
AIMMS
A One-Hour Tutorial

for Students
April 2000

Paragon Decision Technology

Johannes Bisschop
Koos Heerink

Copyright c© 2000 by Paragon Decision Technology B.V.
All rights reserved.

Paragon Decision Technology B.V.
P.O. Box 3277
2001 DG Haarlem
The Netherlands
Tel.: +31(0)23-5511512
Fax: +31(0)23-5511517
Email: info@paragon.nl
WWW: http://www.aimms.com

ISBN xx–xxxxxx–x–x

Aimms is a trademark of Paragon Decision Technology B.V. Other brands and their products are trademarks
of their respective holders.

Windows and MS-dos are registered trademarks of Microsoft Corporation. TEX, LATEX, and AMS-LATEX are
trademarks of the American Mathematical Society. Lucida is a registered trademark of Bigelow & Holmes
Inc. Acrobat is a registered trademark of Adobe Systems Inc.

Information in this document is subject to change without notice and does not represent a commitment on
the part of Paragon Decision Technology B.V. The software described in this document is furnished under
a license agreement and may only be used and copied in accordance with the terms of the agreement. The
documentation may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to
any electronic medium or machine-readable form without prior consent, in writing, from Paragon Decision
Technology B.V.

Paragon Decision Technology B.V. makes no representation or warranty with respect to the adequacy
of this documentation or the programs which it describes for any particular purpose or with respect
to its adequacy to produce any particular result. In no event shall Paragon Decision Technology B.V.,
its employees, its contractors or the authors of this documentation be liable for special, direct, indirect
or consequential damages, losses, costs, charges, claims, demands, or claims for lost profits, fees or
expenses of any nature or kind.

In addition to the foregoing, users should recognize that all complex software systems and their doc-
umentation contain errors and omissions. The authors, Paragon Decision Technology B.V. and its em-
ployees, and its contractors shall not be responsible under any circumstances for providing information
or corrections to errors and omissions discovered at any time in this book or the software it describes,
whether or not they are aware of the errors or omissions. The authors, Paragon Decision Technology
B.V. and its employees, and its contractors do not recommend the use of the software described in this
book for applications in which errors or omissions could threaten life, injury or significant loss.

This documentation was typeset by Paragon Decision Technology B.V. using LATEX and the Lucida font
family.

Contents

1 Introduction 1

2 What to Expect 3
2.1 Scope of one-hour tutorial . 3
2.2 Problem description and model statement 3
2.3 A preview of your output . 6

3 Building the Model 7
3.1 Starting a new project . 7
3.2 The Model Explorer . 8
3.3 Entering sets and indices . 9
3.4 Entering parameters and variables 11
3.5 Entering constraints and the mathematical program 13
3.6 Viewing the identifiers . 15

4 Entering and Saving the Data 18
4.1 Entering set data . 18
4.2 Entering parameter data . 19
4.3 Saving your data . 20

5 Solving the Model 24
5.1 Computing the solution . 24

6 Building a Page 27
6.1 Creating a new page . 27
6.2 Presenting the input data . 27
6.3 Presenting the output data . 30
6.4 Finishing the page . 32

7 Performing a What-If Run 36
7.1 Modifying input data . 36

Chapter 1

Introduction

Ways to learn
Aimms . . .

There are several ways in which you can learn the Aimms language and get a ba-
sic understanding of its underlying development environment. The following
opportunities are immediately available, and are part of the Aimms installation.

� There is a live demo application in which you can observe the basic func-
tioning of Aimms through a combination of static text and a moving cur-
sor to point at simulated actions.

� There are two tutorials on Aimms to provide you with some initial work-
ing knowledge of the system and its language. One tutorial is intended
for students, while the other is aimed at professional users of Aimms.

� There is a model library with a variety of examples to illustrate simple
and advanced applications together with particular aspects of both the
language and the graphical user interface.

� There are three reference books on Aimms, which are available in PDF for-
mat and in hard copy form. They are The User’s Guide to introduce you
to Aimms and its development environment, The Language Reference to
describe the modeling language in detail, and Optimization Modeling to
enable you to become familiar with building models.

. . . for studentsAs a student of optimization modeling, you may not have much time for learn-
ing yet another tool in order to finish some course work or homework re-
quirements. In this case, look at the ‘live demo’ for five to ten minutes, and
then concentrate your efforts on this tutorial. After completing this tutorial,
you should be able to use the system to build your own simple models, and to
enter your own small data sets for subsequent viewing. The book on Optimiza-
tion Modeling may teach you some useful tricks, and will show you different
(mostly non-trivial) examples of optimization models.

