
Model Completeness, Covers
and Superposition

Diego Calvanese1, Silvio Ghilardi2, Alessandro Gianola1(B), Marco Montali1,
and Andrey Rivkin1

1 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
{calvanese,gianola,montali,rivkin}@inf.unibz.it

2 Dipartimento di Matematica, Università degli Studi di Milano, Milan, Italy
silvio.ghilardi@unimi.it

Abstract. In ESOP 2008, Gulwani and Musuvathi introduced a notion
of cover and exploited it to handle infinite-state model checking prob-
lems. Motivated by applications to the verification of data-aware pro-
cesses, we show how covers are strictly related to model completions, a
well-known topic in model theory. We also investigate the computation
of covers within the Superposition Calculus, by adopting a constrained
version of the calculus, equipped with appropriate settings and reduction
strategies.

1 Introduction

Declarative approaches to infinite state model checking [40] need to manip-
ulate logical formulae in order to represent sets of reachable states. To pre-
vent divergence, various abstraction strategies have been adopted, ranging from
interpolation-based [33] to sophisticated search via counterexample elimina-
tion [26]. Precise computations of the set of reachable states require some form
of quantifier elimination and hence are subject to two problems, namely that
quantifier elimination might not be available at all and that, when available, it
is computationally very expensive.

To cope with the first problem, [25] introduced the notion of a cover and
proved that covers exist for equality with uninterpreted symbols (EUF) and its
combination with linear arithmetic; also, it was shown that covers can be used
instead of quantifier elimination and yield a precise computation of reachable
states. Concerning the second problem, in [25] it was observed (as a side remark)
that computing the cover of a conjunction of literals becomes tractable when only
free unary function symbols occur in the signature. It can be shown (see [10])
that the same observation applies when also free relational symbols occur.

In [11,12] we propose a new formalism for representing read-only database
schemata towards the verification of integrated models of processes and data
[9], in particular so-called artifact systems [7,15,31,43]; this formalism (briefly
recalled in Sect. 4.1 below) uses precisely signatures comprising unary function

c© Springer Nature Switzerland AG 2019
P. Fontaine (Ed.): CADE 2019, LNAI 11716, pp. 142–160, 2019.
https://doi.org/10.1007/978-3-030-29436-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29436-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-29436-6_9

Model Completeness, Covers and Superposition 143

symbols and free n-ary relations. In [11,12] we apply model completeness tech-
niques for verifying transition systems based on read-only databases, in a frame-
work where such systems employ both individual and higher order variables.

In this paper we show (see Sect. 3 below) that covers are strictly related
to model completions and to uniform interpolation [39], thus building a bridge
between different research areas. In particular, we prove that computing covers
for a theory is equivalent to eliminating quantifiers in its model completion.
Model completeness has other well-known applications in computer science. It
has been applied: (i) to reveal interesting connections between temporal logic
and monadic second order logic [22,23]; (ii) in automated reasoning to design
complete algorithms for constraint satisfiability in combined theories over non
disjoint signatures [1,17,20,34–36] and theory extensions [41,42]; (iii) to obtain
combined interpolation for modal logics and software verification theories [18,19].

In the last part of the paper (Sect. 5 below), we prove that covers for EUF can
be computed through a constrained version of the Superposition Calculus [38]
equipped with appropriate settings and reduction strategies; the related com-
pleteness proof requires a careful analysis of the constrained literals generated
during the saturation process. Not all proofs could be included here: for the
missing ones, we refer to the online available extended version [10] (the proofs
of our results from Sect. 5 are however reported in full detail).

2 Preliminaries

We adopt the usual first-order syntactic notions of signature, term, atom,
(ground) formula, and so on; our signatures are multi-sorted and include equality
for every sort. Hence variables are sorted as well. For simplicity, some basic defi-
nitions will be supplied for single-sorted languages only (the adaptation to multi-
sorted languages is straightforward). We compactly represent a tuple 〈x1, . . . , xn〉
of variables as x. The notation t(x), φ(x) means that the term t, the formula φ
has free variables included in the tuple x. We assume that a function arity can
be deduced from the context. Whenever we build terms and formulae, we always
assume that they are well-typed, i.e., that the sorts of variables, constants, and
function sources/targets match. A formula is said to be universal (resp., exis-
tential) if it has the form ∀x(φ(x)) (resp., ∃x(φ(x))), where φ is a quantifier-free
formula. Formulae with no free variables are called sentences. From the semantic
side, we use the standard notion of Σ-structure M and of truth of a formula in
a Σ-structure under a free variables assignment. The support |M| of M is the
disjoint union of the interpretations of the sorts in Σ. The interpretation of a
(sort, function, predicate) symbol σ in M is denoted σM.

A Σ-theory T is a set of Σ-sentences; a model of T is a Σ-structure M where
all sentences in T are true. We use the standard notation T |= φ to say that φ
is true in all models of T for every assignment to the variables occurring free in
φ. We say that φ is T -satisfiable iff there is a model M of T and an assignment
to the variables occurring free in φ making φ true in M.

We now focus on the constraint satisfiability problem and quantifier elimina-
tion for a theory T . A Σ-formula φ is a Σ-constraint (or just a constraint) iff it is

144 D. Calvanese et al.

a conjunction of literals. The constraint satisfiability problem for T is the follow-
ing: we are given a constraint (equivalently, a quantifier-free formula) φ(x) and
we are asked whether there exist a model M of T and an assignment I to the free
variables x such that M, I |= φ(x). A theory T has quantifier elimination iff for
every formula φ(x) in the signature of T there is a quantifier-free formula φ′(x)
such that T |= φ(x) ↔ φ′(x). Since we are in a computational logic context,
when we speak of quantifier elimination, we assume that it is effective, namely
that it comes with an algorithm for computing φ′ out of φ. It is well-known that
quantifier elimination holds in case we can eliminate quantifiers from primitive
formulae, i.e., formulae of the kind ∃y φ(x, y), with φ a constraint.

We recall also some basic notions from logic and model theory. Let Σ be a
first-order signature. The signature obtained from Σ by adding to it a set a of
new constants (i.e., 0-ary function symbols) is denoted by Σa. Analogously, given
a Σ-structure M, the signature Σ can be expanded to a new signature Σ|M| :=
Σ ∪ {ā | a ∈ |M|} by adding a set of new constants ā (the name for a), one for
each element a in M, with the convention that two distinct elements are denoted
by different “name” constants. M can be expanded to a Σ|M|-structure M :=
(M, a)a∈|M| just interpreting the additional constants over the corresponding
elements. From now on, when the meaning is clear from the context, we will
freely use the notation M and M interchangeably: in particular, given a Σ-
structure M and a Σ-formula φ(x) with free variables that are all in x, we will
write, by abuse of notation, M |= φ(a) instead of M |= φ(ā).

