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INTRODUCTION

The shelf-break frontal area in the Argentine Sea is
one of the most productive ecosystems in the SW
Atlantic Ocean (Acha et al. 2004, Bogazzi et al. 2005);
this region supports a high biological production as
a consequence of high levels of nutrients and chloro-
phyll (Carreto et al. 1986, Rivas 2006, Romero et al.
2006). In general, shelf-break frontal areas accumu-
late floating material and invertebrate larvae (Largier
1993, Mann & Lazier 1996), however the shelf-break
frontal area of the Argentine Sea is also character-

ized by the presence of extensive beds of Patagonian
scallop Zygochlamys patagonica (King, 1832), a pec-
tinid species exploited since 1996 (Lasta & Bremec
1998). This benthic habitat is dominated by soft
 bottoms (sand and mud). Approx. 70% of the Ar -
gentinean continental shelf (including shelf-break
frontal areas) is soft bottom habitat (Parker et al.
1997).

Given the lack of rocks or hard bottoms in this
region, sessile species mostly depend on epibiotic
relationships to survive (Schejter & Bremec 2007,
2008, Schejter et al. 2008). All solid living and non-
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ABSTRACT: In the present study we identified a total of 26 sponge taxa, to be added to the 4
sponge species previously registered, living epizoically on Fusitriton magellanicus shells, an abun-
dant and frequent gastropod in the shelf-break frontal area of the Argentine Sea, SW Atlantic
Ocean. The majority of the recorded sponges were encrusting living specimens of this gastropod,
the most frequent ones being Hymedesmia (Stylopus) antarctica (20%), Clathria spp. (18%), Dicty-
onella spp. (13%) and Tedania spp. (9%) We described one species, Myxilla (Styloptilon) canepai
sp. nov., and extended the distribution of Clathria (Microciona) antarctica and Stelodoryx cribri -
gera northwards. We also registered, for the second time after its description, the species Stelo -
doryx argentinae. Considering that the study area is a soft bottom and the only available substrates
for settlement of sessile species are either external mineralized skeletons of living organisms,
empty shells or crustacean carapaces, we conclude that shells of the gastropod F. magellanicus
play a very important role for settlement of sponge species in the area. Moreover, possibly only liv-
ing F. magellanicus (not the empty or pagurized shells) are important as a settlement substrate be-
cause the few specimens found in empty shells could be considered as rare occurrences.
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living surfaces represent possible settlement sites for
sessile species, playing a very important role by func-
tioning as stepping-stones for their dispersal (Kimura
& Weiss 1964). The availability of a suitable substrate
is a critical factor not only in the colonization of
 sessile species (Wahl 1989), but also in the primary
settlement of many other non-sessile species, such
as the Patagonian scallop (Bremec et al. 2008).

The benthic species richness of the shelf-break
frontal area of the Argentine Sea is increased by
epibiotic relationships, as demonstrated by Schejter
& Bremec (2007, 2008, 2009), Schejter et al. (2008)
and Escolar et al. (2008). At least 41 taxa have been
found attached or encrusting shells (living organisms
and empty shells) of the Patagonian scallop (Schejter
& Bremec 2007), although this number has been
recently increased after the specific identification
of bryozoans (López Gappa & Landoni 2009) and
sponges (Schejter et al. 2010). However, other spe-
cies in the benthic community of the shelf-break
frontal area of the Argentine Sea have also been
found to host epibiotic organisms, such as spider
crabs, brachiopods, volutids and also the hairy triton
Fusitriton magellanicus (Röding, 1798), all conspicu-
ous members of the benthic assemblage (Bremec &
Lasta 2002, Bremec et al. 2003, Schejter & Spivak
2005, Escolar et al. 2008, Schejter et al. 2010). More
than 70% of living F. magellanicus in the Patagonian
scallop-fishing grounds host encrusting organisms
and empty and pagurized shells are also used as
 settlement substrates by a variety of sessile taxa
(Schejter et al. 2011). Considering these facts, F. ma -
gellanicus is probably the second most important
 living substrate colonized by encrusting organisms in
this community, hosting at least 30 epibiotic taxa.
However, sponges were grouped by Schejter et al.
(2011) into a single major taxon, with the only excep-
tions being one conspicuous known species and 2
other species identified to the genus level. Therefore,
the objectives of this study were to: (1) identify the
sponge species living epizoically on F. magellanicus
shells, (2) determine whether the sponges prefer
empty shells or living gastropods to settle and grow
and (3) establish whether this gastropod plays an
important role as a settlement substrate for sponges
in the study area.