. . . for
professionals

As a professional in the field of optimization modeling you are looking for a
tool that simplifies your work and minimizes the time needed for model con-
struction and model maintenance. In this situation, you cannot get around
the fact that you will need to initially make a substantial time investment to
get to know several of the advanced features that will subsequently support
you in your role as a professional application builder. Depending on your
skills, experience, and learning habits you should determine your own indi-

Chapter 1. Introduction 2

vidual learning path. A suggested route is to look at the ‘live demo’ first, and
then work through the extensive tutorial especially designed for professionals.
This tutorial for professionals provides a good start, and should create excite-
ment about the possibilities of Aimms. Individual examples in the library, plus
selected portions of the three books, will subsequently offer you additional
ideas on how to use Aimms effectively while building your own advanced ap-
plications.

Tutorials are
different in
scope

The one-hour tutorial for students is designed as the bare minimum needed to
build simple models using the Aimms Model Explorer. Data values are entered
by hand using data pages, and the student can build a page with objects to view
and modify the data. The extensive tutorial for professionals is an elaborate
tour of Aimms covering a range of advanced language features plus an intro-
duction to all the building tools. Especially of interest will be the modeling
of time using the concepts of horizon and calendar, the use of quantities and
units, the link to a database, the connection to an external DLL, and advanced
reporting facilities. Even then, some topics such as efficiency considerations
(execution efficiency, matrix manipulation routines) and the Aimms API will
remain untouched.

Chapter 2

What to Expect

This chapterIn this chapter you will find a brief overview of the tasks to be performed, a
compact statement of the underlying model to be built, and a glimpse of the
output you will produce.

2.1 Scope of one-hour tutorial

Summarizing
your work

Once you have read the short problem description and the associated mathe-
matical model statement, you will be asked to complete a series of tasks that
make up this one-hour tutorial, namely:

� create a new project in Aimms,
� enter all identifier declarations,
� enter the data manually,
� save your data in a case,
� build a small procedure,
� build a single page with

– header text,
– a standard table and two bar charts with input data,
– a composite table and a stacked bar chart with output data,
– a button to execute the procedure, and
– a scalar object with the optimal value,

� perform a what-if run.

2.2 Problem description and model statement

Problem
description

Truckloads of beer are to be shipped from two plants to five customers dur-
ing a particular period of time. Both the available supply at each plant and
the required demand by each customer (measured in terms of truckloads) are
known. The cost associated with moving one truck load from a plant to a
customer is also provided. The objective is to make a least-cost plan for mov-
ing the beer such that the demand is met and shipments do not exceed the
available supply from each brewery.

Chapter 2. What to Expect 4

Data overviewThe following table provides the data for the problem described in the previous
paragraph.

Customers Unit Transport Cost
Plants Amsterdam Breda Gouda Amersfoort Den Bosch Supply
Haarlem 131 405 188 396 485 47
Eindhoven 554 351 479 366 155 63
Demand 28 16 22 31 12

Table 2.1: Input data for beer transport problem

Identifier
declarations

The following declarations list the identifiers that are part of the mathematical
program to be built.

Indices:
p plants
c customers

Parameters:
Sp supply at plant p
Dc demand by customer c
Upc unit transport cost from p to c

Variables:
xpc transport from p to c
z total transport cost

Model summaryThe mathematical model summary below captures the least-cost plan to trans-
port beer such that the demand is met and shipments do not exceed available
supply.

Minimize:

z =
∑

pc
Upcxpc

Subject to: ∑

c
xpc ≤ Sp ∀p

∑

p
xpc ≥ Dc ∀c

xpc ≥ 0 ∀(p, c)

Chapter 2. What to Expect 5

AmsterdamHaarlem

Gouda

Amersfoort

Breda

Den Bosch

Eindhoven

Figure 2.1: The Netherlands

Using explicit
names

Even though the above notation with one-letter symbols is typical of small
mathematical optimization models, it will not be used when entering the model
into Aimms. Instead, explicit names will be used throughout to avoid any un-
necessary translation symbols. The number of symbols needed to describe
practical applications is generally large, and a clear naming convention sup-
ports the understanding and maintenance of large models.

Chapter 2. What to Expect 6

2.3 A preview of your output

A single pageFigure 2.2 is a page that contains both input and output data associated with
the beer transport model. In Chapter 6 you will be asked to construct this page
using the point-and-click facilities available in Aimms.

