real-time and Parameter-Free Anomaly Detection from Image Streams

Instructor: Bruno Costa, Ford Motor Company (United States)

1:30 - 3:30 pm (2 hours)

Course Level: Introductory/Intermediate

Fee: Member fee*: \$165 / Non-member fee: \$195 / Student fee: \$90 * (after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

Anomaly detection plays a very important role in many different areas nowadays. Online and real-time detection of anomalies in data streams is especially important in areas where prompt awareness and action can be crucial, such as surveillance, cyber security, industries, health and, more recently, autonomous vehicles. This short course presents a few recently introduced techniques for anomaly detection in data streams applied to different computer vision scenarios. Such techniques are based on the concepts of typicality and eccentricity of data, unsupervised learning, and on-the-fly non-parametric training.

Benefits:

- Overview and implementation of typicality and eccentricity data analytics,
- Unsupervised learning/clustering of data streams.
- Anomaly detection and foreign object tracking.
- Application to video streams.

Intended Audience: Computer scientists, electrical and computer engineers, and students.

Bruno Costa received his PhD in electrical and computer engineering from the Federal University of Rio Grande do Norte (Brazil). He was adjunct professor at the Federal Institute of Rio Grande do Norte (Brazil) and recently joined Ford - Palo Alto as a research engineer. His recent work includes topics in the areas of machine learning, autonomous learning systems, unsupervised learning, and computer vision.

EI14: Perceptual Metrics for Image and Video Quality in a Broader Context: From Perceptual Transparency to Structural Equivalence

Instructors: Sheila Hemami, Draper (United States) and Thrasyvoulos Pappas, Northwestern University (United States)

1:30 - 5:45 pm (4 hours)

Course Level: Intermediate (Prerequisites: Basic understanding of image compression algorithms; background in digital signal processing and basic statistics: frequency-based representations, filtering, distributions.) Fee: Member fee*: \$260 / Non-member fee: \$290 / Student fee: \$90 * (after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

The course examines objective criteria for the evaluation of image quality that are based on models of visual perception. The primary emphasis will be on image fidelity, i.e., how close an image is to a given original or reference image, but we will broaden the scope of image fidelity to include structural equivalence. Also discussed is no-reference and limited-reference metrics. An examination of a variety of applications with special emphasis on image and video compression is included. We examine near-threshold perceptual metrics, which explicitly account for human visual system (HVS) sensitivity to noise by estimating thresholds above which the distortion is just-noticeable, and supra-threshold metrics, which attempt to quantify visible distortions encountered in high compression applications or when there are losses due to channel conditions. The course also considers metrics for structural equivalence, whereby the original and the distorted image have visible differences but both look natural and are of equally high visual quality. This short course takes a close look at procedures for evaluating the performance of quality metrics, including database design, models for generating realistic distortions for various applications, and subjective procedures for metric development and testing. Throughout the course we discuss both the state of the art and directions for future research.

Benefits:

- Gain a basic understanding of the properties of the human visual system and how current applications (image and video compression, restoration, retrieval, etc.) attempt to exploit these properties.
- Gain an operational understanding of existing perceptually-based and structural similarity metrics, the types of images/artifacts on which they work, and their failure modes.
- Understand current distortion models for different applications and how they can be used to modify or develop new metrics for specific contexts.
- Understand the differences between sub-threshold and supra-threshold artifacts, the HVS responses to these two paradigms, and the differences in measuring that response.
- Understand criteria by which to select and interpret a particular metric for a particular application.
- Understand the capabilities and limitations of full-reference, limitedreference, and no-reference metrics, and why each might be used in a particular application.

Intended Audience: Image and video compression specialists who wish to gain an understanding of how performance can be quantified. Engineers and Scientists who wish to learn about objective image and video quality evaluation. Managers who wish to gain a solid overview of image and video quality evaluation. Students who wish to pursue a career in digital image processing. Intellectual Property and Patent Attorneys who wish to gain a more fundamental understanding of quality metrics and the underlying technologies. Government laboratory personnel who work in imaging.

Thrasyvoulos N. Pappas received SB, SM, and PhD in electrical engineering and computer science from MIT in 1979, 1982, and 1987, respectively. From 1987 until 1999, he was a member of the technical staff at Bell Laboratories, Murray Hill, NJ. He is currently a professor in the department of electrical and computer engineering at Northwestern University, which he joined in 1999. His research interests are in image and video quality and compression, image and video analysis, contentbased retrieval, perceptual models for multimedia processing, model-based halftoning, and tactile and multimodal interfaces. Pappas has served as cochair of the 2005 SPIE/IS&T Electronic Imaging (EI) Symposium, and since 1997 he has been co-chair of the El Conference on Human Vision and Electronic Imaging. Pappas is a Fellow of IEEE and SPIE. He is currently serving as Vice President-Publications for the Signal Processing Society of IEEE. He has also served as Editor-in-Chief of the IEEE Transactions on Image Processing (2010-12), elected member of the Board of Governors of the Signal Processing Society of IEEE (2004-06), chair of the IEEE Image and Multidimensional Signal Processing (now IVMSP) Technical Committee, and technical program co-chair of ICIP-01 and ICIP-09.

Sheila S. Hemami received a BSEE from the University of Michigan (1990), MSEE and PhD from Stanford University (1992 and 1994). She was most recently at Northwestern University as professor and chair of the electrical engineering and computer science department at the College of Engineering; with Hewlett-Packard Laboratories in Palo Alto, California in 1994; and with the School of Electrical Engineering at Cornell University from 1995-2013. She is currently Director, Strategic Technical Opportunities, at Draper, Cambridge, MA. Her research interests broadly concern communication of visual information from the perspectives of both signal processing and psychophysics. She was elected a Fellow of the IEEE in 2009 for contributions to robust and perceptual image and video communications. Hemami has held various visiting positions, most recently at the University of Nantes, France and at Ecole Polytechnique Fédérale de Lausanne, Switzerland. She has received numerous university and national teaching awards, including Eta Kappa Nu's C. Holmes MacDonald Award. She was a Distinguished Lecturer for the IEEE Signal Processing Society in 2010-2011, was editor-in-chief for the IEEE Transactions on Multimedia from 2008-2010. She has held various technical leadership positions in the IEEE.

EI15: Introduction to CMOS Image Sensor Technology

Instructor: Arnaud Darmont, APHESA SPRL (Belgium)

1:30 - 5:45 pm (4 hours)

Course Level: Beginner/Intermediate

Fee: Member fee^{*}: \$260 / Non-member fee: \$290 / Student fee: \$90 * (after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

This short course is a good refresher for image sensor and camera design engineers but is primarily targeted for newcomers to the technology or to less technical people who need to have a better understanding of the CMOS imaging technology. The course starts from the light and light sources and follows the natural path through the imaging system until an image is available out of a camera. Lenses, microlenses, color filters, photodiodes, pixel circuits, pixel arrays, readout circuits, and analog-to-digital conversion are described in details. The description includes an analysis of the noise sources, signal-to-noise, dynamic range, and the most important formulas are provided.

Benefits:

- Understand the general principles of imaging (lighting, optics, sensor, and camera).
- Learn CMOS image sensor architecture.

- Understand CMOS image sensor noise sources and performance figures (signal-to-noise ratio, dynamic range).
- Understand and compare rolling and global shutters.
- Understand the key design tradeoffs.
- Learn the basics of color imaging.
- Learn the basics of photography.

Intended Audience: The short course is intended for engineers, scientists, students, and managers who need to acquire a beginner or intermediate level of technical knowledge about CMOS image sensor principles, architecture, and performance.

Arnaud Darmont is owner and CEO of APHESA, a company founded in 2008 specializing in image sensor consulting, custom camera design, the EMVA1288 standard, and camera benchmarking. He holds a degree in electronic engineering from the University of Liège (Belgium). Prior to founding APHESA, he worked for more than seven years in the field of CMOS image sensors and high dynamic range imaging. He is a member of the EMVA1288 working group since 2006.

EI16: 3D Video Processing Techniques for Immersive Environments

Instructor: Yo-Sung Ho, Gwangju Institute of Science and Technology (Republic of Korea)

1:30 - 5:45 pm (4 hours)

Course Level: Intermediate

Fee: Member fee*: \$260 / Non-member fee: \$290 / Student fee: \$90 * (after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

With the emerging market of 3D imaging products, 3D video has become an active area of research and development in recent years. 3D video is the key to provide more realistic and immersive perceptual experiences than the existing 2D counterpart. There are many applications of 3D video, such as 3D movie and 3DTV, which are considered the main drive of the next-generation technical revolution. Stereoscopic display is the current mainstream technology for 3DTV, while auto-stereoscopic display is a more promising solution that requires more research endeavors to resolve the associated technical difficulties. This short course lecture covers the current state-of-the-art technologies for 3D contents generation. After defining the basic requirements for 3D realistic multimedia services, we cover various multi-modal immersive media processing technologies. Also addressed is the depth estimation problem for natural 3D scenes and several challenging issues of 3D video processing, such as camera calibration, image rectification, illumination compensation and color correction. The course discusses JCT-3V activities for 3D video coding, including depth map estimation, prediction structure for multi-view video coding, multi-view video-plus-depth coding, and intermediate view synthesis for multi-view video display applications.

Benefits:

- Understand the general trend of 3D video services.
- Describe the basic requirements for realistic 3D video services.
- Identify the main components of 3D video processing systems.
- Estimate camera parameters for camera calibration.
- Analyze the captured data for image rectification and illumination compensation.
- Apply image processing techniques for color correction and filtering.
- Estimate depth map information from stereoscopic and multi-view images.
- Synthesize intermediate views at virtual viewpoints.
- Review MPEG and JCT-3V activities for 3D video coding.

- Design a 3D video system to handle multi-view video-plus-depth data.
- Discuss various challenging problems related to 3D video services.

Intended Audience: Scientists, engineers, technicians, or managers who wish to learn more about 3D video and related processing techniques. Undergraduate training in engineering or science is assumed.

Yo-Sung Ho has been developing video processing systems for digital TV and HDTV, first at Philips Labs in New York and later at ETRI in Korea. He is currently a professor at the school of electrical and computer engineering at Gwangju Institute of Science and Technology (GIST) in Korea, and also Director of Realistic Broadcasting Research Center at GIST. He has given several tutorial lectures at various international conferences, including the 3DTV Conference, the IEEE International Conference on Image Processing (ICIP), and the IEEE International Conference on Multimedia & Expo (ICME). He earned his PhD in electrical and computer engineering at the University of California, Santa Barbara. He has been an associate editor of IEEE Transactions on Circuits and Systems for Video Technology (T-CSVT).

El17: Perception and Cognition for Imaging

Instructor: Bernice Rogowitz, Visual Perspectives (United States)

1:30 - 5:45 pm (4 hours)

Course Level: Introductory/Intermediate

Fee: Member fee*: \$260 / Non-member fee: \$290 / Student fee: \$90 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

Imaging, visualization, and computer graphics provide visual representations of data in order to communicate, provide insight and enhance problem solving. The human observer actively processes these visual representations using perceptual and cognitive mechanisms that have evolved over millions of years. The goal of this tutorial is to provide an introduction to these processing mechanisms, and to show how this knowledge can guide the decisions we make about how to represent data visually, how we visually represent patterns and relationships in data, and how we can use human pattern recognition to extract features in the data.

