Representations of a transformation groupoid Definition of induced representations of groupoid Illustration $\mathcal{G} = X \times \mathcal{G}, \quad X = K \setminus \mathcal{G}$ Imprimitivity systems of groupoid A physical illustration

REPRESENTATIONS OF GROUPOIDS AND IMPRIMITIVITY SYSTEMS

• •

Leszek Pysiak

Politechnika Warszawska

January 9, 2012

Table of contents

- Basic concepts
- Representations of a transformation groupoid
- Definition of induced representations of groupoid
- 4 Illustration $G = X \times G$, $X = K \setminus G$
- Imprimitivity systems of groupoid
- 6 A physical illustration

Basic publications

- L. Pysiak, Imprimitivity theorem for groupoid representations, Demonstratio Mathematica 44 (2011), 29-48.
- L. Pysiak, *Groupoids, their representations and imprimitivity systems*, Demonstratio Mathematica 37 (2004), 661-670.
- M. Heller, Z. Odrzygóźdź, L. Pysiak, W. Sasin, Structure of Malicious Singularities, Int. J. Theor. Phys., 42, (2003), 427 - 441.
- M. Heller, L. Pysiak, W. Sasin, Conceptual unification of gravity and quanta, Int. J. Theor. Phys., 46 (2007), 2494-2512.

Basic references

- G.W.Mackey, Induced representations of locally compact groups I,II, Acta Math., 55 (1952), 101-139; 58 (1953), 193-221.
- J.Westman, Harmonic analisis on groupoids, Pacific J. Math. 27, (1968), 621-632.
- K.C.H. Mackenzie, Lie groupoids and Lie algebroids in Differential Geometry, London Math. Society Lecture Notes Series, 124, Cambridge University Press, Cambridge, (1987).
- N.P. Landsman, Mathematical Topics between Classical and Quantum Mechanics, Springer, New York, (1998).
- A.L.T. Paterson, Groupoids, Inverse Semigroups, and Their Operators Algebras, Birkhauser, Boston, (1999).

Concept of groupoid

We recall that a groupoid $\mathcal G$ over X, or a groupoid with base X, is a set with a partially defined multiplication "o" on a subset $\mathcal G^2$ of $\mathcal G \times \mathcal G$, and an inverse map $g \to g^{-1}$ defined for every $g \in \mathcal G$. The multiplication is associative when defined. One has an injection $\epsilon: X \to \mathcal G$ called the identity section (and $\epsilon(x)$ being an unit at $x \in X$) and two structure maps $d, r: \mathcal G \to X$ called the source map and the target map respectively, such that

$$\epsilon(d(g))=g^{-1}\circ g$$

$$\epsilon(r(g)) = g \circ g^{-1}$$

for $g \in \mathcal{G}$.

Let us introduce the following fibrations in the set G:

$$\mathcal{G}_{x} = \{g \in \mathcal{G} : d(g) = x\}$$

$$\mathcal{G}^{\times} = \{ g \in \mathcal{G} : r(g) = x \}$$

for $x \in X$. Let us also denote $\mathcal{G}_x^y = \mathcal{G}^x \cap \mathcal{G}_y$, and consider the set $\mathcal{G}_x^x = \mathcal{G}^x \cap \mathcal{G}_x$ for $x \in X$. It has the group structure and is called *the isotropy group of the point* x. It is clear that the set $\Gamma = \bigcup_{x \in X} \mathcal{G}_x^x$ has the structure of a subgroupoid of \mathcal{G} over the base X (all the structure maps are the restrictions of the structure maps of \mathcal{G} to Γ).

We call \mathcal{G} a transitive groupoid, if for each pair of elements $x_1, x_2 \in X$ there exists $g \in \mathcal{G}$ such that $d(g) = x_1$ and $r(g) = x_2$.

A groupoid \mathcal{G} is a topological groupoid if \mathcal{G} and X are topological spaces and all structure maps are continuous (in particular, the embedding ϵ is a homeomorphism of X onto its image).

In the following we assume that \mathcal{G} (and thus X) is a locally compact Hausdorff space.

Pair groupoid

Example

A pair groupoid. Let X be a locally compact Hausdorff space. Take $\mathcal{G}=X\times X$. We define the set \mathcal{G}^2 of composable elements as $\mathcal{G}^2=\{((x,y),(y,z)):x,y,z\in X\}\subset \mathcal{G}\times \mathcal{G}$ and a multiplication, for $((x,y),(y,z))\in \mathcal{G}^2$, by

$$(x,y)\circ(y,z)=(x,z).$$

Moreover, we have: $(x,y)^{-1}=(y,x)$, d(x,y)=y, r(x,y)=x, $\epsilon(x)=(x,x)$. With such defined structure maps $\mathcal G$ is a groupoid, called pair groupoid.

Transformation groupoid

Example

A transformation groupoid. Let X be a locally compact Hausdorff space, and G a locally compact group. Let G act continuously on X to the right, $X \times G \to X$. Denote $(x,g) \mapsto xg$. We introduce the groupoid structure on the set $G = X \times G$ by defining the following structure maps. The set of composable elements

 $\mathcal{G}^2 = \{((xg,h),(x,g): x \in X,g,h \in G\} \subset \mathcal{G} \times \mathcal{G}, \text{ and the multiplication for } ((xg,h),(x,g)) \in \mathcal{G}^2 \text{ is given by}$

$$(xg,h)\circ(x,g)=(x,gh).$$

And also $(x,g)^{-1}=(xg,g^{-1})$, d(x,g)=x, r(x,g)=xg, $\epsilon(x)=(x,e_G)$. This groupoid is called the transformation groupoid.