A Σ-homomorphism (or, simply, a homomorphism) between two Σ-structu-
res M and N is a map μ : |M| −→ |N | among the support sets |M| of M and
|N | of N satisfying the condition (M |= ϕ ⇒ N |= ϕ) for all Σ|M|-atoms
ϕ (M is regarded as a Σ|M|-structure, by interpreting each additional constant
a ∈ |M| into itself and N is regarded as a Σ|M|-structure by interpreting each
additional constant a ∈ |M| into μ(a)). In case the last condition holds for all
Σ|M|-literals, the homomorphism μ is said to be an embedding and if it holds for
all first order formulae, the embedding μ is said to be elementary. If μ : M −→ N
is an embedding which is just the identity inclusion |M| ⊆ |N |, we say that M
is a substructure of N or that N is an extension of M.

Let M be a Σ-structure. The diagram of M, written ΔΣ(M) (or just Δ(M)),
is the set of ground Σ|M|-literals that are true in M. An easy but important
result, called Robinson Diagram Lemma [13], says that, given any Σ-structure
N , the embeddings μ : M −→ N are in bijective correspondence with expansions
of N to Σ|M|-structures which are models of ΔΣ(M). The expansions and the
embeddings are related in the obvious way: ā is interpreted as μ(a).

3 Covers, Uniform Interpolation and Model Completions

We report the notion of cover taken from [25]. Fix a theory T and an existential
formula ∃e φ(e, y); call a residue of ∃e φ(e, y) any quantifier-free formula belong-
ing to the set of quantifier-free formulae Res(∃e φ) = {θ(y, z) | T |= φ(e, y) →
θ(y, z)}. A quantifier-free formula ψ(y) is said to be a T -cover (or, simply, a

Model Completeness, Covers and Superposition 145

cover) of ∃e φ(e, y) iff ψ(y) ∈ Res(∃e φ) and ψ(y) implies (modulo T) all the
other formulae in Res(∃e φ). The following Lemma (to be widely used through-
out the paper) supplies a semantic counterpart to the notion of a cover:

Lemma 1. A formula ψ(y) is a T -cover of ∃e φ(e, y) iff it satisfies the following
two conditions: (i) T |= ∀y (∃e φ(e, y) → ψ(y)); (ii) for every model M of T ,
for every tuple of elements a from the support of M such that M |= ψ(a)
it is possible to find another model N of T such that M embeds into N and
N |= ∃e φ(e, a). 	

Proof. Suppose that ψ(y) satisfies conditions (i) and (ii) above. Condition (i)
says that ψ(y) ∈ Res(∃e φ), so ψ is a residue. In order to show that ψ is also a
cover, we have to prove that T |= ∀y, z(ψ(y) → θ(y, z)), for every θ(y, z) that
is a residue for ∃e φ(e, y). Given a model M of T , take a pair of tuples a, b of
elements from |M| and suppose that M |= ψ(a). By condition (ii), there is
a model N of T such that M embeds into N and N |= ∃eφ(e, a). Using the
definition of Res(∃e φ), we have N |= θ(a, b), since θ(y, z) ∈ Res(∃xφ). Since M
is a substructure of N and θ is quantifier-free, M |= θ(a, b) as well, as required.

Suppose that ψ(y) is a cover. The definition of residue implies condition (i).
To show condition (ii) we have to prove that, given a model M of T , for every
tuple a of elements from |M|, if M |= ψ(a), then there exists a model N of T
such that M embeds into N and N |= ∃xφ(x, a). By reduction to absurdity,
suppose that this is not the case: this is equivalent (by using Robinson Diagram
Lemma) to the fact that Δ(M) ∪ {φ(e, a)} is a T -inconsistent Σ|M|∪{e}-theory.
By compactness, there is a finite number of literals
1(a, b), ...,
m(a, b) (for some
tuple b of elements from |M|) such that M |=
i (for all i = 1, . . . , m) and T |=
φ(e, a) → ¬(
1(a, b)∧· · ·∧
m(a, b)), which means that T |= φ(e, y) → (¬
1(y, z)∨
· · · ∨ ¬
m(y, z)), i.e. that T |= ∃e φ(e, y) → (¬
1(y, z) ∨ · · · ∨ ¬
m(y, z)). By
definition of residue, clearly (¬
1(y, z)∨· · ·∨¬
m(y, z)) ∈ Res(∃xφ); then, since
ψ(y) is a cover, T |= ψ(y) → (¬
1(y, z) ∨ · · · ∨ ¬
m(y, z)), which implies that
M |= ¬
j(a, b) for some j = 1, . . . ,m, which is a contradiction. Thus, ψ(y)
satisfies conditions (ii) too. �

We say that a theory T has uniform quantifier-free interpolation iff every
existential formula ∃e φ(e, y) (equivalently, every primitive formula ∃e φ(e, y))
has a T -cover.

It is clear that if T has uniform quantifier-free interpolation, then it has ordi-
nary quantifier-free interpolation [8], in the sense that if we have T |= φ(e, y) →
φ′(y, z) (for quantifier-free formulae φ, φ′), then there is a quantifier-free for-
mula θ(y) such that T |= φ(e, y) → θ(y) and T |= θ(y) → φ′(y, z). In fact,
if T has uniform quantifier-free interpolation, then the interpolant θ is inde-
pendent on φ′ (the same θ(y) can be used as interpolant for all entailments
T |= φ(e, y) → φ′(y, z), varying φ′).

We say that a universal theory T has a model completion iff there is a stronger
theory T ∗ ⊇ T (still within the same signature Σ of T) such that (i) every Σ-
constraint that is satisfiable in a model of T is satisfiable in a model of T ∗;
(ii) T ∗ eliminates quantifiers. Other equivalent definitions are possible [13]: for

146 D. Calvanese et al.

instance, (i) is equivalent to the fact that T and T ∗ prove the same quantifier-
free formulae or again to the fact that every model of T can be embedded into
a model of T ∗. We recall that the model completion, if it exists, is unique and
that its existence implies the amalgamation property for T [13]. The relationship
between uniform interpolation in a propositional logic and model completion of
the equational theory of the variety algebraizing it was extensively studied in [24].
In the context of first order theories, we prove an even more direct connection:

Theorem 1. Suppose that T is a universal theory. Then T has a model com-
pletion T ∗ iff T has uniform quantifier-free interpolation. If this happens, T ∗

is axiomatized by the infinitely many sentences ∀y (ψ(y) → ∃e φ(e, y)), where
∃e φ(e, y) is a primitive formula and ψ is a cover of it. 	

The proof (via Lemma 1, by iterating a chain construction) is in [10].

4 Model-Checking Applications

In this section we supply old and new motivations for investigating covers and
model completions in view of model-checking applications. We first report the
considerations from [11,12,25] on symbolic model-checking via model comple-
tions (or, equivalently, via covers) in the basic case where system variables are
represented as individual variables (for more advanced applications where sys-
tem variables are both individual and higher order variables, see [11,12]). Sim-
ilar ideas (‘use quantifier elimination in the model completion even if T does
not allow quantifier elimination’) were used in [41] for interpolation and symbol
elimination.

Definition 1. A (quantifier-free) transition system is a tuple

S = 〈Σ,T, x, ι(x), τ(x, x′)〉

where: (i) Σ is a signature and T is a Σ-theory; (ii) x = x1, . . . , xn are individual
variables; (iii) ι(x) is a quantifier-free formula; (iv) τ(x, x′) is a quantifier-free
formula (here the x′ are renamed copies of the x). 	