Benefits:

- Understand basic principles of spatial, temporal, and color processing by the human visual system.
- Explore basic cognitive processes, including visual attention and semantics.
- Develop skills in applying knowledge about human perception and cognition to interactive visualization and computer graphics applications.

Intended Audience: Imaging scientists, engineers, and application developers, and domain experts using imaging systems in their analysis of financial, medical, or other data. Students interested in understanding imaging systems from the perspective of the human user and anyone interested in how the visual world is processed by our eye-brain system.

Bernice Rogowitz is a multidisciplinary scientist, working at the intersection of human perception, imaging, and visualization. She received her BS in experimental psychology from Brandeis University, a PhD in vision science from Columbia University, and was a post-doctoral Fellow in the Laboratory for Psychophysics at Harvard University. For many years, she was a scientist and research manager at the IBM T.J. Watson Research Center and is currently active in research and teaching through her consulting company, Visual Perspectives. Her work includes fundamental research in human color and pattern perception, novel perceptual approaches for visual data analysis and image semantics, and human-centric methods to enhance visual problem solving in medical, financial, and scientific applications. As the founder and co-chair of the IS&T Conference on Human Vision and Electronic Imaging, she is a leader in defining the research agenda for human-computer interaction in imaging, driving technology innovation through research in human perception, cognition, and aesthetics. Rogowitz is a Fellow of IS&T and SPIE, a Senior Member of IEEE, and a 2015 IS&T Senior Member.

EI18: Camera Module Calibration for Mobile Imaging Devices

Instructors: Uwe Artmann, Image Engineering GmbH & Co KG (Germany) and Kevin Matherson, Microsoft Corporation (United States)

1:30 - 5:45 pm (4 hours)

Course Level: Introductory/Intermediate

Fee: Member fee*: \$260 / Non-member fee: \$290 / Student fee: \$90 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

Digital and mobile imaging camera and system performance is determined by a combination of sensor characteristics, lens characteristics, and image processing algorithms. Smaller pixels, smaller optics, smaller modules, and lower cost result in more part-to-part variation driving the need for calibration to maintain good image quality. This short course provides an overview of issues associated with compact imaging modules used in mobile and digital imaging. The course covers optics, sensors, actuators, camera modules and the camera calibrations typically performed to mitigate issues associated with production variation of lenses, sensor, and autofocus actuators.

Benefits:

- Describe illumination, photons, sensor, and camera radiometry.
- Select optics and sensor for a given application.
- Understand the optics of compact camera modules used for mobile imaging.
- Understand the difficulties in minimizing sensor and camera modules.
- Assess the need for per unit camera calibrations in compact camera modules.
- Determine camera spectral sensitivities.
- Understand autofocus actuators and why per unit calibrations are required.
- How to perform the various calibrations typically done in compact camera modules (relative illumination, color shading, spectral calibrations, gain, actuator variability, etc.).
- Equipment required for performing calibrations.
- Compare hardware tradeoffs such as temperature variation, its impact on calibration and overall influence on final quality.

Intended Audience: People involved in the design and image quality of digital cameras, mobile cameras, and scanners will benefit from participation. Technical staff of manufacturers, managers of digital imaging projects, as well as journalists and students studying image technology are among the intended audience.

Kevin J. Matherson is a director of optical engineering at Microsoft Corporation working on advanced optical technologies for consumer products. Prior to Microsoft, he participated in the design and development of compact cameras at HP and has more than 15 years of experience developing miniature cameras for consumer products. His primary research interests focus on sensor characterization, optical system design and analysis, and the optimization of camera image quality. Matherson holds a masters and PhD in optical sciences from the University of Arizona.

Uwe Artmann studied Photo Technology at the University of Applied Sciences in Cologne following an apprenticeship as a photographer, and finished with the German 'Diploma Engineer'. He is now CTO at Image Engineering, an independent test lab for imaging devices and manufacturer of all kinds of test equipment for these devices. His special interest is the influence of noise reduction on image quality and MTF measurement in general.

EI19: OpenVX: A Standard API for Accelerating Computer Vision

Instructors: Radhakrishna Giduthuri, Advanced Micro Devices (United States) and Kari Pulli, Intel Corporation (United States)

1:30 – 5:45 pm (4 hours)

Course Level: Introductory (OpenVX architecture and its relation to other related APIs) to intermediate (the practical programming aspects, requiring familiarity with C++)

Fee: Member fee*: \$260 / Non-member fee: \$290 / Student fee: \$90 * (after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

OpenVX is a royalty-free open standard API released by the Khronos Group in 2014. OpenVX enables performance and power-optimized computer vision functionality, especially important in embedded and real-time use cases. The course covers both the function-based API and the graph API that enable OpenVX developers to efficiently run computer vision algorithms on heterogeneous computing architectures. A set of example algorithms from computational photography and advanced driver assistance mapped to the graph API is discussed. Also covered is the relationship between OpenVX and OpenCV, as well as OpenCL. The course includes hands-on practice session that gets the participants started on solving real computer vision problems using OpenVX.

Benefits: Understanding the architecture of OpenVX computer vision API, its relation to OpenCV, OpenGL, and OpenCL APIs; getting fluent in actually using OpenVX for real-time image processing and computer vision tasks.

Intended Audience: Engineers, researchers, and software developers who develop computer vision and machine learning applications and want to benefit from transparent HVV acceleration.

Kari Pulli is Sr. Principal Engineer at Intel. Earlier he was VP of computational imaging at Light. He was also Senior Director of Research at NVIDIA and before that, Nokia Fellow at Nokia Research center; in both places he headed a research team called Mobile Visual Computing. Pulli has a long background in standardization and at Khronos he has contributed to many mobile media standards including OpenVX. He is a frequent author and speaker at venues like CVPR and SIGGRAPH, with h-index of 27. He has a PhD from University of Washington, MBA from University of Oulu, and has taught and worked as a researcher at University of Oulu, Stanford University, and MIT.

Radhakrishna Giduthuri is a design engineer at Advanced Micro Devices (AMD) focusing on development of computer vision toolkit and libraries for heterogeneous compute platforms. He has extensive background with software design and performance tuning for various computer architectures ranging from General Purpose DSPs, Customizable DSPs, Media Processors, Heterogeneous Processors, GPUs, and several CPUs. He is a member of Khronos OpenVX working group representing AMD. In the past he was a member of SMPTE video compression standardizing committee for several years. He is also winner of outstanding leadership and professional services award for IEEE Central Area in 2016.

NEW for 2017 EI20: Computer Vision for Autonomous Driving

Instructor: Rony Ferzli, Intel Corporation (United States)

3:45 - 5:45 pm (2 hours)

Course Level: Introductory to Intermediate

Fee: Member fee*: \$165 / Non-member fee: \$195 / Student fee: \$60 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

Computer visions algorithms are the backbone for any autonomous driving system. These algorithms play a key role in the perception and scene understanding enabling vehicles to operate not only under normal conditions, but also to adjust for unusual situations. The goal of the course is to present building blocks or ingredients needed for autonomous vehicles scenarios (such as lane departure warning, distance estimation, vehicle detection, traffic light detection, pedestrian detection, tracking, and sign detection) using classical approaches as well as latest research using deep learning. The short course also touches on design choices related to tradeoffs between complexity, performance, and accuracy. In addition, the course focuses on ADAS platforms, SDK tools, and how these can be used to develop and test computer vision algorithms.

Benefits:

- Understand the ADAS challenges.
- Understand ADAS scenarios.
- Describe the latest research in computer vision related to ADAS.
- Identify available platforms and tools to start development.
- Understand the complexity of each scenario and CV algorithm selection process based on a set of criteria (quality, performance, cost, power).

Intended Audience: The short course is intended for engineers, scientists, and students who need to acquire technical knowledge about computer vision algorithms used in Advanced Driver Assistance Systems (ADAS) and available tools used for development.

Rony Ferzli received his BE and ME in electrical engineering from the American University of Beirut, Lebanon, (1999 and 2002, respectively). He received his PhD in electrical engineering from Arizona State University (ASU), Tempe (2007). From 2007 to 2012, he worked in the R&D Unified Communications Group at Microsoft Corp., Redmond, WA, designing next generation video codecs for video conferencing products. Ferzli joined Intel Corporation in 2012 where he is currently a platform architect engineer at the Internet of Things Group (IoTG), researching and enabling computer vision and machine learning algorithms for Intel ADAS platforms. Prior to his current role, he worked on mobile devices SOC media technologies and next generation graphics as well as developing algorithms for HDTVs pre and post processing. He has more than 50 publications and patents in research areas such as image and video processing, DSP architectures and real-time systems, neural networks, and mixed-signal design. He holds several awards such as the Intel Division Award and IEEE SPS 2015 best paper award.

Monday, January 30, 2017

El22 Introduction to Digital Color Imaging

Instructor: Gaurav Sharma, University of Rochester (United States)

8:30 am - 12:45 pm (4 hours)

Course Level: Introductory

Fee: Member fee*: \$260 / Non-member fee: \$290 / Student fee: \$90 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students) This short course provides an introduction to color science and digital color imaging systems. Foundational knowledge is introduced first via an overview of the basics of color science and perception, color representation, and the physical mechanisms for displaying and printing colors. Building upon this base, an end-to-end systems view of color imaging is presented that covers color management and color image processing for display, capture, and print. A key objective of the course is to highlight the interactions between the different modules in a color imaging system and to illustrate via examples how co-design has played an important role in the development of current digital color imaging devices and algorithms.

Benefits:

- Explain how color is perceived starting from a physical stimulus and proceeding through the successive stages of the visual system by using the concepts of tristimulus values, opponent channel representation, and simultaneous contrast.
- Describe the common representations for color and spatial content in images and their interrelations with the characteristics of the human visual system.
- List basic processing functions in a digital color imaging system and schematically represent a system from input to output for common devices such as a digital cameras, displays, and color printers.
- Describe why color management is required and how it is performed.
- Explain the role of color appearance transforms in image color manipulations for gamut mapping and enhancement.
- Explain how interactions between color and spatial dimensions are commonly utilized in designing color imaging systems and algorithms.
- Cite examples of algorithms and systems that break traditional cost, performance, and functionality tradeoffs through system-wide optimization.

Intended Audience: The short course is intended for engineers, scientists, students, and managers interested in acquiring a broad-system wide view of digital color imaging systems. Prior familiarity with basics of signal and image processing, in particular Fourier representations, is helpful although not essential for an intuitive understanding.

Gaurav Sharma is a professor of electrical and computer engineering and of computer science at the University of Rochester where his research spans signal and image processing, computer vision, color imaging, and bioinformatics. He has extensive experience in developing and applying probabilistic models in these areas. Prior to joining the University of Rochester, he was a principal scientist and project leader at the Xerox Innovation Group. Additionally, he has consulted for several companies on the development of image processing and computer vision algorithms. He holds 51 issued patents and has authored more than a 150 peer-reviewed publications. He is the editor of the Digital Color Imaging Handbook published by CRC Press and served as the Editor-in-Chief for the SPIE/IS&T Journal of Electronic Imaging from 2011 through 2015. Sharma is a fellow of IS&T, IEEE, and SPIE

EI23: Noise Sources at the Camera Level and the Use of International Standards for its Characterization

Instructors: Uwe Artmann, Image Engineering GmbH & Co KG (Germany) and Kevin Matherson, Microsoft Corporation (United States)

10:30 am - 12:30 pm (2 hours)

Course Level: Introductory to Intermediate

Fee: Member fee*: \$165 / Non-member fee: \$195 / Student fee: \$60 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students)

This short course provides an overview of noise sources associated with "light in to byte out" in digital and mobile imaging cameras. The course discusses common noise sources in imaging devices, the influence of image processing on these noise sources, the use of international standards for noise characterization, and simple hardware test setups for characterizing noise.

