REPRESENTATIONS OF GROUPOIDS AND IMPRIMITIVITY SYSTEMS

Leszek Pysiak

Politechnika Warszawska

January 9, 2012

Table of contents

(1) Basic concepts
(2) Representations of a transformation groupoid
(3) Definition of induced representations of groupoid
(4) Illustration $\mathcal{G}=X \times G, \quad X=K \backslash G$
(5) Imprimitivity systems of groupoid
(6) A physical illustration

Basic publications

- L. Pysiak, Imprimitivity theorem for groupoid representations, Demonstratio Mathematica 44 (2011), 29-48.
- L. Pysiak, Groupoids, their representations and imprimitivity systems, Demonstratio Mathematica 37 (2004), 661-670.
- M. Heller, Z. Odrzygóźdź , L. Pysiak, W. Sasin, Structure of Malicious Singularities, Int. J. Theor. Phys., 42, (2003), 427-441.
- M. Heller, L. Pysiak, W. Sasin, Conceptual unification of gravity and quanta, Int. J. Theor. Phys., 46 (2007), 2494- 2512.

Basic references

- G.W.Mackey, Induced representations of locally compact groups I,II , Acta Math., 55 (1952), 101-139; 58 (1953), 193-221.
- J.Westman, Harmonic analisis on groupoids, Pacific J. Math. 27, (1968), 621-632.
- K.C.H. Mackenzie, Lie groupoids and Lie algebroids in Differential Geometry, London Math. Society Lecture Notes Series, 124, Cambridge University Press, Cambridge, (1987).
- N.P. Landsman, Mathematical Topics between Classical and Quantum Mechanics, Springer, New York, (1998).
- A.L.T. Paterson, Groupoids, Inverse Semigroups, and Their Operators Algebras, Birkhauser, Boston, (1999).

Concept of groupoid

We recall that a groupoid \mathcal{G} over X, or a groupoid with base X, is a set with a partially defined multiplication " \circ " on a subset \mathcal{G}^{2} of $\mathcal{G} \times \mathcal{G}$, and an inverse map $g \rightarrow g^{-1}$ defined for every $g \in \mathcal{G}$. The multiplication is associative when defined. One has an injection $\epsilon: X \rightarrow \mathcal{G}$ called the identity section (and $\epsilon(x)$ being an unit at $x \in X$) and two structure maps $d, r: \mathcal{G} \rightarrow X$ called the source map and the target map respectively, such that

$$
\begin{aligned}
& \epsilon(d(g))=g^{-1} \circ g \\
& \epsilon(r(g))=g \circ g^{-1}
\end{aligned}
$$

for $g \in \mathcal{G}$.

Let us introduce the following fibrations in the set \mathcal{G} :

$$
\begin{aligned}
& \mathcal{G}_{x}=\{g \in \mathcal{G}: d(g)=x\} \\
& \mathcal{G}^{\times}=\{g \in \mathcal{G}: r(g)=x\}
\end{aligned}
$$

for $x \in X$. Let us also denote $\mathcal{G}_{x}^{y}=\mathcal{G}^{x} \bigcap \mathcal{G}_{y}$, and consider the set $\mathcal{G}_{x}^{x}=\mathcal{G}^{x} \bigcap \mathcal{G}_{x}$ for $x \in X$. It has the group structure and is called the isotropy group of the point x. It is clear that the set $\Gamma=\bigcup_{x \in X} \mathcal{G}_{x}^{x}$ has the structure of a subgroupoid of \mathcal{G} over the base X (all the structure maps are the restrictions of the structure maps of \mathcal{G} to Г).
We call \mathcal{G} a transitive groupoid, if for each pair of elements $x_{1}, x_{2} \in X$ there exists $g \in \mathcal{G}$ such that $d(g)=x_{1}$ and $r(g)=x_{2}$.
A groupoid \mathcal{G} is a topological groupoid if \mathcal{G} and X are topological spaces and all structure maps are continuous (in particular, the embedding ϵ is a homeomorphism of X onto its image).
In the following we assume that \mathcal{G} (and thus X) is a locally compact Hausdorff space.

Pair groupoid

Example

A pair groupoid. Let X be a locally compact Hausdorff space. Take $\mathcal{G}=X \times X$. We define the set \mathcal{G}^{2} of composable elements as $\mathcal{G}^{2}=\{((x, y),(y, z)): x, y, z \in X\} \subset \mathcal{G} \times \mathcal{G}$ and a multiplication, for $((x, y),(y, z)) \in \mathcal{G}^{2}$, by

$$
(x, y) \circ(y, z)=(x, z) .
$$

Moreover, we have: $(x, y)^{-1}=(y, x), d(x, y)=y, r(x, y)=x$, $\epsilon(x)=(x, x)$. With such defined structure maps \mathcal{G} is a groupoid, called pair groupoid.

Transformation groupoid

Example

A transformation groupoid. Let X be a locally compact Hausdorff space, and G a locally compact group. Let G act continuously on X to the right, $X \times G \rightarrow X$. Denote $(x, g) \mapsto x g$. We introduce the groupoid structure on the set $\mathcal{G}=X \times G$ by defining the following structure maps. The set of composable elements $\mathcal{G}^{2}=\{((x g, h),(x, g): x \in X, g, h \in G\} \subset \mathcal{G} \times \mathcal{G}$, and the multiplication for $((x g, h),(x, g)) \in \mathcal{G}^{2}$ is given by

$$
(x g, h) \circ(x, g)=(x, g h) .
$$

And also $(x, g)^{-1}=\left(x g, g^{-1}\right), d(x, g)=x, r(x, g)=x g$, $\epsilon(x)=\left(x, e_{G}\right)$. This groupoid is called the transformation groupoid.