A safety formula for a transition system S is a further quantifier-free formula
υ(x) describing undesired states of S. We say that S is safe with respect to υ if
the system has no finite run leading from ι to υ, i.e. (formally) if there are no
model M of T and no k ≥ 0 such that the formula

ι(x0) ∧ τ(x0, x1) ∧ · · · ∧ τ(xk−1, xk) ∧ υ(xk) (1)

is satisfiable in M (here xi’s are renamed copies of x). The safety problem for S
is the following: given υ, decide whether S is safe with respect to υ.

Model Completeness, Covers and Superposition 147

Suppose now that the theory T men-
tioned in Definition 1(i) is universal, has
decidable constraint satisfiability problem
and admits a model completion T ∗. Algo-
rithm 1 describes the backward reachabil-
ity algorithm for handling the safety prob-
lem for S (the dual algorithm working
via forward search is described in equiva-
lent terms in [25]). An integral part of the
algorithm is to compute preimages. For
that purpose, for any φ1(x, x′) and φ2(x),
we define Pre(φ1, φ2) to be the formula
∃x′(φ1(x, x′) ∧ φ2(x′)). The preimage of
the set of states described by a state for-
mula φ(x) is the set of states described by Pre(τ, φ). The subprocedure QE(T ∗, φ)
in Line 6 applies the quantifier elimination algorithm of T ∗ to the existential for-
mula φ. Algorithm 1 computes iterated preimages of υ and applies to them quan-
tifier elimination, until a fixpoint is reached or until a set intersecting the initial
states (i.e., satisfying ι) is found. Inclusion (Line 2) and disjointness (Line 3)
tests produce proof obligations that can be discharged thanks to the fact that T
has decidable constraint satisfiability problem.

The proof of Proposition 1 consists just in the observation that, thanks to
quantifier elimination in T �, (1) is a quantifier-free formula and that a quantifier-
free formula is satisfiable in a model of T iff so is it in a model of T ∗:

Proposition 1. Suppose that the universal Σ-theory T has decidable constraint
satisfiability problem and admits a model completion T ∗. For every transition
system S = 〈Σ,T, x, ι, τ〉, the backward search algorithm is effective and partially
correct for solving safety problems for S.1 	

Despite its simplicity, Proposition 1 is a crucial fact. Notice that it implies
decidability of the safety problems in some interesting cases: this happens, for
instance, when in T there are only finitely many quantifier-free formulae in which
x occur, as in case T has a purely relational signature or, more generally, T is
locally finite2. Since a theory is universal iff it is closed under substructures [13]
and since a universal locally finite theory has a model completion iff it has the
amalgamation property [44], it follows that Proposition 1 can be used to cover
the decidability result stated in Theorem 5 of [7] (once restricted to transition
systems over a first-order definable class of Σ-structures).

1 Partial correctness means that, when the algorithm terminates, it gives a correct
answer. Effectiveness means that all subprocedures in the algorithm can be effec-
tively executed.

2 We say that T is locally finite iff for every finite tuple of variables x there are only
finitely many non T -equivalent atoms A(x) involving only the variables x.

148 D. Calvanese et al.

4.1 Database Schemata

In this subsection, we provide a new application for the above explained model-
checking techniques [11,12]. The application relates to the verification of inte-
grated models of business processes and data [9], referred to as artifact systems
[43], where the behavior of the process is influenced by data stored in a relational
database (DB) with constraints. The data contained therein are read-only: they
can be queried by the process and stored in a working memory, which in the
context of this paper is constituted by a set of system variables. In this con-
text, safety amounts to checking whether the system never reaches an undesired
property, irrespectively of what is contained in the read-only DB.

We define next the two key notions of (read-only) DB schema and instance,
by relying on an algebraic, functional characterization.

Definition 2. A DB schema is a pair 〈Σ,T 〉, where: (i) Σ is a DB signature,
that is, a finite multi-sorted signature whose function symbols are all unary; (ii)
T is a DB theory, that is, a set of universal Σ-sentences. 	

We now focus on extensional data conforming to a given DB schema.

Definition 3. A DB instance of DB schema 〈Σ,T 〉 is a Σ-structure M such
that M is a model of T .3 	

One might be surprised by the fact that signatures in our DB schemata
contain unary function symbols, beside relational symbols. As shown in [11,12],
the algebraic, functional characterization of DB schema and instance can be
actually reinterpreted in the classical, relational model so as to reconstruct the
requirements posed in [31]. Definition 2 naturally corresponds to the definition
of relational database schema equipped with single-attribute primary keys and
foreign keys. To see this connection, we adopt the named perspective, where
each relation schema is defined by a signature containing a relation name and
a set of typed attribute names. Let 〈Σ,T 〉 be a DB schema. Each sort S from
Σ corresponds to a dedicated relation RS with the following attributes: (i) one
identifier attribute idS with type S; (ii) one dedicated attribute af with type S′

for every function symbol f from Σ of the form f : S −→ S′.
The fact that RS is constructed starting from functions in Σ naturally

induces corresponding functional dependencies within RS , and inclusion depen-
dencies from RS to other relation schemas. In particular, for each non-id
attribute af of RS , we get a functional dependency from idS to af . Altogether,
such dependencies witness that idS is the primary key of RS . In addition, for
each non-id attribute af of RS whose corresponding function symbol f has id
sort S′ as image, we get an inclusion dependency from af to the id attribute
idS′ of RS′ . This captures that af is a foreign key referencing RS′ .

3 One may restrict to models interpreting sorts as finite sets, as customary in database
theory. Since the theories we are dealing with usually have finite model property for
constraint satisfiability, assuming such restriction turns out to be irrelevant, as far
as safety problems are concerned (see [11,12] for an accurate discussion).

Model Completeness, Covers and Superposition 149

Given a DB instance M of 〈Σ,T 〉, its corresponding relational instance
R[M] is the minimal set satisfying the following property: for every id
sort S from Σ, let f1, . . . , fn be all functions in Σ with domain S;
then, for every identifier o ∈ SM, R[M] contains a labeled fact of the
form RS(idS : oM, af1 : fM

1 (o), . . . , afn
: fM

n (o)). In addition, R[M] contains the
tuples from rM, for every relational symbol r from Σ (these relational symbols
represent plain relations, i.e. those not possessing a key).

We close our discussion by focusing on DB theories. Notice that EUF suffices
to handle the sophisticated setting of database-driven systems from [12] (e.g.,
key dependencies). The role of a non-empty DB theory is to encode background
axioms to express additional constraints. We illustrate a typical background
axiom, required to handle the possible presence of undefined identifiers/values
in the different sorts. This, in turn, is essential to capture artifact systems whose
working memory is initially undefined, in the style of [16,31]. To accommodate
this, we add to every sort S of Σ a constant undefS (written by abuse of notation
just undef from now on), used to specify an undefined value. Then, for each
function symbol f of Σ, we can impose additional constraints involving undef,
for example by adding the following axioms to the DB theory:

∀x (x = undef ↔ f(x) = undef) (2)

This axiom states that the application of f to the undefined value produces an
undefined value, and it is the only situation for which f is undefined. A slightly
different approach may handle many undefined values for each sort; the reader is
referred to [11,12] for examples of concrete database instances formalized in our
framework. We just point out that in most cases the kind of axioms that we need
for our DB theories T are just one-variable universal axioms (like Axioms 2), so
that they fit the hypotheses of Proposition 2 below.