Benefits:

- Become familiar with basic noise source in mobile and digital imaging devices.
- Learn how image processing impacts noise sources in digital imaging devices.
- Make noise measurements based on international standards: EMVA 1288, ISO 14524, ISO 15739, and visual noise measurements.
- Describe simple test setups for measuring noise based on international standards.
- Predict system level camera performance using international standards.

Intended Audience: People involved in the design and image quality of digital cameras, mobile cameras, and scanners would benefit from participation. Technical staff of manufacturers, managers of digital imaging projects, as well as journalists and students studying image technology are among the intended audience.

Kevin J. Matherson is a director of optical engineering at Microsoft Corporation working on advanced optical technologies for consumer products. Prior to Microsoft, he participated in the design and development of compact cameras at HP and has more than 15 years of experience developing miniature cameras for consumer products. His primary research interests focus on sensor characterization, optical system design and analysis, and the optimization of camera image quality. Matherson holds a masters and PhD in optical sciences from the University of Arizona.

Uwe Artmann studied Photo Technology at the University of Applied Sciences in Cologne following an apprenticeship as a photographer, and finished with the German 'Diploma Engineer'. He is now CTO at Image Engineering, an independent test lab for imaging devices and manufacturer of all kinds of test equipment for these devices. His special interest is the influence of noise reduction on image quality and MTF measurement in general.

Tuesday, January 31, 2017

El24: Joint Design of Optics and Image Processing for Imaging Systems

Instructor: David Stork, Rambus (United States)

8:30 am - 12:45 pm (4 hours)

Course Level: Introductory to Intermediate

Fee: Member fee*: \$260 / Non-member fee: \$290 / Student fee: \$90 *(after January 9, 2017 prices for all courses increase by \$50, \$25 for students) For centuries, optical imaging system design centered on exploiting the laws of the physics of light and materials (glass, plastic, reflective metal,) to form high-quality (sharp, high-contrast, undistorted,) images that "looked good." In the past several decades, the optical images produced by such systems have been ever more commonly sensed by digital detectors and the image imperfections corrected in software. The new era of electro-optical imaging offers a more fundamental revision to this paradigm, however, now the optics and image processing can be designed jointly to optimize an end-to-end digital merit function without regard to the traditional quality of the intermediate optical image. Many principles and guidelines from the optics-only era are counterproductive in the new era of electro-optical imaging and must be replaced by principles grounded on both the physics of photons and the information of bits. This short course describes the theoretical and algorithmic foundations of new methods of jointly designing the optics and image processing of electro-optical imaging systems. The course also focuses on the new concepts and approaches rather than commercial tools.

Benefits:

- Describe the basics of information theory.
- Characterize electro-optical systems using linear systems theory.
- Compute a predicted mean-squared error merit function.
- Characterize the spatial statistics of sources.
- Implement a Wiener filter.
- Implement spatial convolution and digital filtering.
- Make the distinction between traditional optics-only merit functions and end-to-end digital merit functions.
- Perform point-spread function engineering.
- Become aware of the image processing implications of various optical aberrations.
- Describe wavefront coding and cubic phase plates.
- Utilize the power of spherical coding.
- Compare super-resolution algorithms and multi-aperture image synthesizing systems.
- Simulate the manufacturability of jointly designed imaging systems.
- Evaluate new methods of electro-optical compensation.

Intended Audience: Optical designers familiar with system characterization (f#, depth of field, numerical aperture, point spread functions, modulation transfer functions,) and image processing experts familiar with basic operations (convolution, digital sharpening, information theory).

David Stork is Distinguished Research Scientist and Research Director at Rambus Labs and a Fellow of the International Association for Pattern Recognition. He holds 40 US patents and has written nearly 200 technical publications including eight books or proceedings volumes such as Seeing the Light, Pattern Classification (2nd ed.) and HAL's Legacy. He has given more than 230 technical presentations on computer image analysis of art in 19 countries.

General Information

Registration

Onsite Registration and Badge Pick-Up Hours

0	<u> </u>					
Sunday 29 January		7:00	am	to	8:00	pm
Monday 30 January		7:00	am	to	5:00	pm
Tuesday 31 January		8:00	am	to	5:00	pm
Wednesday 1 February		8:00	am	to	5:00	pm
Thursday 2 February		8:30	am	to	5:00	pm

Symposium Registration

Symposium Registration Includes: Admission to all technical sessions, coffee breaks, the Symposium Reception, and support of free access to all the El proceedings papers on the IS&T Digital Library. Separate registration fees are required for short courses.

Short Course Registration

Courses and workshops are priced separately. Course-only registration includes your selected course(s), course notes, coffee breaks, and admittance to the exhibition. Courses will take place in various meeting rooms at the Hyatt Regency San Francisco Airport. Room assignments are noted on the course admission tickets and distributed with registration materials.

Refund Information

To cover bank charges and processing fees, there is a cancellation fee of \$75 until 21 January 2017. After that date, the cancellation fee is 50% of the total plus \$75. All requests for refunds must be made in writing. No refunds will be given after 20 February 2017.

Author/Presenter Information

Speaker AV Preparation Conference Office

Open during Registration Hours

Each conference room has an LCD projector, screen, lapel microphone, and laser pointer. All presenters are encouraged to visit the Speaker AV Prep Room to confirm that their presentation and personal laptop is compatible with the audiovisual equipment supplied in the conference rooms. Speakers who have requested special equipment, prior to the request deadline, are asked to report to the AV Prep Room to confirm their requested equipment is available.

No shared laptops are provided.

Policies

Granting Attendee Registration and Admission

IS&T, or their officially designated event management, in their sole discretion, reserves the right to accept or decline an individual's registration for an event. Further, IS&T, or event management, reserves the right to prohibit entry or remove any individual whether registered or not, be they attendees, exhibitors, representatives, or vendors, who in their sole opinion are not, or whose conduct is not, in keeping with the character and purpose of the event. Without limiting the foregoing, IS&T and event management reserve the right to remove or refuse entry to any attendee, exhibitor, representative, or vendor who has registered or gained access under false pretenses, provided false information, or for any other reason whatsoever that they deem is cause under the circumstances.

IS&T Code of Conduct/Anti-Harassment Policy

The Society for Imaging Science and Technology (IS&T; imaging.org) is dedicated to ensuring a harassment-free environment for everyone, regardless of gender, gender identity/expression, race/ethnicity, sexual orientation, disability, physical appearance,

About IS&T

The Society for Imaging Science and Technology (IS&T)—the organizer of the Electronic Imaging Symposium—is an international non-profit dedicated to keeping members and other imaging professionals apprised of the latest developments in the field through conferences, educational programs, publications, and its website. IS&T encompasses all aspects of imaging, with particular emphasis on digital printing, electronic imaging, color science, sensors, virtual reality, photofinishing, image preservation, and hybrid imaging systems.

IS&T offers members:

- Free, downloadable access to more than 6,000 papers from IS&T conference proceedings via www.ingentaconnect. com/content/ist
- A complimentary online subscription to the Journal of Imaging Science & Technology or the Journal of Electronic Imaging
- Reduced rates on products found in the IS&T bookstore, including technical books, conference proceedings, and journal subscriptions
- Reduced registration fees at all IS&T sponsored conferences—a value equal to the difference between member and nonmember rates alone—and short courses
- Access to the IS&T member directory
- Subscription to The Reporter, a quarterly newsletter
- An honors and awards program
- Networking opportunities through active participation in chapter activities and conference, program, and other committees

Contact IS&T for more information on these and other benefits.

IS&T

7003 Kilworth Lane Springfield, VA 22151 703/642-9090; 703/642-9094 fax info@imaging.org / www.imaging.org

General Information

age, language spoken, national origin, and/or religion. As an international, professional organization with community members from across the globe, IS&T is committed to providing a respectful environment where discussions take place and ideas are shared without threat of belittlement, condescension, or harassment in any form. This applies to all interactions with the Society and its programs/events, whether in a formal conference session, in a social setting, or on-line.

Harassment includes offensive verbal comments related to gender, sexual orientation, etc., as well as deliberate intimidation; stalking; harassing photography, recording, or postings; sustained disruption of talks or other events; inappropriate physical contact; and unwelcome sexual attention. Please note that the use of sexual language and/or imagery is never appropriate, including within conference talks, online exchanges, or the awarding of prizes. Participants asked to stop any harassing behavior are expected to comply immediately.

Those participating in IS&T activities who violate these or IS&T's Publications Policy may be sanctioned or expelled from the conference and/or membership without a refund at the discretion of IS&T. If you are being harassed, notice that someone else is being harassed, or have any other concerns, please contact the IS&T Executive Director or e-mail incident.report@imaging.org immediately. Please note that all reports are kept confidential and only shared with those who "need to know"; retaliation in any form against anyone reporting an incident of harassment, independent of the outcome, will not be tolerated.

Identification

To verify registered participants and provide a measure of security, IS&T will ask attendees to present a government issued Photo ID at registration to collect registration materials. Individuals are not allowed to pick up badges for attendees other than themselves. Further, attendees may not have some other person participate in their place at any conferencerelated activity. Such other individuals will be required to register on their own behalf to participate.

Capture and Use of a Person's Image

By registering for an IS&T event, I grant full permission to IS&T to capture, store, use, and/or reproduce my image or likeness by any audio and/or visual recording technique (including electronic/digital photographs or videos), and create derivative works of these images and recordings in any IS&T media now known or later developed, for any legitimate IS&T marketing or promotional purpose. By registering for an IS&T event, I waive any right to inspect or approve the use of the images or recordings or of any written copy. I also waive any right to royalties or other compensation arising from or related to the use of the images, recordings, or materials. By registering, I release, defend, indemnify and hold harmless IS&T from and against any claims, damages or liability arising from or related to the use of the use of the images, recordings or materials, including but not limited to claims of defamation, invasion of privacy, or rights of publicity or copyright infringement, or any misuse, distortion, blurring, alteration, optical illusion or use in composite form that may occur or be produced in taking, processing, reduction or production of the finished product, its publication or distribution.

Payment Method

Registrants for paid elements of the event, who do not provide a method of payment, will not be able to complete their registration. Individuals with incomplete registrations will not be able to attend the conference until payment has been made. IS&T accepts VISA, MasterCard, American Express, Discover, Diner's Club, checks and wire transfers. Onsite registrations can also pay with Cash.

Audio, Video, Digital Recording Policy

Conferences, courses, and poster sessions: For copyright reasons, recordings of any kind are prohibited without prior written consent of the presenter. Attendees may not capture nor

use the materials presented in any meeting room without written permission. Consent forms are available at Speaker Check-In. Individuals not complying with this policy will be asked to leave a given session and asked to surrender their recording media.

Exhibition Hall: For security and courtesy reasons, recordings of any kind are prohibited unless one has explicit permission from on-site company representatives. Individuals not complying with this policy will be asked to surrender their recording media and to leave the exhibition hall. Your registration signifies your agreement to be photographed or videotaped by IS&T in the course of normal business. Such photos and video may be used in IS&T marketing materials or other IS&T promotional items.