Figure 2.2: An input-output page

Chapter 3

Building the Model

3.1 Starting a new project

Creating a
folder

You are advised to use the Windows Explorer to create a dedicated folder in
which to store your Aimms projects. Figure 3.1 serves as an illustration.

Figure 3.1: A selection of folders

Starting AimmsAssuming that Aimms 3 has already been installed on your machine, execute
the following sequence of actions to start Aimms:

ñ press the Start button on the taskbar,
ñ go to the Programs submenu,
ñ go to the Aimms 3.x submenu, and
ñ select and click on the Aimms icon to start Aimms.

Next, you will see the Aimms splash screen. Once Aimms has started, the splash
screen will disappear and the Aimms window will open. Should you encounter
the Aimms Tip of the Day dialog box, close it, because it is not relevant to you
at this point.

Creating a new
project

Press the New Project button , which is located in the left most position
on the Aimms toolbar. The dialog box shown in Figure 3.2 will then appear,
requiring you to take the following actions:

ñ specify ‘Beer Transport’ as the project name,
ñ press the wizard button to select the dedicated folder for your Aimms

projects, and
ñ press the OK button.

Chapter 3. Building the Model 8

Figure 3.2: The New Project wizard

The Aimms project window (see Figure 3.3) for the ‘Beer Transport’ project will
then appear, and you are ready to enter your model.

Figure 3.3: The Aimms project window wizard

3.2 The Model Explorer

Opening the
Model Explorer

Press the Model Explorer button on the project window to open the Aimms
Model Explorer which will be displaying the initial model tree shown in Fig-
ure 3.4. In this initial model tree you will see

� a single declaration section, where you can store the declarations used in
your model,

Chapter 3. Building the Model 9

� the predefined procedure MainInitialization, which is not relevant for
this tutorial,

� the predefined procedure MainExecution, where you will put the execution
statement necessary to solve the mathematical program, and

� the predefined procedure MainTermination, which is again not relevant
for this tutorial.

Figure 3.4: The initial model tree

3.3 Entering sets and indices

Opening the
declaration
section

The declaration of model identifiers requires you to first ‘open’ the declaration
section by double-clicking on the scroll icon . Note that double-clicking on
the name of the declaration section instead of on its icon will open the attribute
form of the declaration section and will therefore, at this point, not lead to the
desired result. After opening the declaration section the standard identifier
buttons on the toolbar will be enabled.

Creating the set
‘Plants’

To create a set of plants you should take the following actions:

ñ press the Set button to create a new set identifier in the model tree,
ñ specify ‘Plants’ as the name of the set, and
ñ press the Enter key to register the name.

Opening its
attribute form

Next, you need to declare the index p as an attribute of the set ‘Plants’. You can
open the attribute form by double-clicking on the node ‘Plants’ in the model
tree. The resulting initial attribute form of the set ‘Plants’ is shown in Fig-
ure 3.5.

Chapter 3. Building the Model 10

Figure 3.5: The initial attribute form of the set ‘Plants’

Declaring the
index p

To declare the index p as an attribute of the set ‘Plants’, execute the following
sequence of actions:

ñ move the mouse cursor to the ‘Index’ attribute field, and click in the
(empty) edit field,

ñ enter the letter p, and
ñ complete the attribute form by pressing the Check, Commit and Close

button .

Creating the set
‘Customers’

Next, create the set ‘Customers’ with associated index c in exactly the same
way as you created the set ’Plants’ with index domain p. Figure 3.6 contains
the resulting model tree.

Figure 3.6: An intermediate model tree

Chapter 3. Building the Model 11

Saving your
changes

The asterisk on the left of the title bar indicates that additions to your project
have not yet been saved to disk. To save your work, please press the Save
Project button on the toolbar.

3.4 Entering parameters and variables

Domain
specification

In this section you will declare the parameters and variables that are needed
in your model. The sets ‘Plants’ and ‘Customers’ and their associated indices
will be used to specify the index domain for the parameters and variables.

Creating the
parameter
‘Supply’

The declaration of a parameter is similar to the declaration of a set. To enter
the parameter ‘Supply(p)’, you should execute the following actions:

ñ press the parameter button on the toolbar to create a new parameter
in the model tree,

ñ specify ‘Supply(p)’ as the name of the parameter, and
ñ press the Enter key to register the name.

Note that parentheses are used to add the index domain p to the identifier
‘Supply’.