We are interested in applying the algorithm of Proposition 1 to what we
call simple artifact systems, i.e. transition systems S = 〈Σ,T, x, ι(x), τ(x, x′)〉,
where 〈Σ,T 〉 is a DB schema in the sense of Definition 2. To this aim, it is
sufficient to identify a suitable class of DB theories having a model completion
and whose constraint satisfiability problem is decidable. A first result in this
sense is given below. We associate to a DB signature Σ the edge-labeled graph
G(Σ) whose nodes are the sorts in Σ, and such that G(Σ) contains a labeled

edge S
f−→ S′ if and only if Σ contains a function symbol whose source sort is S

and whose target sort is S′. We say that Σ is acyclic if G(Σ) is so.

Proposition 2. A DB theory T has decidable constraint satisfiability problem
and admits a model completion in case it is axiomatized by finitely many uni-
versal one-variable formulae and Σ is acyclic. 	

The proof is given in [10]. Since acyclicity of Σ yields local finiteness, we
immediately get as a Corollary the decidability of safety problems for transitions
systems based on DB schema satisfying the hypotheses of the above theorem.

150 D. Calvanese et al.

5 Covers via Constrained Superposition

Of course, a model completion may not exist at all; Proposition 2 shows that it
exists in case T is a DB theory axiomatized by universal one-variable formulae
and Σ is acyclic. The second hypothesis is unnecessarily restrictive and the
algorithm for quantifier elimination suggested by the proof of Proposition 2 is
highly impractical: for this reason we are trying a different approach. In this
section, we drop the acyclicity hypothesis and examine the case where the theory
T is empty and the signature Σ may contain function symbols of any arity.
Covers in this context were shown to exist already in [25], using an algorithm
that, very roughly speaking, determines all the conditional equations that can
be derived concerning the nodes of the congruence closure graph. An algorithm
for the generation of interpolants, still relying on congruence closure [28] and
similar to the one presented in [25], is supplied in [29].

We follow a different plan and we want to produce covers (and show that
they exist) using saturation-based theorem proving. The natural idea to proceed
in this sense is to take the matrix φ(e, y) of the primitive formula ∃e φ(e, y)
we want to compute the cover of: this is a conjunction of literals, so we con-
sider each variable as a free constant, we saturate the corresponding set of
ground literals and finally we output the literals involving only the y. For
saturation, one can use any version of the superposition calculus [38]. This
procedure however for our problem is not sufficient. As a trivial counterex-
ample consider the primitive formula ∃e (R(e, y1) ∧ ¬R(e, y2)): the set of lit-
erals {R(e, y1),¬R(e, y2)} is saturated (recall that we view e, y1, y2 as con-
stants), however the formula has a non-trivial cover y1 �= y2 which is not
produced by saturation. If we move to signatures with function symbols, the
situation is even worse: the set of literals {f(e, y1) = y′

1, f(e, y2) = y′
2} is sat-

urated but the formula ∃e (f(e, y1) = y′
1 ∧ f(e, y2) = y′

2) has the conditional
equality y1 = y2 → y′

1 = y′
2 as cover. Disjunctions of disequations might

also arise: the cover of ∃e h(e, y1, y2) �= h(e, y′
1, y

′
2) (as well as the cover of

∃e f(f(e, y1), y2) �= f(f(e, y′
1), y

′
2), see Example 1 below) is y1 �= y′

1 ∨ y2 �= y′
2.

4

Notice that our problem is different from the problem of producing ordi-
nary quantifier-free interpolants via saturation based theorem proving [30]:
for ordinary Craig interpolants, we have as input two quantifier-free formulae
φ(e, y), φ′(y, z) such that φ(e, y) → φ′(y, z) is valid; here we have a single for-
mula φ(e, y) in input and we are asked to find an interpolant which is good for
all possible φ′(y, z) such that φ(e, y) → φ′(y, z) is valid. Ordinary interpolants
can be extracted from a refutation of φ(e, y) ∧ ¬φ′(y, z), here we are not given
any refutation at all (and we are not even supposed to find one).

What we are going to show is that, nevertheless, saturation via superposition
can be used to produce covers, if suitably adjusted. In this section we consider
signatures with n-ary function symbols (for all n ≥ 1). For simplicity, we omit

4 This example points out a problem that needs to be fixed in the algorithm presented
in [25]: that algorithm in fact outputs only equalities, conditional equalities and single
disequalities, so it cannot correctly handle this example.

Model Completeness, Covers and Superposition 151

n-ary relation symbols (you can easily handle them by rewriting R(t1, . . . , tn) as
R(t1, . . . , tn) = true, as customary in the paramodulation literature [38]).

We are going to compute the cover of a primitive formula ∃e φ(e, y) to be fixed
for the remainder of this section. We call variables e existential and variables
y parameters. By applying abstraction steps, we can assume that φ is primitive
flat. i.e. that it is a conjunction of e-flat literals, defined below. [By an abstraction
step we mean replacing ∃e φ with ∃e∃e′(e′ = u ∧ φ′), where e′ is a fresh variable
and φ′ is obtained from φ by replacing some occurrences of a term u(e, y) by e′].

A term or a formula are said to be e-free iff the existential variables do not
occur in it. An e-flat term is an e-free term t(y) or a variable from e or again
it is of the kind f(u1, . . . , un), where f is a function symbol and u1, . . . , un are
e-free terms or variables from e. An e-flat literal is a literal of the form

t = a, a �= b

where t is an e-flat term and a, b are either e-free terms or variables from e.
We assume the reader is familiar with standard conventions used in rewriting

and paramodulation literature: in particular s|p denotes the subterm of s in
position p and s[u]p denotes the term obtained from s by replacing s|p with u.
We use ≡ to indicate coincidence of syntactic expressions (as strings) to avoid
confusion with equality symbol; when we write equalities like s = t below, we
may mean both s = t or t = s (an equality is seen as a multiset of two terms).
For information on reduction ordering, see for instance [2].

We first replace variables e = e1, . . . , en and y = y1, . . . , ym by free constants -
we keep the names e1, . . . , en, y1, . . . , ym for these constants. Choose a reduction
ordering > total for ground terms such that e-flat literals t = a are always
oriented from left to right in the following two cases: (i) t is not e-free and a is
e-free; (ii) t is not e-free, it is not equal to any of the e and a is a variable from e.
To obtain such properties, one may for instance choose a suitable Knuth-Bendix
ordering taking weights in some transfinite ordinal, see [32].