Right Haar System

Definition

A right Haar system for the groupoid \mathcal{G} is a family $\left\{\lambda_{x}\right\}_{x \in X}$ of regular Borel measures defined on the sets \mathcal{G}_{x} (which are locally compact Hausdorff spaces) such that the following three conditions are satisfied:
(1) the support of each λ_{x} is the set \mathcal{G}_{x},
(2) (continuity) for any $f \in C_{c}(\mathcal{G})$ the function f^{0}, where

$$
f^{0}(x)=\int_{\mathcal{G}_{x}} f d \lambda_{x}
$$

belongs to $C_{c}(X)$,
(3) (right invariance) for any $g \in \mathcal{G}$ and any $f \in C_{c}(\mathcal{G})$,

$$
\int_{\mathcal{G}_{r(g)}} f(h \circ g) d \lambda_{r(g)}(h)=\int_{\mathcal{G}_{d(g)}} f(u) d \lambda_{d(g)}(u)
$$

One can also consider the family $\left\{\lambda^{x}\right\}_{x \in X}$ of left-invariant measures, each λ^{x} being defined on the set \mathcal{G}^{x} by the formula $\lambda^{x}(E)=\lambda_{x}\left(E^{-1}\right)$ for any Borel subset E of \mathcal{G}^{\times}(where $E^{-1}=\left\{g \in \mathcal{G}: g^{-1} \in E\right\}$). Then the invariance condition assumes the form:

$$
\int_{\mathcal{G}^{d(g)}} f(g \circ h) d \lambda^{d(g)}(h)=\int_{\mathcal{G}^{r}(g)} f(u) d \lambda^{r(g)}(u) .
$$

Now, let μ be a regular Borel measure on X. We can consider the following measures which will be called measures associated with μ : $\nu=\int \lambda_{x} d \mu(x)$ on $\mathcal{G}, \nu^{-1}=\int \lambda^{x} d \mu(x)$ and $\nu^{2}=\int \lambda_{x} \times \lambda^{x} d \mu(x)$ on \mathcal{G}^{2}. If $\nu=\nu^{-1}$ we say that the measure μ is a \mathcal{G}-invariant measure on X.

Locally trivial groupoids

Definition

A topological groupoid \mathcal{G} on X is called locally trivial if there exist a point $x \in X$, an open cover $\left\{U_{i}\right\}$ of X and continuous maps $s_{X, i}: U_{i} \rightarrow \mathcal{G}_{X}$ such that $r \circ s_{i}=i d_{U_{i}}$ for all i.

Proposition

Assume that \mathcal{G} is a locally trivial groupoid on X and X is second countable space. Let μ be a regular Borel measure on X. Then
(1) \mathcal{G} is transitive,
(2) all isotropy groups of \mathcal{G} are isomorphic with each other,
(3) for every $y \in X$ there exist an open cover $\left\{V_{j}\right\}$ of X and continuous maps $s_{y, j}: V_{j} \rightarrow \mathcal{G}_{y}$ such that $r \circ s_{j}=i d_{v_{j}}$,
(9) for every $x \in X$ there exists a section $s_{x}: X \rightarrow \mathcal{G}_{x}$ which is μ-measurable, i.e., for every Borel set B in $\mathcal{G}_{x}, s_{x}^{-1}(B)$ is μ-measurable subset of X,
(5) the section s_{X} is $\mu-$ a.e. continuous on X.

Groupoid representation

Definition

A unitary representation of a groupoid \mathcal{G} is the pair $(\mathcal{U}, \mathbf{H})$ where \mathbf{H} is a Hilbert bundle over X and $\mathcal{U}=\{U(g)\}_{g \in \mathcal{G}}$ is a family of unitary maps $U(g): H_{d(g)} \rightarrow H_{r(g)}$ such that:
(1) $U(\epsilon(x))=i d_{H_{x}}$ for all $x \in X$,
(2) $U(g) \circ U(h)=U(g \circ h)$ for $\nu^{2}-$ a.e. $(g, h) \in \mathcal{G}^{2}$,
(3) $U\left(g^{-1}\right)=U(g)^{-1}$ for $\nu-$ a.e. $g \in \mathcal{G}$,

- For every $\phi, \psi \in L^{2}(X, H, \mu)$,

$$
\mathcal{G} \ni g \rightarrow(U(g) \phi(d(g)), \psi(r(g)))_{r(g)} \in \mathcal{C}
$$

is ν-measurable on \mathcal{G}. (Here $L^{2}(X, \mathbf{H}, \mu)$ denotes the space of square-integrable sections of the bundle \mathbf{H}, and $(\cdot, \cdot)_{x}$ denotes the scalar product in the Hilbert space H_{x}.)

Properties of representations

Definition

Unitary representations $\left(\mathcal{U}_{1}, \mathbf{H}_{1}\right)$ and $\left(\mathcal{U}_{2}, \mathbf{H}_{2}\right)$ of a groupoid \mathcal{G} are said to be unitarily equivalent if there exists a family $\left\{A_{x}\right\}_{x \in X}$ of isomorphisms of Hilbert spaces $A_{x}: H_{1 x} \rightarrow H_{2 x}, x \in X$ such that for every $x, y \in X$ and for ν-a.e. $g \in \mathcal{G}_{X}^{y}$ the following diagram commutes

$$
\begin{gathered}
\stackrel{H_{1 x}}{\substack{U_{1}(g)}} H_{1 y} \\
A_{x} \downarrow \\
H_{2 x} \xrightarrow[U_{2}(g)]{ } \\
H_{2 y}
\end{gathered}
$$

Definition

A unitary representation $(\mathcal{U}, \mathbf{H})$ is called irreducible if it has no proper subrepresentations.

Examples of representations

Example

Let $H_{x}=L^{2}\left(\mathcal{G}_{x}, d \lambda_{x}\right)$, for $x \in X$, be a Hilbert space of square λ_{x}-integrable functions on \mathcal{G}_{x}, and for $g \in \mathcal{G}_{x}^{y}, x, y \in X$ and $f \in H_{x}$ define $U(g): H_{x} \rightarrow H_{y}$ by

$$
(U(g) f)\left(g_{1}\right)=f\left(g_{1} \circ g\right),
$$

for $g_{1} \in \mathcal{G}_{y}$.
A representation $(\mathcal{U}, \mathbf{H})$ is called regular representation of the groupoid \mathcal{G}