Right Haar System

Definition

A right Haar system for the groupoid $\mathcal G$ is a family $\{\lambda_x\}_{x\in X}$ of regular Borel measures defined on the sets $\mathcal G_x$ (which are locally compact Hausdorff spaces) such that the following three conditions are satisfied:

- ullet the support of each λ_x is the set \mathcal{G}_x ,
- ② (continuity) for any $f \in C_c(\mathcal{G})$ the function f^0 , where

$$f^0(x) = \int_{\mathcal{G}_x} f d\lambda_x,$$

belongs to $C_c(X)$,

(right invariance) for any $g \in \mathcal{G}$ and any $f \in C_c(\mathcal{G})$,

$$\int_{\mathcal{G}_{r(g)}} f(h \circ g) d\lambda_{r(g)}(h) = \int_{\mathcal{G}_{d(g)}} f(u) d\lambda_{d(g)}(u).$$

One can also consider the family $\{\lambda^x\}_{x\in X}$ of left-invariant measures, each λ^x being defined on the set \mathcal{G}^x by the formula $\lambda^x(E)=\lambda_x(E^{-1})$ for any Borel subset E of \mathcal{G}^x (where $E^{-1}=\{g\in\mathcal{G}:g^{-1}\in E\}$). Then the invariance condition assumes the form:

$$\int_{\mathcal{G}^{d(g)}} f(g \circ h) d\lambda^{d(g)}(h) = \int_{\mathcal{G}^{r(g)}} f(u) d\lambda^{r(g)}(u).$$

Now, let μ be a regular Borel measure on X. We can consider the following measures which will be called *measures associated with* μ : $\nu = \int \lambda_x d\mu(x)$ on \mathcal{G} , $\nu^{-1} = \int \lambda^x d\mu(x)$ and $\nu^2 = \int \lambda_x \times \lambda^x d\mu(x)$ on \mathcal{G}^2 . If $\nu = \nu^{-1}$ we say that the measure μ is a \mathcal{G} -invariant measure on X.

Locally trivial groupoids

Definition

A topological groupoid $\mathcal G$ on X is called *locally trivial* if there exist a point $x \in X$, an open cover $\{U_i\}$ of X and continuous maps $s_{x,i}: U_i \to \mathcal G_x$ such that $r \circ s_i = id_{U_i}$ for all i.

Proposition

Assume that $\mathcal G$ is a locally trivial groupoid on X and X is second countable space. Let μ be a regular Borel measure on X. Then

- G is transitive,
- all isotropy groups of G are isomorphic with each other,
- for every $y \in X$ there exist an open cover $\{V_j\}$ of X and continuous maps $s_{y,j}: V_j \to \mathcal{G}_y$ such that $r \circ s_j = id_{v_i}$,
- for every $x \in X$ there exists a section $s_x : X \to \mathcal{G}_x$ which is μ -measurable, i.e., for every Borel set B in \mathcal{G}_x , $s_x^{-1}(B)$ is μ -measurable subset of X,
- **5** the section s_x is μ a.e. continuous on X.

Groupoid representation

Definition

A unitary representation of a groupoid \mathcal{G} is the pair $(\mathcal{U}, \mathbf{H})$ where \mathbf{H} is a Hilbert bundle over X and $\mathcal{U} = \{U(g)\}_{g \in \mathcal{G}}$ is a family of unitary maps $U(g): H_{d(g)} \to H_{r(g)}$ such that:

- $U(g) \circ U(h) = U(g \circ h) \text{ for } \nu^2 \text{a.e. } (g, h) \in \mathcal{G}^2,$
- **3** $U(g^{-1}) = U(g)^{-1}$ for $\nu \text{a.e. } g \in \mathcal{G}$,
- For every $\phi, \psi \in L^2(X, \mathbf{H}, \mu)$,

$$\mathcal{G} \ni g \to (U(g)\phi(d(g)), \psi(r(g)))_{r(g)} \in \mathcal{C}$$

is ν -measurable on \mathcal{G} . (Here $L^2(X, \mathbf{H}, \mu)$ denotes the space of square-integrable sections of the bundle \mathbf{H} , and $(\cdot, \cdot)_x$ denotes the scalar product in the Hilbert space H_x .)

Properties of representations

Definition

Unitary representations $(\mathcal{U}_1,\mathbf{H}_1)$ and $(\mathcal{U}_2,\mathbf{H}_2)$ of a groupoid \mathcal{G} are said to be *unitarily equivalent* if there exists a family $\{A_x\}_{x\in X}$ of isomorphisms of Hilbert spaces $A_x: H_{1x} \to H_{2x}, x \in X$ such that for every $x,y \in X$ and for $\nu-\text{a.e.} \ g \in \mathcal{G}_x^y$ the following diagram commutes

$$\begin{array}{ccc} H_{1x} & \xrightarrow{U_1(g)} & H_{1y} \\ A_x \downarrow & & \downarrow A_y \\ H_{2x} & \xrightarrow{U_2(g)} & H_{2y} \end{array}$$

Definition

A unitary representation (\mathcal{U},\mathbf{H}) is called *irreducible* if it has no proper subrepresentations.

Examples of representations

Example

Let $H_x = L^2(\mathcal{G}_x, d\lambda_x)$, for $x \in X$, be a Hilbert space of square λ_x -integrable functions on \mathcal{G}_x , and for $g \in \mathcal{G}_x^y, x, y \in X$ and $f \in H_x$ define $U(g) : H_x \to H_y$ by

$$(U(g)f)(g_1)=f(g_1\circ g),$$

for $g_1 \in \mathcal{G}_y$.

