Digital Addressable Lighting Interface (DALI) control gear XMC[™] microcontrollers July 2016

Agenda

1	Key features
2	Specification
3	System block diagram
4	Hardware overview
5	Software overview
6	Highlight MCU features
7	Hands-on training

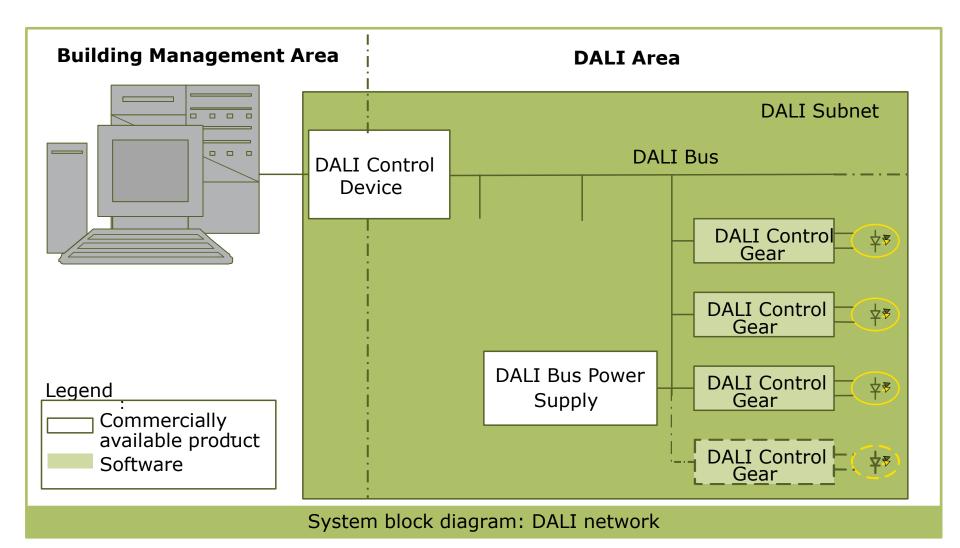
DALI control gear Key features

Target Application

> DALI control gear (DALI102)

Key Features

- > Up to 64 addressable lighting devices in a subnet
- Standard 2-core cable (1.5 mm²)
- > Free polarity wiring
- > Free wiring topology
- > Single bus for power and data
- > Up to 16 groups in a subnet
- > Up to 16 scenes per lighting device
- > 349 commands
- > 2-way communication
- Changes/configurations via software



Specifications

- > Typical DALI bus voltage: 16 V (max: 22.5 V)
- Max current supplied to DALI bus: 250 mA
- > Max drop between any 2 devices on DALI bus: 2 V
- Max cable length (at 1.5 mm²): 300 m

DALI control gear System block diagram

XMC1200 Boot Kit

Kit schematics, documentation >

http://www.infineon.com/cms/en/product/evaluationboards/KIT_XMC1X_AK_LED_001/productType.html?productType= db3a30443ba77cfd013baec9c7880ca9

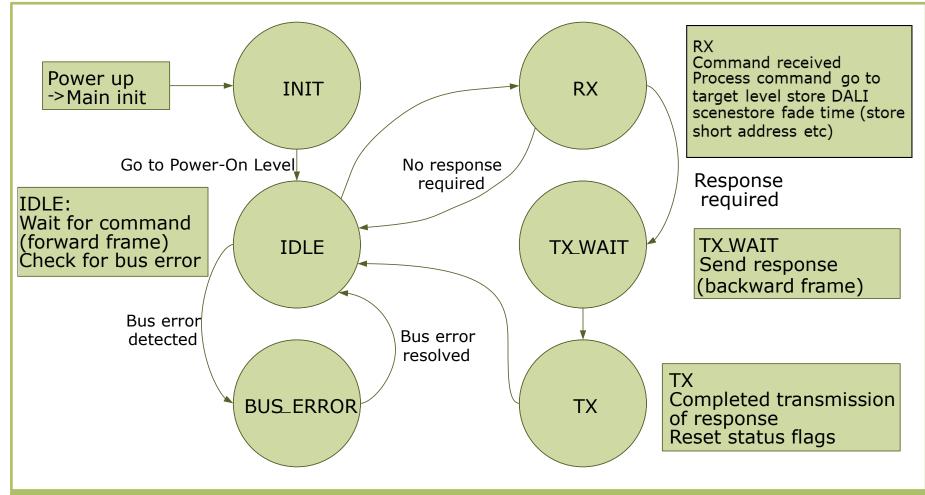
6

DALI control gear Hardware overview

>

- XMC1000 LED Lighting Application Kit comprising of

 - White LED or Color LED card



DALI control gear Software overview

Flow chart: DALI control gear - software overview

DALI control gear Highlight MCU features

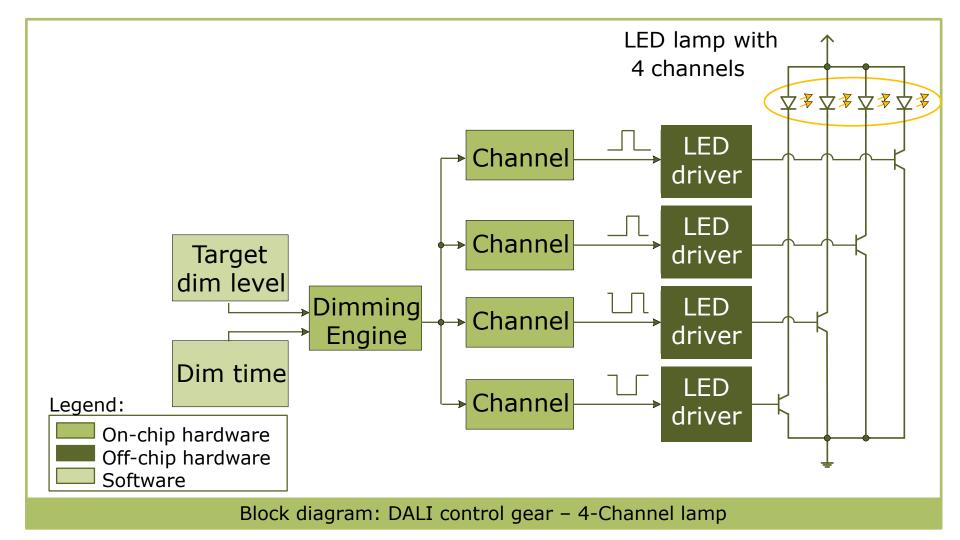
- > BCCU
 - Dimming along an exponential curve with adjustable dimming time
 - 12-bit dimming level for smooth and natural dimming
 - Dimming engine performs dimming automatically without CPU load
 - Up to 9 channels: convenient for driving multi-channel lamps
 - Separate dimming and color control: dimming level can be adjusted while preserving color output naturally, vice versa
- > CCU4
 - Capture mode readily detects rising and falling edges in forward frame
 - Capture timer provides convenient way of measuring time lapse between edges
- > PRNG
 - Generates high quality random data quickly for DALI random addresses