Laser Pointer Safety Information/Policy

IS&T supplies tested and safety-approved laser pointers for all conference meeting rooms. For safety reasons, IS&T requests that presenters use provided laser pointers. Use of a personal laser pointer represents user's acceptance of liability for use of a non- IS&T-supplied laser pointer. Laser pointers in Class II and Illa (<5 mVV) are eye safe if power output is correct, but output must be verified because manufacturer labeling may not match actual output. Misuse of any laser pointer can lead to eye damage.

Underage Persons on Exhibition Floor Policy

For safety and insurance reasons, no one under the age of 16 will be allowed in the exhibition area during move-in and move-out. During open exhibition hours, only children over the age of 12 accompanied by an adult will be allowed in the exhibition area.

Unauthorized Solicitation Policy

Unauthorized solicitation in the Exhibition Hall is prohibited. Any non-exhibiting manufacturer or supplier observed to be distributing information or soliciting business in the aisles, or in another company's booth, will be asked to leave immediately.

Unsecured Items Policy

Personal belongings should not be left unattended in meeting rooms or public areas. Unattended items are subject to removal by security. IS&T is not responsible for items left unattended.

Wireless Internet Service Policy

At IS&T events where wireless is included with your registration, IS&T provides wireless access for attendees during the conference and exhibition but cannot guarantee full coverage in all locations, all of the time. Please be respectful of your time and usage so that all attendees are able to access the internet.

Excessive usage (e.g., streaming video, gaming, multiple devices) reduces bandwidth and increases cost for all attendees. No routers may be attached to the network. Properly secure your computer before accessing the public wireless network. Failure to do so may allow unauthorized access to your laptop as well as potentially introduce viruses to your computer and/or presentation. IS&T is not responsible for computer viruses or other computer damage.

Mobile Phones and Related Devices Policy

Mobile phones, tablets, laptops, pagers, and any similar electronic devices should be silenced during conference sessions. Please exit the conference room before answering or beginning a phone conversation.

Smoking

For the health and consideration of all attendees, smoking is not permitted at any event elements, such as but not limited to: plenaries, conferences, workshops, courses, poster sessions, hosted meal functions, receptions, and in the exhibit hall. Most facilities also prohibit smoking in all or specific areas. Attendees should obey any signs preventing or authorizing smoking in specified locations.

Hold Harmless

Attendee agrees to release and hold harmless IS&T from any and all claims, demands, and causes of action arising out of or relating to your participation in the event you are registering to participate in and use of any associated facilities or hotels.

Event Cancellation

If for some unforeseen reason IS&T should have to cancel the event, registration fees processed will be refunded to registrants. Registrants will be responsible for cancellation of travel arrangements or housing reservations and the applicable fees.

Author Index

Α

Abdelazim, Abdelrahman VIPC-400, VIPC-407 Abdou, Mohammed AVM-023 Abebe, Mekides A. COLOR-035 Abedzadeh, Najmeh VDA-384 Adou, Jerome Kablan COLOR-061 Agaian, Sos S. IPAS-200, IPAS-215 Agarwal, Shruti MWSF-337

Aguilar, Guillermo HVEI-113 Ahn, Il Jun IPAS-201 Ailuri, Pulla Reddy IQSP-235 Ait-Boudaoud, Djamel VIPC-400, VIPC-407 Aizawa, Kiyoharu HVEI-148 Akamine, Welington Y. IQSP-218 Akatsuka, Fumihiro IRIACV-260 Akopian, David MOBMU-292 MOBMU-310, MOBMU-311, MOBMU-315 Akram, Muhammad Nadeem IQSP-231 Alacoque, Laurent IMSE-188, MOBMU-295 Alam, Md. Ashraful **3DIPM-008** Alam, Md. Shahinur 3DIPM-008 Ali Amirshahi, Seyed IQSP-225 Allebach, Jan P. COIMG-436, COLOR-041, COLOR-042, COLOR-046, COLOR-048, IMAWM-163, IMAWM-165, IMAWM-167, IMAWM-169, IMAWM-177, IQSP-234, IQSP-238, IQSP-239 Allison, Robert S. HVEI-129, HVEI-131, SD&A-353, SD&A-355 AlRegib, Ghassan IQSP-223 Amin, Saadullah AVM-011 An, Jungkwuen IQSP-241 Andalibi, Mehran AVM-024 Andrade, Alice IMSE-185 Angot-Petit, Ludovic J. 3DIPM-006 Ansari, Keivan COLOR-059 Antensteiner, Doris IRIACV-268 Anthony, Roy C. SD&A-353 Anzagira, Leo IQSP-235 Aparna, John IPAS-215 Appia, Vikram AVM-010 Appina, Balasubramanyam SD&A-371 Arai, Jun SD&A-358, SD&A-361 Arganda-Carreras, Ignacio COIMG-432 Armstrong, Frank IMSE-186 Artmann, Uwe IQSP-246 Asada, Kunihiro COIMG-418 Asari, Vijayan K. IMAWM-170,

IPAS-207 Assoum, Ammar COIMG-441

Astrom, Anders IMSE-194

В

Baba, Justin IRIACV-265 Babaheidarian, Parisa COIMG-419, COIMG-420 Badshah, Amir AVM-011 Bae, Seon Hee HVEI-146 Baek, Fu-Tteum SD&A-367 Baek, Jeongyeol IQSP-240 Baek, Sangwook IQSP-240, MOBMU-300 Baev, Lyubomir DPMI-079 Baa, Suvam AVM-019, AVM-022 Bagchi, Judy COIMG-436, IMAWM-167, IMAWM-177 Baharav, Tavor COIMG-435 Bai, Chen HVEI-125 Baiotto, Holly CVAS-346 Bakken, Eskild N. COLOR-029 Ballé, Johannes HVEI-114 Balogh, Tibor SD&A-357 Bampis, Christos DPMI-064 Bang, Kiseung COIMG-427 Bankoski, James VIPC-409 Bannach, Andreas VDA-388 Bariya, Mohini S. COIMG-435 Barjean, Kinia IMSE-181 Barkowsky, Marcus HVEI-122 Barnard, Gerrit IMSE-186 Barnes, David G. SD&A-109 Baroffio, Luca MWSF-327 Bartmann, Roland SD&A-364, SD&A-377 Battula, Tharun DPMI-079 Batur, Umit AVM-010 Bauer, Peter COLOR-046, IQSP-234 Bayar, Belhassen MWSF-328 Beghdadi, Azeddine IQSP-228 Beigné, Édith IMSE-188 Bellin, Knut MOBMU-309 Belska, Margaret IQSP-244, IQSP-249 Belver, Carlos COIMG-432 Bendele, Brian MOBMU-311 Bénière, Roseline 3DIPM-005 Benini, Sergio HVEI-117 Bennett, Stuart CVAS-342, CVAS-343 Berardino, Alexander HVEI-114 Bernal Garcia, Salvador 3DIPM-004 Bernard, Jürgen VDA-387, VDA-388 Bernardini, Andrea IMAWM-168, **IPAS-198** Bertalmio, Marcelo HVEI-141 Bestagini, Paolo MWSF-327 Bethge, Matthias HVEI-113

Bhatt, Amar AVM-019 Bianco, Andrea MAAP-284 Bignon, Thibault MAAP-275 Birchfield, Stan IQSP-254

Blaschitz, Bernhard IRIACV-268, IRIACV-269 Bleile, Ryan C. VDA-397 Boher, Pierre M. MAAP-275 Bona, Mariano COLOR-054 Bondarev, Egor IPAS-205, IPAS-210 Bondi, Luca MWSF-327 Boroumand, Mehdi MWSF-336 Borrino, Keith DPMI-072 Bouman, Charles A. COIMG-417, COIMG-449 Bouridane, Ahmed IQSP-228 Bourke, Paul SD&A-110 Boust, Clotilde MAAP-279 Boyd, Sarah SD&A-109 Boyles, Michael J. ERVR-107 Brachmann, Anselm HVEI-142 Brainard, David HVEI-140 Branca, Riccardo IQSP-255 Breen, Aidan HVEI-118 Bregovic, Robert SD&A-357 Brown, Maxine D. SD&A-106 Bruehs, Walter MWSF-339 Brunnstrom, Kjell HVEI-122, HVEI-131

Bu, Yingtong HVEI-153 Burada, Ranga IQSP-257 Burns, Peter D. IQSP-255 But, Andrey VIPC-412 Buzzard, Gregery T. COIMG-417

С

Cacciamani, Laura HVEI-155 Cahill, Nathan COIMG-433 Cao, Ting IPAS-212 Cao, Wei VDA-385 Capodiferro, Licia IMAWM-168, IPAS-198 Carbon, Claus-Christian HVEI-151 Cardinal, David DPMI-074 Carey, Peter CVAS-343 Carr, Peter CVAS-348 Carrizosa-Corral, Fernando **IPAS-203** Castañón, David COIMG-419, COIMG-420 Cave, Ludivine MAAP-275 Chakraborty, Sujoy MVVSF-333 Chan, Connie C.W. IRIACV-263 Chan, Stanley H. COIMG-428 Chandler, Benjamin HVEI-136 Chandler, Damon M. AVM-024, HVEI-123, HVEI-130, HVEI-131, IQSP-220, IQSP-224 Chandler, Thomas SD&A-109 Chang, Chuan-Chung COIMG-440 Chang, Ed IQSP-247, IQSP-249

Chang, Pao-Chi VIPC-398

Chang, Yong-Jun SD&A-368

Chapman, Glenn H. IMSE-183 Charrier, Christophe 3DIPM-002, IQSP-219 Charriere, Renee MAAP-273, MAAP-278 Chavez, David SD&A-362 Chen, Chen AVM-013 Chen, Guoning VDA-385 Chen, Jieen COIMG-426 Chen, Laurence Lujun SD&A-359 Chen, Ming IMAWM-165 Chen, Xiaochuan COLOR-060 Chen, Zhenzhong IQSP-243, VIPC-399 Chen, Zong-Yi VIPC-398 Cheng, Shao-Hsuan COIMG-440 Cheng, Victor AVM-015 Cheng, Yang IMAWM-169 Cherel, Marie MAAP-281 Chetouani, Aladine **3DIPM-001** Cheung, Brian HVEI-139 Childs, Hank VDA-397 Childs, Joanne IRIACV-265 Chinta, Vishnu IMAWM-159 Chitnis, Kedar AVM-017 Cho, Kiheum IPAS-201 Choi, Chil-Sung IQSP-241 Choi, Dong Yoon VIPC-408 Choi, Hayan COIMG-424, COIMG-425, COIMG-448 Choi, Jae-Seok COIMG-429 Choi, Ji Hoon VIPC-408 Choi, Jin Wook VIPC-408 Choi, Kyungah COIMG-424, COIMG-425, COIMG-448 Choo, Hyon-Gon SD&A-366 Choudhry, Aadil J. AVM-011 Christmann, Mike IQSP-242 Chuang, Fu-Ming COIMG-440 Clausing, Eric MOBMU-301 Cloete, Richard SD&A-105 Colett, Hannah HVEI-128 Collomb-Patton, Véronique MAAP-275 Colombet, Florent ERVR-097 Cordeil, Maxime SD&A-109 Corriveau, Philip J. HVEI-128, HVEI-131 Cottam, Joseph A. VDA-386 Cottaris, Nicolas HVEI-140 Cozzolino, Davide MWSF-330 Creutzburg, Reiner MOBMU-294, MOBMU-296, MOBMU-301, MOBMU-302, MOBMU-304, MOBMU-307, MOBMU-308, MOBMU-309, MOBMU-312, MOBMU-313

