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2 Application: Visual attention + 14

1 Bayesian inference

1.1 Discrete random variables and basic Bayesian formalism

Joint probability

1.1.1 Exercise: Heads-tails-tails-heads

1. With four tosses of a fair coin, what is the probability to get exactly heads-tails-tails-heads, in this
order?

Solution: Each toss is independent of the others and the probability for each toss to get the desired
result is 1

2 . Thus, the probability to get exactly heads-tails-tails-heads is 1
2 ×

1
2 ×

1
2 ×

1
2 = 1

16 . This, by
the way, holds for any concrete combination of length four.

2. With four tosses of a fair coin, what is the probability to get each heads and tails twice, regardless of
the order?

Solution: The probability for any particular combination of four times heads or tails is 1
16 , see above.

Since there are six different ways to get heads and tails twice (namely tthh, thth, thht, htth, htht,
hhtt), the probability to get any of these is 6

16 = 3
8 .

Total probability

1.1.2 Exercise: Election and Bridge

Three candidates run for an election as a major in a city. According to a public opinion poll their chances
to win are 0.25, 0.35 und 0.40. The chances that they build a bridge after they have been elected are 0.60,
0.90 und 0.80. What is the probability that the bridge will be build after the election.

Solution: Let C, c ∈ {1, 2, 3}, be the random variable indicating the winning candidate and B, b ∈ {t, f},
the random variable indicating whether the bridge will be built. Then the total probability that the bridge
will be built is

P (B = t) =

3∑
c=1

P (B = t|c)P (c) = 0.60× 0.25 + 0.90× 0.35 + 0.80× 0.40 = 0.785 .

Bayes formula

1.1.3 Exercise: Bayes theorem in four variables

Consider four random variables A,B,C, and D. Given are the (marginal) joint probabilities for each pair of
variables, i.e. probabilities of the form P (A,B), P (A,C) etc., and the conditional probability P (A,B|C,D).

Calculate P (A,C|B,D).

Solution:

P (A,C|B,D) =
P (A,B,C,D)

P (B,D)
(1)

=
P (A,B|C,D)P (C,D)

P (B,D)
. (2)
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1.1.4 Exercise: Airport security

On an airport all passengers are checked carefully. Let T with t ∈ {0, 1} be the random variable indicating
whether somebody is a terrorist (t = 1) or not (t = 0) and A with a ∈ {0, 1} be the variable indicating
arrest. A terrorist shall be arrested with probability P (A = 1|T = 1) = 0.98, a non-terrorist with probability
P (A = 1|T = 0) = 0.001. One in hundredthousand passengers is a terrorist, P (T = 1) = 0.00001. What is
the probability that an arrested person actually is a terrorist?

Solution: This can be solved directly with the Bayesian theorem.

P (T = 1|A = 1) =
P (A = 1|T = 1)P (T = 1)

P (A = 1)
(1)

=
P (A = 1|T = 1)P (T = 1)

P (A = 1|T = 1)P (T = 1) + P (A = 1|T = 0)P (T = 0)
(2)

=
0.98× 0.00001

0.98× 0.00001 + 0.001× (1− 0.00001)
= 0.0097 (3)

≈ 0.00001

0.001
= 0.01 (4)

It is interesting that even though for any passenger it can be decided with high reliability (98% and 99.9%)
whether (s)he is a terrorist or not, if somebody gets arrested as a terrorist, (s)he is still most likely not a
terrorist (with a probability of 99%).

1.1.5 Exercise: Drug Test

A drug test (random variable T ) has 1% false positives (i.e., 1% of those not taking drugs show positive in
the test), and 5% false negatives (i.e., 5% of those taking drugs test negative). Suppose that 2% of those
tested are taking drugs. Determine the probability that somebody who tests positive is actually taking drugs
(random variable D).

Solution:

T = p means Test positive,
T = n means Test negative,
D = p means person takes drug,
D = n means person does not take drugs

We know:

P (T = p|D = n) = 0.01 (false positives) (1)

(false negatives) P (T = n|D = p) = 0.05 =⇒ P (T = p|D = p) = 0.95 (true positives) (2)

P (D = p) = 0.02 =⇒ P (D = n) = 0.98 (3)

(4)

We want to know the probability that somebody who tests positive is actually taking drugs:

P (D = p|T = p) =
P (T = p|D = p)P (D = p)

P (T = p)
(Bayes theorem) (5)

We do not know P (T = p):

P (T = p) = P (T = p|D = p)P (D = p) + P (T = p|D = n)P (D = n) (6)
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We get:

P (D = p|T = p) =
P (T = p|D = p)P (D = p)

P (T = p)
(7)

=
P (T = p|D = p)P (D = p)

P (T = p|D = p)P (D = p) + P (T = p|D = n)P (D = n)
(8)

=
0.95 · 0.02

0.95 · 0.02 + 0.01 · 0.98
(9)

= 0.019/0.0288 ≈ 0.66 (10)

There is a chance of only two thirds that someone with a positive test is actually taking drugs.