Creating the
parameter
‘Demand’

The parameter ’Demand(c)’ can be added in the same way. Should you make a
mistake in entering the information, then you can always re-edit a name field
by a single mouse click within the field.

Creating the
parameter
‘UnitTransport-
Cost’

The last model parameter ‘UnitTransportCost’ is a two-dimensional parameter
with index domain (p, c). After entering ‘UnitTransportCost(p,c)’, the resulting
model tree should be the same as in Figure 3.7.

Figure 3.7: An intermediate model tree

Chapter 3. Building the Model 12

Creating the
variable
‘Transport’

Declaring a variable is similar to declaring a parameter.

ñ press the variable button on the toolbar to create a new variable in
the model tree,

ñ specify ‘Transport(p,c)’ as the name of the variable, and
ñ press the Enter key to register the variable.

Specifying
range attribute

After opening the attribute form of the variable by double-clicking on the node
‘Transport’ in the model tree, press the wizard button in front of the ‘Range’
attribute field. The resulting dialog box provides the opportunity to specify
the range of values that the variable ‘Transport’ is allowed to take. In this
case, select the ‘Standard Range’, then select ‘nonnegative’, and finally press
the OK button (see Figure 3.8).

Figure 3.8: The Aimms range wizard

Creating the
variable ‘Total-
TransportCost’

It should be clear by now how to create the variable ‘TotalTransportCost’. This
variable will be used to specify the objective function. After entering its name,
open the attribute form. There is no need to specify the range attribute, since
the default range will suffice. You are now ready to enter the following defini-
tion of this particular variable:

sum[(p,c), UnitTransportCost(p,c) * Transport(p,c)]

Specifying
definition
attribute

Simply enter the above definition in the ‘Definition’ attribute field. You could
type the entire sentence yourself, but you can also let Aimms do some of the
typing for you. Considering the parameter ‘UnitTransportCost(p,c)’, the fol-
lowing two support features are quite useful.

Chapter 3. Building the Model 13

� Type the letter u or U, and press the Ctrl-Spacebar combination for au-
tomatic name completion. By pressing the key combination once more,
Aimms will also add the attached indices (p, c).

� Another option available to you is to drag the name ‘UnitTransport-
Cost(p,c)’ from the model tree to the edit field of the ‘Definition’ attribute.

The attribute form should now have the same content as shown in Figure 3.9.
By pressing the Check, Commit and Close button , you can verify whether
Aimms will accept the definition you entered.

Figure 3.9: The completed attribute form for the variable ‘Transport’

3.5 Entering constraints and the mathematical program

The supply and
demand
constraints

Creating the supply and demand constraints, each with their own definition,
requires the same actions as creating a variable with a definition (as you just
completed). The only difference is that you must use the button instead of
the button. The following two forms should be the result of your efforts.

Figure 3.10: The completed attribute form for the constraint ‘Supply’

Chapter 3. Building the Model 14

Figure 3.11: The completed attribute form for the constraint ‘Demand’

Creating the
mathematical
program

A mathematical program, unlike sets, parameters, variables and constraints,
does not have a special button on the toolbar. By using the identifier button
, you obtain access to all the other types of Aimms identifiers. After pressing
this button, select the ‘Mathematical Program’ entry alongside the icon,
press the OK button, and enter ‘LeastCostTransportPlan’ as the name of the
mathematical program.

Specifying its
attributes

You should then complete the attribute form of the mathematical program as
illustrated in Figure 3.12. As an exercise you should use the wizards to
complete the three attributes. By default, all variables and constraints will be
considered as part of your mathematical program (thus there is no need to fill
in these attributes). Only the Objective attribute wizard is discussed in more
detail below since the other two wizards are straightforward.

Figure 3.12: The completed attribute form of the mathematical program

Selecting the
objective

The Objective attribute wizard requires you to select a scalar variable. In the
identifier selection wizard (see Figure 3.13), simply select the scalar variable
‘TotalTransportCost’, and press the Finish button.

Chapter 3. Building the Model 15

Figure 3.13: The identifier selection wizard

3.6 Viewing the identifiers

Checking your
model

You have now entered and declared all model identifiers. The resulting model
tree is shown in Figure 3.14. By pressing the F5 key you can instantly check
the validity of your model. You will only receive a message in the event of an
error. Once the validity of your model has been verified, you should save your
work by pressing the Save Project button .