Cridling, Quentin MAAP-278 Crisp, Richard D. IMSE-189 Cross, Carl IPAS-207 Cruz-Neira, Carolina ERVR-096

D

D'Avino, Dario MWSF-330 Dagel, Amber L. COIMG-416 Dailey, Ryan M. IMAWM-160 Dakala, Jayachandra AVM-025 Dalloz, Nicolas L. MAAP-289 Daly, Scott HVEI-127, HVEI-131 Danielyan, Aram DPMI-083 Darmont, Arnaud IMSE-182 Dawe, Gregory ERVR-098, ERVR-108 Deas, Lesley M. SD&A-355 Debattista, Kurt HVEI-135 Debevec, Paul MAAP-276 De Andrade, Vincent COIMG-453 de Bougrenet de la Tocnaye, Jean Louis MOBMU-295 De Carlo, Francesco COIMG-453 Dechrueng, Pailin MWSF-317 Deegan, Brian M. AVM-012 DeFanti, Tom SD&A-106 de la Barré, René SD&A-364, SD&A-377 Delafosse, David MAAP-278 Delbruck, Tobi DPMI-080 Delp, Edward J. COIMG-452, HVEI-126, HVEI-131, IMAWM-163, MWSF-327 Demaree, Clark COIMG-430, DPMI-075, DPMI-081 Denemark, Tomas **MWSF-326** Deng, Yuqiao IQSP-243 Denk, Cornelia MAAP-285 Denny, Patrick AVM-012, IMSE-196 Deshpande, Kiran COLOR-027 Destruel, Christophe MWSF-335 Dever, Barry AVM-012 Devreaux, Phillip VDA-390

De With, Peter H. AVM-021, IPAS-205, IPAS-206, IPAS-209, IPAS-210 Diamanti, Maria Vittoria MAAP-278 Diarra, Mamadou COLOR-061

DPMI-075, DPMI-081, IPAS-084

Dittrich, Paul-Gerald MOBMU-293

Doi, Motonori MAAP-274 Dolinsky, Margaret ERVR-092, **ERVR-107**

Dobermann, Eduard VDA-387

Dietz, Henry G. COIMG-430,

Do, Minh N. AVM-013,

COIMG-416

Dornaika, Fadi COIMG-432, COIMG-441

DoVale, Anthony IQSP-227 Dowsland, Stephen SD&A-105 Drew, Mark S. COLOR-056, COLOR-060

Drummy, Lawrence COIMG-449 Du, Minghan SD&A-356

Duanmu, Zhengfang HVEI-121 Dubbelman, Gijs AVM-021, IPAS-209 Dubey, Aish AVM-017 Duckstein, Bernd SD&A-364, SD&A-377 Dufaux, Frederic HVEI-135 Dugelay, Jean-Luc MWSF-331 Dunk, Bert SD&A-353 Dupret, Antoine IMSE-188, MOBMU-295 Dutt, Yashwant AVM-017

Е

Easton, Roger L. COLOR-050 Eberhardt, Bernhard COIMG-426 Eberhart, Paul S. COIMG-430, DPMI-081 Ebrahimi, Touradj HVEI-150 Echefu, Samuel AVM-019 Eggert, Christian CVAS-345 Egiazarian, Karen O. DPMI-083, IPAS-199, IPAS-202 Eisapour, Mahzar HVEI-121 Ekroll, Vebjorn HVEI-134 El Choubassi, Maha DPMI-063 Ellens, Marc MAAP-277 Eller, Chris ERVR-107 El Sallab, Ahmad AVM-023 El-Yamany, Noha DPMI-088 Emberger, Simon MOBMU-295 Emoto, Takashi SD&A-376 Endsley, Jay IMSE-186 Erhan, Can IRIACV-258 Eschbach, Reiner COLOR-030, COLOR-043 Escobar, Rodrigo MOBMU-310,

MOBMU-315 Essa, Almabrok IMAWM-170 Etchebehere, Sergio HVEI-119 Ettori, Dominique IMSE-181 Evans, Gabriel CVAS-346

F

Fageth, Reiner IMAWM-176 Faigenbaum-Golovin, Shira IQSP-226 Fairchild, Mark IQSP-227 Falkenstern, Kristyn COLOR-045 Fan, Chunxiao VIPC-404, VIPC-406 Fan, Quanfu IMAWM-166 Fan, Wei HVEI-145, VIPC-411 Fan, Zhi-Rong COIMG-440 Fang, Jiunn-Tsair VIPC-398 Farias, Mylène C. IQSP-218 Farid, Hany MWSF-337

Farnand, Susan P. COLOR-036, IQSP-227, IQSP-249, IQSP-250 Farrell, Joyce E. HVEI-140 Farup, Ivar COLOR-028, COLOR-030, COLOR-049, MAAP-280 Fedorovskaya, Elena A. HVEI-119, HVEI-153 Fedosov, Valentin MOBMU-314 Fellner, Dieter VDA-387 Fernandez Maloigne, Christine IQSP-219 Fike, John E. COIMG-430, DPMI-081 Flatla, David COLOR-029 Foi, Alessandro DPMI-083 Forchhammer, Soren VIPC-401 Forchheimer, Robert IMSE-194 Fornaro, Peter R. MAAP-284 Fotiadou, Konstantina COIMG-445 Fournel, Thierry MAAP-289 Fowler, Boyd A. IMSE-082 Frank, Tal COLOR-042 Frantc, Vladimir IPAS-211 Fraval, Nicolas MOBMU-295 Frayne, Shawn SD&A-382 Fridrich, Jessica MWSF-325 MWSF-326, MWSF-336 Frymire, Brett IQSP-247 Fuchs, Christian AVM-014 Fujita, Yoshihiro IPAS-086 Fuller, Megan COLOR-057 Funatsu, Ryohei IMSE-179, IQSP-233 Funt, Brian HVEI-133 Furht, Borko IMAVVM-159

G

Galdi, Chiara MWSF-331 Gamble, Gary IRIACV-262 Garcia Freitas, Pedro IQSP-218 Garth, Christoph VDA-397 Gaska, James SD&A-354 Gassen, Fabian MOBMU-296 Gatsis, Nikolaos MOBMU-292 Gatta, Carlo COLOR-028 Gauthier, Silvère 3DIPM-005 Gaykema, Frans COLOR-027 Gegenfurtner, Karl HVEI-112 Geirhos, Robert HVEI-113 Gelautz, Margrit CVAS-347 George, Paul ERVR-097 Georgiev, Todor DPMI-079 Ghahremani, Amir IPAS-205 Ghone, Chaitanya AVM-017 Gilchrist, Alan HVEI-134 Gill, Christopher IMAWM-161 Gille, Jennifer COLOR-026, DPMI-079

Glaholt, Mackenzie HVEI-149, SD&A-355 Glazistov, Ivan COIMG-439 Glencross, Mashhuda MAAP-285 Godaliyadda, G.M. Dilshan AVM-015 Goel, James HVEI-129, HVEI-131 Goin, Michael IRIACV-271 Gold, Bobby IQSP-244 Golden, James HVEI-140 Golwala, Gautam IMAWM-169 Gonzalez, Alberto ERVR-093 Gooran, Sasan COLOR-058 Gopi, Ajay HVEI-138 Gormish, Michael J. IMAWM-157 Gotchev, Atanas P. SD&A-357 Goto, Taichi SD&A-360 Gotoda, Hironobu SD&A-373 Gouton, Pierre COLOR-059, COLOR-061 Grazaitis, Peter VDA-390 Green, Phil COLOR-027, COLOR-037 Griffin, Mark AVM-012 Grigoryan, Artyom M. IPAS-200, **IPAS-215** Gromala, Diane ERVR-101 Groot, Herman G. IPAS-206 Grotton, Ben IQSP-227 Grynovicki, Jock VDA-390 Guagliardo, Andrew ERVR-093 Guan, Haike SRV-349 Guan, Qingxiao MWSF-320 Guarnera, Dar'ya MAAP-285 Guarnera, Giuseppe Claudio **MAAP-285** Güera Cobo, David MWSF-327 Guidash, Michael IMSE-186 Guo, Jiun-In COIMG-440 Guo, Yandong IMAWM-158

н

Guo, Zhenhua IMAWM-175

Gürsoy, Doğa COIMG-453

Hach, Thomas 3DIPM-003 Hadley, Steven SD&A-354 Hamagishi, Goro SD&A-365 Hamza, Ahmed M. VIPC-400, VIPC-407 Han, Jaeduk IPAS-214 Han, Jingning VIPC-409 Han, Jungmin HVEI-146 Hansen, Charles VDA-396 Hansen, Svein Arne J. IQSP-231 Hara, Masaya IMSE-178 Hardeberg, Jon Yngve IQSP-231 Harrison, Lane VDA-393 Hartle, Brittney SD&A-355 Hartung, Frank MWSF-331

Hasche, Eberhard MOBMU-294, MOBMU-296

Hassani, Nargess **COLOR-036** Hati, Kalyan Kumar AVM-025 Hattenberger, Edward F. COLOR-045 Hayn-Leichsenring, Gregor HVEI-152 He, Daran IMAWM-171 Hebert, Mathieu MAAP-281,

MAAP-289, MAAP-291 Hefeida, Mohamed VIPC-400 Heiko, Schütt HVEI-113 Heintzmann, Rainer COIMG-426 Helliker, John SD&A-353 Helliwell, Jesse SD&A-110 Helo, Andrea HVEI-148 Hemami, Sheila S. HVEI-120 Heo, Yong Seok IRIACV-267 Hernández-Díaz, Teresa IPAS-203 Hersch, Roger D. MAAP-291 High, Gregory P. **COLOR-037** Hirai, Keita **MAAP-286**, MAAP-290

Hirsch, Michael COIMG-426 Ho, Yo-Sung SD&A-367,

SD&A-368, SD&A-369 Hoevels, Mauritius VDA-392 Hofmann, Dietrich MOBMU-293 Hollick, Joshua SD&A-110 Holliman, Nicolas S. SD&A-105 Holloway, Joshua IQSP-224 Hong, Keehoon SD&A-366 Hong, Soonhac IRIACV-259 Hoover, Melynda CVAS-346 Hoppe, Anett MOBMU-302 Horiuchi, Takahiko COLOR-044, MAAP-286, MAAP-290 Hoshino, Keisuke COLOR-044 Hssayeni, Murtadha D. IMAWM-162 Huang, Jiwu MWSF-324 Huber-Mörk, Reinhold IRIACV-268, IRIACV-269 Hulusic, Vedad HVEI-135 Hussain, Syed SD&A-374 Hwang, Alex D. HVEI-147 Hwang, Sungwoo IQSP-241