MATERIALS AND METHODS

We studied living, empty and pagurized shells of
Fusitriton magellanicus that were collected be -
tween 37° 00.27’ and 45° 01.70’ S and 54° 40.46’ and

60° 25.62 W, along the 100 m isobath and between
81 and 150 m, during 3 research cruises in 2007 and
2008 (Fig. 1). The study material was collected as
part of the epibenthic assemblage of Zygochlamys
patagonica fishing grounds located in the shelf-
break frontal area of the Argentine Sea. Benthic
 samples were frozen on board and analyzed in the
laboratory at the Instituto Nacional de Investigación
y Desarrollo Pesquero (INIDEP - Argentina). In total,
194 sites were sampled using bottom otter trawls and
dredges during monitoring cruises onboard the RV
‘Capitán Cánepa’ (October 2007, Northern Manage-
ment Unit) and the FVs ‘Miss Tide’ (July 2008) and
‘Atlantic Surf III’ (November 2008) (Southern Man-
agement Unit, both cruises) (Fig. 1). Only 123 sites
were positive for the presence of F. magellanicus.
A total of 443 living F. magellanicus specimens, 86
empty shells and 27 pagurized shells were separated
from total benthic samples and carefully studied
for the detection of sponges. Shells hosting sponges
were carefully labeled and dried.

For sponge species identification, we used the clas-
sic methodology based on identification and quantifi-
cation of spicules, and the observation of spicule
arrangement in the skeleton. This methodology was
described by Rützler (1978) and is used worldwide.
Spicules were cleaned by means of nitric acid and
heat, and then dehydrated by ethylic alcohol and
 prepared for microscopical observation. Spicule di -
mensions (length and width) were ob tained measur-
ing 40 spicules per slide. The SEM studies were car-
ried out using a Philips XL 20 scanning electron
microscope. For SEM analyses, dissociated spicules
were transferred onto stubs and sputtered with gold.

Valid species names, global distribution and other
relevant information were checked in Van Soest et
al. (2011) and López Gappa & Landoni (2005).

RESULTS

Epibiotic sponges registered on the hairy triton

From the 123 sampled sites positive for the pres-
ence of Fusitriton magellanicus (N = 556 shells), only
56 were positive for the presence of epibiotic sponges
on the shells (N = 117 shells) (Fig. 1). Overall, 21 per-
cent of the sampled shells (living organisms, empty
shells and pagurized shells) were encrusted by
sponges. In total, 26 sponge taxa attached to F. ma -
gel lanicus shells were identified during this study
(Table 1). However, because of scarce cover or bad
preservation of the samples, ap proximately 20% of
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the sponges encrusting the gastropod remained
unidentified.

The most frequent sponge species en crusting liv-
ing individuals of Fusitriton ma gellanicus were
Hymedesmia (Stylopus) ant arctica Hentschel, 1914
(on 20% of sampled specimens), Clathria spp. (on
18% of sampled specimens), Tedania spp. (on 9% of
sampled specimens) and Dictyonella spp. (on 7% of
sampled specimens) (Fig. 2).

The majority of Fusitriton magellanicus hosted only
one sponge species, how ever, 6% of the living gas-
tropods were conspicuously and simultaneously
encrusted by 2 sponge species (e.g. Fig. 2j). In this
sample, a large Tedania (Trachy tedania) mucosa
Thiele, 1905 encrusted the majority of the shell, but a
small  portion was also encrusted by Stelo doryx ar -
gentinae Bertolino, Schejter, Calcinai, Cerrano &
Bremec, 2007. This sample was preserved and de -
posited as reference material for S. argentinae at the
Museo Argentino de Ciencias  Naturales ‘Bern ar dino
Rivadavia’ MACN-IN 39417. T. mucosa was as signed

the reference  number MACN-IN 39416. Reference
material for Hy medesmia (Stylopus) antarctica
(F45N) MACN-IN 39418 was also deposited at the
museum (see Table 1 for locations).