Figure 3.14: The final model tree

Chapter 3. Building the Model 16

Identifier
overviews

Even though the Model Explorer is a convenient medium with which to build
and inspect your model, you may have the need to view several identifiers
at the same time. In this tutorial you will encounter one such example of
a predefined view, namely all identifiers with a definition (see Figure 3.15).
Aimms allows you to make your own views as you desire.

Figure 3.15: View window with identifier definitions

Creating a viewYou can create a view window by executing the following steps:

ñ press the Identifier Selector button in the project window,
ñ select the ‘Identifiers with Definition’ node, and
ñ use the right mouse and select the Open With. . . command from the

popup menu (see Figure 3.16).

Figure 3.16: Identifier Selector window

Chapter 3. Building the Model 17

For the selected identifiers the view can be constructed as follows:

ñ select the ‘Domain - Definition’ entry from the View Manager window
(see Figure 3.17, and

ñ press the Open button to obtain the overall view.

Figure 3.17: View Manager window

Chapter 4

Entering and Saving the Data

4.1 Entering set data

Manual data
entry

In this tutorial there are only a few numbers, and you are asked to enter these
numbers from the keyboard. In the second tutorial, data is imported from a
database. In this section you will encounter a standard data entry facility. Each
identifier has an associated data page that you can use both to view data and
to enter data.

Elements of the
set ‘Plants’

To enter the two elements of the set ‘Plants’, you should execute the following
actions:

ñ open the attribute form of the set ‘Plants’,
ñ press the Data button ,
ñ move the mouse pointer to the data page as shown in Figure 4.1, and

click in the empty edit field at the top of the data page,
ñ enter ‘Haarlem’ as the first element of the set,
ñ press the Enter key to register this element,
ñ enter ‘Eindhoven’ as the second element of the set,
ñ press the Enter key to register this element, and
ñ close the data page by clicking Close button (the data changes are imme-

diately committed).

Figure 4.1: Data page for the set ‘Plants’

Chapter 4. Entering and Saving the Data 19

Modifying an
element

If necessary you can modify an element. Select an element, and it will appear
in the edit field at the top of the data page. You can then enter the modified
element name.

Elements of the
set ‘Customers’

The elements of the set ‘Customers’ are entered in exactly the same way as for
the set ‘Plants’. The five elements are listed in Figure 4.2. Note that the last
element ‘Den Bosch’ contains a blank character.

Figure 4.2: Data page for the set ‘Customers’

4.2 Entering parameter data

Empty tablesThe data page of each indexed parameter is automatically filled with the ele-
ments of the corresponding sets. All that is left for you to do, is to enter the
nonzero data values.

Supply dataIn order to enter the data for the parameter ‘Supply’, you should execute the
following actions (which are similar to the ones described in the previous sec-
tion):

ñ open the attribute form of the parameter ‘Supply’,
ñ press the Data button ,
ñ move the mouse pointer to the first data field and click,
ñ enter the number 47,
ñ press the Enter key to register the first value,
ñ enter the number 63,
ñ press the Enter key to register the second value, and
ñ close the data page by pressing Close button.

Figure 4.3 shows the completed data page of the parameter ‘Supply’.

Chapter 4. Entering and Saving the Data 20

Figure 4.3: Data page for the parameter ‘Supply’

Demand dataThe data values for the parameter ‘Demand’ are entered in exactly the same
way as for the parameter ‘Supply’. The five data values are listed in Figure 4.4.

Figure 4.4: Data page for the parameter ‘Demand’

Cost dataThe parameter ‘UnitTransportCost’ is two-dimensional, and requires you to
complete a table. The completed data page for this parameter is shown in
Figure 4.5.

Figure 4.5: Data page for the parameter ‘UnitTransportCost’

4.3 Saving your data

Case
management

Aimms has the option to store the data values of all identifiers in what is re-
ferred to as a ‘case’. There are facilities both to save cases and to load cases.

Chapter 4. Entering and Saving the Data 21

Saving a caseIn order to save the data that you just entered in a new case named ‘Initial Beer
Transport Data’, you need to execute the following steps:

ñ go to the Data menu and execute the Save Case command,
ñ in the Save Case dialog box (see Figure 4.6) enter the name ‘Initial Beer

Transport Data’ in the ‘Name’ field (without the quotes), and
ñ press the Save button to save your data.

Figure 4.6: Save Case dialog box

Loading a case
as the startup
case

If a project in Aimms is closed and subsequently reopened, you may want to
reload your data. You may even want Aimms to load a specific case automat-
ically each time your project is started. This can be accomplished (without
programming) using the Aimms Options dialog box illustrated in Figure 4.7.