DALI control gear Hands-on training

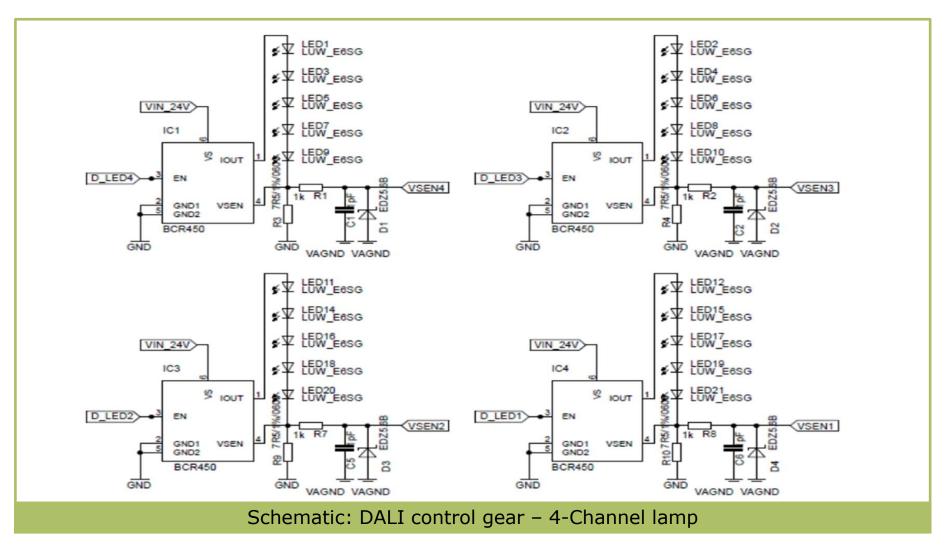
- > Control Gear
 - XMC1200 Bootkit + White LED Card

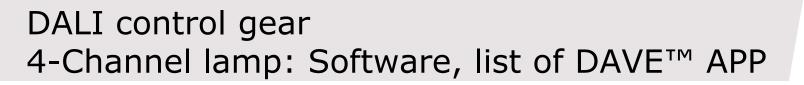
- Control Device
 - Tridonic DALI USB + DALI PS1 + masterCONFIGURATOR + DALImonitor

- Source: http://www.tridonic.com
- HOTs in coming slides shall provide a step-by-step guide to set up demo

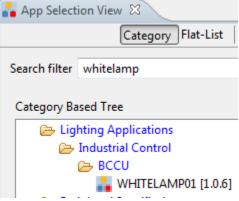


HOT1: 4-Channel Lamp


DALI control gear 4-Channel lamp - block diagram



DALI control gear 4-Channel lamp – board schematics


> WHITELAMP01

Aggregates BCCUGLOBAL, BCCUDIM01 and BCCUCH01 APPs. Provides configurations and dimming control for multi-channel white LED lamp.

DALI control gear 4-Channel lamp – HOT (1/8)

 Select WHITELAMP01 from the App Selection View Window and add to project

 Double-click on CLK002 APP in S/W App Connectivity View to open the UI Editor

🔚 S/W App Connectivity View 🛛 🚦 H/W Connectivity View 🔲 Properties 🔝 Problems 🖳 Console	₹
BCCUCH01/0 BCCUDIM01/0	JGLOBAL/0

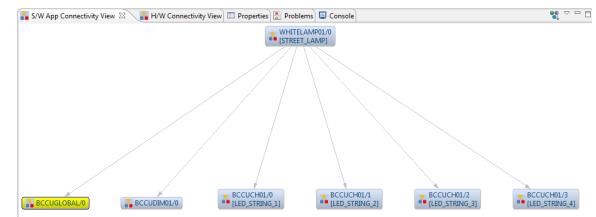
DALI control gear 4-Channel lamp – HOT (2/8)

> Select PCLK = 2*MCLK

🔒 CLK002_0 😫							
Main Clock Frequency - MCLK							
Desired Frequency	32000		KHz	-			
Peripheral Clock Selection - PCLK							
PCLK = MCLK							
PCLK = 2*MCLK							

 Double-click on WHITELAMP01 APP in S/W App Connectivity View to open the UI Editor

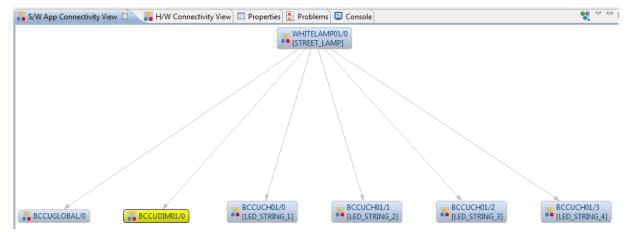
ᡖ S/W App Connectivity View 🗵 🚦 H/W Connectivity View 🔲 Properties 🗟 Problems 🗟 Console	8 1 -	~ -	
BCCUCH01/0 BCCUCH01/0 BCCUDIM01/0	LOBA		


DALI control gear 4-Channel lamp – HOT (3/8)

> Configure Desired Number of Channels to 4

<mark></mark>	
Desired Number of Cl	nannels
4	-
Source of Dimming	
Oimming Engine	
Global Dimming	

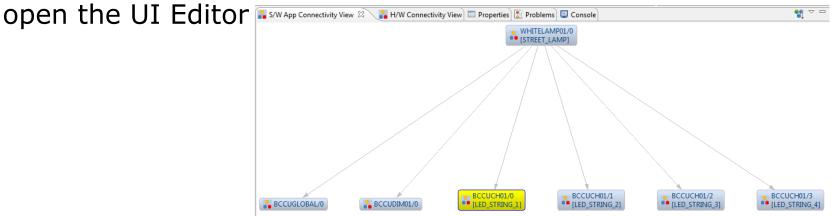
 Double-click on BCCUGLOBAL APP in S/W App Connectivity View to open the UI Editor


DALI control gear 4-Channel lamp – HOT (4/8)

> Configure *Desired Fast Clock Frequency* to 1 MHz

Y	BCCUGLOBAL_0			
	Clock Configuration			
	Desired Fast Clock Frequency	1000000	Hz	T
	Actual Fast Clock Frequency	1000000	Hz	Ŧ
	Prescaler Factor (FCLK_PS)	0	hex	Ŧ

 Double-click on BCCUDIM01 APP in S/W App Connectivity View to open the UI Editor


DALI control gear 4-Channel lamp – HOT (5/8)

- > Enable dimming engine at initialization
- > Configure *Dimming Level* to 1024
- > Enable dither function

BCCUDIM01_0	×					
Dimming Engine						
🔽 Enable at Initi	Enable at Initialization					
Initial Dimming Level						
Dimming Level	1024		dec	*		
Dimming Transition Configuration Dither Function						
🔽 Enable						

Double-click on BCCUCH01 APP in S/W App Connectivity View to

DALI control gear 4-Channel Lamp – HOT (6/8)

- Under Channel Configuration tab,
 - Enable channel at initialization
 - Enable flicker watchdog
- > Under Intensity and Packer Configuration tab,
 - Configure Channel Intensity to 4095
- Repeat above steps for the other 3 BCCUCH01 APPs

hannel Configuration Channel Enable	Output Gating	Flicker Watchdog
Enable at Initialization	Enable	📝 Enable
Trigger Enable	Trigger Edge Selection	Trigger Output Selection
Enable	Positive Edge	Trigger Line 0
	Negative Edge	Trigger Line 1
Forced Trigger Selection	Trap Enable	Output Passive Level Selection
Enable	Enable	Active High
		Active Low

ᡖ BCCUCH01_0 😒			
Initial Intensity			
Channel Intensity	4095	dec	*
Packer Comparator Packer Selection Enable	Configuration		

DALI control gear 4-Channel lamp – HOT (7/8)

- Open "Manual Pin Assignment" window by clicking on the shortcut button
- > Assign the pins accordingly:
 - BCCUCH01/0/1/2/3: P0.5/ P0.6/P0.7/P0.8
- Click "Solve and Save"
- Click "Close"