Six sponge species (considering the 2 ad ditional
records from other studies) were found encrusting
empty or pagurized shells (Table 1) of which 4 were
only found en crusting non-living shells. One sponge
species, Hy medesmia (Stylopus) antarctica, was
either found encrusting living, empty or pa gurized
   shells, while Tedania (Trachytedania) mucosa was
found encrusting either living or empty shells.

In the majority of gastropod species, only a small
portion of the shell surface, detectable to naked eye,
was covered by the epizoic sponges. In these cases
the sponge external morphology and skeleton were
almost impossible or very difficult to elucidate. In
contrast, other sponge species (Suberites sp., Tedania
[Trachytedania] mucosa, Clathria spp., Hyme desmia
[Stylopus] antarctica) heavily fouled some other gas-
tropod shells (Fig. 2).

Description of Myxilla (Styloptilon) canepai sp. nov.

Order Poecilosclerida Topsent, 1928
Suborder Myxillina Hajdu, Van Soest & Hooper, 1994
Family Myxillidae Dendy, 1922
Genus Myxilla Schmidt, 1862
Subgenus Myxilla (Styloptilon) Cabioch, 1968
Myxilla (Styloptilon) canepai sp. nov.

Type material

Holotype. Dried sample epibiotic on Fusitriton
magellanicus. Additionally, we provided tissue sec-
tions and spicule preparations on slides taken from
this sponge and shown in Fig. 3. The material was
deposited in the collection of Museo Argentino de
Ciencias Naturales ‘Bernardino Rivadavia’, Buenos
Aires Argentina, numbered as MACN-IN 38292.

Type locality. Argentine Sea, 38°40.17’ S and
55° 50.06’ W; 87 m depth (Zygochlamys patagonica
fishing grounds). Collected by Laura Schejter.

Etymology. Named after the RV ‘Capitán Cánepa’
(Instituto Nacional de Investigación y Desarrollo Pes-
quero, Argentina), the ship used during the evaluation
and monitoring cruises of the Zygochlamys patago-
nica fishing grounds performed in the last decade.

Description. Thinly encrusting sponge, approxi-
mately 2 mm in thickness. The fresh sponge was
beige, but became beige-grey after dried. The
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Fig. 1. Sites sampled for Fusitriton magellanicus in the shelf-
break frontal area of the Argentine Sea. Black squares: posi-
tive sites for the presence of epibiotic sponges on F. magel lani -
cus; crosses: positive sites for the presence of F. ma gel lanicus,
but those sampled organisms (or shells) did not present epi-

biotic sponges
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sponge is settled near the siphonal area of the gastro-
pod shell and covers part of the last whorl and part of
the spire (Fig. 3a). The surface is smooth when der-
mal membrane is present, but hispid, because of
echinating spicules, when the ectosome is absent.

Skeleton. The ectosome consists of a dermal mem-
brane of organic matrix that contains the microscle-
res (Fig. 3b) and it is supported by the ends of the
choanosomal tracts. The choanosomal skeleton pre-
sents plumose tracts composed of and echinated
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Porifera taxa 
Fusitriton magellanicus 

Latitude, longitude, depth (sample code) 
Living 

Empty 
shell 

Pagurized 
shell 

Amphilectus fucorum 
(Esper, 1794) 

x   38° 40.17' S 55° 50.06' W 87m (F27N) 

Callyspongia (Callyspongia) 
ramosa (Gray, 1843) 

 x  39° 19.84' S 55° 50.33' W 121m (F10N) 

Calyx kerguelensis 
(Hentschel, 1914)  

 x  39° 59’ S 56° 40' W 93m (#) 

Calyx sp.  x  39° 34.95' S 55° 56.36' W 130m (F23S) 

Chalinula sp. x   39°24.53' S 55°56.20' W 107m (F31AN) 
Clathria (Clathria) microxa 
Desqueyroux, 1972  

 x  41° 41’S 58° 09' W 92m (#) 

Clathria (Microciona) 
antarctica (Topsent, 1917) 

x   38° 20.02'S 55° 30.22' W 106m (F32BN) 