A representation $(\mathcal{U}, \mathbf{H})$ is called *regular representation of the groupoid* \mathcal{G}

Example

Now let us consider the regular representation of a pair groupoid $\mathcal{G}_0 = X \times X$. Let μ be a regular Borel measure on X. Now we can identify $H_X = L^2(X,\mu)$. Then

$$\mathcal{U}(x,y) = id|_{H_x}, \ for(x,y) \in X$$

Generalized regular representation of a groupoid algebra

Consider the noncommutative algebra $\mathcal{A} = C_c(\mathcal{G}_0)$ of continuous compactly supported functions on the pair groupoid \mathcal{G}_0 with multiplication given by the following convolution:

$$(a*b)(x,y) = \int a(x,z)b(z,y)d\mu(z).$$

Such defined algebra will be called the groupoid algebra of \mathcal{G}_0 . We shall consider a representation $\widetilde{\pi}$ of \mathcal{A} in the space $L^2(X, H, \mu)$ of square-integrable functions on X with values in a Hilbert space H.

$$\widetilde{\pi}: \mathcal{A} \to \mathcal{B}(L^2(X,H,\mu))$$

given by the formula

$$[\widetilde{\pi}(a)\psi](x) = \int a(x,y)\psi(y)d\mu(y),$$

where $a \in \mathcal{A}$ and $\psi \in L^2(X, H, \mu)$. This representation will be called also generalized regular representation.

\mathcal{G}_0 -consistent representation

Let $\mathbf{W} = \{W_x\}_{x \in X}$ be a Hilbert bundle over X and let us consider a new Hilbert bundle $\mathbf{H} = \{H_x\}_{x \in X}$ of the form $H_x = L^2(X, W_x)$. Take a generalized regular representation $\widetilde{\pi}_x$ of the groupoid algebra \mathcal{A} in the spaces H_x :

$$\widetilde{\pi}_{\mathsf{x}}: \mathcal{A} \to B(L^2(\mathsf{X}, H_{\mathsf{x}}, \mu)), \quad \mathsf{x} \in \mathsf{X}.$$

Definition

Let $(\mathcal{U}, \mathbf{H})$ be an unitary representation of the groupoid \mathcal{G} . We call it a \mathcal{G}_0 -consistent representation, if the following condition holds:

$$U(g)\widetilde{\pi}_x(a)U(g^{-1})=\widetilde{\pi}_y(a)$$

for $g \in \mathcal{G}_{x}^{y}$, $a \in \mathcal{A}$, and $x, y \in X$.

Group induced representation

Let G be a Lie group and K its closed subgroup. We assume, for simplicity, that $X = K \setminus G$ has a G-invariant measure μ . We consider \mathcal{H}_L , a Hilbert space consisting of measurable functions ϕ on G with values in V, such that

$$\phi(hg) = L(h)\phi(g), h \in K,$$

and

$$\int_X ||\phi([g])||_V^2 d\mu([g]) < \infty$$

where [g] denotes the image of g in X under the projection $G \to K \backslash G = X$. We introduce the inner product

$$(\phi_1, \phi_2)_{\mathcal{H}_L} = \int_X (\phi_1(x), \phi_2(x))_V d\mu(x).$$

Then we define the representation U^L of G on \mathcal{H}_L given by the formula

$$(U^{L}(g)f)(g_{0}) = f(g_{0}g), \ g_{0}, g \in G, \ f \in \mathcal{H}_{L}.$$

Imprimitivity system of group G

Definition

Let (U,H) be a unitary representation of the group G, X a G-space and P a projection valued measure on the Borel sets of X, P(B) being orthogonal projection on H, and $P(X) = id_H$. The pair (U,P) is called a system of imprimitivity $(S.I. \ for \ short)$ of the group G for the representation U, if

$$U(g)P(B)U(g^{-1}) = P(Bg^{-1}),$$

where $Bg^{-1} = \{xg^{-1}, x \in B, g \in G\}$, and B a Borel set in X.

Next I present an equivalent definition of S.I.

Imprimitivity system of group G

Definition

Let (U,H) be a unitary representation of the group G, and π be a nondegenerate representation of *- algebra $C_0(X)$ of continuous functions on X, vanishing at infinity. The pair of representations (U,π) is called a system of imprimitivity (S.I. for short) of the group G for the representation U, if the representations π,U satisfy the following covariance condition:

$$U(g)\pi(f)U(g^{-1})=\pi(R_gf),$$

where
$$R_g f(x) = f(xg), x \in X, g \in G, f \in C_0(X)$$
.

The classical Mackey's imprimitivity theorem states, that every unitary representation of the group G for which there exists a transitive imprimitivity system is equivalent to representation induced by some representation of subgroup K. (The transitivity of S.I. means that $X = K \setminus G$).

Representations of a transformation groupoid

Let G be a Lie group and K its closed subgroup. Consider representations of the transformation groupoid of the form $G = X \times G$, where $X = K \setminus G$.

Theorem

There exists a one-to-one correspondence between unitary representations of the transformation groupoid $\mathcal G$ and the systems of imprimitivity of the group $\mathcal G$.

Proof of theorem

Proof. Let $(\mathcal{U}, \mathcal{H})$ be a u.r. of \mathcal{G} in a Hilbert bundle \mathcal{H} over X. Denote $\mathbf{H} = \int_{\mathcal{H}} H_X d\mu(x)$ and define $U(g) : \mathbf{H} \to \mathbf{H}$ as

$$U(g) = \int_{\oplus} U(x,g) d\mu$$

Then (U, \mathbf{H}) is a u.r. of the group G in the Hilbert space \mathbf{H} . Moreover for $f \in C_0(X)$

$$U(g)\pi(f)=\pi(R_gf)U(g)$$

Thus we obtain a S.I. (U, π) of the group G.