Example

Now let us consider the regular representation of a pair groupoid $\mathcal{G}_{0}=X \times X$. Let μ be a regular Borel measure on X. Now we can identify $H_{x}=L^{2}(X . \mu)$. Then

$$
\mathcal{U}(x, y)=\left.i d\right|_{H_{x}}, \text { for }(x, y) \in X
$$

Generalized regular representation of a groupoid algebra

Consider the noncommutative algebra $\mathcal{A}=C_{c}\left(\mathcal{G}_{0}\right)$ of continuous compactly supported functions on the pair groupoid \mathcal{G}_{0} with multiplication given by the following convolution:

$$
(a * b)(x, y)=\int a(x, z) b(z, y) d \mu(z)
$$

Such defined algebra will be called the groupoid algebra of \mathcal{G}_{0}. We shall consider a representation $\widetilde{\pi}$ of \mathcal{A} in the space $L^{2}(X, H, \mu)$ of square-integrable functions on X with values in a Hilbert space H.

$$
\tilde{\pi}: \mathcal{A} \rightarrow B\left(L^{2}(X, H, \mu)\right)
$$

given by the formula

$$
[\widetilde{\pi}(a) \psi](x)=\int a(x, y) \psi(y) d \mu(y)
$$

where $a \in \mathcal{A}$ and $\psi \in L^{2}(X, H, \mu)$. This representation will be called also generalized regular representation.

\mathcal{G}_{0}-consistent representation

Let $\mathbf{W}=\left\{W_{x}\right\}_{x \in X}$ be a Hilbert bundle over X and let us consider a new Hilbert bundle $\mathbf{H}=\left\{H_{x}\right\}_{x \in X}$ of the form $H_{x}=L^{2}\left(X, W_{x}\right)$. Take a generalized regular representation $\widetilde{\pi}_{x}$ of the groupoid algebra \mathcal{A} in the spaces H_{x} :

$$
\tilde{\pi}_{x}: \mathcal{A} \rightarrow B\left(L^{2}\left(X, H_{x}, \mu\right)\right), \quad x \in X
$$

Definition

Let $(\mathcal{U}, \mathbf{H})$ be an unitary representation of the groupoid \mathcal{G}. We call it a \mathcal{G}_{0}-consistent representation, if the following condition holds:

$$
U(g) \widetilde{\pi}_{x}(a) U\left(g^{-1}\right)=\widetilde{\pi}_{y}(a)
$$

for $g \in \mathcal{G}_{x}^{y}, a \in \mathcal{A}$, and $x, y \in X$.

Group induced representation

Let G be a Lie group and K its closed subgroup. We assume, for simplicity, that $X=K \backslash G$ has a G-invariant measure μ. We consider \mathcal{H}_{L}, a Hilbert space consisting of measurable functions ϕ on G with values in V, such that

$$
\phi(h g)=L(h) \phi(g), h \in K,
$$

and

$$
\int_{X}\|\phi([g])\|_{V}^{2} d \mu([g])<\infty
$$

where $[g]$ denotes the image of g in X under the projection $G \rightarrow K \backslash G=X$. We introduce the inner product

$$
\left(\phi_{1}, \phi_{2}\right)_{\mathcal{H}_{L}}=\int_{x}\left(\phi_{1}(x), \phi_{2}(x)\right)_{v} d \mu(x) .
$$

Then we define the representation U^{L} of G on \mathcal{H}_{L} given by the formula

$$
\left(U^{L}(g) f\right)\left(g_{0}\right)=f\left(g_{0} g\right), g_{0}, g \in G, f \in \mathcal{H}_{L} .
$$

$\left(U^{L}, \mathcal{H}_{L}\right)$ is called induced by the representation L of K

Imprimitivity system of group G

Definition

Let (U, H) be a unitary representation of the group G, X a G-space and P a projection valued measure on the Borel sets of $X, P(B)$ being orthogonal projection on H, and $P(X)=i d_{H}$. The pair (U, P) is called a system of imprimitivity (S.I. for short) of the group G for the representation U, if

$$
U(g) P(B) U\left(g^{-1}\right)=P\left(B g^{-1}\right)
$$

where $B g^{-1}=\left\{x g^{-1}, x \in B, g \in G\right\}$, and B a Borel set in X.
Next I present an equivalent definition of S.I.

Imprimitivity system of group G

Definition

Let (U, H) be a unitary representation of the group G, and π be a nondegenerate representation of $*$ - algebra $C_{0}(X)$ of continuous functions on X, vanishing at infinity. The pair of representations (U, π) is called a system of imprimitivity (S.I. for short) of the group G for the representation U, if the representations π, U satisfy the following covariance condition:

$$
U(g) \pi(f) U\left(g^{-1}\right)=\pi\left(R_{g} f\right)
$$

where $R_{g} f(x)=f(x g), x \in X, g \in G, f \in C_{0}(X)$.
The classical Mackey's imprimitivity theorem states, that every unitary representation of the group G for which there exists a transitive imprimitivity system is equivalent to representation induced by some representation of subgroup K. (The transitivity of S.I. means that $X=K \backslash G$.

Representations of a transformation groupoid

Let G be a Lie group and K its closed subgroup. Consider representations of the transformation groupoid of the form $\mathcal{G}=X \times G$, where $X=K \backslash G$.

Theorem

There exists a one-to-one correspondence between unitary representations of the transformation groupoid \mathcal{G} and the systems of imprimitivity of the group G.

Proof of theorem

Proof. Let $(\mathcal{U}, \mathcal{H})$ be a u.r. of \mathcal{G} in a Hilbert bundle \mathcal{H} over X. Denote $\mathbf{H}=\int_{\oplus} H_{x} d \mu(x)$ and define $U(g): \mathbf{H} \rightarrow \mathbf{H}$ as

$$
U(g)=\int_{\oplus} U(x, g) d \mu
$$

Then (U, \mathbf{H}) is a u.r. of the group G in the Hilbert space \mathbf{H}. Moreover for $f \in C_{0}(X)$

$$
U(g) \pi(f)=\pi\left(R_{g} f\right) U(g)
$$

Thus we obtain a S.I. (U, π) of the group G.