Clathria (Microciona) spp. 
(at least 2 species) 

x   

39° 04.52' S 55° 49.56' W 101m (F3N), 38° 14.89' S 55° 
34.69'W 97m (F19N), 38° 37.22' S 55° 47.53' W 89m 
(F43N), 38° 49.74' S 55° 40.20' W 104m (F54N), 38° 
29.73' S 55° 58.94' W 94m (F48N), 38° 12.72' S 55° 37.77' 
W 94m (F38N), 38° 12.69' S 55° 39.75' W 92m (F49N), 
38° 40.17' S 55° 50.06' W 87m (F25BN), 39° 26.93' S 55° 
56.71' W 107m (F5N, F6N), 39° 19.84' S 55° 50.33' W 
121m (F11N), 38° 29.10' S 55° 30.40' W 108m (F52N), 
38° 15.31' S 55° 45.40' W 87m (F21N), 38° 20.02' S 55° 
30.22' 106m (F32N),  42° 08.57' S 58° 27.89' W 98m 
(F14S), 39° 48' S 56° 12.25' W 101m (F16S) 

Dasychalina validissima 
(Thiele, 1905)  

x   41° 40’S 58° 02' W 96m (#) 

Dictyonella hirta (Topsent) 
sensu Burton, 1940 

x   
38° 20.02' S 55° 30.22' W 106m (F32AN), 41° 38.58' S 58° 
20.36' W 96m (F2S), 42° 16.73' S 58° 34.08' W 119m 
(s/n), 40° 45’ S 57° 00' W 105m (#) 

Dictyonella sp. x   

38° 40.11' S 55° 30.75' W 120m (F24N), 38° 29.73' S 55° 
38.94' W 94m (F46N), 38° 25.21' S 55° 39.78' W 94m 
(F50N), 41° 37.65' S 58° 01.31' W 96m (F10S), 41° 38.58' 
S 58° 02.36' W 96m (F17S) 

Eurypon sp. x   38° 25.21' S 55° 39.76' W 94m (F15AN) 

Halichondria aff. panicea x   39° 09.48'S 55° 49.78' W 106m (F36N) 

Haliclona (Haliclona) sp. 1 x   
39° 09.48' S 55° 49.78' W 106m (F37N), 38° 12.72' S 55° 
37.77' W 94m (F39N) 

Haliclona (Soestella) sp. x   
38° 15.07' S 55° 25.37' W 117m (F42N), 39° 43.34' S 56° 
17.25' W 89m (F18S) 

Haliclona (Reniera) topsenti x   38° 37.22' S 55° 47.53' W 89m (F44N) 

Haliclona (Gellius) sp. x   41° 57.06' S 58° 15.48' W 109m (F19S) 

Table 1. Sponge species registered encrusting living, empty or pagurized shells of Fusitriton magellanicus. Latitude, longitude, depth
of the collection site and code assigned to the specimen are given for every record. s/n: an identified sponge species not preserved in
the collection; #: a record of a specimen mentioned in Schejter et al. (2008), but not recorded during the present sampling
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exclusively by acanthostyles (Fig. 3c,d); in the termi-
nal part of these tracts, tornotes, organized in bou-
quets, support the dermal membrane. Part of the der-
mal membrane is supported also by acanthostyles,
but this could be due to a partial collapse of the
skeleton structure when dried.

Spiculation. (1) Straight entirely spined acantho -
styles, with conical spines, mainly concentrated at
the head (Fig. 4a), 77.5−144 × 5−12.5 µm. Thinner
measures correspond to spicules in formation (Fig. 4a).
(2) Anisodiametric, mucronate and frequently curved
anisotornotes (Fig. 4b), 127.5−162.5 × 2.5−5 µm. Two
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Table 1 (continued) 

 

Hymedesmia (Stylopus) 
antarctica Hentschel, 1914 

 x  41° 22.25' S 57° 34.47' W 111m (F3S), 

x   

42° 23.17' S 58° 39.48' W 124m (F1S), 41° 22.25' S 57° 
34.47' W 111m (F6S), 39° 43.45' S 56° 17.25' W 89m  
(F7S), 41° 40.90' S 58° 07.35' W 95m (F12S), 39° 48' S 
56° 12.25' W 101m (F13S, F22S), 41° 57.06' S 58° 15.48' 
W 109m (F20S), 39° 24.80' S 55° 54.84' W 109m (F8N), 
38° 20.31' S 55° 40.35' W 93m (F28N), 39° 10.39' S 55° 
45.27' W 130m (F35N), 38° 29.73' S 55° 38.94' W 95m 
(F45N), 37° 32.84' S 55° 03.26' W 114m  (F51N), 38° 
54.54' S 55° 39.62' W 113m (s/n), 38° 40.15' S 55° 40.24' 
W 98m (s/n), 39° 43.45' S 56° 17.25' W 89m (s/n), 42° 
32.66' S 58° 48.30' W 115m (s/n), 41° 59.70' S 58° 15.99' 
W 110m (s/n), 40° 45.22' S 57° 00.39' W 108m (s/n), 43° 
14.26' S 59° 20.54' W 140m (s/n) 