Generate code

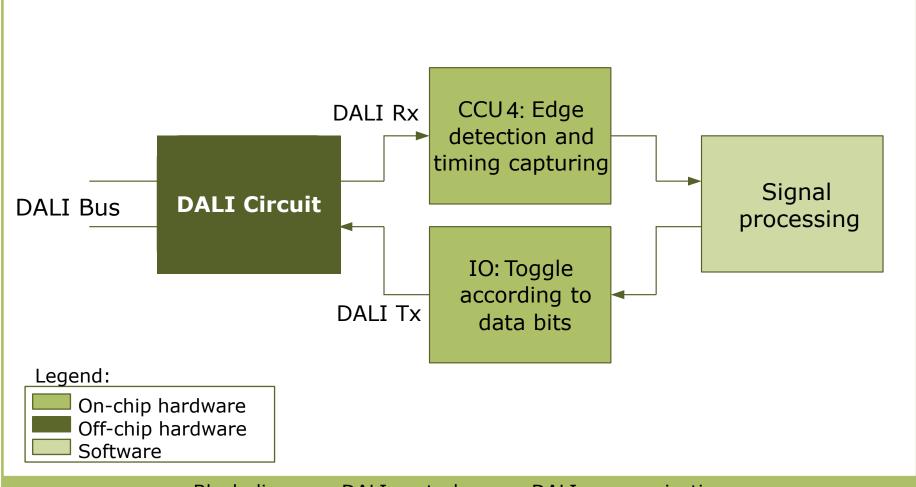
	Арр	Resource		Port-Pin/Pin Nu	mber
(+)	BCCUCH01/1[LED_STRING_2]				
		iohw	•	P0.6 / #23	
		Not Selected	-	Not Selected	
(+)	BCCUCH01/0[LED_STRING_1]				
		iohw	•	P0.5 / #22	
		Not Selected	-	Not Selected	
(+)	BCCUCH01/2[LED_STRING_3]				
		iohw	•	P0.7 / #24	
		Not Selected	-	Not Selected	
(+)	BCCUCH01/3[LED_STRING_4]		_		
		iohw	•	P0.8 / #27	
		Not Selected	-	Not Selected	

DALI control gear 4-Channel lamp – HOT (8/8)

- > In Main.c, add code to dim to 100 % brightness in 7 s
 - 100 % brightness (Dimlevel = 4095)
 - 7 s dim time (DimDiv = 100)
 - WHITELAMP01_SetDimLevelExponential (&WHITELAMP01_Cfghandle0,4095U,100U,0xDB);

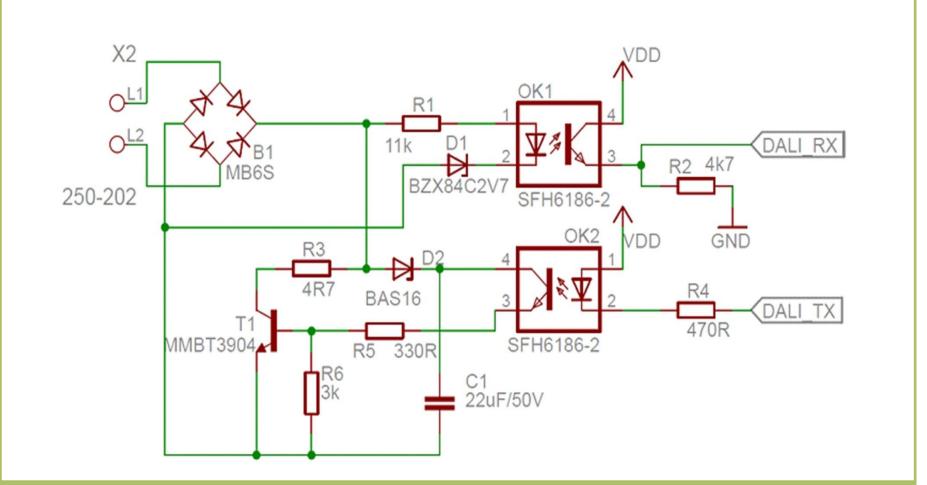
int	main(void)	
۱ //	<pre>status_t status;</pre>	<pre>// Declaration of return variable for DAVE3 APIs (togg)</pre>
	DAVE_Init();	// Initialization of DAVE Apps

> Build project


- Connect XMC1200 Boot kit to PC
- > Download code 🎄
- > Start code II>
- Observe LEDs on White LED card fade up

HOT2- DALI communication

DALI control gear DALI communication – block diagram



Block diagram: DALI control gear – DALI communication

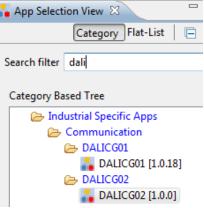
DALI control gear DALI communication – board schematics

Schematic: DALI control gear – DALI communication

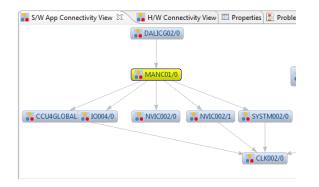
DALI control gear - DALI communication: Software, list of DAVE[™] APP

> DALICG02

Software stack for DALI standard -102 (Control gear)


> MANC01

Detects incoming forward frame, processes received data and transmits forward frame when requested


DALI control gear DALI communication – HOT (1/6)

 Select DALICG02 from the App Selection View Window and add to project

 DALICG02 aggregates MANC01 APP. Double-click on MANC01 APP in S/W App Connectivity View to open the UI Editor

DALI control gear DALI communication – HOT (2/6)

 Configure Min Valid Bit Rate and Max Valid Bit Rate to 600 Hz and 1800 Hz respectively

🔒 MANC01_0 🛛				- 8
- Data Rate				^
Bit Rate 1200	Hz	-		
Chip Rate 2400	Hz	~		E
Min Valid Bit Rate 600		Hz	Ŧ	
Max Valid Bit Rate 1800		Hz	Ŧ	
Tolerance of Min Valid Bit Rate	50		%	Ŧ
Tolerance of Max Valid Bit Rate	50		%	Ŧ
				-
<				•
MANC01_ConfigPage				

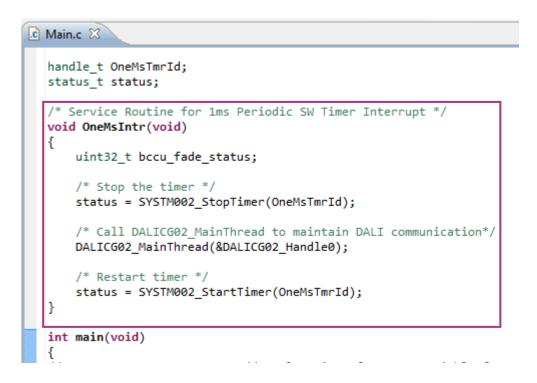
DALI control gear DALI communication – HOT (3/6)

- Open "Manual Pin Assignment" window by clicking on the shortcut button
- Assign the pins accordingly:
 - DALI Rx: P0.2
 - DALI Tx: P0.3
- > Click "Solve and Save"
- Click "Close"
- > Generate code

Арр	Resource		Port-Pin/Pin Number
MANC01/0			
	captureinput	•	P0.2 / #19 👻
	Not Selected	-	Not Selected 🗸
IO004/0			
	pin	•	P0.3 / #20 👻
	Not Selected	•	Not Selected 🗸