For simplicity I present another part of proof in the finite case. Now choose a S.I. (U, P). Denote $H_x = P_x H$ and define:

$$\mathcal{U}(x,g): H_x \to H_{gx}$$

by the formula:

$$U(x,g)h = U(g^{-1})|_{H_x}h$$
 for $h \in H_x$,

Observe that $\mathcal{U}(x,g)h = P_{xg}\,\mathcal{U}(g^{-1})h$, by the property of S.I. But it means that $\mathcal{U}(x,g)h \in H_{gx}$. Let us check the conditions of groupoid representation. Indeed, one has $\mathcal{U}(x,e)h = \mathcal{U}(e)|_{H_x}h = h$, for $h \in H_x$. Further $\mathcal{U}(xg_2,g_1)\circ\mathcal{U}(x,g_2) = \mathcal{U}(g_1^{-1})|_{H_{xg_2}}\circ\mathcal{U}(g_2^{-1})|_{H_x} = \mathcal{U}((g_2g_1)^{-1})|_{H_x} = \mathcal{U}(x,g_2g_1)$. And finally $\mathcal{U}(xg,g^{-1}) = \mathcal{U}(g)|_{H_{xg}} = (\mathcal{U}(x,g))^{-1}$. Thus we have constructed the representation $(\mathcal{U},\overline{\mathcal{H}})$ of \mathcal{G} , corresponding to the S.I. given.

The space of induced representation

Assume that there is given a unitary representation (τ, \mathbf{W}) of the subgroupoid Γ . Here \mathbf{W} is a Hilbert bundle over X. Let W_x denote a fiber over $x \in X$ which is a Hilbert space with the scalar product $\langle \cdot, \cdot \rangle_x$, and let $W = \bigcup_{x \in X} W_x$ denote the total space of the bundle \mathbf{W} . Let us define, for every $x \in X$, the space \mathcal{W}_x of W-valued functions F defined on the set \mathcal{G}_x satisfying the following four conditions:

- $F(g) \in W_{r(g)}$ for every $g \in \mathcal{G}_x$,
- ② for every μ -Borel measurable r-section $s_x: X \to \mathcal{G}_x$ (see Proposition) the composition $F \circ s_x$ is a μ -measurable section of the bundle \mathbf{W} ,
- $F(\gamma \circ g) = \tau(\gamma)F(g)$ for $g \in \mathcal{G}_x$, $\gamma \in \Gamma_{r(g)}$,

We identify two functions $F, F' \in \mathcal{W}_x$ which differ on the zero-measure sets, and introduce the scalar product $(\cdot, \cdot)_x$ in the space \mathcal{W}_x

$$(F_1,F_2)_x = \int \langle F_1(s_x(y)), F_2(s_x(y)) \rangle_y d\mu(y)$$

where s_x is a fixed section determined by Proposition.

The spaces \mathcal{W}_x , $x \in X$, with these scalar products are Hilbert spaces. It is easily seen that they are isomorphic to the Hilbert space $L^2(X, \mathbf{W})$ of square-integrables sections of the bundle \mathbf{W} . Now, let us denote $\mathcal{W} = \{\mathcal{W}_x\}_{x \in X}$. It is a Hilbert bundle over X.

Induced representation of groupoid

Definition

The representation of the groupoid $\mathcal G$ induced by the representation $(\tau, \mathbf W)$ of the subgroupoid Γ is the pair $(U^\tau, \mathcal W)$ where, for $g \in \mathcal G_x^y$, we define $U^\tau(g): \mathcal W_x \to \mathcal W_y$ by

$$(U^{\tau}(g_0)F)(g)=F(g\circ g_0).$$

It is clear that (U^{τ}, \mathcal{W}) is a unitary groupoid representation.

The structure of transformation groupoid

Let us denote

$$\mathcal{G}_x = \{(x,g) \in \mathcal{G} : g \in G\},$$

$$\mathcal{G}^y = \{(yg^{-1},g) \in \mathcal{G} : g \in G\}.$$

Let us also denote the isotropy group \mathcal{G}_{x}^{\times} by Γ_{x} , $\Gamma_{x}=\{(x,k):k\in\mathcal{K}_{x}\}$, where \mathcal{K}_{x} is a subgroup of G of the form $\mathcal{K}_{x}=g_{0}^{-1}\mathcal{K}g_{0}$ where $g_{0}\in G$ is an element of the coset x ($x=[g_{0}]$). Indeed, for $k_{x}\in\mathcal{K}_{x}$ we have $xk_{x}=[g_{0}]g_{0}^{-1}kg_{0}=[kg_{0}]=x$. Denote by s_{0} a Borel section of the principal bundle $G\to\mathcal{K}\setminus G=X$, i. e., $[s_{0}(x)]=\mathcal{K}s_{0}(x)=x$.

Now, for a function $f \in C_c(\mathcal{G}_x)$, let us define $f_x(y,k) = f(x,s_0(x)^{-1}ks_0(y))$, and

$$\int_{\mathcal{G}_x} f(\mathbf{g}) d\lambda_x(\mathbf{g}) = \int_X \int_K f_x(y, k) dk d\mu(y).$$

Proposition

The collection $\{\lambda_x\}_{x\in X}$ is a right Haar system on the groupoid \mathcal{G} .

Now, we shall consider representations of the isotropy subgroupoid Γ . As we have seen, $\Gamma = \bigcup_{x \in X} \{x\} \times \mathcal{K}_x$ with $\mathcal{K}_x = g^{-1}\mathcal{K}g$ and $g \in G$ such that its coset in X is equal to x ([g] = x). We can use $g = s_0(x)$. Let (τ, \mathbf{W}) be a unitary representation of the groupoid Γ in a Hilbert bundle $\mathbf{W} = \{W_x\}_{x \in X}$.