  x 39° 15.18' S 55° 47.89' W 123m (s/n) 
Iophon proximum (Ridley, 
1881) 

x   41° 38.58' S 58° 02.36' W 96m (F5S)  

Iophon sp. x   39°24.53' S 55°56.20' W 107m (F31BN) 

Myxilla (Styloptilon) canepai 
sp. nov. 

x   
38° 40.17' S 55° 50.06' W 87m (F26N) HOLOTYPE 
38° 25.21' S 55° 39.76' W 94m (F15BN) 

Mycale (Mycale) 
doellojuradoi Burton, 1940  x   43° 18.00' S 59° 42.52' W 101m (#) 

Phorbas sp. x   38° 12.75' S 55° 41.75' W 89m (F29N) 
Stelodoryx argentinae 
Bertolino, Schejter, Calcinai, 
Cerrano & Bremec,  2007 

x   
39° 04.52' S 55° 49.56' W 101m (F4BN), 39° 19.84' S 55° 
50.33' W 121m (F12N), 39° 00.04' S 55° 41.60' W 117m 
(F14N) 

Stelodoryx cribrigera (Ridley 
& Dendy, 1886) 

x   

38° 49.74' S 55° 40.20' W 104m (F54N), 39° 24.80' S 55° 
54.84' W 109m (F9N), 38° 14.89' S 55° 34.69' W 97m  
(F18N), 38° 15.31' S 55° 45.40' W 87m (F20N), 38° 12.75' 
S 55° 41.75' W 89m (F30N), 38° 29.73' S 55° 38.94' W 
94m (F47N), 39° 48' S 56° 12.25' W 101m (F25AS) 

Suberites cf. montiniger  
sensu Topsent, 1915 

x   38° 40.17' S 55° 50.06' W 87m (F25AN) 

Suberites sp. x   39° 48' S 56° 12.25' W 101m (F25AS) 

Tedania (Trachytedania) 
mucosa Thiele, 1905 

x   

39° 24.80' S 55° 54.84' W 109m (F1N), 39° 24.66' S 55° 
58.28' W 103m (F2N), 37° 50.28' S 55° 20.36' W 106m 
(F16N), 39° 04.52' S 55° 49.56' W 101m (F4AN), 38° 
44.74' S 55° 39.51' W 103m (F33N) 

 x  41° 54.90' S 58° 13.17' W 107m (s/n) 

Tedania (Trachytedania) 
spinata (Ridley, 1881) 

x   
38° 15.07' S 55° 25.37' W 117m (F40N), 38° 15.07' S 55° 
25.37' W 117m (F41N), 39° 48' S 56° 12.25' W 101m 
(F25BS) 
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categories of chelae: (3) the large ones are tridentate,
spatuliferous isochelae, 20−37 µm long (Fig. 4c);
(4) smaller unguiferous anchorate isochelae are
17.5−30 µm long (Fig. 4d). (5) C-shaped and con-
torted sigmas 27.5−40 × 2.5 µm (Fig. 4e).

Remarks. A second smaller specimen devoid of
dermal membrane was found, attached to a Fusitri-
ton magellanicus (F15BN, Table 1), sharing the shell
substrate with a specimen of Eurypon sp.