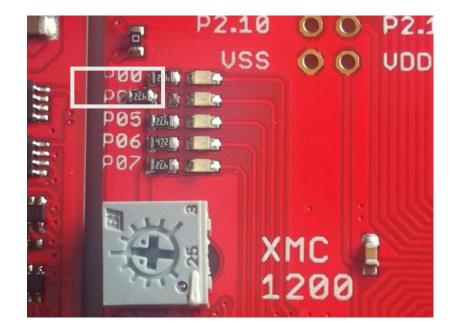
DALI control gear DALI communication – HOT (4/6)

> Next, create a software timer for a 1 ms periodic interrupt


.c	Main.c 🛛								
	<pre>#include <dave3.h></dave3.h></pre>	//Declarations from DAVE3 Code Generation (includes SFR declara							
	<pre>handle_t OneMsTmrId; status_t status;</pre>								
	int main(void)								
	i // status_t status;	// Declaration of return variable for DAVE3 APIs (toggle commen							
	0	<pre>/* Register call back functions */ DALICG02_RegCallBackFunction(&DALICG02_Handle0,LedDimmingImmediate,DALICG02_DIMMING);</pre>							
	DAVE_Init();	// Initialization of DAVE Apps							
	WHITELAMP01_SetDimLev	<pre>WHITELAMP01_SetDimLevelExponential(&WHITELAMP01_Cfghandle0, 4095U, 100U, 0xDB);</pre>							
		<pre>for 1ms interrupt to service DALI */ 2_CreateTimer(1000U,SYSTM002_PERIODIC,(void *)OneMsIntr,NULL); artTimer(OneMsTmrId);</pre>							

- > This interrupt is required for the following task:
 - Maintaining DALI communication by periodically calling DALICG02 API DALICG02_MainThread()

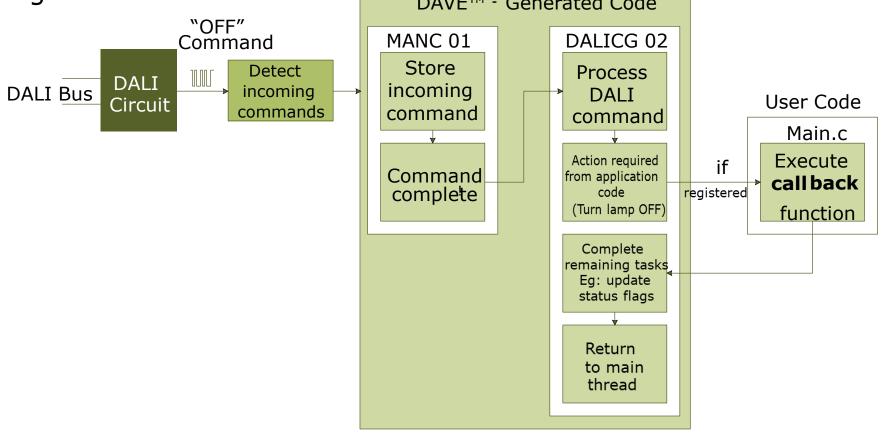
DALI control gear DALI communication – HOT (5/6)


> Define the interrupt service routine for the periodic interrupt

DALI control gear DALI communication – HOT (6/6)

> Disconnect LED from P0.2 by removing resistor

Now, you're ready for DALI communication. Proceed to next HOT!



HOT3– immediate dimming without fading

DALI control gear – immediate dimming: Introduction to call backs

 Call backs allow user to incorporate customized code into DAVE[™] generated code without having to understand the generated code

DALI control gear – immediate dimming: Registering call backs

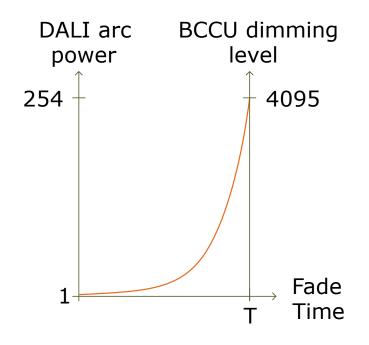
- > Condition: Call back functions have to be registered!
- > Various call backs for different tasks
 - E.g. call back for immediate dimming without fading; call back for dimming with fade time; call back for dimming with fade rate for 200 ms etc.
- > Identification via call back name/IDs
 - More information can be found in DALICG02 APP Help Documentation (under App Configuration Documentation section)
- > API for registering call back:
 - DALICG02_RegCallBackFunction (DALICG02_HandlePointer, CallBack_Function_Name, CallBack_Name);

DALI control gear – immediate dimming: HOT(1/7)

- Call back name for immediate dimming without fading is DALICG02_DIMMING
- > In Main.c, register call back
 - Format: DALICG02_RegCallBackFunction (DALICG02_HandlePointer, CallBack_Function_Name, CallBack_Name);

🖸 Main.c 🕱					
	int main(void)				
	<pre>i /* Register call back functions */ DALICG02_RegCallBackFunction(&DALICG02_Handle0,LedDimmingImmediate,DALICG02_DIMMING);</pre>				
	DAVE_Init();	// Initialization of DAVE Apps			

DALI control gear – immediate dimming: HOT(2/7)


> In Main.c, define call back function

```
🖸 Main.c 🔀
  /* Call Back Function
   * LED Dimming Immediate - goes to target level immediately without fading
   * Commands that use this function are OFF, STEP UP, STEP DOWN, RECALL MAX LEVEL, RESET etc.
   */
  void LedDimmingImmediate(void)
  {
      if(DALICG02 Handle0.DALI102_Handle->uiReq_arc_pwr != DALICG02_MASK)
          /* Go to requested level immediately - DIMDIV=0, DCLK PS=don't care */
          WHITELAMP01 SetDimLevelExponential(&WHITELAMP01 Cfghandle0,
                   Dimlevel[DALICG02_Handle0.DALI102_Handle->uiReq_arc_pwr],
                  0U,1U);
          /* Update DALI actual level with target level */
          DALICG02 Handle0.DALI102 Handle->uiActual arc lvl =
                  DALICG02 Handle0.DALI102 Handle->uiReg arc pwr;
      }
      /* Reset DALI fade status flag, since no fading took place */
      DALICG02 Handle0.DALI102 Handle->stStatus info.bFade running = DALICG02 BIT ZERO;
      if(DALICG02 Handle0.DALI102 Handle->uiActual arc lvl == 0U)
          /* Reset DALI light ON status flag if DALI actual level is 0 (OFF) */
          DALICG02_Handle0.DALI102_Handle->stStatus_info.bLight_on = DALICG02_BIT_ZERO;
```

DALI control gear – immediate dimming: HOT(3/7)

- DALI arc power levels range from 1-254
- BCCU dim levels range from 1-4095
- Dimlevel[] is a look-up table (LUT) which converts DALI arc power level to its equivalent BCCU dim level
 - LUT is automatically generated by DALICG02 APP when BCCU apps exist in project

DALI control gear – immediate dimming: HOT(4/7)


```
/* Go to requested level immediately - DIMDIV=0, DCLK_PS=don't care */
WHITELAMP01_SetDimLevelExponential(&WHITELAMP01_Cfghandle0,
    Dimlevel[DALICG02_Handle0.DALI102_Handle->uiReq_arc_pwr],
    00,10);
```

- uiReq_arc_pwr: the requested arc power level by the DALI control device
- Immediate dimming without fading (dim time = 0 s)
 - \therefore DimDiv = 0 (Dimming engine is bypassed)
 - DimClkPS = doesn't matter

DALI control gear – immediate dimming: HOT(5/7)

- /* Go to requested level immediately DIMDIV=0, DCLK_PS=don't care */
 WHITELAMP01_SetDimLevelExponential(&WHITELAMP01_Cfghandle0,
 Dimlevel[DALICG02_Handle0.DALI102_Handle->uiReq_arc_pwr],
 0U,1U);
- uiReq_arc_pwr: the requested arc power level by the DALI control device