An alternative way to solve this exercise is using decision trees. Let’s assume there are 1000 people tested.
What would the result look like?

Figure: (Uknown)

Now we can put this together in a contingency table:

D = p D = n sum
T = p 19 9.8 28.8
T = n 1 970.2 971.2
sum 20 980 1000

To determine the probability that somebody who tests positive is actually taking drugs we have to calculate:

taking drugs and positive test

all positive test
=

19

28.8
≈ 0.66 (11)
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1.1.6 Exercise: Oral Exam

In an oral exam you have to solve exactly one problem, which might be one of three types, A, B, or C, which
will come up with probabilities 30%, 20%, and 50%, respectively. During your preparation you have solved
9 of 10 problems of type A, 2 of 10 problems of type B, and 6 of 10 problems of type C.

(a) What is the probability that you will solve the problem of the exam?

Solution: The probability to solve the problem of the exam is the probability of getting a problem of
a certain type times the probability of solving such a problem, summed over all types. This is known
as the total probability.

P (solved) = P (solved|A)P (A) + P (solved|B)P (B) + P (solved|C)P (C) (1)

= 9/10 · 30% + 2/10 · 20% + 6/10 · 50% (2)

= 27/100 + 4/100 + 30/100 = 61/100 = 0.61 . (3)

(b) Given you have solved the problem, what is the probability that it was of type A?

Solution: For this to answer we need Bayes theorem.

P (A|solved) =
P (solved|A)P (A)

P (solved)
(4)

=
9/10 · 30%

61/100
=

27/100

61/100
=

27

61
= 0.442... . (5)

(6)

So we see that given you have solved the problem, the a posteriori probability that the problem was of
type A is greater than its a priori probability of 30%, because problems of type A are relatively easy
to solve.

1.1.7 Exercise: Radar station

Consider a radar station monitoring air traffic. For simplicity we chunk time into periods of five minutes and
assume that they are independent of each other. Within each five minute period, there may be an airplane
flying over the radar station with probability 5%, or there is no airplane (we exclude the possibility that
there are several airplanes). If there is an airplane, it will be detected by the radar with a probability of 99%.
If there is no airplane, the radar will give a false alarm and detect a non-existent airplane with a probability
of 10%.

1. How many airplanes fly over the radar station on average per day (24 hours)?

Solution: There are 24×12 = 288 five-minute periods per day. In each period there is a probability of
5% for an airplane being present. Thus the average number of airplanes is 288×5% = 288×0.05 = 14.4.

2. How many false alarms (there is an alarm even though there is no airplane) and how many false
no-alarms (there is no alarm even though there is an airplane) are there on average per day.

Solution: On average there is no airplane in 288 − 14.4 of the five-minute periods. This times the
probability of 10% per period for a false alarm yields (288 − 14.4) × 10% = 273.6 × 0.1 = 27.36 false
alarms.

On average there are 14.4 airplanes, each of which has a probability of 1% of getting missed. Thus the
number of false no-alarms is 14.4× 1% = 14.4× 0.01 = 0.144.
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3. If there is an alarm, what is the probability that there is indeed an airplane?

Solution: For this question we need Bayes theorem.

P (airplane|alarm) (1)

=
P (alarm|airplane)P (airplane)

P (alarm)
(2)

=
P (alarm|airplane)P (airplane)

P (alarm|airplane)P (airplane) + P (alarm|no airplane)P (no airplane)
(3)

=
0.99 · 0.05

0.99 · 0.05 + 0.1 · (1− 0.05)
= 0.342... (4)

≈ 0.05

0.05 + 0.1
= 0.333... . (5)

It might be somewhat surprising that the probability of an airplane being present given an alarm is
only 34% even though the detection of an airplane is so reliable (99%). The reason is that airplanes are
not so frequent (only 5%) and the probability for an alarm given no airplane is relatively high (10%).