For simplicity I present another part of proof in the finite case. Now choose a S.I. (U, P). Denote $H_{x}=P_{x} H$ and define:

$$
\mathcal{U}(x, g): H_{x} \rightarrow H_{g x}
$$

by the formula:

$$
\mathcal{U}(x, g) h=\left.U\left(g^{-1}\right)\right|_{H_{x}} h \quad \text { for } h \in H_{x},
$$

Observe that $\mathcal{U}(x, g) h=P_{x g} U\left(g^{-1}\right) h$, by the property of S.I. But it means that $\mathcal{U}(x, g) h \in H_{g x}$. Let us check the conditions of groupoid representation. Indeed, one has $\mathcal{U}(x, e) h=\left.U(e)\right|_{H_{x}} h=h$, for $h \in H_{x}$. Further $\mathcal{U}\left(x g_{2}, g_{1}\right) \circ \mathcal{U}\left(x, g_{2}\right)=\left.\left.U\left(g_{1}^{-1}\right)\right|_{H_{x g_{2}}} \circ U\left(g_{2}^{-1}\right)\right|_{H_{x}}=$ $\left.U\left(\left(g_{2} g_{1}\right)^{-1}\right)\right|_{H_{x}}=\mathcal{U}\left(x, g_{2} g_{1}\right)$. And finally $\mathcal{U}\left(x g, g^{-1}\right)=\left.U(g)\right|_{H_{x g}}=(\mathcal{U}(x, g))^{-1}$. Thus we have constructed the representation $(\mathcal{U}, \overline{\mathcal{H}})$ of \mathcal{G}, corresponding to the S.I. given.

The space of induced representation

Assume that there is given a unitary representation (τ, \mathbf{W}) of the subgroupoid Γ. Here \mathbf{W} is a Hilbert bundle over X. Let W_{x} denote a fiber over $x \in X$ which is a Hilbert space with the scalar product $\langle\cdot, \cdot\rangle_{x}$, and let $W=\cup_{x \in X} W_{x}$ denote the total space of the bundle \mathbf{W}.
Let us define, for every $x \in X$, the space \mathcal{W}_{x} of W-valued functions F defined on the set \mathcal{G}_{x} satisfying the following four conditions:
(1) $F(g) \in W_{r(g)}$ for every $g \in \mathcal{G}_{x}$,
(2) for every μ-Borel measurable r-section $s_{x}: X \rightarrow \mathcal{G}_{x}$ (see Proposition) the composition $F \circ s_{x}$ is a μ-measurable section of the bundle \mathbf{W},
(3) $F(\gamma \circ g)=\tau(\gamma) F(g)$ for $g \in \mathcal{G}_{x}, \gamma \in \Gamma_{r(g)}$,
(0) $\int\left\langle F\left(s_{x}(y)\right), F\left(s_{x}(y)\right)\right\rangle_{y} d \mu(y)<\infty$.

We identify two functions $F, F^{\prime} \in \mathcal{W}_{x}$ which differ on the zero-measure sets, and introduce the scalar product $(\cdot, \cdot)_{x}$ in the space \mathcal{W}_{x}

$$
\left(F_{1}, F_{2}\right)_{x}=\int\left\langle F_{1}\left(s_{x}(y)\right), F_{2}\left(s_{x}(y)\right)\right\rangle_{y} d \mu(y)
$$

where s_{x} is a fixed section determined by Proposition.
The spaces $\mathcal{W}_{x}, x \in X$, with these scalar products are Hilbert spaces. It is easily seen that they are isomorphic to the Hilbert space $L^{2}(X, \mathbf{W})$ of square-integrables sections of the bundle \mathbf{W}. Now, let us denote $\mathcal{W}=\left\{\mathcal{W}_{x}\right\}_{x \in X}$. It is a Hilbert bundle over X.

Induced representation of groupoid

Definition

The representation of the groupoid \mathcal{G} induced by the representation (τ, \mathbf{W}) of the subgroupoid Γ is the pair $\left(U^{\tau}, \mathcal{W}\right)$ where, for $g \in \mathcal{G}_{x}^{y}$, we define $U^{\tau}(g): \mathcal{W}_{x} \rightarrow \mathcal{W}_{y}$ by

$$
\left(U^{\tau}\left(g_{0}\right) F\right)(g)=F\left(g \circ g_{0}\right) .
$$

It is clear that $\left(U^{\tau}, \mathcal{W}\right)$ is a unitary groupoid representation.

The structure of transformation groupoid

Let us denote

$$
\begin{gathered}
\mathcal{G}_{x}=\{(x, g) \in \mathcal{G}: g \in G\}, \\
\mathcal{G}^{y}=\left\{\left(y g^{-1}, g\right) \in \mathcal{G}: g \in G\right\} .
\end{gathered}
$$

Let us also denote the isotropy group \mathcal{G}_{x}^{x} by $\Gamma_{x}, \Gamma_{x}=\left\{(x, k): k \in K_{x}\right\}$, where K_{x} is a subgroup of G of the form $K_{x}=g_{0}^{-1} K g_{0}$ where $g_{0} \in G$ is an element of the coset $x\left(x=\left[g_{0}\right]\right)$. Indeed, for $k_{x} \in K_{x}$ we have $x k_{x}=\left[g_{0}\right] g_{0}^{-1} k g_{0}=\left[k g_{0}\right]=x$. Denote by s_{0} a Borel section of the principal bundle $G \rightarrow K \backslash G=X$, i. e., $\left[s_{0}(x)\right]=K s_{0}(x)=x$.

Now, for a function $f \in C_{c}\left(\mathcal{G}_{x}\right)$, let us define $f_{x}(y, k)=f\left(x, s_{0}(x)^{-1} k s_{0}(y)\right)$, and

$$
\int_{\mathcal{G}_{x}} f(\mathbf{g}) d \lambda_{x}(\mathbf{g})=\int_{X} \int_{K} f_{x}(y, k) d k d \mu(y)
$$

Proposition

The collection $\left\{\lambda_{x}\right\}_{x \in X}$ is a right Haar system on the groupoid \mathcal{G}.

Now, we shall consider representations of the isotropy subgroupoid Γ. As we have seen, $\Gamma=\bigcup_{x \in X}\{x\} \times K_{x}$ with $K_{x}=g^{-1} K g$ and $g \in G$ such that its coset in X is equal to $x([g]=x)$. We can use $g=s_{0}(x)$. Let (τ, \mathbf{W}) be a unitary representation of the groupoid Γ in a Hilbert bundle $\mathbf{W}=\left\{W_{x}\right\}_{x \in X}$.