ñ go to the Settings menu and execute the Project Options command,
ñ select the Project - Startup & Authorization folder in the option tree,
ñ click on the Option Startup Case in the right-most window,
ñ press the wizard button,

ñ select the case ‘Initial Beer Transport Data’,
ñ press the OK button on the Select Case dialog box,

ñ press the Apply button on the Aimms Options dialog box, and
ñ finish by pressing the OK button.

Chapter 4. Entering and Saving the Data 22

Figure 4.7: Aimms options dialog box

Saving your
project

It is a good habit to save your work regularly. The option settings above are
also saved when you save the entire project. You can save the project by
pressing the Save Project button . Note that saving a project does not mean
that the data is also saved. Saving data requires you to save a case.

Chapter 4. Entering and Saving the Data 23

Loading a case
manually

At any time during an Aimms session you can load a case manually as follows:

ñ go to the Data menu, select the Load Case submenu and execute the as
Active. . . command,

ñ select the desired case name in the Load Case dialog box (see Figure 4.8),
and

ñ press the Load button.

Figure 4.8: Load case dialog box

Chapter 5

Solving the Model

5.1 Computing the solution

Procedures for
action

Thus far, you have entered all the identifiers, their attributes and their data.
You will also need to build at least one procedure in order to be able to instruct
Aimms to take action. In this tutorial, you will enter two statements inside
the body of the existing (empty) procedure MainExecution: one to solve the
mathematical program, and the other to set the solution to zero when the
mathematical program is not optimal.

Figure 5.1: The attribute form of MainExecution

Building a
procedure

The procedure MainExecution can be completed as follows:

ñ press the F8 key to open the Model Explorer,
ñ select the MainExecution procedure and open it by double-clicking ,
ñ enter the two statements in the body attribute as illustrated in Figure 5.1,

and
ñ press the Check, Commit and Close button to register the changes.

Should Aimms report errors, simply check your input and make the necessary
corrections.

Chapter 5. Solving the Model 25

Right-mouse for
help

To obtain information about specific Aimms keywords, you can use the right-
mouse popup menu to open the Aimms documentation on the appropriate
page with a single click. For instance, you can obtain help on the ‘ProgramSta-
tus’ keyword as follows:

ñ position the cursor over the ‘ProgramStatus’ keyword,
ñ right-click the mouse and select the ‘ProgramStatus’ entry in the ‘Help’

submenu (see Figure 5.2).

Figure 5.2: A right-mouse popup menu

Running the
procedure

The procedure MainExecution is special in that there is a dedicated key, F6, to
execute this procedure. For all other procedures you can use the right mouse
button to select the Run Procedure command.

Watching
execution
progress

By pressing the Ctrl and p keys simultaneously, Aimms displays a progress
window with selected information on the progress it has made (or is making)
during an execution phase. Figure 5.3 shows the progress window you should
expect to see.

Figure 5.3: The Aimms progress window

Chapter 5. Solving the Model 26

Results in data
pages

You have already encountered data pages while entering the elements of sets
and the numeric values of parameters. Once Aimms has computed the values
of the variable ‘Transport’, these values become immediately available on the
corresponding data page. Just go to this variable in the model tree, and click
on it. Then use the right mouse to select the Data. . . command to open the
data page (see Figure 5.4).

Figure 5.4: Data page displaying the solution for the variable ‘Transport’

Chapter 6

Building a Page

Building custom
pages

Even though Aimms provides standard pages for each identifier, such pages are
not set up to look at groups of related identifiers. That is why model builders
and end-users of an application usually prefer to interact with an application
through one or more custom pages.

6.1 Creating a new page

Using the Page
Manager

To create a new empty page you should execute the following steps:

ñ press the Page Manager button in the project window,
ñ press the button on the toolbar to create a new page,
ñ specify ‘Beer Transport Input and Output Data’ as the name of this new

page, and
ñ press the Enter key to register the page.

The Page Manager with the new page is shown in Figure 6.1.

Figure 6.1: A Page Manager with a single page

6.2 Presenting the input data

Be aware of two
page modes

A page is either in Edit mode or in User mode. The Edit mode is used for
creating and modifying the objects on a page. The User mode is for viewing
and editing the data displayed within objects on a page.

Chapter 6. Building a Page 28

Opening the
page

To open the new page in Edit mode:

ñ select the new page in the Page Manager, and
ñ press the button on the toolbar to open the selected page in Edit

mode.