Miscellaneous

1.1.8 Exercise: Gambling machine

Imagine a simple gambling machine. It has two display fields that can light up in red or green. The first one
lights up first with green being twice as frequent as red. The color of the second field depends on the first
one. If the first color is red, green appears five times as often as red in the second field. If the first color is
green, the two colors are equally likely.

A game costs 8e and goes as follows. The player can tip right in the beginning on both colors, or he can
tip the second color after he sees the first color, or he can tip not at all. He is allowed to decide on when
he tips during the game. The payout for the three tip options is different of course, highest for tipping two
colors and lowest for no tip at all.

1. To get a feeling for the question, first assume for simplicity that each color is equally likely and the
second color is independent of the first one. How high must the payout for each of the three tip options
be, if the tip is correct, to make the game just worth playing?

Solution: If all colors are equally likely, then one would tip a two-color combination correctly with
probability 1/4, the second color alone with 1/2, and no color with certainty. Thus the payout if the
tip is correct must be a bit more than 32e, 16e, and 8e, respectively, to make the game worth playing.

2. Do the chances to win get better or worse if the colors are not equally likely anymore but have different
probabilities and you know the probabilities? Does it matter whether the two fields are statistically
independent or not?

Solution: If the probabilities different, then some combinations are more frequent than others. If one
systematically tips these more frequent combinations, the mean payout is increased. Thus, chances get
better.

3. Given the payouts for the three tip options are 20e, 12e, and 7e. What is the optimal tip strategy
and what is the mean payout?

Solution: The solution to this question can be put in a table.
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cost of one game -8e
best tip now green-red or green-green

mean payout for best tip now +6/18·20e = +6 2
3e

mean payout for best tip later +1/3·10e +2/3·7e = +24/3e = +8e
prob. of first color 1/3 red 2/3 green

best tip now green red or green
mean payout for best tip now +5/6·12e = +10e +3/6·12e = +6e
mean payout for no tip now +7e +7e

prob. of second color given first 1/6 red 5/6 green 3/6 red 3/6 green
prob. of color combination 1/18 red-red 5/18 red-green 6/18 green-red 6/18 green-green

payout for no tip +7e +7e +7e +7e

Thus the best strategy is not to tip initially and then tip green as the second color if red comes up as
the first color. If green comes up as the first color, don’t tip at all. The mean payout of this optimal
strategy is 8e, which just cancels the costs of the game.

1.1.9 Exercise: Probability theory

1. A friend offers you a chance to win some money by betting on the pattern of heads and tails shown on
two coins that he tosses hidden from view. Sometimes he is allowed to give you a hint as to the result,
sometimes not. Calculate the following probabilities:

(a) If your friend stays silent, the probability that the coins show TT.

(b) If your friend stays silent, the probability that the coins show HT in any order.

(c) If you friend tells you that at least one of the coins is an H, the probability that the coins show
HH.

2. Your friend now invents a second game. This time he tosses a biased coin which can produce three
different results. The coin shows an H with probability 0.375 and a T with probability 0.45. The rest
of the time the coin shows neither an H nor a T but lands on its side. A round of the game consists
of repeatedly tossing the coin until either an H or a T comes up, whereupon the round ends.

(a) Calculate the probability the coin needs to be tossed more than three times before either an H or
a T comes up and the round ends.

(b) Your friend proposes that if a T comes up you have to pay him 8 Euros, while if an H comes up
he has to pay you 10 Euros. Calculate the expectation value of your winnings per round when
playing this game. Would you agree to play using these rules?

(c) Assume you agree with your friend that if a T comes up you have to pay him 10 Euros. What is
the minimum amount you should receive if an H comes up in order to give a positive expectation
value for your winnings per round?

(d) Your friend now produces a coin which is always either an H or a T. In other words, it cannot
land on its side. He claims that using this new coin eliminates the need to re-toss the coin without
changing the statistics of the game in any other way. Assuming this is true, what is the probability
of getting an H and a T on this new coin?

Solution: Not available!
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1.2 Partial evidence

1.3 Expectation values

1.4 Continuous random variables

1.4.1 Exercise: Probability densities

Let w, s, and G be random variables indicating body weight, size, and gender of a person. Let p(w, s|G = f)
and p(w, s|G = m) be the conditional probability densities over weight and size for females (f) and males
(m), respectively, in the shape of Gaussians tilted by 45°, see figure.