Definition

A representation (τ, \mathbf{W}) is called X-consistent if there exist a unitary representation (τ_{0}, W_{0}) of the group K and a family of Hilbert space isomorphisms

$$
A_{x}: W_{0} \rightarrow W_{x}, x \in X
$$

such that, for $\gamma \in \Gamma_{x}$ of the form $\gamma=\left(x, s_{0}(x)^{-1} k s_{0}(x)\right)$,

$$
\tau(\gamma)=A_{x} \tau_{0}(k) A_{x}^{-1}
$$

Induced representations of $\mathcal{G}=X \times G$

In the sequel we shall consider the representation of the groupoid $\mathcal{G}=X \times G$ induced by X - consistent representation (τ, \mathbf{W}) of the subgroupoid Γ, and we shall establish its connection with the induced representation in the Mackey sense of the group G. Now condition 3 of the definition of the space \mathcal{W}_{x} assumes the form

$$
F(\gamma \circ(x, g))=\tau(\gamma) F(x, g)
$$

where $x, y \in X, y=x g, g \in G, \gamma \in \Gamma_{y}=\{y\} \times K_{y}$. Thus we have $\gamma=\left(y, s_{0}(y)^{-1} k s_{0}(y)\right)$ for an element $k \in K$. Then, by the definition of X-consistent representation, we can write

$$
F(\gamma \circ(x, g))=\left(A_{y} \tau_{0}(k) A_{y}^{-1}\right) F(x, g)
$$

Let introduce a function $\phi: G \rightarrow W_{0}$ defined by the formula $\phi\left(k s_{0}(y)\right)=A_{y}^{-1}\left(F\left(x, s_{0}(x)^{-1} k s_{0}(y)\right)\right)$. Then the function ϕ has the property $\phi(k g)=\tau_{0}(k) \phi(g)$.

We shall use the notation $\left(L, W_{0}\right)$ for the unitary representation of the group K in the space $W_{0}, L=\tau_{0}$. Thus we have $\phi(k g)=L(k) \phi(g)$ and we can consider the Hilbert space \mathcal{H}_{L} introduced above as well as the representation (U^{L}, \mathcal{H}_{L}) of the group G induced in the sense of Mackey by L from the subgroup K.
The following theorem establishes a connection of the induced representation $\left(\mathcal{U}^{\tau}, \mathcal{W}\right)$ of the groupoid \mathcal{G} with the representation (U^{L}, \mathcal{H}_{L}) of the group G.
Denote by $R_{g}, g \in G$, the following operator acting in the space $\mathcal{W}_{x}, x \in X, y=x g$,

$$
\left(R_{g} F\right)(x, h)=\left(A_{x h} A_{x h g}^{-1}\right)(F(x, h g))
$$

Then we have the family of unitary G-representations $\left(R, \mathcal{W}_{x}\right), x \in X$. (The unitarity follows from the fact that the measure μ is G-invariant and the operators $A_{x h}, A_{\text {xhg }}$ are Hilbert space isomorphisms.)

Relation with group induced representation

Theorem

(1) For every $x \in X$ the G-representation $\left(R, \mathcal{W}_{x}\right)$ is unitarily equivalent to the induced representation $\left(U^{L}, \mathcal{H}_{L}\right)$.
(2) All representations $\left(R, \mathcal{W}_{x}\right), x \in X$, are unitarily equivalent to each other. The equivalence is given by the operators $l_{x}^{y}: \mathcal{W}_{x} \rightarrow \mathcal{W}_{y}$,

$$
\left(I_{x}^{y} F\right)\left(y, s_{0}(y)^{-1} k s_{0}(z)\right)=\left(A_{y} A_{z}^{-1}\right)\left(F\left(x, s_{0}(x)^{-1} k s_{0}(z)\right)\right),
$$

$x, y \in X$.

Proof of theorem

Proof.

We define the linear map $J_{x}: \mathcal{W}_{x} \rightarrow \mathcal{H}_{L}$ by $\left(J_{x} F\right)(g)=\phi\left(k s_{0}(y)\right)=A_{y}^{-1}\left(F\left(x, s_{0}(x)^{-1} k s_{0}(y)\right)\right)$ where $g=k s_{0}(y)$. J_{x} is a linear isomorphism since A_{y} is an isomorphism and it is easily seen that J_{x} preserves scalar products of \mathcal{W}_{x} and \mathcal{H}_{L} and so it is a Hilbert space isomorphism. To see that it defines an equivalence of representations, we have to show that, for $g \in G$, the following diagram is commutative

$$
\begin{array}{ll}
\mathcal{W}_{x} \xrightarrow{R_{g}} \mathcal{W}_{x} \\
J_{x} \downarrow & \downarrow^{J_{x}} \\
\mathcal{H}_{L} \xrightarrow[U^{L}(g)]{ } & \mathcal{H}_{L}
\end{array}
$$

Let us compute $\left(U^{L}(g) J_{x}\right)(F)(h)$. It is sufficient to take $h=s_{0}(y)$ and to notice that each $g \in G$ can be written in the form $g=s_{0}(y)^{-1} k s_{0}(z)$, for $z \in X, z=y g$ and an element $k \in K$.

$$
\begin{gathered}
\left(U^{L}\left(s_{0}(y)^{-1} k s_{0}(z)\right) J_{x}\right)(F)\left(s_{0}(y)\right)=\left(J_{x} F\right)\left(k s_{0}(z)\right)= \\
=L(k) A_{z}^{-1}\left(F\left(x, s_{0}(x)^{-1} s_{0}(z)\right)\right)
\end{gathered}
$$

On the other hand

$$
\begin{gathered}
\quad\left(J_{x} R_{g}\right)(F)\left(s_{0}(y)\right)=A_{y}^{-1}\left(\left(R_{g} F\right)\left(x, s_{0}(x)^{-1} s_{0}(y)\right)\right)= \\
=A_{y}^{-1}\left(A_{y} A_{z}^{-1}\right)\left(F\left(x, s_{0}(x)^{-1} k s_{0}(z)\right)\right)=A_{z}^{-1} \tau(\gamma)\left(F\left(x, s_{0}(x)^{-1} s_{0}(z)\right)\right)= \\
=A_{z}^{-1} A_{z} \tau_{0}(k) A_{z}^{-1}\left(F\left(x, s_{0}(x)^{-1} s_{0}(z)\right)\right)=L(k) A_{z}^{-1}\left(F\left(x, s_{0}(x)^{-1} s_{0}(z)\right)\right) .
\end{gathered}
$$