- Immediate dimming without fading (dim time = 0 s)
 - \therefore DimDiv = 0 (Dimming engine is bypassed)
 - DimClkPS = doesn't matter

DALI control gear – immediate dimming: HOT(6/7)

> uiActual_arc_lvl: the lamp's current arc power level

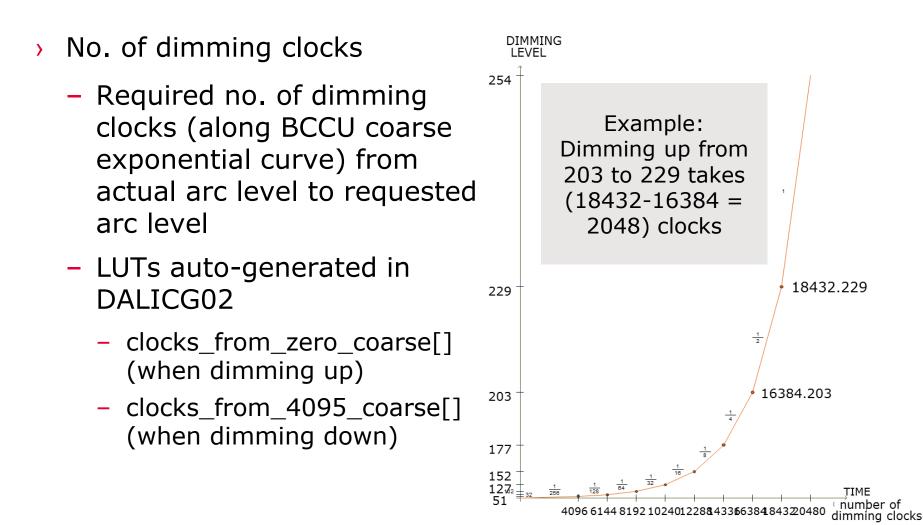
/* Reset DALI fade status flag, since no fading took place */
DALICG02 Handle0.DALI102 Handle->stStatus info.bFade running = DALICG02 BIT ZER0;

- > stStatus_info: DALI status information byte made up of the following bits
 - bControl_gear
 - bLamp_failure
 - bLight_on
 - bLimit_err
 - bFade_running
 - bReset_state
 - bMissing_short_addr
 - bPwr_failure

DALI control gear – immediate dimming: HOT(7/7)

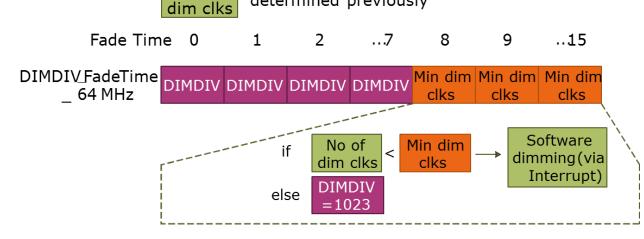
- > Build project 🔟
- > Download code 🎋
- > Start code 💵
- > With the Control Device, send commands:
 - RECALL MIN (Observation: LEDs go to min level immediately)
 - QUERY ACTUAL LEVEL (Ans: 1)
 - RECALL MAX (Observation: LEDs go to max level immediately)
 - QUERY ACTUAL LEVEL (Ans: 254)
 - OFF (Observation: LEDs turn off immediately)
 - QUERY STATUS (Ans: XXXXX0XXb)

HOT4 – Dimming with fade time


DALI control gear – dimming with fade time Translating DALI fade time

- > To achieve the desired DALI fade time, the following BCCU parameters need to be determined:
 - No. of dimming clocks
 - Easily determined from LUT
 - DIMDIV
 - Easily determined from LUT
 - DCLK_PS
 - Calculation required

DALI control gear – dimming with fade time Translating DALI fade time



DALI control gear – dimming with fade time Translating DALI fade time

- > DIMDIV
 - LUT auto-generated in DALICG02
 - DIMDIV_FadeTime_64MHZ[]
- Due to DIMDIV resolution, not all fade times can be achieved when the no. of dimming clocks is too low
 - Such cases occur when DALI Fade Time > 7
 - Min dimming clock is stored in DIMDIV_FadeTime_64MHZ[] for Fade Time >7
 - If no. of dimming clocks < min dimming clock, software dimming should be carried out (via interrupt) No of determined previously

> DCLK_PS

- To be calculated only when carrying out hardware dimming

 $DCLKPS = trunc \left(\frac{f_{BCCU_clk} \times FadeTime_{from_DALI}}{nr_of_clocks \times DIMDIV} \right)$

DALI control gear – dimming with fade time HOT(1/6)

- Call back name for dimming with fade time is DALICG02_DIMMING_DARC
- > In Main.c, register call back
 - Format: DALICG02_RegCallBackFunction (DALICG02_HandlePointer, CallBack_Function_Name, CallBack_Name);

DALI control gear – dimming with fade time HOT(2/6)

{

- In Main.c, define call back function
 - For this demo, we will only use Fade Time = 0(0.7 s)

```
🖸 Main.c 🔀
  /* Call Back Function
   * LED Dimming Exponential with Fade Time - goes to target level with fading
   * Commands that use this function are Direct Arc Power Commands
  */
  void LedDimmingFadeTime(void)
    /* variable to hold no. of dimming clocks required (for HW-based dimming)
    uint32 t locNumDimClks;
    /* variable to hold dimmer clock prescaler (for HW-based dimming)
     */
    uint32 t locDclkps;
    /* variable to hold BCCU DIMDIV value (for HW-based dimming)
    uint32 t locDimDiv;
    /* Calculate the no. of dimming clocks required from the LUTs */
    if(DALICG02 Handle0.DALI102 Handle->stDALICG02 flags.bDim dir) /* Dimming Up */
      locNumDimClks = (clocks from zero coarse[DALICG02 Handle0.DALI102 Handle->uiReg arc pwr]
        clocks_from_zero_coarse[DALICG02_Handle0.DALI102_Handle->uiActual_arc_lvl]);
    else /* Dimming Down */
      locNumDimClks = (clocks from 4095 coarse[DALICG02 Handle0.DALI102 Handle->uiReg arc pwr]
        - clocks from 4095 coarse[DALICG02 Handle0.DALI102 Handle->uiActual arc lvl]);
    /* Get the BCCU DIMDIV value to use from the LUT */
    locDimDiv = DIMDIV FadeTime 64MHZ[DALICG02 Handle0.DALI102 Handle->aucDALICG02 var[DALICG02 FADE TIME]];
    /* Calculate the Dimmer Clock Prescaler (DCLK PS) */
    locDclkps = ((DALICG02 Handle0.DALI102 Handle->ausFade time tbl[DALICG02 Handle0.DALI102 Handle->
      aucDALICG02_var[DALICG02_FADE_TIME]] * 64000U) / (locDimDiv * locNumDimClks));
    if(locDclkps == 0U)
      locDclkps = 1U;
    /* Start BCCU dimming */
    WHITELAMP01 SetDimLevelExponential(&WHITELAMP01 Cfghandle0,
      Dimlevel[DALICG02 Handle0.DALI102 Handle->uiReq_arc_pwr],locDimDiv,locDclkps);
    /* Set DALI fade running status flag */
    DALICG02 Handle0.DALI102 Handle->stStatus info.bFade running = DALICG02 BIT ONE;
```

DALI control gear – dimming with fade time HOT(3/6)