165 cm

67 kg

177 cm

73 kg

weight weight

sizesize

females males

© CC BY-SA 4.0

1. What is the probability P (w = 50kg, s = 156cm|G = f)?

Solution: The probability that the weight is exactly 50kg and the size exactly 156cm is zero.

2. What is the probability P (w ∈ [49kg, 51kg], s ∈ [154cm, 158cm]|G = f)?

Hint: You don’t need to calculate a value here. Give an equation.

Solution: This probability can be calculated by integrating the probability densities over the respective
intervals.

P (w ∈ [49kg, 51kg], s ∈ [154cm, 158cm]|G = f) =

∫ 51

49

∫ 158

154

p(w, s|G = f) dsdw . (1)

3. Are weight and size statistically independent? Explain your statement.

Solution: No, tall persons are typically heavier than short persons.

4. Can you derive variables that are statistically independent?

Solution: Yes, for instance the weighted sum of weight and size in the principal direction of the
Gaussians is statistically independent of the weighted sum orthogonal to that direction.
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1.4.2 Exercise: Maximum likelihood estimate

Given N independent measurements x1, . . . , xN . As a model of this data we assume the Gaußian distribution

p(x) :=
1√

2πσ2
e−

(x−µ)2

2σ2

1. Determine the probability density function p(x1, . . . , xN ) of the set of data points x1, . . . , xN given the
two parameters µ, σ2.

Solution: The probability density function is simply the product of the probabilities of the individual
data points, which is given by the Gaußian.

p(x1, . . . , xN ) =

N∏
i=1

1√
2πσ2

e−
(xi−µ)

2

2σ2 (1)

=
1

(
√

2πσ2)N
e−

∑N
i=1(xi−µ)

2

2σ2 . (2)

2. Determine the natural logarithm (i.e. ln) of the probability density function of the data given the
parameters.

Solution:

ln(p(x1, . . . , xN )) = ln

(
1

(
√

2πσ2)N
e−

∑N
i=1(xi−µ)

2

2σ2

)
(3)

= −
∑N
i=1(xi − µ)2

2σ2
− N

2
ln
(
2πσ2

)
. (4)

3. Determine the optimal parameters of the model, i.e. the parameters that would maximize the proba-
bility density determined above. It is equivalent to maximizing the logarithm of the pdf (since it is a
strictly monotonically increasing function).

Hint: Calculate the derivative wrt the parameters (i.e. ∂
∂µ and ∂

∂(σ2) ).

Solution: Taking the derivatives and setting them to zero yields

0
!
=

∂ ln(p(x1, . . . , xN ))

∂µ

(4)
=

∑N
i=1(xi − µ)

σ2
(5)

⇐⇒ µ =
1

N

N∑
i=1

xi , (6)

0
!
=

∂ ln(p(x1, . . . , xN ))

∂(σ2)

(4)
=

∑N
i=1(xi − µ)2

2σ4
− N

2

2π

2πσ2
(7)

⇐⇒ σ2 =
1

N

N∑
i=1

(xi − µ)2 . (8)

Interestingly, µ becomes simply the mean and σ2 the variance of the data.

Extra question: Why is often a factor of 1/(N − 1) used instead of 1/N in the estimate of the
variance?

Extra question: How does p(x1, ..., xN ) depend on the number of data points?

Extra question: Can you make fits for different distributions comparable?
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1.4.3 Exercise: Medical diagnosis

Imagine you go to a doctor for a check up to determine your health status H, i.e. whether you are sick
(H = sick) or well (H = well). The doctor takes a blood sample and measures a critical continuous variable
B. The probability distribution of the variable depends on your health status and is denoted by p(B|H),
concrete values are denoted by b. The a priori probability for you to be sick (or well) is indicated by P (H).

In the following always arrive at equations written entirely in terms of p(B|H) and P (H). B and H may, of
course, be replaced by concrete values.

1. What is the probability that you are sick before you go to the doctor?

Solution: If you do not know anything about B, the probability that you are sick is obviously the a
priori probability P (H = sick).

2. If the doctor has determined the value of B, i.e. B = b, what is the probability that you are sick? In
other words, determine P (H = sick|B = b).

Solution: We use Bayesian theory.

P (H = sick|B = b) =
p(b|sick)P (sick)

p(b)
(1)

=
p(b|sick)P (sick)

p(b|sick)P (sick) + p(b|well)P (well)
. (2)

3. Assume the doctor diagnoses that you are sick if P (H = sick|B = b) > 0.5 and let D be the variable
indicating the diagnosis. Given b, what is the probability that you are being diagnosed as being sick.
In other words, determine P (D = sick|B = b).