The holotype presented the plumose skeleton de -
scribed for the subgenus Styloptilon, consisting of
choanosomal spicule tracts of acanthostyles, echi-
nated by similar acanthostyles; bouquets of tornotes
at the ends of the tracts supported the dermal mem-
brane, charged with the microscleres and also tan-
gential tornotes. According to Van Soest et al. (2011),

there are presently 3 known species of Myxilla
 (Styloptilon): M. (Styloptilon) anchorata (Bergquist &
Fromont, 1988), M. (Styloptilon) ancorata (Cabioch,
1968) and M. (Styloptilon) acanthotornota Goodwin,
Jones, Neely & Brickle 2011. Thus, M. (Styloptilon)
canepai sp. nov. is the fourth species belonging to this
subgenus. In contrast to the other species of this sub-
genus, our species has only one type of acanthostyle
in a wide range, although thinner acanthostyles in
formation were also found. M. (Styloptilon) anchorata
differs from our species as it is orange when fresh, has
larger acanthostyles (165−265 × 5.5−11 µm) and
tornotes (140− 190 × 3.5−8 µm), but smaller chelae
(23−28 µm) and sigmas (20−29 µm). Also, the shape of
tornotes is different in the 2 species, as in M. (Stylop-
tilon) anchorata they are isodiametric and often have

Fig. 2. Epibiotic sponges on Fusitriton magellanicus. (a) Living animal presenting a complete and hairy periostracum coating
and no epibiotic species; (b) Calyx sp.; (c) Clathria (Clathria) microxa; (d) Hymedesmia (Stylopus) antarctica; (e) Suberites sp.;
(f) Iophon proximum; (g) Dictyonella sp.; (h) Haliclona sp.; (i) Tedania (Trachytedania) mucosa; (j) Tedania (Trachytedania)
mucosa and Stelodoryx argentinae; (k) Dictyonella hirta. Ia: Idanthyrsus armatus tubes; Pa: Potamilla antarctica tubes; 

Sa: Stelodoryx argentinae; Tm: Tedania mucosa. Scale bar: 35 mm



Schejter et al.: Epibiotic sponges on Fusitriton magellanicus

a slightly tylote head. Moreover, the areolate pores
and the marked subdermal spaces of the ectosomal
region are not present in the new species. M. (Stylop-
tilon) canepai sp. nov. differs from M. (Styloptilon) an-
corata because the latter has larger non-flexuous
tornotes (140−200 × 2.5−5 µm) and larger acantho -
styles (up to 280 × 10µm). Finally, the new species dif-

fers from M. (Styloptilon) acanthotornota in having
the microscleres only in the dermal membrane, a dif-
ferent morphology of the chelae, smaller acantho -
styles and, finally, lacking the spines in the tornotes.

DISCUSSION

In the present study, we found that 26 sponge taxa
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Fig. 3. (a) Fusitriton magellanicus encrusted by Myxilla (Styloptilon) canepai sp. nov. (arrows). (b) Dermal membrane with
 numerous scattered microscleres. (c,d) Cross-section of the plumose choanosomal skeleton; at the end of the branch, 

tornotes support the dermal membrane (arrows)
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encrusted approximately 21% of the specimens of
Fusitriton magellanicus (living organisms and empty
or pagurized shells). A few species (Hymedesmia
[Stylopus] antarctica, Tedania [Trachytedania] mu -

cosa and Suberites spp.) were usually found encrust-
ing and covering more than 60% of the shell surface.
Striking examples of sponge epibiosis included some
T. (Trachytedania) mucosa specimens (Fig. 2i,j) that
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Fig. 4. SEM images of spicules. (a) Spined acanthostyles of different sizes; (b) anisotornote with magnification of the mucronate
extremities; (c) spatuliferous anchorate chelae; (d) unguiferous anchorate chelae; and (e) C-shaped and contorted sigmas
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were found reaching 2 or 3 times the volume of the
living gastropod, resembling a ‘mobile sponge’ (Van
Soest 1993). This species has been frequently col-
lected in the Argentine Sea (Desqueyroux-Faúndez
& Van Soest 1996, López Gappa & Landoni 2005),
and was also registered by the authors of the present
study in previous surveys (Bertolino et al. 2007,
Schejter et al. 2008).