Drawing a new
table . . .

To create a new table, perform the following actions:

ñ press the new-table button on the toolbar,
ñ position the mouse cursor at where the upper left corner of the new table

should be,
ñ depress the left mouse button and drag the mouse cursor to where the

lower right corner of the new table should be, and
ñ release the mouse button.

. . . and
selecting an
identifier

You can now complete the identifier selection dialog box as follows:

ñ select the parameter ‘UnitTransportCost(p,c)’ in the identifier selection
wizard as illustrated in Figure 6.2,

ñ press the Next button,
ñ press the Finish button, and if necessary
ñ adjust the position and size of the table object such that all information

is neatly displayed.

Figure 6.2: Identifier selection wizard

Chapter 6. Building a Page 29

Adding supply
data to existing
table

To add another identifier to the ‘UnitTransportCost’ table, execute the follow-
ing actions in Edit mode:

ñ select the table by clicking on it,
ñ press the button on the toolbar (or alternatively, use the right mouse)

to access the properties dialog box,
ñ select the contents tab (see Figure 6.3),
ñ press the Add button,
ñ select the identifier ‘Supply(p)’, press the Next button, and then press the

Finish button, and
ñ back on the contents tab, press the OK button.

Figure 6.3: Table contents tab

Adding demand
data to the table

You can add demand data to the table in the same way as you added the supply
data. The resulting table is shown in Figure 6.4.

Figure 6.4: Table displaying input data

Chapter 6. Building a Page 30

Creating two
bar charts

Creating a bar chart is essentially the same process as creating a table. The
following steps summarize the process for the parameter ‘Supply’:

ñ press the new-bar-chart button on the toolbar,
ñ position the mouse cursor, and drag to form the new bar chart,
ñ select the parameter ‘Supply(p)’ in the identifier selection wizard,
ñ press the Next button, and then the Finish button.

You can then create a bar chart for the demand data in the same way as you
created the bar chart for the supply data. Your intermediate page should now
look like the one in Figure 6.5.

Figure 6.5: Intermediate input-output page

6.3 Presenting the output data

Creating a
composite table

A composite table in Aimms is like a relational database table: the first columns
contain indices, and the remaining columns contain identifiers defined over
these indices. Creating a composite table containing only the optimal solution
is similar to creating a standard table or a bar chart, and requires the following
actions:

ñ press the button on the toolbar to create a new composite table,
ñ draw the table using the mouse,
ñ select the variable ‘Transport(p,c)’ in the identifier selection wizard to

indicate which index values must be displayed,
ñ press the Next button, and then the Finish button.

Chapter 6. Building a Page 31

Once the index domain has been specified, you can use the standard ‘add iden-
tifier’ facility to complete the table:

ñ press the button on the toolbar to access the properties dialog box,
ñ select the contents tab in the properties dialog box,
ñ press the Add button, and add the identifier ‘Transport(p,c)’ to complete

the composite table.

Creating a
stacked bar
chart

Yet another way to display the solution is by means of a stacked bar chart:

ñ create a standard normal bar chart displaying the variable ‘Transport(p,c)’.
ñ select the ‘bar chart’ tab in the properties dialog box as illustrated in

Figure 6.6),
ñ instead of the default ‘Overlapping’ option, select the ‘Stacked’ option,

and
ñ press the OK button.

Figure 6.6: Bar chart property dialog box

Creating a
scalar object

The scalar object is designed to display scalar values. To display the optimal
solution value in a scalar object you should do the following:

ñ press the button on the toolbar to create a scalar object,
ñ draw the scalar object using the mouse,
ñ select the scalar variable ‘TotalTransportCost’ in the identifier selection

wizard, and
ñ press the Finish button.

Chapter 6. Building a Page 32

6.4 Finishing the page

Building a
well-organized
overview

Designing a professional looking graphical end-user interface is not a trivial ac-
tivity, and is beyond the scope of this tutorial. Nevertheless, you will be asked
to spend a little time building a nice looking page as illustrated in Figure 6.11
at the end of this section.

Creating a
button

One item on this page is a button designed to trigger the solution of the ‘Least-
CostTransportPlan’ mathematical program. To create such a button, you need
to execute the following actions:

ñ press the button on the toolbar to create a new button, and draw the
button using the mouse,

ñ enter the quoted string “Solve Beer Transport” as the title of the button,
and

ñ select the actions tab.