Solution: For a given b one can calculate a concrete probability for being sick, i.e. P (H = sick|B = b).
Now since the diagnosis is deterministic we have

P (D = sick|B = b) = Θ(P (H = sick|B = b)− 0.5) , (3)

with the Heaviside step function defined as Θ(x) = 0 if x < 0, Θ(x) = 0.5 if x = 0, and Θ(x) = 1
otherwise.

4. Before having any concrete value b, e.g. before you go to the doctor, what is the probability that you will
be diagnosed as being sick even though you are well? In other words, determine P (D = sick|H = well).

Solution: We use the rule for the total probability.

P (D = sick|H = well)

=

∫
P (D = sick|b) p(b|H = well) db (4)

(3)
=

∫
Θ(P (H = sick|b)− 0.5) p(b|H = well) db (5)

(2)
=

∫
Θ

(
p(b|sick)P (sick)

p(b|sick)P (sick) + p(b|well)P (well)
− 0.5

)
p(b|H = well) db . (6)

Extra question: Here we have seen how to turn a continuous random variable into a descrete random
variable. How do you describe the distribution of a continuous random variable that deterministically
assumes a certain value?
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1.4.4 Exercise: Bayesian analysis of a face recognition system

You run a company that sells a face recognition system called ’faceIt’. It consists of a camera and a software
system that controls an entry door. If a person wants to identify himself to the system he gets a picture
taken with the camera, the probe picture, and that picture is compared to a gallery of stored pictures, the
gallery pictures. FaceIt gives a scalar score value between 0 and 1 for each comparison. If the probe picture
and the gallery picture show the same person, the score is distributed like

p(s|same) = αs exp(λss) , (1)

if they show different persons, the score is distributed like

p(s|different) = αd exp(−λds) (2)

with some positive decay constants λ{s,d} and suitable normalization constants α{s,d}. All comparisons shall
be independent of each other and the score depends only on whether the probe picture and the gallery
picture show the same person or not.

1. Draw the score distributions and provide an intuition for why these pdfs might be reasonable.

Solution:

−1

0

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1

s

p(s|same)
p(s|different)

© CC BY-SA 4.0

The pdfs are reasonable because if the persons are identical you get high probability densities for high
scores and if the persons are identical you get high probability densities for low scores.

2. Determine the normalization constants α{s,d} for given decay constants λ{s,d}. First give general
formulas and then calculate concrete values for λs = λd = ln(1000)

Solution: The normalization constant can be derived from the condition that the probability density
function integrated over the whole range should be 1.

1
!
=

∫ 1

0

p(s|same) ds (3)

=

∫ 1

0

αs exp(λss) ds = αs

[
1

λs
exp(λss)

]1
0

=
αs
λs

(exp(λs)− 1) (4)

⇐⇒ αs =
λs

exp(λs)− 1
=

ln(1000)

1000− 1
≈ 0.00691 , (5)

and similarly αd =
−λd

exp(−λd)− 1
=

ln(0.001)

0.001− 1
≈ 6.91 . (6)

With these constants we find that the two pdfs are actually mirrored versions of each other, since the
exponents are the negative of each other and the normalization scales them to equal amplitude.

11
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3. What is the probability that the score s is less (or greater) than a threshold θ if the probe picture and
the gallery picture show the same person, and what if they show different persons. First give general
formulas and then calculate concrete values for θ = 0.5.

Solution: This is straight forward. One simply has to integrate from the threshold to the upper or
lower limit of the probability distribution.

P (s < θ|same) =

∫ θ

0

p(s|same) ds = αs

[
1

λs
exp(λss)

]θ
0

(7)

=
αs
λs

(exp(λsθ)− 1) =
exp(λsθ)− 1

exp(λs)− 1
≈ 0.031 , (8)

P (s > θ|same) = 1− P (s < θ|same) =
(exp(λs)− 1)− (exp(λsθ)− 1)

exp(λs)− 1
(9)

=
exp(λs)− exp(λsθ)

exp(λs)− 1
≈ 0.969 , (10)

P (s < θ|different) =
αd
−λd

(exp(−λdθ)− 1) =
exp(−λdθ)− 1

exp(−λd)− 1
≈ 0.969 , (11)

P (s > θ|different) = 1− P (s < θ|different) =
exp(−λd)− exp(−λdθ)

exp(−λd)− 1
≈ 0.031 . (12)

Notice that due to the finite probability densities it does not make any difference whether we write <
and > or < and ≥ or ≤ and > in the probabilites on the lhs (left hand side).