Definition

A representation (τ, \mathbf{W}) is called X-consistent if there exist a unitary representation (τ_0, W_0) of the group K and a family of Hilbert space isomorphisms

$$A_x: W_0 \to W_x, x \in X$$

such that, for $\gamma \in \Gamma_x$ of the form $\gamma = (x, s_0(x)^{-1} k s_0(x))$,

$$\tau(\gamma) = A_{\mathsf{x}} \tau_0(\mathsf{k}) A_{\mathsf{x}}^{-1}.$$

Induced representations of $G = X \times G$

In the sequel we shall consider the representation of the groupoid $\mathcal{G}=X\times G$ induced by X - consistent representation (τ,\mathbf{W}) of the subgroupoid Γ , and we shall establish its connection with the induced representation in the Mackey sense of the group G. Now condition 3 of the definition of the space \mathcal{W}_{x} assumes the form

$$F(\gamma \circ (x,g)) = \tau(\gamma)F(x,g)$$

where $x,y\in X,\ y=xg,\ g\in G,\ \gamma\in \Gamma_y=\{y\}\times K_y.$ Thus we have $\gamma=(y,s_0(y)^{-1}ks_0(y))$ for an element $k\in K$. Then, by the definition of X-consistent representation, we can write

$$F(\gamma \circ (x,g)) = (A_y \tau_0(k) A_y^{-1}) F(x,g).$$

Let introduce a function $\phi: G \to W_0$ defined by the formula $\phi(ks_0(y)) = A_y^{-1}(F(x,s_0(x)^{-1}ks_0(y)))$. Then the function ϕ has the property $\phi(kg) = \tau_0(k)\phi(g)$.

We shall use the notation (L,W_0) for the unitary representation of the group K in the space W_0 , $L=\tau_0$. Thus we have $\phi(kg)=L(k)\phi(g)$ and we can consider the Hilbert space \mathcal{H}_L introduced above as well as the representation (U^L,\mathcal{H}_L) of the group G induced in the sense of Mackey by L from the subgroup K.

The following theorem establishes a connection of the induced representation $(\mathcal{U}^{\tau}, \mathcal{W})$ of the groupoid \mathcal{G} with the representation $(\mathcal{U}^{L}, \mathcal{H}_{L})$ of the group \mathcal{G} .

Denote by R_g , $g \in G$, the following operator acting in the space $\mathcal{W}_x, x \in X$, y = xg,

$$(R_g F)(x, h) = (A_{xh}A_{xhg}^{-1})(F(x, hg)).$$

Then we have the family of unitary G-representations $(R, \mathcal{W}_x), x \in X$. (The unitarity follows from the fact that the measure μ is G-invariant and the operators A_{xh}, A_{xhg} are Hilbert space isomorphisms.)

Relation with group induced representation

Theorem

- For every $x \in X$ the G-representation (R, W_x) is unitarily equivalent to the induced representation (U^L, \mathcal{H}_L) .
- **②** All representations (R, \mathcal{W}_x) , $x \in X$, are unitarily equivalent to each other. The equivalence is given by the operators $I_x^y : \mathcal{W}_x \to \mathcal{W}_y$,

$$(I_x^y F)(y, s_0(y)^{-1} k s_0(z)) = (A_y A_z^{-1})(F(x, s_0(x)^{-1} k s_0(z))),$$

$$x, y \in X$$
.

Proof of theorem

Proof.

We define the linear map $J_x: \mathcal{W}_x \to \mathcal{H}_L$ by $(J_xF)(g) = \phi(ks_0(y)) = A_y^{-1}(F(x,s_0(x)^{-1}ks_0(y)))$ where $g = ks_0(y)$. J_x is a linear isomorphism since A_y is an isomorphism and it is easily seen that J_x preserves scalar products of \mathcal{W}_x and \mathcal{H}_L and so it is a Hilbert space isomorphism. To see that it defines an equivalence of representations, we have to show that, for $g \in G$, the following diagram is commutative

$$\mathcal{W}_{x} \xrightarrow{R_{g}} \mathcal{W}_{x}$$
 $J_{x} \downarrow \qquad \qquad \downarrow J_{x}$
 $\mathcal{H}_{L} \xrightarrow{U^{L}(g)} \mathcal{H}_{L}$

Let us compute $(U^L(g)J_x)(F)(h)$. It is sufficient to take $h = s_0(y)$ and to notice that each $g \in G$ can be written in the form $g = s_0(y)^{-1}ks_0(z)$, for $z \in X$, z = yg and an element $k \in K$.

$$(U^{L}(s_{0}(y)^{-1}ks_{0}(z))J_{x})(F)(s_{0}(y)) = (J_{x}F)(ks_{0}(z)) =$$

$$= L(k)A_{z}^{-1}(F(x,s_{0}(x)^{-1}s_{0}(z))).$$

On the other hand

$$(J_x R_g)(F)(s_0(y)) = A_y^{-1}((R_g F)(x, s_0(x)^{-1} s_0(y))) =$$

$$= A_y^{-1}(A_y A_z^{-1})(F(x, s_0(x)^{-1} k s_0(z))) = A_z^{-1} \tau(\gamma)(F(x, s_0(x)^{-1} s_0(z))) =$$

$$= A_z^{-1} A_z \tau_0(k) A_z^{-1}(F(x, s_0(x)^{-1} s_0(z))) = L(k) A_z^{-1}(F(x, s_0(x)^{-1} s_0(z))).$$
Now it is a simple observation that $I_x^y = J_y^{-1} J_x$. \diamond