L

Iacomussi, Paola **MAAP-282** Ieremeiev, Oleg DPMI-083, **IPAS-202** Igarashi, Takeo VDA-389 Iizuka, Tetsuya COIMG-418 Ikejiri, Ryohei SD&A-372 Imanishi, Shoma IMSE-187 Ingwer, Patrick MOBMU-294, MOBMU-296 Inoue, Mitsuteru SD&A-360 Iqbal, Taswar **MWSF-338** Irving, Elizabeth L. SD&A-355 Ishida, Haruki **IMSE-190** Ishihara, Yoshiki SD&A-372 Islam, Md. Sifatul 3DIPM-008 Ispasoiu, Radu IQSP-235, IQSP-253 Itier, Vincent **MWSF-323**

Iverson, Colleen IRIACV-265

J

laber, Mustafa I. CVAS-344 Jadhav, Saurabh S. ERVR-102 Jagannathan, Shyam AVM-020 Jang, Changwon COIMG-427 Janssen, David HVEI-113 Javan Hemmat, Hani IPAS-210 Jayadevan, Vijai COIMG-452 Jiang, Haomiao HVEI-140 Jiang, Hui-Yu VIPC-398 Jiang, Wanling COLOR-041 Jiang, William DPMI-069 Jiang, Yong DPMI-066 Jimenez, Hugo IPAS-203, SRV-351 Jin, Elaine W. IQSP-249 lin, Hongbin VIPC-404, VIPC-406 lin, lihui COIMG-438 Jomier, Matthieu MAAP-281 Joo, Sanghyun IMAVVM-160 Juárez-Arreortúa, Beatriz SRV-351 Jung, Ji Eun COIMG-446 Jurk, Silvio SD&A-364, SD&A-377

Κ

Kabir, Salman IMSE-186 Kagawa, Keiichiro IMSE-187, IMSE-190 Kaghyan, Sahak MOBMU-310, MOBMU-315 Kajimoto, Masahiro SD&A-363 Kalivarapu, Vijay CVAS-346 Kalva, Hari IMAVVM-159, SRV-352 Kamoshita, Hiroki SD&A-363 Kane, David HVEI-141 Kaneko, Satoshi COLOR-047 Kang, Bocheng ERVR-102 Kang, Kyung-Won MOBMU-300 Kang, Moon Gi IPAS-085, IPAS-214, IQSP-221 Kangutkar, Rasika AVM-019

Kanguikar, Kasika AWNO19 Kannan, Vignesh **IQSP-224** Kannanda, Vikas C. ERVR-102 Kano, Masanori SD&A-358 Kapisthalam, Sanjana HVEI-153 Karl, W. Clem COIMG-422 Kasahara, Ryohsuke SRV-349 Kato, Keiji MAAP-290 Kawahito, Shoji IMSE-187, IMSE-190 Kawai, Takashi SD&A-380 Kawakita, Masahiro SD&A-358, SD&A-361 Kawano, Noel ERVR-093 Keith, Stephan R. SD&A-370 Kemeny, Andras ERVR-097 Kenzhebalin, Daulet IQSP-234 Khalajmehrabadi, Ali MOBMU-292 Khoo, Yuehaw COIMG-422 Kibushi, Hiroki COLOR-044 Kim, Choon-Woo COLOR-038 Kim, Dae Eun COIMG-423 Kim, Hojung IQSP-241 Kim, Hyun-Eui IQSP-248 Kim, Hyun-Ho COIMG-429 Kim, Jonghyun COIMG-427, IPAS-214 Kim, Mark VDA-396 Kim, Minsub IQSP-221 Kim, Munchurl COIMG-423. COIMG-429 Kim, Myung K. COIMG-427 Kim, Nam 3DIPM-008 Kim, Sanghyun SD&A-380 Kim, Se-hoon VIPC-405 Kim, Sunil IQSP-241 Kim, Taek IQSP-244 Kim, Yongkyu IQSP-241 Kim, Young IQSP-241 Kim, Young-Tae COLOR-038 Kim, Yunhee IQSP-241 Kim, Yun-Tae IQSP-241 Kimachi, Akira MAAP-274 Kirchner, Matthias MWSF-332, **MWSF-333** Kitamura, Kazuya IQSP-233 Kiyotomo, Takuma COLOR-044 Klein, Karsten SD&A-109 Kleinsteuber, Martin IQSP-229 Knackmuss, Jenny MOBMU-301, MOBMU-302, MOBMU-308

MOBMU-302, MOBMU-3 Knob, Sascha 3DIPM-003 Knopf, Juliana HVEI-128 Knox, Keith T. **COLOR-050** Ko, Daegun **IQSP-236** Kobayashi, Dylan ERVR-093 Koda, Yasumasa **IMSE-178** Koenderink, Jan J. **HVEI-112** Kohlhammer, Jörn VDA-387, VDA-388

Koide, Daiichi IQSP-233 Kokaram, Anil **IQSP-222** Kokla, Vassiliki COIMG-434 Komuro, Takashi IMSE-190 Konda, Tadayuki SD&A-376 Koren, Tadayuki SD&A-376 Koren, Israel IMSE-183 Koren, Norman **AVM-451** Koren, Zahava IMSE-183 Kot, Alex C. MWSF-329 Kovács, Péter T. SD&A-357 Kovtun, Danila MOBMU-314 Kram, Noah IQSP-257 Krishna, Onkar HVEI-148 Krüger, Björn VDA-387 Kruse, Kevin IQSP-227 Kryzhanovskiy, Konstantin MOBMU-298 Kucer, Michal COIMG-433 Kuesten, Carla HVEI-143 Kuhlmey, Mathias SD&A-364, SD&A-377 Kuijper, Arjan VDA-388 Künze, Joerg IMSE-077 Kurilin, Ilya COIMG-439, VIPC-412 Kurmanov, Vladimir COIMG-439 Kuroda, Rihito IMSE-178 Kwon, Do-Kyoung AVM-013, AVM-015

L

Lahoulou, Atidel IQSP-228 Lakshman, Hari DPMI-070 Lam, Jack ERVR-093 Lam, Philip IRIACV-272 Lamy, Francis MAAP-277 Lang, Ulrich VDA-392 Laparra, Valero HVEI-114 Larabi, Chaker COLOR-035, **IQSP-228** Lasenby, Joan CVAS-342, CVAS-343 Laube, Frederick MOBMU-294 Lauzon, Jacob AVM-019 Lawrence, Kurt C. IRIACV-262 Lebedev, Kirill COIMG-439 Lebowsky, Fritz COLOR-054, COLOR-062 Le Callet, Patrick HVEI-124 Lecat-Mathieu de Boissac, Capucine MOBMU-295 Lee, Byoungho COIMG-427, COIMG-442 Lee, Chang-Kun COIMG-442 Lee, Chulhee IQSP-240, MOBMU-300 Lee, Dong-Hyeok COLOR-038 Lee, Dukho COIMG-442 Lee, Hong-Seok IQSP-241 Lee, Seoyoung IPAS-217 Lee, Soochahn VIPC-405 Lee, Soo-Jin COIMG-443, COIMG-446 Lee, Sukho IPAS-085 Lee, Tammy IPAS-201 LeGendre, Chloe MAAP-276 Legin, Andrey MOBMU-314 Leigh, Jason ERVR-093, SD&A-106 Lenchenkov, Victor IQSP-253 Lensch, Hendrik COIMG-426 Lenzen, Lucien IQSP-242 Leroux, Thierry MAAP-275 Leschke, Tanja MOBMU-309

Lézoray, Olivier 3DIPM-002 Li, Bin MWSF-324 Li, Enping MOBMU-303 Li, Frankie IMAWM-171 Li, Gang COIMG-442 Li, Haoliang MWSF-329 Li, K. S. (Sammy) IRIACV-263 Li, Ming IRIACV-259 Li, Nian-Rong VIPC-398 Li, Qin IMAWM-175 Li, Xin MOBMU-306 Li, Yong VIPC-404, VIPC-406 Li, Ze-Nian COLOR-060 Li. Zhi IMAWM-169 Liang, Kai-Wen VIPC-398 Liao, Miao IRIACV-259 Liao, Weihang VIPC-399 Lichty, Patrick ERVR-103 Lienhart, Rainer CVAS-345 Likova, Lora T. HVEI-155 Lim, Jae COLOR-057 Lim, Kevin ERVR-089 Lim, Pang Boey SD&A-360 Lim, Teck-Yian COIMG-416 Lim, Yongjun SD&A-366 Lin, Han-Hsuan COIMG-440 Lin, Lili COIMG-431, IMAVVM-173 Lin, Qian IMAWM-163, IMAWM-165 Lin, Shuheng IMAWM-169 Lin, Wei-Ting VIPC-409 Lind, Randall IRIACV-271 Lipetski, Yuriy SRV-350 Liu, Chang MWSF-332 Liu, Changsong MOBMU-306 Liu, Ran HVEI-147 Liu, Tongyang IMAWM-167, **IMAWM-177** Liu, Xing IQSP-234 Liu, Xinxin IMAWM-173 Liu, Yue SD&A-356 Liu, Zoe VIPC-409 Livitz, Gennady HVEI-137 Lloyd, Charles SD&A-354 Lloyd, Peter IRIACV-271 Lo, Hsin-Hsiang COIMG-440 Lomakina, Anna MOBMU-314 Long, Katie COIMG-430, DPMI-075, DPMI-081 Lopez-Gonzalez, Monica HVEI-156 Loui, Alexander COIMG-433, VIPC-403 Love, Lonnie IRIACV-271 Lu, Aidong VDA-393 Lu, Cheng COLOR-046, IQSP-251 Lu, Chih-Hung COIMG-440 Lu, Jiangbo AVM-013 Lu, Yung-Hsiang IMAVVM-160 Lücke-Tieke, Hendrik VDA-388 Lukin, Vladimir V. DPMI-083, IPAS-202 Lumsdaine, Andrew COIMG-431, VDA-386

Lüthen, Julia IQSP-229

Μ

Ma, Sai MWSF-320 Maack, Stefan MOBMU-308 MacAllister, Anastacia M. CVAS-346 MacDonald, Lindsay COIMG-434 Macmillan, Timothy DPMI-068, SD&A-375 Maertens, Marianne HVEI-113 Maggard, Eric IQSP-239 Mahadik, Shruti MOBMU-310 Majee, Soumendu COIMG-417 Majmudar, Gopa HVEI-143 Makov, Sergey V. IPAS-211 Mangiatordi, Federica IMAWM-168, IPAS-198 Mantel, Claire VIPC-401 Mao, Ruiyi COLOR-048 Marchessoux, Cedric COLOR-034 Marchuk, Vladimir I, IPAS-199. IPAS-211 Margolis, Todd ERVR-099 Marriott, Kim SD&A-109 Martin, Sébastien IMSE-188 Martínez-García, Josafat SRV-351 Mas Montserrat, Daniel IMAWM-163 Mathew, Manu AVM-020 Matthies, Larry AVM-018 Mayne, Jim HVEI-143 Mazauric, Serge MAAP-289, MAAP-291 McAllister, David SD&A-374 McCann, John J. COLOR-053 McCarthy, Dylan ERVR-095 McCormack, Jon SD&A-109 Menant, Judicaël 3DIPM-007 Mérienne, Frédéric ERVR-097 Messinger, David COIMG-433 Mestre, Daniel R. ERVR-094 Meyer, Gary MAAP-288 Mg, Biju AVM-017 Michaux, Aaron COIMG-452 Micinski, Stan IQSP-253 Miller, Jack CVAS-346 Milyukov, Gleb COIMG-439 Minami, Yusuke SD&A-365 Mingolla, Ennio HVEI-137 Mishina, Tomoyuki SD&A-358, SD&A-361 Mitra, Ayan COIMG-421 Miyamura, Hiroko VDA-395 Mizuno, Kazuyo VDA-389 Mody, Mihir AVM-017, AVM-020 Mohammad, Khader IPAS-204, **MOBMU-299** Molchanov, Alexander