Now it is a simple observation that $l_{x}^{y}=J_{y}^{-1} J_{x}$. \diamond

Imprimitivity system of groupoid

Definition

Let $(\mathcal{U}, \mathbf{H})$ be an unitary \mathcal{G}_{0}-consistent representation of the groupoid \mathcal{G}. Consider the commutative algebra $L^{\infty}(X)$ and a family $\pi=\left(\pi_{x}\right)_{x \in X}$ of its representations in the Hilbert spaces $L^{2}\left(X, W_{x}\right)$ respectively, given by the operators of multiplication by a function:
$L^{\infty}(X) \ni f \rightarrow \pi_{x}(f) \in B\left(L^{2}\left(X, W_{x}\right)\right)$ where, for $z \in X, \psi \in L^{2}\left(X, W_{x}\right)$

$$
\left[\pi_{x}(f) \psi\right](z)=f(z) \psi(z)
$$

We say that the representation \mathcal{U} has a system of imprimitivity (\mathcal{U}, π) if for every $f \in L^{\infty}(X)$, and for μ - a.e. $x, y \in X$, and ν - a.e. $g \in \mathcal{G}_{x}^{y}$ the following condition holds:

$$
U(g) \pi_{x}(f) U\left(g^{-1}\right)=\pi_{y}(f)
$$

Imprimitivity theorem for groupoid

Theorem

If, for a representation $(\mathcal{U}, \mathbf{H})$, there exists a system of imprimitivity (\mathcal{U}, π) then the representation \mathcal{U} is equivalent to the representation \mathcal{U}^{τ} induced by some representation (τ, \mathbf{W}) of the subgroupoid Γ.

Let us observe that, for $\gamma \in \Gamma_{x}=\mathcal{G}_{x}^{x}$, the covariance condition of the imprimitivity system reduces to the following one

$$
U(\gamma) \pi_{\chi}(f) U\left(\gamma^{-1}\right)=\pi_{\chi}(f)
$$

It follows that $U(\gamma)$ are decomposable, i.e., for μ - a.e. $y \in X$, there exists an operator $U(\gamma)_{y} \in B\left(W_{x}\right)$ such that, for $\psi \in L^{2}\left(X, W_{x}\right)$, $(U(\gamma) \psi)(y)=U(\gamma)_{y}(\psi(y))$.

Morover, notice that the Hilbert space $L^{2}\left(X, W_{x}\right)$ is isomorphic to the tensor product of Hilbert spaces $L^{2}(X) \otimes W_{x}$.

And more

Lemma 1

Lemma

If for a representation (U, \mathbf{H}) there exists a system of imprimitivity, then
(1) there exists a unitary representation $\left(\tau_{x}, W_{x}\right)$ of the group Γ_{x} such that $U(\gamma)=i d_{L^{2}} \otimes \tau_{x}(\gamma)$ for every $\gamma \in \Gamma_{x}$ and μ - a.e. $x \in X$. (In particular it means that the function $X \ni y \rightarrow U(\gamma)_{y} \in B\left(H_{x}\right)$ is a constant field of operators),
(2) we can define a representation (τ, \mathbf{W}) of the subgroupoid Γ such that, for $\gamma \in \Gamma_{x}, \quad \tau(\gamma)=\tau_{x}(\gamma)$,

Proof of Lemma 1

Proof: A decomposable operator $U(\gamma)$ in the space $L^{2}(X) \otimes W_{x}$ has the form $[U(\gamma)(\psi \otimes h)](y)=\psi(y) \otimes U(\gamma)_{y} h$. We have to show that it is of the form $\operatorname{id}_{L^{2}} \otimes \tau_{x}(\gamma)$, where $\tau_{x}(\gamma) \in B\left(W_{x}\right)$. Since $(\mathcal{U}, \mathbf{H})$ is a \mathcal{G}_{0}-consistent representation, the following commutation relation holds:

$$
U\left(\gamma^{-1}\right) \widetilde{\pi}_{x}(a) U(\gamma)=\tilde{\pi}_{x}(a)
$$

for $a \in \mathcal{A}, \gamma \in \Gamma_{x}$, and $x \in X$. But this implies that

$$
U\left(\gamma^{-1}\right) A U(\gamma)=A
$$

for every A of the form $A=A_{0} \otimes i d_{W_{x}}, A_{0} \in B\left(L^{2}(X)\right)$. Then it follows that $U(\gamma)=i d_{L^{2}} \otimes \tau_{x}(\gamma)$. It is clear that all $\tau_{x}(\gamma)$ are unitary in W_{x}. Thus τ_{x} is a unitary representation of the group Γ_{x} in the Hilbert space W_{x}. This ends the proof of Lemma.

Lemma 2

Lemma

(1) The representations $\tau_{x}, x \in X$ are equivalent to each other, as representations of isomorphic groups Γ_{x}.
(2) The operators $U(g): H_{x} \rightarrow H_{y}$, where $H_{x}=L^{2}\left(X, W_{x}\right)$, $H_{y}=L^{2}\left(Y, W_{y}\right)$ for $g \in \mathcal{G}_{x}^{y}$, are decomposable, i.e., there exist unitary operators $U^{0}(g): W_{x} \rightarrow W_{y}$ such that for $\psi \in L^{2}\left(X, W_{x}\right)$ and, for $z \in X$,

$$
(U(g) \psi)(z)=\left(U^{0}(g)\right)(\psi(z))
$$

Moreover, the operator $U^{0}(g): W_{x} \rightarrow W_{y}$ does not depend of $z \in X$.