/* Get the BCCU DIMDIV value to use from the LUT */
locDimDiv = DIMDIV_FadeTime_64MHZ[DALICG02_Handle0.DALI102_Handle->aucDALICG02_var[DALICG02_FADE_TIME]];

- > aucDALICG02_var[]: DALI variable array in RAM
 - aucDALICG02_var[0]: Short address
 - aucDALICG02_var[1]: Power-on Level
 - aucDALICG02_var[2]: System failure level
- > To know more, refer to DALICG02.h

h DALICG0	2.h 🕄	
/* DALT	Variables */	
	DALICG02_SHORT_ADDR	0U
#define	DALICG02_PWRON_ARC_LVL	10
#define	DALICG02_SYSTEM_FAIL_LVL	20
#define	DALICG02 MIN LVL	30
#define	DALICG02 MAX LVL	40
#define	DALICG02_FADE_RATE	50

DALI control gear – dimming with fade time HOT(4/6)

- In the previous call back function, we have started the dimming of the lamp
- We need to monitor the status of the dimming in order to update DALI status flags
- This will be done in the 1ms periodic software timer interrupt routine, which we have defined earlier (see HOT2)

DALI control gear – dimming with fade time HOT(5/6)

> Add the following code to the interrupt service routine

```
C Main.c 🔀
  /* Service Routine for 1ms Periodic SW Timer Interrupt */
  void OneMsIntr(void)
  {
      uint32 t bccu fade status;
      /* Stop the timer */
      status = SYSTM002 StopTimer(OneMsTmrId);
      /* Call DALICG02 MainThread to maintain DALI communication*/
      DALICG02 MainThread(&DALICG02 Handle0);
      /* Restart timer */
      status = SYSTM002 StartTimer(OneMsTmrId);
      /* Check if BCCU has completed dimming - only for HW-based dimming */
      bccu_fade_status = BCCUDIM01_FadeCompletionStatus(&BCCUDIM01_Handle0);
      if(!bccu fade status)
          if(DALICG02_Handle0.DALI102_Handle->stStatus info.bFade running)
          {
              /* Reset DALI fade status flag */
              DALICG02 Handle0.DALI102 Handle->stStatus info.bFade running = DALICG02 BIT ZERO;
              /* Update DALI actual level */
              DALICG02_Handle0.DALI102_Handle->uiActual_arc_lvl = DALICG02_Handle0.DALI102_Handle->uiReq_arc_pwr;
              if(DALICG02 Handle0.DALI102 Handle->uiActual arc lvl == 0U)
                  /* Reset DALI light ON status flag if DALI actual level is 0 (OFF) */
                  DALICG02 Handle0.DALI102 Handle->stStatus info.bLight on = DALICG02 BIT ZERO;
```

DALI control gear – dimming with fade time HOT(6/6)

- > Build project 🔟
- > Download code 🎄
- > Start code 🛽 🗈
- > With the Control Device, send commands:
 - Direct Arc Power Command, Data = 1 (Observation: LEDs dim down to min level)
 - QUERY ACTUAL LEVEL (Ans: 1)
 - Direct Arc Power Command, Data = 100 (Observation: LEDs dim up)
 - QUERY ACTUAL LEVEL (Ans: 100)
 - Direct Arc Power Command, Data = 254 (Observation: LEDs dim up to max level)
 - QUERY ACTUAL LEVEL (Ans: 254)

HOT5 – Dimming for 200 ms with fade rate

DALI control gear – dimming with fade rate Translating DALI fade rate

- > To achieve the desired DALI fade rate, the following BCCU parameters need to be determined:
 - DIMDIV
 - LUTs auto-generated in DALICG02
 - dali_faderate_dimdiv_up[]
 - dali_faderate_dimdiv_dwn[]
 - DCLK_PS
 - Pre-determined fix value of 276 (dim up) and 273 (dim down)

DALI control gear – dimming with fade rate HOT(1/3)

- Call back name for dimming for 200 ms with fade rate is DALICG02_DIMMING200MS
- > In Main.c, register call back
 - Format: DALICG02_RegCallBackFunction (DALICG02_HandlePointer, CallBack_Function_Name, CallBack_Name);

🖸 Main.c 🔀 int main(void) ł /* Register call back functions */ DALICG02 RegCallBackFunction(&DALICG02 Handle0,LedDimmingImmediate,DALICG02 DIMMING); DALICG02 RegCallBackEunction(&DALICG02 Handle0,LedDimmingEadeTime,DALICG02 DIMMING DARC); DALICG02 RegCallBackFunction(&DALICG02 Handle0,LedDimming200ms,DALICG02 DIMMING200MS); DAVE_Init(); // Initialization of DAVE Apps

DALI control gear – dimming with fade rate HOT(2/3)

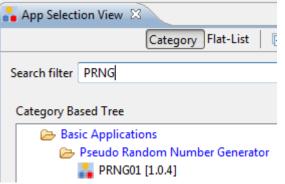
 In Main.c, define call back function

```
🗴 Main.c 🛛
  /* Call Back Function
     Exponential Dimming based on DALI setting
   * This function is used
   */
  void LedDimming200ms(void)
  {
      /* Check if fading is still on-going -> abort if yes */
      if(BCCUDIM01_FadeCompletionStatus(&BCCUDIM01_Handle0))
          BCCUDIM01 AbortDimming(&BCCUDIM01 Handle0,
                  GET_CHANNEL_DIM_MASK(BCCUDIM01_Handle0.DE_Num));
      3
      /* Check dim direction */
      if(DALICG02 Handle0.DALI102 Handle->stDALICG02 flags.bDim dir == 1U)
          /* Dim up */
          if((DALICG02 Handle0.DALI102 Handle->uiActual arc lvl)!=
                  DALICG02 Handle0.DALI102 Handle->aucDALICG02 var[DALICG02 MAX LVL])
              /* Start dim up */
              WHITELAMP01 SetDimLevelExponential(&WHITELAMP01 Cfghandle0,
                      Dimlevel[DALICG02 Handle0.DALI102 Handle->uiReq arc pwr],
                      dali faderate dimdiv up[DALICG02 Handle0.DALI102 Handle->
                                               aucDALICG02_var[DALICG02_FADE_RATE]],276U);
      3
      else
      {
          /* Dim down */
          if((DALICG02 Handle0.DALI102 Handle->uiActual arc lvl)!=
                  DALICG02_Handle0.DALI102_Handle->aucDALICG02_var[DALICG02_MIN_LVL])
              /* Start dim down */
              WHITELAMP01 SetDimLevelExponential(&WHITELAMP01 Cfghandle0,
                      Dimlevel[DALICG02_Handle0.DALI102_Handle->uiReq_arc_pwr],
                      dali faderate dimdiv dwn[DALICG02 Handle0.DALI102 Handle->
                                                aucDALICG02 var[DALICG02 FADE RATE]],273U);
```

DALI control gear – dimming with fade rate HOT(3/3)

- > Build project in the second seco
- > Download code 🎋
- Start code III
- > With the Control Device, send commands:
 - DOWN (10 times)
 - QUERY ACTUAL LEVEL (Ans: 165)
 - UP (10 times)
 - QUERY ACTUAL LEVEL (Ans: 254)

HOT6 – Random addressing



- » "RANDOMISE" command
 - Control gear is expected to generate a new random address (24 bits)
- XMC1x00 has a Pseudo Random Number Generator (PRNG) which provides high quality random data with fast generation times
 - Eliminates the need for algorithm software

DALI control gear Random addressing - HOT (1/5)

