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ABSTRACT: Reproductive systems of spent brooding octopodid females of Muusoctopus longi-
brachus akambei, Adelieledone polymorpha and Graneledone macrotyla (Eledoninae) were col-
lected in Southwest Atlantic and Antarctic waters. Their study demonstrated that the size distribu-
tion of post-ovulatory follicles (POF) is mostly unimodal, suggesting that they only lay 1 batch of
eggs. These data, together with a reevaluation of the literature, revealed that deep-sea and polar
benthic octopods are generally not multiple spawners. Females spawn a single egg mass simulta-
neously or as a series of several consequent mini-batches separated by short periods of time, mak-
ing it difficult to distinguish them by either size or condition of their POF. Analysis of the
length—-frequency distribution of POF is a useful tool to reconstruct the spawning history of brood-

ing females of cold-water octopods.
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INTRODUCTION

Most benthic octopods brood a single egg mass, and
the female dies as the eggs hatch. This egg mass
(clutch) might be laid in one bout or in several consec-
utive egg batches separated by fairly short time peri-
ods (Rocha et al. 2001). In some small-sized shallow-
water tropical species, such as Octopus chierchiae
(Rodaniche 1984), O. micropyrsus (Hochberg, pers.
comm. in von Boletzky 2003) and possibly O. kagoshi-
mensis (Salman et al. 2005), spawning is intermittent.
In O. chierchiae, the interval between these batches
might be long enough for the previous batch to
hatch ca. 40 d before the next one is laid (Table 1 in
Rodaniche 1984).

Cold-water, deep-sea and polar octopods have very
large eggs (10-30 mm in length), and a fecundity of a
few dozen to a few hundred oocytes (Hochberg et al.
1992, Laptikhovsky 1999a, 2001, Barratt et al. 2007,
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2008). Growth of ovarian eggs is generally synchro-
nous, although in maturing females the oocyte size
distribution might be bimodal or polymodal (Kuehl
1988, Laptikhovsky 1999a, 2001, C)nsoy & Salman
2004, Bello 2006, Barratt et al. 2007, 2008).

However, as has been shown in the large-egged
octopod genera Muusoctopus (formerly Benthocto-
pus), Eledone and Sasakiopus, smaller oocytes might
never grow to maturity and are subject to atresia
because of intra-gonad competition for nutrient sup-
ply (Boyle & Chevis 1992, Laptikhovsky 1999a, 2001).
Before degenerating, these oocytes could be con-
fused with eggs from a newly developing batch. One
approach to determine the frequency of batch laying
is to study the ovaries of brooding and spent females,
where the size distribution of resorpting post-ovula-
tory follicles (POF) may provide information about
how many eggs were actually laid and in how many
batches. Only 4 ovaries of spent females have been
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described in the literature, not only among deep-sea
octopods but for the entire order Octopoda. The
ovary of a spent female of the Antarctic species
Adelieledone polymorpha was described previously
(Daly 1996). Two spent brooding females of Granele-
done pacifica were collected together with 2 non-
brooding animals by a submersible from a depth of
ca. 2600 m (Voight & Grehan 2000), and a spent
female of Pareledone turqueti was mentioned by Bar-
ratt et al. (2008). Also, spent females of Muusoctopus,
Sasakiopus and Graneledone are known from the
Okhotsk Sea, but their ovaries were not described
(Nesis 1989).

Spent and brooding females of deep-sea octo-
podids are difficult to collect, particularly in Muus-
octopus and Graneledone. These deep-sea cephalo-
pods attach their eggs to rocky outcrops and ledges
(Voight & Grehan 2000, Drazen et al. 2003, Voight &
Drazen 2004), where fishing nets are impossible to
deploy. In respect to shallow-water species, it is sur-
prising that the ovaries of spent females kept in cap-
tivity have not been investigated, despite egg brood-
ing and development being monitored and described
in numerous octopods.

The number of POF might provide precise informa-
tion about the number of eggs that have been recently
laid in deep-sea and Antarctic squid (Nesis et al. 1998,
Laptikhovsky et al. 2007, Bush et al. 2012). Initially
these follicles in fish and cephalopods
are distinct 3-dimensional structures,
but they rapidly deteriorate and are
resorbed, which makes them a very
convenient tool with which to study
spawning frequency. Decreasing tem-
peratures increase the time that POF
can be detected. In small-egged (eggs
of 1-2 mm) fish and squid species,
POF degenerate in less than 24 h
(tropical species, spawning tempera-
ture 20-25°C) to ~48 h (temperate spe-
cies, spawning temperature 10-19°C),
and up to 6 wk at 9°C (Hunter &
Macewicz 1985, Fitzhugh & Hettler
1995, Sauer et al. 2002, Macchi & Pa-
jaro 2003, Macewicz et al. 2003, Whit-
tames 2003). In Atlantic cod they are
easily identifiable even 3 mo after the
spawning season ends in the Flemish
Cap area (Lowerre-Barbieri et al.
2011), where bottom temperatures are
3-4°C (Stein 1996). In Antarctic fish it
takes several months—up to 7 in No-
tothenia neglecta— for POF to degen-

erate at negative temperatures (Everson 1970, Buts-
kaya & Faleeva 1987, La Mesa et al. 2007), so com-
plete degeneration of POF in giant-egged (eggs of
10-30 mm) cold-water octopods that reproduce at
0-4°C s likely to take a similar amount of time.

Spent females of 3 deep-sea and Antarctic octopod
genera Muusoctopus, Adelieledone and Graneledo-
ne were collected by chance during research cruises
in Falkland and Antarctic waters. The present study
aims to investigate POF length—frequencies and con-
dition, as well as the number and condition of resid-
ual oocytes to shed some light on how individual
spawning occurs in deep-sea and polar octopods.