COIMG-439 Möller, Thomas MOBMU-309 Montes Martínez, Josué R. IPAS-203 Moon, Seokil COIMG-442 Moore, Darnell AVM-013, AVM-015 Morales, Jafet MOBMU-315 Morgenstern, Maik MOBMU-302 Morikawa, Hiroyuki SD&A-380 Morikawa, Yuki **IMSE-187** Morin, Luce 3DIPM-007 Morita, Toshiya HVEI-378 Moukaddem, Nada COIMG-441 Mueller, Gero MAAP-277 Mueller, Martin **AVM-010** Mukherjee, Debargha VIPC-409 Müller, Friedrich MOBMU-307 Mullin, Caitlin **HVEI-152** Mun, Ji-Hun **SD&A-369** Musbach, Avery MAAP-288

Ν

Nadal, Maria E. MAAP-273 Nagy, George MOBMU-297 Nair, Binu M. IMAWM-164 Nakamura, Kazuki SD&A-360 Nakamura, Tomohiro IMSE-179 Nakao, Akihiro VDA-395 Nakura, Toru COIMG-418 Nam, Woo Hyun IPAS-201 Naoi, Satoshi HVEI-145 Narayanan, Badri AVM-017 Natarajan, Girish Vaidyanathan MOBMU-315 Nestares, Oscar DPMI-063, DPMI-064, DPMI-065 Newman, David A. SD&A-375 Nezan, Jean-François 3DIPM-007 Ngan, Henry IRIACV-263, **IRIACV-272** Nguyen, Minh Q. IQSP-238, IQSP-239 Nguyen, Toan D. SD&A-109 Nicholas, Spero HVEI-155 Niel, Kurt S. IRIACV-266 Nim, Hieu SD&A-109 Nishi, Shogo MAAP-274 Noaman, Bassam VIPC-407 Nomura, Yoshihiko IRIACV-260 Norby, Richard IRIACV-265 Norling, Thomas IMAWM-160 Nouri, Anass 3DIPM-002 Nussbaum, Peter COLOR-037, MAAP-280 Nycz, Andrzej IRIACV-271 Nyström, Daniel COLOR-058

0

O'Riordan, Colm HVEI-118 Obein, Gaël MAAP-279 Oh, KwanJung SD&A-366 Oh, Paul IPAS-085 Oh, Seungseok **IQSP-244** Ohta, Fumiya SD&A-380 Ohzahata, Satoshi VDA-395 Okaichi, Naoto SD&A-358, SD&A-361

Okutomi, Masatoshi IMSE-078 Oliva, Aude **HVEI-116** Olshausen, Bruno **HVEI-139** Oostdijk, Arjen IPAS-206 Ortiz Segovia, Maria V. MAAP-279 Osafune, Saki SD&A-365 Ossuetta, Emmanuel ERVR-090 O'Sullivan, Joseph A. COIMG-421

Ρ

Page, Marine MAAP-279 Pallotti, Emiliano IMAVVM-168, IPAS-198 Pan, Xunyu IMAWM-161 Pappas, Thrasyvoulos N. HVEI-143 Paquit, Vincent C. IRIACV-265, IRIACV-271 Park, Bosoon IRIACV-262 Park, Kyoung-Soo COLOR-038 Park, Sungbum IRIACV-267 Park, Yongsup IPAS-201 Passarella, Katrina IQSP-247 Passmore, Clayton IQSP-244 Paulus, Dietrich AVM-014 Pedeferri, Maria Pia MAAP-278 Pedersen, Marius COLOR-043, IQSP-225 Peli, Eli HVEI-147 Pepperell, Robert HVEI-154 Perot, Etienne AVM-023 Petkie, Douglas IPAS-207 Petrova, Xenya COIMG-439 Peyvandi, Shahram HVEI-134 Pfefer, Joshua DPMI-256 Phatak, Charudatta COIMG-453 Phillips, Jonathan B. IQSP-249 Phillips, P. Jonathon MWSF-316 Piasetzky, Eli IQSP-226 Picton, Tom SD&A-105 Pieck, Martin A. IPAS-209 Pieper, Sean IQSP-244 Pines, Joshua COLOR-052 Pizlo, Zygmunt COIMG-452 Pock, Thomas IRIACV-268 Podoynitsina, Lyubov MOBMU-298 Poggi, Giovanni MWSF-330 Politte, David G. COIMG-421 Pollick, Frank VDA-450 Ponomarenko, Nikolay DPMI-083, IPAS-202 Post, Brian IRIACV-271 Pouli, Tania COLOR-035 Pour Yazdanpanah, Ali IPAS-197 Powar, Nilesh IMAWM-164, **IPAS-207** Poyade, Matthieu VDA-450

Prabhushankar, Mohit **IQSP-223** Prasad, Vidur T. IMAWM-164, **IRIACV-270**

Pressigout, Muriel 3DIPM-007 Protik, Mahfuze Subhani 3DIPM-008 Przybyla, Craig P. COIMG-437 Psarrou, Alexandra **COIMG-434** Ptucha, Raymond AVM-019, AVM-022, IMAWM-162 Puech, William 3DIPM-005, MWSF-319, MWSF-323, MWSF-335 Pulli, Kari **DPMI-067** Purnell, Tony CVAS-342, CVAS-343 Puteaux, Pauline **MWSF-319**

Q

Qiao, Heng SD&A-381 Qiu, Guoping 3DIPM-004

R

R, Sivaraj AVM-017 Rabaud, Wilfried IMSE-188 Radis, Michela MAAP-282 Rafi, M.Rashidur Rahman 3DIPM-008 Ragb, Hussin K. IMAWM-172 Rai, Yashas HVEI-124 Rains, Danielle R. ERVR-096 Rama, Pia HVEI-148 Razet, Annick MAAP-279 Redies, Christoph HVEI-142, HVEI-152 Reed, Alastair M. COLOR-045 Rehman, Abdul HVEI-379 Reibman, Amy HVEI-125, IQSP-239 Reiners, Dirk ERVR-096 Reis, Elena IMSE-185 Ren, Xue COIMG-443 Restrepo, Alfredo HVEI-132 Revie, William C. COLOR-027 Rickman, Jeffrey COIMG-454 Riffle, Rebecca IPAS-207 Robisson, Pierre IQSP-245 Rodricks, Brian IQSP-251 Rodriguez-Pardo, Carlos E. COLOR-040 Rodríguez-Vázquez, Angel IMSE-195 Rogers, Jennifer L. VDA-450 Roheda, Siddharth SRV-352 Romanenko, Alexander MOBMU-298 Röning, Juha IRIACV-261 Rosenholtz, Ruth HVEI-111 Rosenthaler, Lukas MAAP-284 Roshan, Emitis HVEI-133

Rossi, Giuseppe MAAP-282 Rostang, Johan **COLOR-034** Ruda, Harald HVEI-137 Ruppert, Tobias **VDA-388** Rychagov, Michael VIPC-412 Ryu, Jaein MOBMU-300 Ryzhov, Vladimir IPAS-199

S

Saadane, Abdelhakim IQSP-219 Safaee-Rad, Reza COLOR-026 Sakamoto, Daisuke VDA-389 Sampat, Nitin DPMI-071, DPMI-072, IQSP-251 Sanberg, Willem AVM-021 Sandin, Daniel SD&A-106 Santos, Pedro N. IMSE-185 Sariyanidi, Evangelos IRIACV-258 Sarkar, Utpal COLOR-041, COLOR-042, COLOR-048 Sasaki, Hisayuki SD&A-358, SD&A-361 Sato, Kazunori SD&A-372 Savakis, Andreas IMAWM-162 Sawahata, Yasuhito HVEI-378 Saxena, Sagar IMAWM-162 Schlueter, Jonathan CVAS-346 Schneider, Alex IMSE-186 Schneider, Tamera IPAS-207 Schonfeld, Dan VIPC-402 Schrader, Thomas MOBMU-294 Schreiber, Falk SD&A-109 Schulze, Jürgen P. ERVR-089, ERVR-095, ERVR-102, **ERVR-108** Scott, Edward T. HVEI-120 Scribner, David VDA-390 Sedighianaraki, Vahid MWSF-325 Semenishchev, Evgeny A. IPAS-087, MOBMU-305 Sencan, Onur IRIACV-258 Seo, Guiwon MOBMU-300 Seo, Juwon IQSP-241 Seo, Min W. IMSE-190 Seo, Wontaek IQSP-241 Seroul, Pierre MAAP-281 Seshadrinathan, Kalpana DPMI-065 Sha, Lingdao VIPC-402 Shahnovich, Ulian IMSE-192 Shang, Hong HVEI-145 Shankar, Bhawani AVM-025 Sharma, Gaurav COLOR-040 Sharma, Sharad ERVR-090, VDA-390 Shaus, Arie HVEI-144, IQSP-226

Shaw, Mark COLOR-046, IQSP-239 Shcherbinin, Andrey COIMG-439 Sherwood, Matthew IPAS-207 Shi, Lieyu VDA-385 Shibata, Takashi IMSE-078, SD&A-372 Shim, Woo-sung IRIACV-267, VIPC-405 Shimamoto, Hiroshi IMSE-179, IQSP-233 Shin, Dong-won COIMG-444 Shoda, Elizabeth SD&A-354 Sidla, Oliver SRV-350 Sigwarth, Timo MOBMU-294 Silapasuphakornwong, Piyarat MWSF-317 Sim, Grace HVEI-149 Simmons, Jeffrey P. COIMG-437, COIMG-449 Simoncelli, Eero HVEI-114 Simon-Liedtke, Joschua T. COLOR-029, COLOR-030 Simonot, Lionel MAAP-291 Simpson, Garth COIMG-415 Skilling, Taylor IQSP-244 Skinner, Alex IQSP-227 Skipper, Julie IPAS-207 Skorka, Orit IQSP-235, IQSP-253 Smith, Craig IMSE-186 Sober, Barak IQSP-226 Sohoni, Sohum IQSP-220, IQSP-224 Sole, Aditya MAAP-280 Solter, Ashley IQSP-251 Somanath, Gowri DPMI-064, DPMI-066 Sommer, Björn SD&A-109 Sone, Takuroh MAAP-283 Song, Byung Cheol VIPC-408 Song, Hoon IQSP-241 Song, Ki Sun IQSP-221 Soomro, Shoaib R. ERVR-104 Soto-Cajiga, Jorge A. IPAS-203 Sousa, Natércia IMSE-185 Sousa, Ricardo M. IMSE-185 Spooner, Amelia IQSP-251 Sreehari, Suhas COIMG-449 Srinivas, Nisha IRIACV-265 Staab, Michael VDA-388 Stamm, Matthew C. MWSF-328 Steinebach, Martin MWSF-321, **MWSF-322** Stephens, Kingsley SD&A-109

Stepriens, Kingsley SD&A-109 Steurer, Johannes IQSP-229 Štolc, Svorad IRIACV-268, IRIACV-269

Strauss, Olivier MWSF-335 Subsol, Gérard 3DIPM-005 Sugawa, Shigetoshi IMSE-178 Sugiyama, Linda VDA-397 Sui, Shengli IMAWM-160 Suk, Hyeon-Jeong **COIMG-424,**