4. Assume the gallery contains N pictures of N different persons (one picture per person). If N concrete
score values si, i = 1, ..., N , are given and sorted to be in increasing order. What is the probability that
gallery picture j shows the correct person? Assume that the probe person is actually in the gallery
and that the a priori probability for all persons is the same. Give a general formula and calculate a
concrete value for N = 2 and s1 = 0.3 and s2 = 0.8, and for s1 = 0.8 and s2 = 0.9 if j = 2.
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Solution: This can be solved directly with Bayes’ theorem.

P (samej ,differenti 6=j |s1, ..., sN ) (13)

=
p(s1, ..., sN |samej ,differenti 6=j)P (samej ,differenti 6=j)

p(s1, ..., sN )
(14)

=
p(sj |same)

(∏
i6=j p(si|different)

)
(1/N)

p(s1, ..., sN )
(15)

(since the scores are independent of each other and

the a priory probability is the same for all gallery images)

(1,2)
=

αs exp(λssj)
(∏

i 6=j αd exp(−λdsi)
)

(1/N)

p(s1, ..., sN )
(16)

=
αsα

N−1
d exp(λssj) exp(λd(sj − S))(1/N)

p(s1, ..., sN )
(17)(

with S :=
∑
i

si

)
(18)

=
αsα

N−1
d exp((λs + λd)sj) exp(−λdS)(1/N)

p(s1, ..., sN )
(19)

=
αsα

N−1
d exp((λs + λd)sj) exp(−λdS)(1/N)∑

j′ αsα
N−1
d exp((λs + λd)sj′) exp(−λdS)(1/N)

(20)

(since P must be normalized to 1)

=
exp((λs + λd)sj)∑
j′ exp((λs + λd)sj′)

. (21)

This is a neat formula. It is instructive to calculate the ratio between the probabilty that j is the
correct gallery image and that k is the correct gallery image, which is

P (samej ,differenti 6=j |s1, ..., sN )

P (samek,differenti 6=k|s1, ..., sN )

(21)
=

exp((λs + λd)sj)

exp((λs + λd)sk)
(22)

= exp((λs + λd)(sj − sk)) . (23)

We see that the ratio only depends on the difference between the score values but not on the values
themselves. Thus, for the two examples given above it is clear that gallery image 2 is more likely the
correct one in the first example even though its absolute score value is greater in the second example.
We can verify this by calculating the actual probabilities.

P (different1, same2|s1 = 0.3, s2 = 0.8)
(21)
=

exp(2 ln(1000)0.8)

exp(2 ln(1000)0.3) + exp(2 ln(1000)0.8)
(24)

≈ 63096

63159
≈ 0.9990 , (25)

P (different1, same2|s1 = 0.8, s2 = 0.9)
(21)
=

exp(2 ln(1000)0.9)

exp(2 ln(1000)0.8) + exp(2 ln(1000)0.9)
(26)

≈ 251189

314284
≈ 0.7992 . (27)

5. Without any given concrete score values, what is the probability that a probe picture of one of the
persons in the gallery is recognized correctly if one simply picks the gallery picture with the highest
score as the best guess for the person to be recognized. Give a general formula.
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Solution: The probability of correct recognition is the probability density that the correct gallery
picture gets a certain score s′, i.e. p(s′|same), times the probability that all the other gallery pictures
get score below s′, i.e. P (s < s′|different)(N−1), integrated over all possible scores s′. Note that the
integration turns the probability density p(s′|same) into a proper probability.

P (correct recognition) (28)

=

∫ 1

0

p(s′|same)P (s < s′|different)(N−1) ds′ (29)

=

∫ 1

0

αs exp(λss
′)

(
exp(−λds′)− 1

exp(−λd)− 1

)(N−1)

ds′ (30)

=

∫ 1

0

λs exp(λss
′)

exp(λs)− 1

(
exp(−λds′)− 1

exp(−λd)− 1

)(N−1)

ds′ (this is ok as a solution) (31)

=
λs

(exp(λs)− 1)(exp(−λd)− 1)(N−1)︸ ︷︷ ︸
=:A

∫ 1

0

exp(λss
′)(exp(−λds′)− 1)(N−1) ds′ (32)

= ... (one could simplify even further) (33)

1.5 A joint as a product of conditionals

1.6 Marginalization

2 Application: Visual attention +
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