The action to be specified is that Aimms executes (i.e. ”runs”) a procedure. In
this example, the procedure is ‘MainExecution’. Continue with the following
steps:

ñ select ‘Run’ as the action to add,
ñ press the Add button,
ñ select option ‘Procedure’,
ñ press the enabled wizard button ,
ñ select the procedure ‘MainExecution’,
ñ press the Finish button, and accept by pressing the OK button.

The completed Actions tab of the Button Properties dialog box is displayed in
Figure 6.7. Note that the button can only be used to solve the model when the
page is put into User mode by pressing the User Mode button .

Creating a text
object

The resulting input-output page (see Figure 6.11) contains three text objects.
The title text ‘Beer Transport’ can be created as follows:

ñ select the Text command from the Object menu (see Figure 6.9), and
draw a rectangle using the mouse,

ñ specify ‘Beer Transport’ as the static text on the text tab of the Text
Properties dialog box (see Figure 6.8) ,

ñ select the Font tab of the Text Properties dialog box, and
ñ press the Add button.

Chapter 6. Building a Page 33

Figure 6.7: The action tab of the button properties dialog box

Figure 6.8: The text tab of the text properties dialog box

You can now specify and name the appropriate font, and thereby complete the
text object.

ñ select ‘Bold’ as the Font Style, and ‘20’ as the ‘Font Size’,
ñ press the OK button,
ñ specify ‘Title’ as the name of the new font,
ñ press the OK button to return to the Text Properties tab,
ñ again, press the OK button to leave the Text properties dialog box,

Chapter 6. Building a Page 34

Figure 6.9: A selected area of a page

The other two text objects displaying the text ‘Input Data’ and ‘Output Data’
are created in the same way. Instead of using the newly constructed ‘Title’
font, you should create a second custom font, named ‘Header’ font, of size
‘14’. The font tab of the Text Properties dialog box is displayed in Figure 6.10.

Figure 6.10: The font tab of the text properties dialog box

Chapter 6. Building a Page 35

Creating two
rectangles

The page is completed by adding two rectangles to emphasize that there are
two groups of objects representing input data and output data. Assuming that
you have rearranged and resized the objects to fit neatly together, you can
draw the rectangles as follows:

ñ select the Rectangle command from the Object menu, and
ñ draw the rectangle using the mouse.

Your page should now look like the one in Figure 6.11.

Figure 6.11: An input-output page

Chapter 7

Performing a What-If Run

7.1 Modifying input data

Page user modeHaving developed the input-output page, you are now ready to use the page.
For this purpose you must put the page into User mode by pressing the User
Mode button .

What-if analysisThe input-output page allows you to see the effect of changes in either the
demand, the supply, or the cost figures of the transport model. Just change
any input data, re-solve the model, and view the resulting output.

Dragging a bar
chart

For example, to change the available supply in ‘Haarlem’ you can perform the
following actions:

ñ in the ‘Supply’ bar chart, select the bar representing the supply in ‘Haar-
lem’,

ñ position the mouse pointer at the top of the bar, and simply
ñ drag the mouse upwards to increase the supply from 47 to 57 (see Fig-

ure 7.1).

Figure 7.1: The dragging process for supply data illustrated

Chapter 7. Performing a What-If Run 37

Alternatively, you can click on the corresponding bar, and enter the new supply
value of 57 in the edit field on the lower left part of the bar chart.

Re-solving the
mathematical
program

You are now ready to re-solve the model. To do so, simply press the Solve
Beer Transport button at the top of your page. You will see an improvement
(i.e. decrease) in optimal cost from 27499 to 26626.

Improvement
explained

Note that a cost decrease could have been expected, because the entire capacity
of ‘Haarlem’ had been used initially. By increasing the supply at Haarlem,
‘Gouda’ no longer needs Eindhoven as a second supplier (see Figure 7.2).

Figure 7.2: The effect of changes in the supply data

	Contents
	Introduction
	What to Expect
	Scope of one-hour tutorial
	Problem description and model statement
	A preview of your output

	Building the Model
	Starting a new project
	The Model Explorer
	Entering sets and indices
	Entering parameters and variables
	Entering constraints and the mathematical program
	Viewing the identifiers

	Entering and Saving the Data
	Entering set data
	Entering parameter data
	Saving your data

	Solving the Model
	Computing the solution

	Building a Page
	Creating a new page
	Presenting the input data
	Presenting the output data
	Finishing the page

	Performing a What-If Run
	Modifying input data