 Select PRNG01 from the App Selection View Window and add to project

 Double-click on PRNG01 APP in S/W App Connectivity View to open the UI Editor

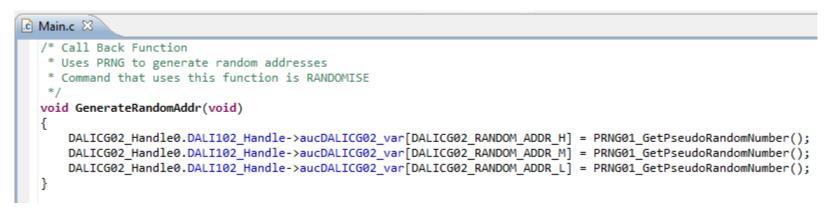
DALI control gear Random addressing – HOT (2/5)

Configure Random Data > Block Size as Byte

PRNG Config PRNG Key (Seed)			
Partial Key Word k1	42405	dec	Ŧ
Partial Key Word k2	42405	dec	*
Partial Key Word k3	42405	dec	-
Partial Key Word k4	42405	dec	-
Partial Key Word k5	42405	dec	-
Random Data Block S	ize		
Byte			-

Generate Code 🐕 >

DALI control gear Random addressing – HOT (3/5)


- Call back name for generating random address is DALICG02_RANDOMISE_ADDR
- > In Main.c, register call back
 - Format: DALICG02_RegCallBackFunction (DALICG02_HandlePointer, CallBack_Function_Name, CallBack_Name);

DALI control gear Random addressing – HOT (4/5)

> In Main.c, define call back function

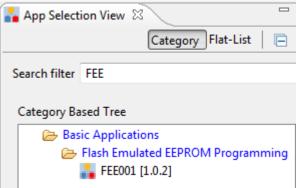
- > PRNG01_GetPseudoRandomNumber()
 - returns random 8-bit number

DALI control gear Random addressing – HOT (5/5)

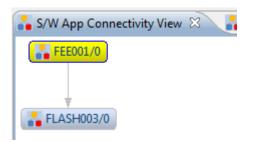
- > Build project 🛅
- > Download code 🎄
- > Start code 🕕
- > With the Control Device, send commands:
 - INITIALISE(0)
 - RANDOMISE
 - QUERY RANDOM ADDRESS (H)
 - QUERY RANDOM ADDRESS (M)
 - QUERY RANDOM ADDRESS (L)

HOT7 – Persistent memory

DALI control gear Persistent memory – flash EEPROM emulation



- Persistent memory:
 - Memory banks
 - Some DALI variables e.g. Short address, DTR etc.
- > Persistent memory is realized with Flash EEPROM Emulation
 - DAVETM APP: FEE001
- DALICG02 also stores Memory banks 0 & 1 (up to 256 bytes) and DALI variables in RAM
 - Copies memory and variables from flash to RAM in DALI initialization
 - Copies memory and variables to flash whenever there are updates in RAM


DALI control gear Persistent memory – HOT (1/14)

 Select FEE001 from the App Selection View Window and add to project

 Double-click on FEE001 APP in S/W App Connectivity View to open the UI Editor

DALI control gear Persistent memory – HOT (2/14)

- > Under Bank Configuration tab:
 - Configure FEE Total Size Required to 2048 bytes
 - Enable EraseAll Feature

FEE001_0 🛛			
- Bank Size Configuration -			
Fee Total Size Required	2048	dec	Ŧ
Actual Fee Total Size	2048	dec	Ŧ
FEE EraseAll Feature			
Enable			
Disable Garbage Collection	on Option		
🔲 Disable			
<			
Bank Configuration Block	Configuration		

DALI control gear Persistent memory – HOT (3/14)

- > Under Block Configuration tab:
 - Configure Maximum Blocks Required to 3 blocks
 - Set up the individual blocks as follows:
 - Block1 ID: 1, Block1 Size: 256 bytes (this is for Memory Bank 0)
 - Block2 ID: 2, Block2 Size: 256 bytes (this is for Memory Bank 1)
 - Block3 ID: 3, Block3 Size: 30 bytes (this is for DALI variables)

Maximum B	locks Required 3		de	ec 🔻		
Block Conf	igurations					
Block1 Id	1	dec	-	Block1 Size	256	dec 🔻
Block2 Id	2	dec	T	Block2 Size	256	dec
Block3 Id	3	dec	-	Block3 Size	30	dec

DALI control gear Persistent memory – HOT (4/14)

- Reading of memory banks 0 and 1 are handled by DALICG02 APP
- > Writing to memory banks 0 and 1 is via call back
- Call back name for writing to memory banks is DALICG02_MEMCALLBACK_ADDR
- > In Main.c, register call back

DALI control gear Persistent memory – HOT (5/14)

> In Main.c, define call back function

```
🖸 Main.c 🔀
  /* Call Back Function
   * Write to DALI Memory Location
   */
  void WriteToMemBank(void)
      uint16 t count;
      Clear ReadWriteBuffer();
      if(DALICG02 Handle0.DALI102 Handle->uiDTR1 == DALICG02 MEMORY BANK0)
      Ł
          for(count=0;count<DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[DALICG02_LAST_MEM_ADDR];count++)
              ReadWriteBuffer[count] = (uint8 t)DALICG02 Handle0.DALI102 Handle->aucDALICG02 memory bank0[count];
          FEE001 Write(1U, ReadWriteBuffer);
      else if(DALICG02 Handle0.DALI102 Handle->uiDTR1 == DALICG02 MEMORY BANK1)
          for(count=0;count<DALICG02 Handle0.DALI102 Handle->aucDALICG02 memory bank1[DALICG02 LAST MEM ADDR];count++)
              ReadWriteBuffer[count] = (uint8 t)DALICG02 Handle0.DALI102 Handle->aucDALICG02 memory bank1[count];
          FEE001 Write(2U, ReadWriteBuffer);
```

DALI control gear Persistent memory – HOT (6/14)

ReadWriteBuffer[count] = (uint8_t)DALICG02_Handle0.

- uint8_t ReadWriteBuffer[256U]: buffer for reading and writing data to and from Flash
 - Initialize in Main.c

Clear_ReadWriteBuffer();

- > Function to clear the read write buffer
 - define function in Main.c

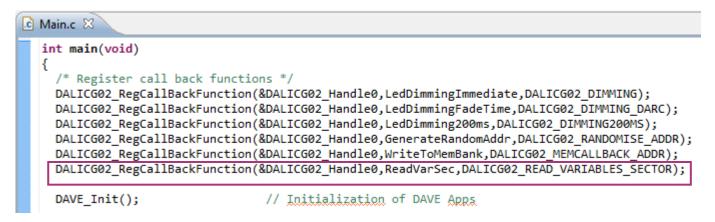
```
/* Function to clear and read write buffer */
void Clear_ReadWriteBuffer(void)
{
    uint16_t i;
    for(i=0;i<256;i++)
    {
        ReadWriteBuffer[i] = 0U;
    }
}</pre>
```


DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[count]; DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank1[count];

- > RAM copies of memory banks 0 & 1
 ,
 FEE001_Write(1, ReadWriteBuffer);
- > FEE001 API for writing Flash block with buffer data

DALI control gear Persistent memory – HOT (8/14)

- > Contents of memory banks 0 & 1 have to be initialized manually in Main.c
 - Example code:


C Main.c 🛛			
	DAVE_Init(); // Initialization of DAVE Apps		
	/* Here: Initialise/Write your Memory Bank 0 bytes */		
	DALICG02_Handle0.DALI102_Handle->uiDTR1 = DALICG02_MEMORY_BANK0; DALICG02 Handle0.DALI102 Handle->aucDALICG02 memory_bank0[0x00U] = 0x0F;		
	DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[0x02U] = 0x01; DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[0x03U] = 0x55;		
	DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[0x04U] = 0x55;		
	<pre>DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[0x05U] = 0x55; DALICG02 Handle0.DALI102 Handle->aucDALICG02 memory bank0[0x06U] = 0x55;</pre>		
	DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[0x070] = 0x55; DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[0x080] = 0x55;		
	DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[0x09U] = 0x55;		
	<pre>DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[0x0AU] = 0x55; DALICG02 Handle0.DALI102 Handle->aucDALICG02 memory bank0[0x0BU] = 0x55;</pre>		
	DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[0x0CU] = 0x55; DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[0x0DU] = 0x55;		
	DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[0x0EU] = 0x55;		
	<pre>DALICG02_Handle0.DALI102_Handle->aucDALICG02_memory_bank0[0x01U] = DALICG02_uiMem_bank_chksum(&DALICG02_Handle0); WriteToMemBank();</pre>		

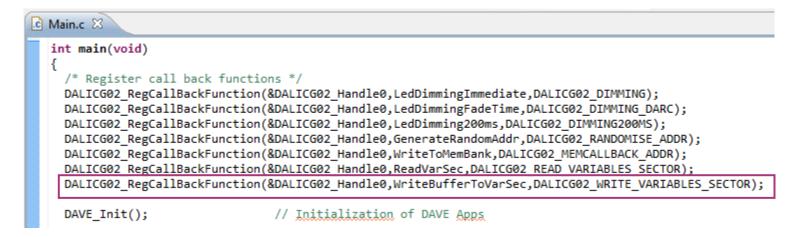
- > DALICG02_uiMem_bank_chksum()
 - Function that calculates the checksum of memory bank 0 or 1 (based on DTR1 value)

DALI control gear Persistent memory – HOT (9/14)

- Reading of and writing to DALI variables flash block are via call backs
- Call back name for reading of DALI variables flash block is DALICG02_READ_VARIABLES_SECTOR
- > In Main.c, register call back

DALI control gear Persistent memory – HOT (10/14)

> In Main.c, define call back function


```
Main.c X3
/* Call Back Function
* Read Variables Flash Sector (Flash EEPROM Emulation)
*/
void ReadVarSec(void)
{
    uint8_t count;
    Clear_ReadWriteBuffer();
    status = FEE001_Read(3U,0U,ReadWriteBuffer,30U);
    for(count=0;count<30;count++)
    {
        DALICG02_Handle0.DALI102_Handle->aucDALICG02_FlashVariables_Sector_tbl[count] = (uint32_t)ReadWriteBuffer[count];
    }
}
```

- > FEE001_Read()
 - FEE001 API for reading of flash block
- > aucDALICG02_FlashVariables_Sector_tbl[]
 - Copy of DALI variables in RAM

DALI control gear Persistent memory – HOT (11/14)

- Call back name for writing to DALI variables flash block is DALICG02_WRITE_VARIABLES_SECTOR
- > In Main.c, register call back

DALI control gear Persistent memory – HOT (12/14)

> In Main.c, define call back function

```
Main.c X

/* Call Back Function
 * Write to Variables Flash Sector (Flash EEPROM Emulation)
 */
void WriteBufferToVarSec(void)
{
    uint8_t count;
    Clear_ReadWriteBuffer();
    ReadWriteBuffer[0U] = DALICG02_FLASH_SECT_NEW_DATA;
    for(count=1;count<28;count++)
    {
        ReadWriteBuffer[count] = (uint8_t)DALICG02_Handle0.DALI102_Handle->aucDALICG02_FlashVariables_Sector_tbl[count];
    }
    ReadWriteBuffer[29U] = DALICG02_FLASH_SECT_PROG;
    status = FEE001_Write(3U, ReadWriteBuffer);
}
```

- Macros defined for identifying new data programmed into flash block
 - DALICG02_FLASH_SECT_NEW_DATA (0x00) -> first byte of flash block
 - DALICG02_FLASH_SECT_PROG (0x81) -> last byte of flash block

DALI control gear Persistent memory – HOT (13/14)

- > Open DAVE3.c
 - a 😂 DALICG02_Example01_XMC12 [Act
 - Binaries
 - Includes
 - a 📂 Dave
 - Cache
 - 🔺 ᇋ Generated
 - 👂 🗁 inc
 - a 🗁 src
 - BCCUCH01
 - BCCUDIM01
 - BCCUGLOBAL
 - CCU4GLOBAL
 - CLK002
 CLK02
 CLK02
 CLK02
 CLK02
 CLK02
 CLK02
 CLK02
 - DALICG02
 - DAVESupport
 DAVE3.c
 MULTIPLEXER.c

- In DAVE_Init() function, check that FLASH003_Init() and FEE001_Init() are called before DALICG02_Init()
 - If not, manually rearrange the order

```
// Initialization of app 'MANC01'
MANC01_Init();
```

```
// Initialization of app 'FLASH003'
FLASH003_Init();
```

```
// Initialization of app 'FEE001'
FEE001_Init();
```

```
// Initialization of app 'DALICG02'
DALICG02_Init();
```

```
// Initialization of app 'PRNG01'
PRNG01_Init();
```

```
// MUX configurations
DAVE_MUX_Init();
} // End of function DAVE_Init
```

DALI control gear Persistent memory – HOT (14/14)

- > Build project 🔟
- > Download code 🏇
- > Start code []>
- With the Control Device, send commands:
 - DTR = 2
 - STORE DTR AS SHORT ADDRESS
 - INITIALISE(0)
 - QUERY SHORT ADDRESS (Ans: 2)
 - Cycle power
 - INITIALISE(0)
 - QUERY SHORT ADDRESS (Ans: 2)

General information

> Where to buy kit?

<u>http://www.infineon.com/cms/en/product/evaluation-</u> boards/KIT_XMC1X_AK_LED_001/productType.html?productType=db 3a30443ba77cfd013baec9c7880ca9</u>

- For latest updates, please refer to: <u>http://www.infineon.com/xmc1000</u>
- > For support:

http://www.infineonforums.com

Resource listing

→ DALI Control Gear DAVETM project

http://www.infineon.com/cms/en/product/promopages/aim-mc/dave_downloads.html

> LED Lighting Application Kit documentation

http://www.infineon.com/cms/en/product/evaluationboards/KIT_XMC1X_AK_LED_001/productType.html?productType=db3a30443ba77cfd013ba ec9c7880ca9

> Tridonic DALI USB

http://www.tridonic.com/com/en/products/2622.asp

> Tridonic DALI PS1

http://www.tridonic.com/com/en/products/2626.asp

> Master CONFIGURATOR

http://www.tridonic.com/com/en/software-masterconfigurator.asp

Support material

Collaterals and Brochures	 > Product Briefs > Selection Guides > Application Brochures > Presentations > Press Releases, Ads 	www.infineon.com/XMC
Technical Material	 Application Notes Technical Articles Simulation Models Datasheets, MCDS Files PCB Design Data 	 > <u>www.infineon.com/XMC</u> > <u>Kits and Boards</u> > <u>DAVE™</u> > <u>Software and Tool Ecosystem</u>
Videos Play	 Technical Videos Product Information Videos 	 Infineon Media Center XMC Mediathek
Contact Support	> Forums> Product Support	 Infineon Forums Technical Assistance Center (TAC)

Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of noninfringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

Part of your life. Part of tomorrow.