Studies regarding the benefits and disadvantages
of gastropod−sponge associations are rare. The most
frequent ones are related to the association between
siliquariids and sponges (e.g. Pansini et al. 1999) and
also to the infestation of boring sponges (e.g. Stefa-
niak et al. 2005), which can be very disadvantageous
to the gastropod. Other studies of mollusk−sponge
associations involve bivalves and, except for the
 boring sponges, most of these relationships are ad -
vantageous for both partners (see Wulff 2006 for a
revision). Additionally, some studies show a very
 particular relationship between hermit crabs and
sponges, also referred to as ‘mobile sponges’, which
tends to be advantageous for both partners (see Wahl
2008 for a review on epibiosis and Wulff 2006 for a
review on sponge associations), increasing protec-
tion from predators for the crustacean and food avail-
ability for the sponge or also widening the dispersal
opportunities for the sessile organism. Epibionts are
not always helpful for the host organism, and rela-
tionships can shift from positive to negative in
 relation to the habitat (Wahl 2009). Epibionts can
increase the visibility of prey (Threlkeld & Willey
1993), limit the possibility of escape (Cerrano et al.
2006) or reduce recruitment (Cerrano et al. 2001).
However, the association between Tedania mucosa
and Fusitriton magellanicus is probably advanta-
geous for both partners: the sponge acquires mobil-
ity and probably prevents colonization of the gastro-
pod from boring organisms; the gastropod gains
camouflage and thus may also be protected from
predators. F. magellanicus is an intermediate preda-
tor in the study area, feeding mainly on scallops, but
could be preyed upon by some of the starfishes in the
area (mostly pterasterids) (Botto et al. 2006). Although
not yet tested, given the presence of a dense mucus
secretion produced by this sponge species, it is possi-
ble that some kind of chemical defense could be also
acting. Other Tedania species are  capable of produc-
ing allelochemical compounds that, having antibac-
terial and antifungal activity, may act as antipreda-
tion and antifouling substances, or have been found
to produce some kind of irritation in the predator
 tissues (e.g. Muricy et al. 1993, Monks et al. 2002,
Jimenez et al. 2004, Isbister & Hooper 2005).

Although the gastropods hosted mainly one sponge,
cases of simultaneous encrustation by 2 sponge spe-
cies were found (Tedania mucosa + Stelodoryx ar -
gentinae; Suberites sp. + Tedania spinata; Suberites
montiniger + Clathria sp.; Dictyonella hirta + Clathria
antarctica, Eurypon sp. + Myxilla [Styloptilon] canepai
sp. nov.; Chalinula sp. + Iophon sp.; Hymedesmia
[Stylopus] antarctica + Clathria [Microciona] sp.). In a
few other studied specimens, a very incipient cover-
age of a second unidentified sponge was found. Ac-
cording to Wulff (2006), in the majority of the cases,
individuals of one sponge species growing over or ad-
hering to another sponge species were found to be
beneficial to both of them, although in some particular
cases, related to very different growth rates or chem -
ical mediation, competitive exclusion was demon-
strated. Even so, sponges have been frequently found
sharing the gastropod shells with other epibiotic in-
vertebrates (see Schejter et al. 2011) and Hiatella
meridionalis (d’Orbigny 1846) has frequently been
found partially covered by Clathria sp., Amphilectus
fucorum sensu Burton, 1932, Myxilla (Styloptilon)
canepai sp. nov. and Haliclona (Haliclona) sp. As pre-
viously discussed, to detect the  competition between
epibiotic species hosted by F. magellanicus was not
the objective of the present study. However, sponges
are probably competing for free space (e.g. Fig. 2g,j,k)
and are able to overgrow and cover other epibionts
that could eventually die (e.g. bryozoan colonies and
polychaete tubes sometimes found under the sponge
cover). In this sense, it is known that Iophon proxi -
mum successfully competes against bryozoans in Zy-
gochlamys patagonica living specimens in the same
habitat (López Gappa & Landoni 2007). In many of the
sampled gastro pods, dead bryozoan colonies and
empty polychaete tubes were found after removing
the sponge. However, it is not possible to assess
whether the sponge settled after the other animals
had died. Although not tested specifically for sponges,
the epibiotic coverage of the shell is also related to the
shell size and to the presence of the hairy periostra -
cum (Schejter et al. 2011); the F. magellanicus speci-
mens heavily encrusted by Tedania spp., Suberites sp.
and Hy medesmia (Stylopus) anctarcticus were always
larger than 75 mm.