Proof of Lemma 2

Proof: First we shall prove part 2. Denote by $i_{x}^{y}: W_{x} \rightarrow W_{y}$ an isomorphism of Hilbert spaces and define the unitary map
$R_{x}^{y}: L^{2}\left(X, W_{x}\right) \rightarrow L^{2}\left(X, W_{y}\right)$ by $\left(R_{x}^{y} \psi\right)(z)=i_{x}^{y}(\psi(z))$,
$\psi \in L^{2}\left(X, W_{x}\right), z \in X$. Consider the composition of unitary maps $U(g) \circ\left(R_{x}^{y}\right)^{-1}: L^{2}\left(X, W_{y}\right) \rightarrow L^{2}\left(X, W_{y}\right)$ where $g \in \mathcal{G}_{x}^{y}$. By using the property of the imprimitivity system for $U(g)$, we obtain

$$
U(g) \circ\left(R_{x}^{y}\right)^{-1} \circ \pi_{y}(f)=\pi_{y}(f) \circ U(g) \circ\left(R_{x}^{y}\right)^{-1}
$$

for $f \in L^{\infty}(X)$.
This means that the operator $U(g) \circ\left(R_{x}^{y}\right)^{-1}$ is decomposable in $L^{2}\left(X, W_{y}\right)$. But (R_{x}^{y}) is a decomposable map by definition, therefore $U(g)$ is decomposable as the composition of decomposable maps. As in the proof of Lemma 1 we conclude that $U^{0}(g)$ does not depend of $z \in X$ and is unitary.

To prove part 1 let us first observe that the isotropy groups Γ_{x} are isomorphic to each other $x \in X$. Indeed, taking an element $g \in \mathcal{G}_{x}^{y}$ we define the isomorphism $i: \Gamma_{x} \rightarrow \Gamma_{y}$ by the formula $i(\gamma)=g \circ \gamma \circ g^{-1}$ for $\gamma \in \Gamma_{x}$. Now, we have $U(i(\gamma))=i d_{L^{2}} \otimes \tau_{y}(i(\gamma))$ as in the proof of Lemma 1. On the other hand, $U(i(\gamma))=U(g) \circ U(\gamma) \circ U\left(g^{-1}\right)=\left(i d_{L^{2}} \otimes U^{0}(g)\right) \circ\left(i d_{L^{2}} \otimes \tau_{x}(\gamma)\right) \circ$ $\left(i d_{L^{2}} \otimes U^{0}(g)^{-1}\right)=i d_{L^{2}} \otimes\left(U^{0}(g) \circ \tau_{x}(\gamma) \circ U^{0}(g)^{-1}\right)$. Therefore, we have $\tau_{y}(i(\gamma))=U^{0}(g) \circ \tau_{x}(\gamma) \circ U^{0}(g)^{-1}$, but this means that the representations τ_{y} and τ_{x} are equivalent.

Idea of proof of the theorem

- Define a family of linear maps of Hilbert spaces

$$
J_{x}: H_{x} \rightarrow \mathcal{W}_{x}, x \in X
$$

- The maps J_{x} are unitary isomorphisms.
- J_{x} are intertwining maps, i.e., the diagram commutes:

$$
\begin{array}{cc}
H_{x} \xrightarrow{U(g)} & H_{z} \\
J_{x} \downarrow \\
& \\
\mathcal{W}_{x} \xrightarrow[U^{\tau}(g)]{ } & \downarrow_{z} \\
\mathcal{W}_{z}
\end{array}
$$

Proof of the theorem

Proof. Let us consider the spaces $\left\{\mathcal{W}_{x}\right\}_{x \in X}$, connected to the representation τ of Lemma 1 and the corresponding induced representation U^{τ}. We shall show that the representation (U, \mathbf{H}) is equivalent to $\left(U^{\tau}, \mathcal{W}\right)$. We define a family of isomorphisms of Hilbert spaces $J_{x}: H_{x} \rightarrow \mathcal{W}_{x}$ for μ - a.e. $x \in X$. Since $H_{x}=L^{2}\left(X, W_{x}\right)$, for $\psi \in H_{x}, g \in \mathcal{G}_{x}$, and $r(g)=y$, we put $F(g)=\left(J_{x} \psi\right)(g)=(U(g)(\psi))(y)$. The definition is correct since by Lemma 2 we have $(U(g) \psi)(y)=U^{0}(g)(\psi(y))$, and $U^{0}(g)$ does not depend of $y \in X$. Since $U(g) \psi \in L^{2}\left(X, W_{y}\right)$, therefore $[U(g)(\psi)](y) \in W_{y}$. Also it is clear that $F(\gamma \circ g)=\tau(\gamma)(F(g))$ for $\gamma \in \Gamma_{y}$.

To see the square-integrability let us write

$$
\begin{gathered}
\int\left\langle F\left(s_{x}(y)\right), F\left(s_{x}(y)\right)\right\rangle_{y} d \mu(y)= \\
=\int\left\langle U^{0}\left(s_{x}(y)\right)(\psi)(y), U^{0}\left(s_{x}(y)\right)(\psi)(y)\right\rangle_{y} d \mu(y)=\int\langle\psi(y), \psi(y)\rangle_{y} d \mu(y)= \\
=\|\psi\|_{H_{x}}<\infty
\end{gathered}
$$

This also shows that J_{x} are unitary maps and are injective.

To see that J_{x} map onto \mathcal{W}_{x}, we can give the formula for J_{x}^{-1} : $\left(J_{x}^{-1} F\right)(y)=\left(U^{0}(g)\right)^{-1}(F(g))$ where $F \in \mathcal{W}_{x}$ and $g \in \mathcal{G}_{x}^{y}$. Then the right-hand side does not change if we take other element $g_{1} \in \mathcal{G}_{x}^{y}$. Indeed, since $g_{1}=\gamma \circ g$, for an element $\gamma \in \Gamma_{y}$, therefore we have $\left(U^{0}(\gamma \circ g)\right)^{-1}(F(\gamma \circ g))=\left(\left(U^{0}(g)\right)^{-1}(\tau(\gamma))^{-1}(\tau(\gamma))(F(g))=\right.$ $\left(U^{0}(g)\right)^{-1}(F(g))$. This shows that $J_{x}, x \in X$, are isomorphisms of Hilbert spaces.

Now we can see that J_{x} are intertwining maps for the representations U and U^{τ}, i.e., that the following diagram commutes

$$
\begin{gathered}
H_{x} \xrightarrow{U(g)} H_{z} \\
J_{x} \downarrow \\
\mathcal{W}_{x} \xrightarrow[U^{\tau}(g)]{ } \mathcal{W}_{z}
\end{gathered}
$$

for μ-a.e. $x, z \in X$ and ν - a.e. $g \in \mathcal{G}_{x}^{z}$. Let $\psi \in H_{x}$. Then, for $h \in \mathcal{G}_{z}^{y}$, we have $\left[\left(J_{z} U(g)\right)(\psi)\right](h)=[(U(h)(U(g))(\psi)](y)=U(h \circ g)(\psi(y))=$ $U^{0}(h \circ g)(\psi(y))$. On the other hand, $U^{\tau}(g) J_{x}(\psi)(h)=\left[J_{x}(\psi)\right](h \circ g)=[U(h \circ g)(\psi)](y)$. This ends the proof of Theorem.