Imprimitivity system of groupoid

Definition

Let (\mathcal{U},\mathbf{H}) be an unitary \mathcal{G}_0 -consistent representation of the groupoid \mathcal{G} . Consider the commutative algebra $L^\infty(X)$ and a family $\pi=(\pi_x)_{x\in X}$ of its representations in the Hilbert spaces $L^2(X,W_x)$ respectively, given by the operators of multiplication by a function:

$$L^{\infty}(X) \ni f \to \pi_x(f) \in B(L^2(X, W_x))$$
 where, for $z \in X, \psi \in L^2(X, W_x)$

$$[\pi_{\mathsf{x}}(f)\psi](z)=f(z)\psi(z).$$

We say that the representation \mathcal{U} has a system of imprimitivity (\mathcal{U},π) if for every $f\in L^\infty(X)$, and for μ - a.e. $x,y\in X$, and ν - a.e. $g\in \mathcal{G}_x^y$ the following condition holds:

$$U(g)\pi_{\times}(f)U(g^{-1})=\pi_{y}(f).$$

Imprimitivity theorem for groupoid

Theorem

If, for a representation (\mathcal{U},\mathbf{H}) , there exists a system of imprimitivity (\mathcal{U},π) then the representation \mathcal{U} is equivalent to the representation \mathcal{U}^{τ} induced by some representation (τ,\mathbf{W}) of the subgroupoid Γ .

Let us observe that, for $\gamma \in \Gamma_x = \mathcal{G}_x^x$, the covariance condition of the imprimitivity system reduces to the following one

$$U(\gamma)\pi_{\mathsf{x}}(f)U(\gamma^{-1})=\pi_{\mathsf{x}}(f).$$

It follows that $U(\gamma)$ are decomposable, i.e., for $\mu-a.e.$ $y\in X$, there exists an operator $U(\gamma)_y\in B(W_x)$ such that, for $\psi\in L^2(X,W_x)$, $(U(\gamma)\psi)(y)=U(\gamma)_y(\psi(y))$.

Morover, notice that the Hilbert space $L^2(X, W_x)$ is isomorphic to the tensor product of Hilbert spaces $L^2(X) \bigotimes W_x$.

And more

Lemma 1

Lemma

If for a representation (U, \mathbf{H}) there exists a system of imprimitivity, then

- there exists a unitary representation (τ_x, W_x) of the group Γ_x such that $U(\gamma) = id_{L^2} \otimes \tau_x(\gamma)$ for every $\gamma \in \Gamma_x$ and μ a.e. $x \in X$. (In particular it means that the function $X \ni y \to U(\gamma)_y \in B(H_x)$ is a constant field of operators),
- **②** we can define a representation (τ, \mathbf{W}) of the subgroupoid Γ such that, for $\gamma \in \Gamma_{\mathsf{x}}$, $\tau(\gamma) = \tau_{\mathsf{x}}(\gamma)$,

Proof of Lemma 1

Proof: A decomposable operator $U(\gamma)$ in the space $L^2(X) \bigotimes W_x$ has the form $[U(\gamma)(\psi \otimes h)](y) = \psi(y) \otimes U(\gamma)_y h$. We have to show that it is of the form $id_{L^2} \otimes \tau_x(\gamma)$, where $\tau_x(\gamma) \in B(W_x)$. Since $(\mathcal{U}, \mathbf{H})$ is a \mathcal{G}_0 -consistent representation, the following commutation relation holds:

$$U(\gamma^{-1})\widetilde{\pi}_{x}(a)U(\gamma)=\widetilde{\pi}_{x}(a)$$

for $a \in \mathcal{A}, \ \gamma \in \Gamma_x$, and $x \in X$. But this implies that

$$U(\gamma^{-1})AU(\gamma)=A$$

for every A of the form $A=A_0\otimes id_{W_x}$, $A_0\in B(L^2(X))$. Then it follows that $U(\gamma)=id_{L^2}\otimes \tau_x(\gamma)$. It is clear that all $\tau_x(\gamma)$ are unitary in W_x . Thus τ_x is a unitary representation of the group Γ_x in the Hilbert space W_x . This ends the proof of Lemma.

Lemma 2

Lemma

- The representations $\tau_x, x \in X$ are equivalent to each other, as representations of isomorphic groups Γ_x .
- ② The operators $U(g): H_x \to H_y$, where $H_x = L^2(X, W_x)$, $H_y = L^2(Y, W_y)$ for $g \in \mathcal{G}_X^y$, are decomposable, i.e., there exist unitary operators $U^0(g): W_x \to W_y$ such that for $\psi \in L^2(X, W_x)$ and, for $z \in X$,

$$(U(g)\psi)(z) = (U^{0}(g))(\psi(z)).$$

Moreover, the operator $U^0(g):W_x\to W_y$ does not depend of $z\in X$.

Proof of Lemma 2

Proof: First we shall prove part 2. Denote by $i_x^y: W_x \to W_y$ an isomorphism of Hilbert spaces and define the unitary map $R_x^y: L^2(X, W_x) \to L^2(X, W_y)$ by $(R_x^y \psi)(z) = i_x^y (\psi(z))$, $\psi \in L^2(X, W_x), z \in X$. Consider the composition of unitary maps $U(g) \circ (R_x^y)^{-1}: L^2(X, W_y) \to L^2(X, W_y)$ where $g \in \mathcal{G}_x^y$. By using the property of the imprimitivity system for U(g), we obtain

$$U(g)\circ (R_x^y)^{-1}\circ \pi_y(f)=\pi_y(f)\circ U(g)\circ (R_x^y)^{-1}$$

for $f \in L^{\infty}(X)$.