Given two e-flat terms t, u, we indicate with E(t, u) the following procedure:

• E(t, u) fails if t is e-free and u is not e-free (or vice versa);
• E(t, u) fails if t ≡ ei and (either t ≡ f(t1, . . . , tk) or u ≡ ej for i �= j);
• E(t, u) = ∅ if t ≡ u;
• E(t, u) = {t = u} if t and u are different but both e-free;
• E(t, u) fails if none of t, u is e-free, t ≡ f(t1, . . . , tk) and u ≡ g(u1, . . . , ul) for

f �≡ g;
• E(t, u) = E(t1, u1) ∪ · · · ∪ E(tk, uk) if none of t, u is e-free, t ≡ f(t1, . . . , tk),

u ≡ f(u1, . . . , uk) and none of the E(ti, ui) fails.

Notice that, whenever E(t, u) succeeds, the formula
∧

E(t, u) → t = u is uni-
versally valid. The definition of E(t, u) is motivated by the next lemma.

Lemma 2. Let R be a convergent (i.e. terminating and confluent) ground
rewriting system, whose rules consist of e-free terms. Suppose that t and u are
e-flat terms with the same R-normal form. Then E(t, u) does not fail and all
pairs from E(t, u) have the same R-normal form as well. 	

152 D. Calvanese et al.

Proof. This is due to the fact that if t is not e-free, no R-rewriting is possible at
root position because rules from R are e-free. �

In the following, we handle constrained ground flat literals of the form L ‖C
where L is a ground flat literal and C is a conjunction of ground equalities among
e-free terms. The logical meaning of L ‖C is the Horn clause

∧
C → L.

In the literature, various calculi with constrained clauses were considered,
starting e.g. from the non-ground constrained versions of the Superposition Cal-
culus of [4,37]. The calculus we propose here is inspired by such versions and
it has close similarities with a subcase of hierarchic superposition calculus [5],
or rather to its “weak abstraction” variant from [6] (we thank an anonymous
referee for pointing out this connection).

The rules of our Constrained Superposition Calculus follow; each rule applies
provided the E subprocedure called by it does not fail. The symbol ⊥ indicates
the empty clause. Further explanations and restrictions to the calculus are given
in the Remarks below.
Superposition Right

(Constrained)
l = r ‖ C s = t ‖ D

s[r]p = t ‖ C ∪ D ∪ E(s|p, l)
if l > r and s > t

Superposition Left
(Constrained)

l = r ‖ C s �= t ‖ D
s[r]p �= t ‖ C ∪ D ∪ E(s|p, l)

if l > r and s > t

Reflexion
(Constrained)

t �= u ‖ C
⊥ ‖ C ∪ E(t, u)

Demodulation
(Constrained)

L ‖ C, l = r ‖D
L[r]p ‖ C

if l > r, L|p ≡ l
and C ⊇ D

Remark 1. The first three rules are inference rules: they are non-deterministic-
ally selected for application, until no rule applies anymore. The selection strategy
for the rule to be applied is not relevant for the correctness and completeness of the
algorithm (some variant of a ‘given clause algorithm’ can be applied). An infer-
ence rule is not applied in case one premise is e-free (we have no reason to apply
inferences to e-free premises, since we are not looking for a refutation). 	

Remark 2. The Demodulation rule is a simplification rule: its application not
only adds the conclusion to the current set of constrained literals, but it also
removes the first premise. It is easy to see (e.g., representing literals as multisets
of terms and extending the total reduction ordering to multisets), that one cannot
have an infinite sequence of consecutive applications of Demodulation rules. 	

Remark 3. The calculus takes {L‖∅ | L is a flat literal from the matrix of
φ} as the initial set of constrained literals. It terminates when a saturated set of
constrained literals is reached. We say that S is saturated iff every constrained
literal that can be produced by an inference rule, after being exhaustively sim-
plified via Demodulation, is already in S (there are more sophisticated notions
of ‘saturation up to redundancy’ in the literature, but we do not need them).
When it reaches a saturated set S, the algorithm outputs the conjunction of the
clauses

∧
C → L, varying L ‖C among the e-free constrained literals from S. 	

Model Completeness, Covers and Superposition 153

We need some rule application policy to ensure termination: without any such
policy, a set like {e = y ‖ ∅, f(e) = e‖ ∅} may produce by Right Superposition the
infinitely many literals (all oriented from right to left) f(y) = e ‖ ∅, f(f(y)) =
e ‖ ∅, f(f(f(y))) = e ‖ ∅, etc. The next Remark explains the policy we follow.

Remark 4. First, we apply Demodulation only in case the second premise is
of the kind ej = t(y) ‖D, where t is e-free. Demodulation rule is applied with
higher priority with respect to the inference rules. Inside all possible applications
of Demodulation rule, we give priority to the applications where both premises
have the form ej = t(y) ‖D (for the same ej but with possibly different D’s -
the D from the second premise being included in the D of the first). In case
we have two constrained literals of the kind ej = t1(y) ‖D, ej = t2(y) ‖D inside
our current set of constrained literals (notice that the ej ’s and the D’s here are
the same), among the two possible applications of the Demodulation rule, we
apply the rule that keeps the smallest ti. Notice that in this way two different
constrained literals cannot simplify each other. 	

We say that a constrained literal L ‖C belonging to a set of constrained
literals S is simplifiable in S iff it is possible to apply (according to the above
policy) a Demodulation rule removing it. A first effect of our policy is:

Lemma 3. If a constrained literal L ‖C is simplifiable in S, then after applying
to S any sequence of rules, it remains simplifiable until it gets removed. After
being removed, if it is regenerated, it is still simplifiable and so it is eventually
removed again. 	

Proof. Suppose that L ‖C can be simplified by e = t ‖D and suppose that a rule
is applied to the current set of constrained literals. Since there are simplifiable
constrained literals, that rule cannot be an inference rule by the priority stated
in Remark 4. For simplification rules, keep in mind again Remark 4. If L ‖C
is simplified, it is removed; if none of L ‖C and e = t ‖D get simplified, the
situation does not change; if e = t ‖D gets simplified, this can be done by some
e = t′‖D′, but then L ‖C is still simplifiable - although in a different way - using
e = t′‖D′ (we have that D′ is included in D, which is in turn included in C).
Similar observations apply if L ‖C is removed and re-generated. �

Due to the above Lemma, if we show that a derivation (i.e. a sequence of
rule applications) can produce terms only from a finite set, it is clear that when
no new constrained literal is produced, saturation is reached. First notice that

Lemma 4. Every constrained literal L ‖C produced during the run of the algo-
rithm is e-flat. 	

Proof. The constrained literals from initialization are e-flat. The Demodulation
rule, applied according to Remark 4, produces an e-flat literal out of an e-flat
literal. The same happens for the Superposition rules: in fact, since both the
terms s and l from these rules are e-flat, a Superposition may take place at root
position or may rewrite some l ≡ ej with r ≡ ei or with r ≡ t(y). �

154 D. Calvanese et al.

There are in principle infinitely many e-flat terms that can be generated
out of the e-flat terms occurring in φ (see the above counterexample). We show
however that only finitely many e-flat terms can in fact occur during saturation
and that one can determine in advance the finite set they are taken from.