Out of a total of 30 sponge taxa found encrusting
Fusitriton magellanicus shells (26 from the present
study plus 4 previous records from selected samples
collected in the same area by the authors of this
paper [Schejter et al. 2006, 2008]) only 3 (Mycale
doellojuradoi, Hymedesmia [Stylopus] antarctica and
Dictyonella hirta sensu Burton, 1932) were previ-
ously recorded as epibiotic on this gastropod species.
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Only 7 species were previously registered for Argen-
tinean waters (Tedania mucosa, Tedania spinata,
Amphi lectus fucorum sensu Burton, 1932, Callyspon-
gia ramosa, Haliclona [Reniera] topsenti (Thiele,
1905), Iophon proximum and Halichondria aff. pan-
icea). The species Clathria (Microciona) antarctica
and Stelodoryx cribrigera extended their distribution
northwards: the former (as C. toxifera) was previ-
ously recorded from Antarctica and Malvinas
Islands, the latter from Chile and Malvinas. We also
recorded for the second time after its description
(Bertolino et al. 2007) the species Stelodoryx argenti-
nae.

Four species (Suberites montiniger, Dictyonella hirta,
Amphilectus fucorum and Halichondria aff. panicea)
are of doubtful identification. In the first case, Pseudo-
suberites montiniger (Carter, 1880) was described
for the Arctic Ocean as Suberites, whereas Topsent
(1915) recorded it for Antarctica. Van Soest et al.
(2011) report this species as belonging to the genus
Pseudosuberites. In agreement with Campos et al.
(2007), we also collected a specimen that matched the
general description of the species, especially regard-
ing the shape and size of the spicules and the sponge
morphology; the main difference with the species de-
scribed by Carter (1880) is that the skeletal organiza-
tion in our specimen is typical of a Suberites species.
However, we agree on the fact that the bipolar distrib-
ution of Pseudosuberites montiniger deserves a revision
that is beyond the scope of this study, this will be in-
vestigated in depth in a further manuscript. Similarly,
the species recorded as Dictyonella hirta (Topsent,
1889) sensu Burton (1932) was first de scribed for the
Campeche Bank (Gulf of Mexico) and later identified
by Burton (1932, 1940) for Argentinean waters. Our
specimen matched the description of the species, and,
in agreement with Burton (1940), was also recorded
attached to Fusitriton magellanicus. It is unlikely that
this species may have such an extensive distribution
and our further studies should clarify this point.
Equally, van Soest et al. (2011) stated that the Argen-
tine Sea was not a valid distribution of Amphilectus
fucorum, another species also described for the Nor -
thern Hemisphere. This fact denotes a doubtful iden-
tification of the material examined by Burton (1932)
and the previous finding of this species by the present
authors in Bertolino et al. (2007). This species should
be revised in order to establish whether it could repre-
sent a new species, as found in other cases (Uriz et
al. 2011). These questions will be clarified in a future
study. In addition, further study is necessary of the
specimens identified here attributed to Halichondria
aff. panicea; although H. panicea was mentioned sev-

eral times for Argentinean waters (see López Gappa &
Landoni 2005 and references therein), it is unlikely
that this Atlanto-Mediterranean species has a cos-
mopolitan distribution—its records from the Southern
Ocean are considered doubtful (Erpenbeck & Van
Soest 2002).

In the present study, we describe one species
new to science: Myxilla (Styloptilon) canepai. Several
other specimens did not match any of the known spe-
cies in the area and were tentatively identified as
Phorbas sp., Dictyonella sp., Clathria (Microciona) sp.

Considering that the study area is a soft bottom and
the only substrates available for settlement of sessile
species are hard parts of other living organisms,
empty shells or carapaces, our results confirm that
the shells of the gastropod Fusitriton magellanicus
play a very important role for settlement of sessile
species, especially sponges, and at present they rep-
resent the substrate hosting the highest species rich-
ness of sponges in the area (N = 30), and host a total
of (at least) 56 epibiotic taxa considering other inver-
tebrate taxa mentioned by Schejter et al. (2011). The
other mollusk that plays an important role in provid-
ing substrate for sponges is the Patagonian scallop
Zygochlamys patagonica, hosting at least 15 sponge
species (Schejter et al. 2008, 2010), most of them
shared with F. magellanicus. Other available sub-
strates for sponges in the study area were crustacean
carapaces, polychaete tubes, dead corals and Rajoidea
egg capsules (Schejter et al. 2010). It is probable that
only living F. magellanicus (not the empty or pagur-
ized shells) are important as settlement substrate for
sponges in the study area, as the few species found
in empty shells could be considered as rare occur-
rences. 
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