Energy-momentum space of a particle

Consider the energy-momentum space H of a particle, $H=\left\{\left(p_{0}, p_{1}, p_{2}, p_{3}\right) \in \mathbf{R}^{4}: p_{0}^{2}-p_{1}^{2}-p_{2}^{2}-p_{3}^{2}=m\right\}$. We have an action of the group $G=S L_{2}(\mathbf{C})$ on the hyperboloid H.
To describe the action we identify H with the set \bar{H} of hermitian 2×2-matrices with determinant equal to m ,

$$
\left(p_{0}, p_{1}, p_{2}, p_{3}\right) \mapsto\left(\begin{array}{cc}
p_{0}-p_{3} & p_{2}-i p_{1} \\
p_{2}+i p_{1} & p_{0}+p_{3}
\end{array}\right)
$$

and we let to act $g \in G$ on \bar{H} to the right in the following way, $\bar{H} \ni A \mapsto g^{*} A g \in \bar{H}$. (It is clear that $\operatorname{det}\left(g^{*} A g\right)=\operatorname{det} A=m$).

Next, we see that the isotropy group of the element ($p_{0}, 0,0,0$), $p_{0}=\sqrt{m}$ is equal to $K=S U(2)$. Thus we deduce that the homogoneus space $K \backslash G$ is diffeomorphic to H. We can take the phase space of a particle of the mass m as the space $\mathcal{G}=K \backslash G \times G=H \times G$ and consider the algebraic structure of transformation groupoid on it.
Let $(\mathcal{U}, \mathcal{W})$ be a unitary representation of the groupoid \mathcal{G} in a Hilbert bundle \mathcal{W}.

An imprimitivity system and a particle

Assume that there exists an imprimitivity system (\mathcal{U}, π) for $(\mathcal{U}, \mathcal{W})$. We say that a particle of mass m is represented by the pair (\mathcal{U}, π). We say that it is an elementary particle if the imprimitivity system (\mathcal{U}, π) is irreducible [13], [14]. Equivalently (on the strength of the Imprimitivity Theorem), we can say that the particle is an induced representation $\left(\mathcal{U}^{\tau}, \mathcal{W}\right)$ where τ is a unitary representation of the isotropy subgroupoid Γ. In the same way, we can say that the particle is elementary if the inducing representation τ is irreducible and, in turn, this means that the representation $\left(L, W_{0}\right), L=\tau_{0}$, of the group $K=S U(2)$ is irreducible. Then the representation $\left(L, W_{0}\right)$ is called the spin of the particle.

Thank you for your attention

References I

R. Bos, Continuous representations of groupoids, arXiv:math/0612639v3 [math.RT].
國 R. Brown, From groups to groupoids, Bull. London Math. Soc. 19 (1987), 113-134.
(1) M.R. Buneci, Groupoid C*-algebras, Surveys in Mathematics and its Applications, ISSN 1842-6298, 1 (2006), 71-98.
A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, American Mathematical Society, Berkeley, (1999).
围 J. Dixmier, Von Neumann Algebras, North Holland Publ. Comp., Amsterdam, (1981).

References II

R
M．Heller，Z．Odrzygóźdź，L．Pysiak，W．Sasin，Structure of Malicious Singularities，Int．J．Theor．Phys．，42，（2003），427－441．
围 M．Heller，L．Pysiak，W．Sasin，Noncommutative unification of general relativity and quantum mechanics，J．Math．Phys．， 46 （2005），122501－15．
围 M．Heller，L．Pysiak，W．Sasin，Noncommutative dynamics of random operators，Int．J．Theor．Phys．， 44 （2005），619－628．

䍰 M．Heller，L．Pysiak，W．Sasin，Conceptual unification of gravity and quanta，Int．J．Theor．Phys．， 46 （2007），2494－ 2512.
䡒 M．Heller，Z．Odrzygóźdź，L．Pysiak，W．Sasin，Gravitational Aharonov－Bohm Effect，Int．J．Theor．Phys．，47，（2008），2566－2575．

References III

专
N．P．Landsman，Mathematical Topics between Classical and Quantum Mechanics，Springer，New York，（1998）．
囯 K．C．H．Mackenzie，Lie groupoids and Lie algebroids in Differential Geometry，London Math．Society Lecture Notes Series，124， Cambridge University Press，Cambridge，（1987）．

易
G．W．Mackey，The relationship between classical mechanics and quantum mechanics，Contemporary Math．， 214 （1998），91－109．
目 G．W．Mackey，Unitary group representations in physics，probability and number theory，Benjamin，Reading，Mass．，（1978）．
囯 G．W．Mackey，Induced representations of locally compact groups I，II， Acta Math．， 55 （1952），101－139； 58 （1953），193－221．

References IV

目 G.W.Mackey, Imprimitivity for representations of locally compact groups, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 537-545.
T-A. Packer, Applications of the work of Stone and von Neumann to the theory of wavelets, Contemporary Math., 365, (2004), pp. 253-279.
R A.L.T. Paterson, Groupoids, Inverse Semigroups, and Their Operators Algebras, Birkhauser, Boston, (1999).
R- L. Pysiak, Time Flow in a Noncommutative Regime, Internat. J. Theoret. Phys., 46 (1), (2007), 16-30
(L. Pysiak, Groupoids, their representations and imprimitivity systems, Demonstratio Mathematica 37 (2004), 661-670.

目 J.N. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math. 793, Springer-Verlag, New York, (1980).

References V

婁
M．E．Taylor，Noncommutative Harmonic Analysis，A．M．S．， Providence，（1986）．
囯 A．Weinstein，Groupoids：unifying internal and external geometry， Contemporary Math．282，（2001），1－19．
围 J．Westman，Harmonic analysis on groupoids，Pacific J．Math．， 27 （1968），621－632．