This means that the operator $U(g) \circ (R_x^y)^{-1}$ is decomposable in $L^2(X,W_y)$. But (R_x^y) is a decomposable map by definition, therefore U(g) is decomposable as the composition of decomposable maps. As in the proof of Lemma 1 we conclude that $U^0(g)$ does not depend of $z \in X$ and is unitary.

To prove part 1 let us first observe that the isotropy groups Γ_x are isomorphic to each other $x \in X$. Indeed, taking an element $g \in \mathcal{G}_x^y$ we define the isomorphism $i:\Gamma_x \to \Gamma_y$ by the formula $i(\gamma) = g \circ \gamma \circ g^{-1}$ for $\gamma \in \Gamma_x$. Now, we have $U(i(\gamma)) = id_{L^2} \otimes \tau_y(i(\gamma))$ as in the proof of Lemma 1. On the other hand, $U(i(\gamma)) = U(g) \circ U(\gamma) \circ U(g^{-1}) = (id_{L^2} \otimes U^0(g)) \circ (id_{L^2} \otimes \tau_x(\gamma)) \circ (id_{L^2} \otimes U^0(g)^{-1}) = id_{L^2} \otimes (U^0(g) \circ \tau_x(\gamma) \circ U^0(g)^{-1})$. Therefore, we have $\tau_y(i(\gamma)) = U^0(g) \circ \tau_x(\gamma) \circ U^0(g)^{-1}$, but this means that the representations τ_y and τ_x are equivalent.

Idea of proof of the theorem

Define a family of linear maps of Hilbert spaces

$$J_x: H_x \to \mathcal{W}_x, \ x \in X$$

- The maps J_x are unitary isomorphisms.
- J_x are intertwining maps, i.e., the diagram commutes:

$$egin{array}{ll} H_x & \stackrel{U(g)}{\longrightarrow} & H_z \\ J_x & & & \downarrow J_z \\ \mathcal{W}_x & \stackrel{U^{ au}(g)}{\longrightarrow} & \mathcal{W}_z \end{array}$$

Proof of the theorem

Proof. Let us consider the spaces $\{\mathcal{W}_x\}_{x\in X}$, connected to the representation τ of Lemma 1 and the corresponding induced representation U^τ . We shall show that the representation (U,\mathbf{H}) is equivalent to (U^τ,\mathcal{W}) . We define a family of isomorphisms of Hilbert spaces $J_x: H_x \to \mathcal{W}_x$ for μ - a.e. $x \in X$. Since $H_x = L^2(X, W_x)$, for $\psi \in H_x$, $g \in \mathcal{G}_x$, and r(g) = y, we put $F(g) = (J_x\psi)(g) = (U(g)(\psi))(y)$. The definition is correct since by Lemma 2 we have $(U(g)\psi)(y) = U^0(g)(\psi(y))$, and $U^0(g)$ does not depend of $y \in X$. Since $U(g)\psi \in L^2(X, W_y)$, therefore $[U(g)(\psi)](y) \in W_y$. Also it is clear that $F(\gamma \circ g) = \tau(\gamma)(F(g))$ for $\gamma \in \Gamma_y$.

To see the square-integrability let us write

$$\int \langle F(s_x(y)), F(s_x(y)) \rangle_y d\mu(y) =$$

$$= \int \langle U^0(s_x(y))(\psi)(y), U^0(s_x(y))(\psi)(y) \rangle_y d\mu(y) = \int \langle \psi(y), \psi(y) \rangle_y d\mu(y) =$$

$$= \| \psi \|_{H_x} < \infty.$$

This also shows that J_x are unitary maps and are injective.

To see that J_x map onto \mathcal{W}_x , we can give the formula for J_x^{-1} : $(J_x^{-1}F)(y)=(U^0(g))^{-1}(F(g))$ where $F\in\mathcal{W}_x$ and $g\in\mathcal{G}_x^y$. Then the right-hand side does not change if we take other element $g_1\in\mathcal{G}_x^y$. Indeed, since $g_1=\gamma\circ g$, for an element $\gamma\in\Gamma_y$, therefore we have $(U^0(\gamma\circ g))^{-1}(F(\gamma\circ g))=((U^0(g))^{-1}(\tau(\gamma))^{-1}(\tau(\gamma))(F(g))=(U^0(g))^{-1}(F(g))$. This shows that J_x , $x\in X$, are isomorphisms of Hilbert spaces.

Now we can see that J_x are intertwining maps for the representations U and U^{τ} , i.e., that the following diagram commutes

$$egin{array}{ll} H_{\mathsf{x}} & \stackrel{U(g)}{\longrightarrow} & H_{\mathsf{z}} \ J_{\mathsf{x}} & & & \downarrow J_{\mathsf{z}} \ \mathcal{W}_{\mathsf{x}} & \stackrel{U^{ au}(g)}{\longrightarrow} & \mathcal{W}_{\mathsf{z}} \end{array}$$

for μ -a.e. $x, z \in X$ and ν - a.e. $g \in \mathcal{G}_X^z$. Let $\psi \in H_X$. Then, for $h \in \mathcal{G}_Z^y$, we have $[(J_z U(g))(\psi)](h) = [(U(h)(U(g))(\psi)](y) = U(h \circ g)(\psi(y)) = U^0(h \circ g)(\psi(y))$. On the other hand, $U^\tau(g)J_X(\psi)(h) = [J_X(\psi)](h \circ g) = [U(h \circ g)(\psi)](y)$. This ends the proof of Theorem.

Energy-momentum space of a particle

Consider the energy-momentum space H of a particle,

 $H = \{(p_0, p_1, p_2, p_3) \in \mathbf{R}^4 : p_0^2 - p_1^2 - p_2^2 - p_3^2 = m\}$. We have an action of the group $G = SL_2(\mathbf{C})$ on the hyperboloid H.