COIMG-425, COIMG-448, HVEI-146

Sumner, Robert AVM-451, **IQSP-257** Sun, Amber DPMI-079 Sun, Jun HVEI-145, VIPC-411 Sun, Pei-Li **COLOR-033** Sundaram, Sathya IMAWM-169 Sung, Geeyoung IQSP-241 Suresh, Nitin DPMI-256 Suresh, Preetham ERVR-089 Surkov, Sergey IMAWM-171 Suzuki, Masahiro **MWSF-317** Suzuki, Wataru MAAP-286 Svensen, Oyvind IQSP-231 Swami, Pramod AVM-017

Т

Tahery, Saman COLOR-056 Tai, Chun-Jung IMAWM-167, **IMAWM-177** Takagi, Hiroyuki SD&A-360 Takahashi, Hideya SD&A-365, SD&A-376 Takahashi, Shigeo VDA-395 Takano, Yohei COLOR-039 Takasawa, Taishi IMSE-187, IMSE-190 Tan, Shunguan MWSF-324 Tanaka, Masayuki IMSE-078 Taregue, Mohd. Zishan 3DIPM-008 Tatsuno, Hibiki COLOR-039 Techavichian, Soravit MWSF-317 Temel, Dogancan IQSP-223 Temeltas, Hakan IRIACV-258 Teranishi, Nobukazu IMSE-187 Teraya, Daiki COIMG-447 Theriot, Ryan ERVR-093 Theuwissen, Albert IMSE-191 Thomas, Jean-Baptiste COLOR-059 Thomas, Rahul IMSE-183 Tinet, Eric IMSE-181 Tkachenko, Iuliia MWSF-335 Tolley, Michael T. ERVR-102 Tominaga, Shoji MAAP-290 Tong, Xin ERVR-101 Torii, Hideyuki MWSF-317 Torresani, Lorenzo MWSF-337 Tran, Du MWSF-337 Tran, Vinh IQSP-249 Triantaphillidou, Sophie COIMG-434, COLOR-051, **IQSP-255** Tsagkatakis, Grigorios COIMG-445, CVAS-344 Tsai, Yao-Hong IPAS-208 Tsakalides, Panagiotis COIMG-445, CVAS-344 Tseng, Benjamin IQSP-249 Tsukano, Yuki COLOR-044 Tsunoda, Hiroyuki IMSE-178 Tualle, Jean-Michel IMSE-181 Tubaro, Stefano MWSF-327 Turkel, Eli HVEI-144, IQSP-226 Turner, Mark SD&A-105 Tuysuzoglu, Ahmet **COIMG-422**

Tyler, Christopher HVEI-138

U

Uchida, Hironaga SD&A-360 Uchida, Ken ERVR-093 Uehira, Kazutake MWVSF-317 Ulichney, Robert COLOR-041, COLOR-042, COLOR-048 Ulusoy, Erdem ERVR-104 Urey, Hakan ERVR-104 Uvarov, Timofey **DPMI-076**

V

Valentín, Kristián IRIACV-268, IRIACV-269 Valenzise, Giuseppe HVEI-135 Valsecchi, Matteo HVEI-112 van Beek, Peter IRIACV-259 van de Wouw, Dennis W. **IPAS-209** van Doorn, Andrea HVEI-112 van Persie, Mark IPAS-206 Vatolin, Dmitriy SD&A-340 Vázquez-Cervantes, Alberto IPAS-203, SRV-351 Venkatachalapathy, Vishwas AVM-022 Verdoliva, Luisa **MWSF-330** Vernet, Romain MAAP-281 Viennet, Emmanuel IQSP-228 Viggiano, Stephen DPMI-071, DPMI-072, IQSP-251 Vlachomitrou, Anna-Cecilia **IQSP-230** Vögele, Anna VDA-387 Vogelsang, Thomas IMSE-186 Vohl, Dany SD&A-109 Voltolini de Azambuja, Fernando DPMI-071, IQSP-251

Voronin, Viacheslav IPAS-199, IPAS-211, MOBMU-305, MOBMU-314

Vorstandlechner, Mario CVAS-347

W

Wachs, Juan P. **IRIACV-264** Wagemans, Johan HVEI-152 Wandell, Brian A. HVEI-140 Wang, Danli SD&A-381 Wang, Fei IMSE-191 Wang, Fengping IPAS-213 Wang, Jiheng HVEI-379 Wang, Jing HVEI-143 Wang, Jing VIPC-402 Wang, Lili IRIACV-272 Wang, Michael IMAWM-171 Wang, Quanxin VIPC-406 Wang, Quanzeng DPMI-256 Wang, Rong COIMG-431 Wang, Shiqi HVEI-379 Wang, Shiqi MWSF-329 Wang, Song COIMG-437 Wang, Weixing IPAS-212, IPAS-213 Wang, Wiley H. IMAWM-171 Wang, Yixuan IMSE-180, IQSP-249 Wang, Yongtian SD&A-356 Wang, Zhou DPMI-073, HVEI-121, HVEI-379 Wäny, Martin IMSE-185 Watanabe, Hayato SD&A-358, SD&A-361 Watanabe, Shuhei MAAP-283 Weast, Jack AVM-009 Weber, Gunther H. VDA-383 Weiss, Eric HVEI-139 Wengyan, Chan IMAWM-160 Wernert, Eric ERVR-107 Whiting, Bruce COIMG-421 Wichmann, Felix A. HVEI-113 Wilcox, Laurie M. HVEI-129, HVEI-131, SD&A-353, SD&A-355 Wilkins, Paul VIPC-409 Williams, Logan SD&A-354 Williamson, Jeffrey F. COIMG-421 Wilson, Elliott SD&A-109 Winer, Eliot CVAS-346 Winterbottom, Marc SD&A-354 Wischgoll, Thomas VDA-391 Wolf, Kai-Dietrich MWSF-338 Wong, Pak VDA-394 Woo, Jihwan IPAS-217 Woo, Seongyoun IQSP-240 Woods, Andrew J. SD&A-110, SD&A-370 Wörmann, Julian IQSP-229 Wu, Eric ERVR-093 Wu, Hsiang-Yun VDA-395 Wu, Jiatao VIPC-404

Wu, Jong DPMI-081 Wu, Qingbo HVEI-379 Wu, Yi DPMI-065 Wueller, Dietmar **DPMI-252**

Χ

Xi, Weijuan COLOR-041, COLOR-042 Xiao, Zuguang IQSP-239 Xie, Hao COLOR-040 Xie, Hongwei IMSE-184, IQSP-232 Xie, Yaohua SD&A-381 Xu, Kai COIMG-418 Xu, Shaoyuan COLOR-046 Xu, Yaowu VIPC-409

Y

Yaacob, Yusizwan HVEI-123, HVEI-130, HVEI-131 Yadav, Aman IQSP-220 Yadid-Pecht, Orly IMSE-192 Yamada, Yoshimitsu MAAP-286 Yamasaki, Takahiro IMSE-179 Yamasaki, Toshihiko HVEI-148 Yamashita, Takayuki IPAS-086 Yamazaki, Kazuki SD&A-360 Yan, Jie ERVR-100 Yan, Ni IQSP-234 Yan, Yan IMAWM-173 Yang, Chang-Mo COLOR-038 Yang, Daiqin IQSP-243, VIPC-399 Yang, Shun-nan HVEI-128, HVEI-131 Yang, Xiaogang COIMG-453 Yano, Tomoaki SRV-349 Yao, Jiajie DPMI-064, DPMI-066 Yasue, Toshio IQSP-233 Yasutomi, Keita IMSE-187, IMSE-190 Ye, Dong Hye COIMG-417 Yeh, Anthony G. O. IRIACV-272 Yendo, Tomohiro COIMG-447, SD&A-363 Yogamani, Senthil AVM-023 Yoon, Seung-Chul IRIACV-262 Yoshimoto, Kayo SD&A-365, SD&A-376 Yotam, Ben-Shoshan COLOR-042

You, Jane **IMAWM-175** Youn, Sungwook IQSP-240 Yu, Hongkai **COIMG-437** Yu, Jun MOBMU-303 Yu, Li VDA-393 Yu, Stella X. IQSP-225 Yu, Tianli IMAWM-173, **IMAWM-174** Yu, Xiaoyi **VIPC-411** Yu, Xiaoyi **VIPC-411**

Yu, Xueming MAAP-276 Yuan, Lin **HVEI-150** Yung, Nelson H.C. IRIACV-272

Ζ

Zakhor, Avideh COIMG-435, COIMG-438 Zander, Justyna AVM-016 Zare, Alireza SD&A-357 Zavalishin, Sergey COIMG-439, VIPC-412 Zecha, Dan CVAS-345 Zellmann, Stefan VDA-392 Zeng, Huanzhao COLOR-055 Zeng, Jishen MWSF-324 Zeng, Kai HVEI-121 Zhan, Ruohan IMAWM-175 Zhang, Bo IMSE-190 Zhang, Chi VIPC-403 Zhang, Fangyan VDA-394 Zhang, Lei IMAWM-158, VDA-385 Zhang, Song VDA-394 Zhang, Wei COIMG-431 Zhang, Weini IMAWM-173 Zhang, Yi HVEI-123, HVEI-130, HVEI-131 Zhang, Yingxue IQSP-243 Zhang, Yiwen IMAWM-173 Zhao, Chengduo MWSF-320 Zhao, Xianfeng MWSF-320 Zheng, Chi 3DIPM-004 Zhou, Tian IRIACV-264 Zhou, Wenhui COIMG-431 Zhou, Zhen IQSP-227 Zhu, Fengqing COIMG-436, IMAWM-165, IMAWM-167, IMAWM-177 Ziga, Kyle COIMG-436 Zitinski Elias, Paula COLOR-058 Zlokolica, Vladimir AVM-012 Zou, Bochao SD&A-356

Call for Papers

Published by SPIE and IS&T

Karen Egiazarian Tampere University of Technology, Finland Editor-in-Chief

Aims and Scope

The *Journal of Electronic Imaging* publishes papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.

Contributed papers cover the following research areas that apply directly to electronic imaging or focus on applied electronic imaging technology:

- Image acquisition
- Hard copy output
- Image data storage
- Image visualization
- Image data communication
- Image processing
- Display of image data
- Electronic imaging applications

2014 Impact Factor

Two-year: 0.672 Five-year: 0.832

Subject Category Rankings:

- Imaging Science & Photographic Technology: 20/24
- Electrical & Electronic Engineering: 180/249
- Optics: 69/86

Benefits of Publishing in Journal of Electronic Imaging

- Wide availability to readers via the SPIE Digital Library
- Rapid publication; each article is published when it is ready
- Coverage by Web of Science and Journal Citation Reports as well as other relevant abstracting and indexing services and search engines
- Professional copyediting and typesetting ensure high-quality presentation and reduce work for authors
- Video and color content at no charge to authors
- Reference linking via CrossRef
- Mobile access to articles
- Figures may be downloaded and captured as PowerPoint slides with citations
- Open Access for articles immediately with voluntary payment of \$100 per page

JElectronicImaging.org

We hope to see you next year in SFO/Burlingame, CA! 28 January – 1 February 2018

7003 Kilworth Lane • Springfield, VA 22151 USA • +1 703 642 9090