To formalize this idea, let us introduce a hierarchy of e-flat terms. Let D0 be
the e-flat terms occurring in φ and let Dk+1 be the set of e-flat terms obtained
by simultaneous rewriting of an e-flat term from

⋃
i≤k Di via rewriting rules of

the kind ej → tj(y) where the tj are e-flat e-free terms from
⋃

i≤k Di. The degree
of an e-flat term is the minimum k such that it belongs to set Dk (it is necessary
to take the minimum because the same term can be obtained in different stages
and via different rewritings).5

Lemma 5. Let the e-flat term t′ be obtained by a rewriting ej → u(y) from the
e-flat term t; then, if t has degree k > 1 and u has degree at most k − 1, we have
that t′ has degree at most k. 	

Proof. This is clear, because at the k-stage one can directly produce t′ instead
of just t: in fact, all rewriting producing directly t′ replace an occurrence of some
ei by an e-free term, so they are all done in parallel positions. �
Proposition 3. The saturation of the initial set of e-flat constrained literals
always terminates after finitely many steps. 	

Proof. We show that all e-flat terms that may occur during saturation have at
most degree n (where n is the cardinality of e). This shows that the saturation
must terminate, because only finitely many terms may occur in a derivation (see
the above observations). Let the algorithm during saturation reach the status S;
we say that a constraint C allows the explicit definition of ej in S iff S contains
a constrained literal of the kind ej = t(y) ‖D with D ⊆ C. Now we show by
mutual induction two facts concerning a constrained literal L ‖C ∈ S:

(1) if an e-flat term u of degree k occurs in L, then C allows the explicit definition
of k different ej in S;

(2) if L is of the kind ei = t(y), for an e-flat e-free term t of degree k, then either
ei = t ‖C can be simplified in S or C allows the explicit definition of k + 1
different ej in S (ei itself is of course included among these ej).

Notice that (1) is sufficient to exclude that any e-flat term of degree bigger than
n can occur in a constrained literal arising during the saturation process.

We prove (1) and (2) by induction on the length of the derivation leading
to L ‖C ∈ S. Notice that it is sufficient to check that (1) and (2) hold for the
first time where L ‖C ∈ S because if C allows the explicit definition of a certain
variable in S, it will continue to do so in any S′ obtained from S by continuing
the derivation (the definition may be changed by the Demodulation rule, but the
fact that ei is explicitly defined is forever). Also, by Lemma 3, a literal cannot
become non simplifiable if it is simplifiable.
5 Notice that, in the above definition of degree, constraints (attached to the rewriting

rules occurring in our calculus) are ignored.

Model Completeness, Covers and Superposition 155

(1) and (2) are evident if S is the initial status. To show (1), suppose that
u occurs for the first time in L ‖C as the effect of the application of a certain
rule: we can freely assume that u does not occur in the literals from the pre-
misses of the rule (otherwise induction trivially applies) and that u of degree k is
obtained by rewriting in a non-root position some u′ occurring in a constrained
literal L′ ‖D′ via some ej → t ‖D. This might be the effect of a Demodulation or
Superposition in a non-root position (Superpositions in root position do not pro-
duce new terms). If u′ has degree k, then by induction D′ contains the required k
explicit definitions, and we are done because D′ is included in C. If u′ has lower
degree, then t must have degree at least k−1 (otherwise u does not reach degree
k by Lemma 5). Then by induction on (2), the constraint D (also included in C)
has (k − 1) + 1 = k explicit definitions (when a constraint ej → t ‖D is selected
for Superposition or for making Demodulations in a non-root position, it is itself
not simplifiable according to the procedure explained in Remark 4).

To show (2), we analyze the reasons why the non simplifiable constrained
literal ei = t(y) ‖C is produced (let k be the degree of t). Suppose it is produced
from ei = u′ ‖C via Demodulation with ej = u(y) ‖D (with D ⊆ C) in a non-
root position; if u′ has degree at least k, we apply induction for (1) to ei = u′ ‖C:
by such induction hypotheses, we get k explicit definitions in C and we can add
to them the further explicit definition ei = t(y) (the explicit definitions from C
cannot concern ei because ei = t(y) ‖C is not simplifiable). Otherwise, u′ has
degree less than k and u has degree at least k − 1 by Lemma 5 (recall that t has
degree k): by induction, ej = u ‖D is not simplifiable (it is used as the active
part of a Demodulation in a non-root position, see Remark 4) and supplies k
explicit definitions, inherited by C ⊇ D. Note that ei cannot have a definition
in D, otherwise ei = t(y) ‖C would be simplifiable, so with ei = t(y) ‖C we get
the required k + 1 definitions.

The remaining case is when ei = t(y) ‖C is produced via Superposition Right.
Such a Superposition might be at root or at a non-root position. We first analyse
the case of a root position. This might be via ej = ei ‖C1 and ej = t(y) ‖C2

(with ej > ei and C = C1 ∪ C2 because E(ej , ej) = ∅), but in such a case one
can easily apply induction. Otherwise, we have a different kind of Superposition
at root position: ei = t(y) ‖C is obtained from s = ei ‖C1 and s′ = t(y) ‖C2,
with C = C1 ∪ C2 ∪ E(s, s′). In this case, by induction for (1), C2 supplies k
explicit definitions, to be inherited by C. Among such definitions, there cannot
be an explicit definition of ei otherwise ei = t(y) ‖C would be simplifiable, so
again we get the required k + 1 definitions.

In case of a Superposition at a non root-position, we have that ei = t(y) ‖C
is obtained from u′ = ei ‖C1 and ej = u(y) ‖C2, with C = C1 ∪ C2; here t is
obtained from u′ by rewriting ej to u. This case is handled similarly to the case
where ei = t(y) ‖C is obtained via Demodulation rule. �

Having established termination, we now prove that our calculus computes
covers; to this aim, we rely on refutational completeness of unconstrained Super-
position Calculus (thus, our technique resembles the technique used [5,6] in order
to prove refutational completeness of hierarchic superposition, although it is not

156 D. Calvanese et al.

clear whether Theorem 2 below can be derived from the results concerning hier-
archic superposition - we are not just proving refutational completeness and we
need to build proper superstructures):

Theorem 2. Suppose that the above algorithm, taking as input the primitive
e-flat formula ∃e φ(e, y), gives as output the quantifier-free formula ψ(y). Then
the latter is a cover of ∃e φ(e, y). 	