To describe the action we identify H with the set \overline{H} of hermitian 2×2 -matrices with determinant equal to m.

$$(p_0, p_1, p_2, p_3) \mapsto \begin{pmatrix} p_0 - p_3 & p_2 - ip_1 \\ p_2 + ip_1 & p_0 + p_3 \end{pmatrix}$$

and we let to act $g \in G$ on \overline{H} to the right in the following way, $\overline{H} \ni A \mapsto g^*Ag \in \overline{H}$. (It is clear that $det(g^*Ag) = detA = m$).

Next, we see that the isotropy group of the element $(p_0,0,0,0)$, $p_0 = \sqrt{m}$ is equal to K = SU(2). Thus we deduce that the homogoneus space $K \setminus G$ is diffeomorphic to H. We can take the phase space of a particle of the mass m as the space $\mathcal{G} = K \setminus G \times G = H \times G$ and consider the algebraic structure of transformation groupoid on it. Let $(\mathcal{U}, \mathcal{W})$ be a unitary representation of the groupoid \mathcal{G} in a Hilbert bundle \mathcal{W} .

An imprimitivity system and a particle

Assume that there exists an imprimitivity system (\mathcal{U},π) for $(\mathcal{U},\mathcal{W})$. We say that a particle of mass m is represented by the pair (\mathcal{U},π) . We say that it is an elementary particle if the imprimitivity system (\mathcal{U},π) is irreducible [13], [14]. Equivalently (on the strength of the Imprimitivity Theorem), we can say that the particle is an induced representation $(\mathcal{U}^{\tau},\mathcal{W})$ where τ is a unitary representation of the isotropy subgroupoid Γ . In the same way, we can say that the particle is elementary if the inducing representation τ is irreducible and, in turn, this means that the representation (L,\mathcal{W}_0) , $L=\tau_0$, of the group K=SU(2) is irreducible. Then the representation (L,\mathcal{W}_0) is called the spin of the particle.

Basic concepts Representations of a transformation groupoid Definition of induced representations of groupoid Illustration $\mathcal{G}=X\times\mathcal{G}, \qquad X=K\setminus\mathcal{G}$ Imprimitivity systems of groupoid A physical illustration

Thank you for your attention

References I

- R. Bos, Continuous representations of groupoids, arXiv:math/0612639v3 [math.RT].
- R. Brown, From groups to groupoids, Bull. London Math. Soc. 19 (1987), 113-134.
- M.R. Buneci, *Groupoid C*-algebras*, Surveys in Mathematics and its Applications, ISSN 1842-6298, 1 (2006), 71-98.
- A. Cannas da Silva and A. Weinstein, *Geometric Models for Noncommutative Algebras*, American Mathematical Society, Berkeley, (1999).
- J. Dixmier, Von Neumann Algebras, North Holland Publ. Comp., Amsterdam, (1981).

References II

- M. Heller, Z. Odrzygóźdź, L. Pysiak, W. Sasin, Structure of Malicious Singularities, Int. J. Theor. Phys., 42, (2003), 427 441.
- M. Heller, L. Pysiak, W. Sasin, *Noncommutative unification of general relativity and quantum mechanics*, J. Math. Phys., 46 (2005), 122501-15.
- M. Heller, L. Pysiak, W. Sasin, *Noncommutative dynamics of random operators*, Int. J. Theor. Phys., 44 (2005), 619-628.
- M. Heller, L. Pysiak, W. Sasin, *Conceptual unification of gravity and quanta*, Int. J. Theor. Phys., 46 (2007), 2494-2512.
- M. Heller, Z. Odrzygóźdź , L. Pysiak, W. Sasin, *Gravitational Aharonov-Bohm Effect*, Int. J. Theor. Phys., 47, (2008), 2566-2575.

References III

- N.P. Landsman, Mathematical Topics between Classical and Quantum Mechanics, Springer, New York, (1998).
- K.C.H. Mackenzie, *Lie groupoids and Lie algebroids in Differential Geometry*, London Math. Society Lecture Notes Series, 124, Cambridge University Press, Cambridge, (1987).
- G.W.Mackey, The relationship between classical mechanics and quantum mechanics, Contemporary Math., 214 (1998), 91-109.
- G.W.Mackey, *Unitary group representations in physics, probability and number theory*, Benjamin, Reading, Mass., (1978).
- G.W.Mackey, Induced representations of locally compact groups I,II, Acta Math., 55 (1952), 101-139; 58 (1953), 193-221.

References IV

- G.W.Mackey, *Imprimitivity for representations of locally compact groups*, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 537-545.
- J.A. Packer, Applications of the work of Stone and von Neumann to the theory of wavelets, Contemporary Math., 365, (2004), pp. 253-279.
- A.L.T. Paterson, *Groupoids, Inverse Semigroups, and Their Operators Algebras*, Birkhauser, Boston, (1999).
- L. Pysiak, *Time Flow in a Noncommutative Regime*, Internat. J. Theoret. Phys., 46 (1), (2007), 16 30
- L. Pysiak, *Groupoids, their representations and imprimitivity systems*, Demonstratio Mathematica 37 (2004), 661-670.
- J.N. Renault, *A groupoid approach to C*-algebras*, Lecture Notes in Math. 793, Springer-Verlag, New York, (1980).

References V

- M.E. Taylor, *Noncommutative Harmonic Analysis*, A.M.S., Providence, (1986).
- A. Weinstein, *Groupoids: unifying internal and external geometry*, Contemporary Math. 282, (2001), 1-19.
- J. Westman, *Harmonic analysis on groupoids*, Pacific J. Math., 27 (1968), 621-632.