Proof. Let S be the saturated set of constrained literals produced upon termina-
tion of the algorithm; let S = S1 ∪S2, where S1 contains the constrained literals
in which the e do not occur and S2 is its complement. Clearly ∃e φ(e, y) turns
out to be logically equivalent to

∧

L ‖ C∈S1

(
∧

C → L) ∧ ∃e
∧

L ‖ C∈S2

(
∧

C → L)

so, as a consequence, in view of Lemma 1 it is sufficient to show that every model
M satisfying

∧
L ‖ C∈S1

(
∧

C → L) via an assignment I to the variables y can
be embedded into a model M′ such that for a suitable extension I ′ of I to the
variables e we have that (M′, I ′) satisfies also

∧
L ‖ C∈S2

(
∧

C → L).
Fix M, I as above. The diagram Δ(M) of M is obtained as follows. We take

one free constant for each element of the support of M (by Löwenheim-Skolem
theorem you can keep M at most countable, if you like) and we put in Δ(M)
all the literals of the kind f(c1, . . . , ck) = ck+1 and c1 �= c2 which are true in M
(here the ci are names for the elements of the support of M). Let R be the set of
ground equalities of the form yi = ci, where ci is the name of I(yi). Extend our
reduction ordering in the natural way (so that yi = ci and f(c1, . . . , ck) = ck+1

are oriented from left to right). Consider now the set of clauses

Δ(M) ∪ R ∪ {
∧

C → L | (L ‖C) ∈ S} (3)

(below, we distinguish the positive and the negative literals of Δ(M) so that
Δ(M) = Δ+(M) ∪ Δ−(M)). We want to saturate the above set in the stan-
dard Superposition Calculus. Clearly the rewriting rules in R, used as reduction
rules, replace everywhere yi by ci inside the clauses of the kind

∧
C → L. At

this point, the negative literals from the equality constraints all disappear: if
they are true in M, they Δ+(M)-normalize to trivial equalities ci = ci (to be
eliminated by standard reduction rules) and if they are false in M they become
part of clauses subsumed by true inequalities from Δ−(M). Similarly all the
e-free literals not coming from Δ(M) ∪ R get removed. Let S̃ be the set of sur-
vived literals involving the e (they are not constrained anymore and they are
Δ+(M)∪R-normalized): we show that they cannot produce new clauses. Let in
fact (π) be an inference from the Superposition Calculus [38] applying to them.
Since no superposition with Δ(M) ∪ R is possible, this inference must involve
only literals from S̃; suppose it produces a literal L̃ from the literals L̃1, L̃2 (com-
ing via Δ+(M) ∪ R-normalization from L1 ‖C1 ∈ S and L2 ‖C2 ∈ S) as parent
clauses. Then, by Lemma 2, our constrained inferences produce a constrained

Model Completeness, Covers and Superposition 157

literal L ‖C such that the clause
∧

C → L normalizes to L̃ via Δ+(M) ∪ R.
Since S is saturated, the constrained literal L ‖C, after simplification, belongs
to S. Now simplifications via our Constrained Demodulation and Δ(M)+ ∪ R-
normalization commute (they work at parallel positions, see Remark 4), so the
inference (π) is redundant because L̃ simplifies to a literal already in S̃ ∪Δ(M).

Thus the set of clauses (3) saturates without producing the empty clause. By
the completeness theorem of the Superposition Calculus [3,27,38] it has a model
M′. This M′ by construction fits our requests by Robinson Diagram Lemma. �

Theorem 2 also proves the existence of the model completion of EUF.

Example 1. We compute the cover of the primitive formula ∃e f(f(e, y1), y2) �=
f(f(e, y′

1), y
′
2) (one more example, taken from [25], is analyzed in [10]). Flat-

tening gives the set of literals { f(e, y1) = e1, f(e1, y2) = e′
1, f(e, y′

1) =
e2, f(e2, y′

2) = e′
2, e′

1 �= e′
2 }. Superposition Right produces the constrained

literal e1 = e2 ‖ {y1 = y′
1}; supposing that we have e1 > e2, Superposition Right

gives first f(e2, y2) = e′
1 ‖ {y1 = y′

1} and then also e′
1 = e′

2 ‖ {y1 = y′
1, y2 = y′

2}.
Superposition Left and Reflexion now produce ⊥‖{y1 = y′

1, y2 = y′
2}. Thus the

clause y1 = y′
1 ∧ y2 = y′

2 → ⊥ will be part of the output (actually, this will be
the only clause in the output). 	

In the special case where the signature Σ contains only unary function sym-
bols, only empty constraints can be generated; in case Σ contains also relation
symbols of arity n > 1, the only constrained clauses that can be generated have
the form ⊥‖{t1 = t′1, . . . , tn−1 = t′n−1}. Also, it is not difficult to see that in a
derivation at most one explicit definition ei = t(y) || ∅ can occur for every ei: as
soon as this definition is produced, all occurrences of ei are rewritten to t. This
shows that Constrained Superposition computes covers in polynomial time for
the empty theory, whenever the signature Σ matches the restrictions of Defini-
tion 2 for DB schemata. More details on complexity are given in [10] (where a
quadratic bound is obtained).

6 Conclusions and Future Work

As evident from Subsect. 4.1, our main motivation for investigating covers orig-
inated from the verification of data-aware processes. Such applications require
database (DB) signatures to contain only unary function symbols (besides rela-
tions of every arity). We observed that computing covers of primitive formulae
in such signatures requires only polynomial time. In addition, if relation sym-
bols are at most binary, the cover of a primitive formula is a conjunction of
literals: this is crucial in applications, because model checkers like mcmt [21]
and cubicle [14] represent sets of reachable states as primitive formulae. This
makes cover computations a quite attractive technique in database-driven model
checking.

Our cover algorithm for DB signatures has been implemented in the model
checker mcmt. A first experimental evaluation (based on the existing benchmark

158 D. Calvanese et al.

provided in [31], which samples 32 real-world BPMN workflows taken from the
BPMN official website http://www.bpmn.org/) is described in [11]. The bench-
mark set is available as part of the last distribution 2.8 of mcmt http://users.
mat.unimi.it/users/ghilardi/mcmt/ (see the subdirectory /examples/dbdriven
of the distribution). The user manual, also included in the distribution, contains
a dedicated section giving essential information on how to encode relational arti-
fact systems (comprising both first order and second order variables) in mcmt
specifications and how to produce user-defined examples in the database driven
framework. Although an extensive experimentation is outside the focus of this
paper, we mention that the first experiments were very encouraging: the tool was
able to solve in few seconds all the proposed benchmarks and the cover compu-
tations generated automatically during model-checking search were discharged
instantaneously.

This experimental setup motivates new research to extend Proposition 2 to
further theories axiomatizing integrity constraints used in DB applications. Com-
bined cover algorithms (along the perspectives in [25]) could be crucial also in
this setting. Practical algorithms for the computation of covers in the theories
falling under the hypotheses of Proposition 2 need to be designed: as a little first
example, in [10] we show how to handle Axiom (2) by light modifications to our
techniques. Symbol elimination of function and predicate variables should also
be combined with cover computations.

Acknowledgements. This research has been partially supported by the UNIBZ
CRC projects REKAP: Reasoning and Enactment for Knowledge-Aware Processes and
PWORM: Planning for Workflow Management.

References

1. Baader, F., Ghilardi, S., Tinelli, C.: A new combination procedure for the word
problem that generalizes fusion decidability results in modal logics. Inf. Comput.
204(10), 1413–1452 (2006)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Log. Comput. 4(3), 217–247 (1994)

4. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation. Inf.
Comput. 121(2), 172–192 (1995)

5. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212
(1994)

6. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction.
In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 3

7. Bojańczyk, M., Segoufin, L., Toruńczyk, S.: Verification of database-driven systems
via amalgamation. In: Proceedings of PODS, pp. 63–74 (2013)

8. Bruttomesso, R., Ghilardi, S., Ranise, S.: Quantifier-free interpolation in combina-
tions of equality interpolating theories. ACM Trans. Comput. Log. 15(1), 5:1–5:34
(2014)

http://www.bpmn.org/
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/
https://doi.org/10.1007/978-3-642-38574-2_3

Model Completeness, Covers and Superposition 159

9. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data aware process
analysis: a database theory perspective. In: Proceedings of PODS (2013)

10. Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Quantifier elim-
ination for database driven verification. CoRR, abs/1806.09686 (2018)

11. Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Verification of
data-aware processes via array-based systems (extended version). Technical report
arXiv:1806.11459, arXiv.org (2018)

12. Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: From model
completeness to verification of data aware processes. In: Lutz, C., Sattler, U.,
Tinelli, C., Turhan, A.Y., Wolter, F. (eds.) Description Logic, Theory Combination,
and All That. LNCS, vol. 11560, pp. 212–239. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-22102-7 10

13. Chang, C.-C., Keisler, J.H.: Model Theory, 3rd edn. North-Holland Publishing Co.,
Amsterdam (1990)

14. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: a parallel SMT-
based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 55

15. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric
business processes. In: Proceedings of ICDT, pp. 252–267 (2009)

16. Deutsch, A., Li, Y., Vianu, V.: Verification of hierarchical artifact systems. In:
Proceedings of PODS, pp. 179–194. ACM Press (2016)

17. Ghilardi, S.: Model theoretic methods in combined constraint satisfiability. J.
Autom. Reason. 33(3–4), 221–249 (2004)

18. Ghilardi, S., Gianola, A.: Interpolation, amalgamation and combination (the non-
disjoint signatures case). In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS
(LNAI), vol. 10483, pp. 316–332. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66167-4 18

19. Ghilardi, S., Gianola, A.: Modularity results for interpolation, amalgamation and
superamalgamation. Ann. Pure Appl. Log. 169(8), 731–754 (2018)

20. Ghilardi, S., Nicolini, E., Zucchelli, D.: A comprehensive combination framework.
ACM Trans. Comput. Log. 9(2), 54 p. (2008). Article no. 8

21. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 22–29. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1 3

22. Ghilardi, S., van Gool, S.J.: Monadic second order logic as the model companion
of temporal logic. In: Proceedings of LICS, pp. 417–426 (2016)

23. Ghilardi, S., van Gool, S.J.: A model-theoretic characterization of monadic second
order logic on infinite words. J. Symb. Log. 82(1), 62–76 (2017)

24. Ghilardi, S., Zawadowski, M.: Sheaves, Games, and Model Completions: A Cat-
egorical Approach to Nonclassical Propositional Logics. Trends in Logic-Studia
Logica Library, vol. 14. Kluwer Academic Publishers, Dordrecht (2002)

25. Gulwani, S., Musuvathi, M.: Cover algorithms and their combination. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 193–207. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78739-6 16

26. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 13

27. Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem-proving
strategies: the transfinite semantic tree method. J. ACM 38(3), 559–587 (1991)

http://arxiv.org/abs/1806.11459
http://arxiv.org/abs/org
https://doi.org/10.1007/978-3-030-22102-7_10
https://doi.org/10.1007/978-3-030-22102-7_10
https://doi.org/10.1007/978-3-642-31424-7_55
https://doi.org/10.1007/978-3-319-66167-4_18
https://doi.org/10.1007/978-3-319-66167-4_18
https://doi.org/10.1007/978-3-642-14203-1_3
https://doi.org/10.1007/978-3-540-78739-6_16
https://doi.org/10.1007/978-3-642-31612-8_13

160 D. Calvanese et al.

28. Kapur, D.: Shostak’s congruence closure as completion. In: Comon, H. (ed.) RTA
1997. LNCS, vol. 1232, pp. 23–37. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-62950-5 59

29. Kapur, D.: Nonlinear polynomials, interpolants and invariant generation for sys-
tem analysis. In: Proceedings of the 2nd International Workshop on Satisfiability
Checking and Symbolic Computation Co-Located with ISSAC (2017)

30. Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A.
(ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 199–213. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02959-2 17

31. Li, Y., Deutsch, A., Vianu, V.: VERIFAS: a practical verifier for artifact systems.
PVLDB 11(3), 283–296 (2017)

32. Ludwig, M., Waldmann, U.: An extension of the knuth-bendix ordering with LPO-
like properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 348–362. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75560-9 26

33. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006). https://doi.
org/10.1007/11817963 14

34. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Data structures with arithmetic con-
straints: a non-disjoint combination. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS
2009. LNCS (LNAI), vol. 5749, pp. 319–334. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04222-5 20

35. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Satisfiability procedures for combi-
nation of theories sharing integer offsets. In: Kowalewski, S., Philippou, A. (eds.)
TACAS 2009. LNCS, vol. 5505, pp. 428–442. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00768-2 35

36. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combining satisfiability procedures
for unions of theories with a shared counting operator. Fundam. Inform. 105(1–2),
163–187 (2010)

37. Nieuwenhuis, R., Rubio, A.: Theorem proving with ordering and equality con-
strained clauses. J. Symb. Comput. 19(4), 321–351 (1995)

38. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook
of Automated Reasoning, vol. 2, pp. 371–443. MIT Press (2001)

39. Pitts, A.M.: On an interpretation of second order quantification in first order intu-
itionistic propositional logic. J. Symb. Log. 57(1), 33–52 (1992)

40. Rybina, T., Voronkov, A.: A logical reconstruction of reachability. In: Broy, M.,
Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 222–237. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-39866-0 24

41. Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory
extensions. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol.
9706, pp. 273–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40229-1 19

42. Sofronie-Stokkermans, V.: On interpolation and symbol elimination in theory
extensions. Log. Methods Comput. Sci. 14(3), 1–41 (2018)

43. Vianu, V.: Automatic verification of database-driven systems: a new frontier. In:
Proceedings of ICDT, pp. 1–13 (2009)

44. Wheeler, W.H.: Model-companions and definability in existentially complete struc-
tures. Isr. J. Math. 25(3–4), 305–330 (1976)

https://doi.org/10.1007/3-540-62950-5_59
https://doi.org/10.1007/3-540-62950-5_59
https://doi.org/10.1007/978-3-642-02959-2_17
https://doi.org/10.1007/978-3-540-75560-9_26
https://doi.org/10.1007/978-3-540-75560-9_26
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/11817963_14
https://doi.org/10.1007/978-3-642-04222-5_20
https://doi.org/10.1007/978-3-642-04222-5_20
https://doi.org/10.1007/978-3-642-00768-2_35
https://doi.org/10.1007/978-3-642-00768-2_35
https://doi.org/10.1007/978-3-540-39866-0_24
https://doi.org/10.1007/978-3-319-40229-1_19
https://doi.org/10.1007/978-3-319-40229-1_19

	Model Completeness, Covers and Superposition
	1 Introduction
	2 Preliminaries
	3 Covers, Uniform Interpolation and Model Completions
	4 Model-Checking Applications
	4.1 Database Schemata

	5 Covers via Constrained Superposition
	6 Conclusions and Future Work
	References