MATERIALS AND METHODS

Three spent females of the recently described spe-
cies Muusoctopus longibrachus akambei Gleadall,
Guerrero-Kommritz, Hochberg, Laptikhovsky 2010
(Octopodidae, Bathypolypodinae) of 105-115 mm
mantle length (ML) and 596-782 g body mass (BM),
were captured on 28 October 2010 onboard the RV
‘Castelo’ (48°40'S, 60°23'W, depth range from 316
to 324 m) by a bottom trawl with a codend mesh size
of 90 mm (Fig. 1). The trawl was towed across muddy
bottom with large sponges and Actiniaria (found in
catch). No additional sampling of the reproductive

Fig. 1. Sampling locations of spent females Graneledone macrotyla (diamond),
Muusoctopus longibrachus akambei (square) and Adelieledone polymorpha
(circle)
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systems of maturing and mature females of this
species was carried out, because ovaries at these
ontogenetic stages and fecundity were already de-
scribed by the author as 'Benthoctopus eureka’
(Laptikhovsky 2001).

A spent female of Graneledone macrotyla Voss
1976 (Octopodidae, Eledoninae), 105 mm ML and
655 g BM, was sampled on 12 July 2008 onboard the
FV 'Jose Antonio Nores' (47°43'S, 59°39' W, depth
range from 798 to 812 m), which also operated a com-
mercial bottom trawl with a codend mesh size of
90 mm (Fig. 1). No information about the bottom was
available. Six maturing and mature females of the
same species (ML 105-130 mm, BM 562-1198 q)
were collected in 2007-2009 onboard the FVs ‘Man-
ual Angel Nores' and ‘Jose Antonio Nores' and the
PV 'Dorada’ (from 46°55.5S, 59°52.8' W to0 53°29.3'S
60°25.5" W, depth range from 481 to 965 m) using a
bottom trawl with a codend mesh size of 90 mm.

A spent brooding female of Adelieledone poly-
morpha (Robson, 1930) (Octopodidae, Eledoninae),
54 mm ML and 90.9 g BM, was collected onboard the
RV 'James Clark Ross' at the South Orkney Islands
(60°55'S, 45°45'W, depth range from 242 to 245 m)
on 19 October 2011 by Agassiz trawl (mesh size
10 mm, horizontal opening 2 m, 3 min haul at 0.34 kn)
that was towed on muddy bottom (Figs. 1 & 2).
Together with this female, 3 developing octopus eggs
were found in the catch. No additional sampling of
maturing and mature specimens was carried out

&

Fig. 2. Bottom view of the location where a spent female

Adelieledone polymorpha was collected. The photo was

taken using the Shallow Underwater Camera System on-

board the RSS ‘James Clark Ross' (courtesy of David Barnes,
British Antarctic Survey)

because these ontogenetic stages and the fecundity
of this species has been well studied by other authors
(Kuehl 1988, Barratt et al. 2008).

Ovaries of Graneledone macrotyla and Muusocto-
pus longibrachus akambei were preserved in 10 %
buffered formalin solution (BFS) after being opened
to prevent oocyte shape distortion. Adelieledone
polymorpha was preserved whole in 6 % BFS.

In the laboratory, the ovaries were soaked in water
for 24 h, and then all oocytes and POF were meas-
ured to the nearest 1 mm under a dissecting micro-
scope (x10) and counted. The POF were easily recog-
nisable from intact oocytes: they were flat, empty
follicular sheaths with no content inside, but with a
wide opening on their distal end where oocyte broke
through at ovulation. Their numbers were supposed
to reflect the numbers of eggs that were spawned. If
other ovarian ova were in a developing or an atretic
state, it was possible to infer whether that individual
would be able to produce another batch of eggs, or
whether it produced a single clutch that was already
laid by a particular spent female. Potential fecundity
in pre-spawning animals was estimated as the total
number of all eggs. Actual fecundity was estimated
as the number of presumably viable eggs without
signs of degeneration.

RESULTS
Graneledone macrotyla

Potential fecundity varied from 101 to 166 eggs
(mean 121.5 eggs), and actual fecundity varied from
75 to 134 eggs (mean 92.0 eggs). Oocytes of the
smaller maturing female exhibited an extended size
distribution (Fig. 3A). In the more advanced matur-
ing octopus of 100 mm ML (Fig. 3B), these small eggs
had already begun to shrink and degenerate, they
were flaccid with cytoplasm, losing contact with the
follicular envelope, and the nucleus often misshaped
(early atretic). In more advanced mature animals,
these eggs were already ca. 1-3 mm in length and no
well defined structures were seen inside (late
atretic). The ovary of a spent female (Fig. 3E & 4A)
contained 83 POF, which ranged in length from 19 to
32 mm, one yolk oocyte of 20 mm (not seen on the
photo) and 29 late atretic oocytes ~2 mm in length.
POF were whitish and flattened, with an opening on
the distal end and some scarce longitudinal folds.
The length—frequency distribution of POF appeared
to be bimodal, with modes of 22-23 and 26 mm, but
this might be a single extended mode of 22-27 mm.
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Fig. 3. Graneledone macrotyla. Length—frequency distribu-

tion of oocytes and post-ovulatory follicles in 5 females. ML:

mantle length; BM: body mass; AF: actual fecundity (no. of
eggs); PF: potential fecundity (no. of eggs)

Oviductal glands of the spent female were pale yel-
low-pinkish, in contrast to dark purple in mature pre-
spawning specimens. The animal itself did not look
different from mature females showing no signs of
exhaustion. No spermatophores were found in the
ovaries of any of the females.

Adelieledone polymorpha

Ovary of a spent female (Fig. 4B) contained 87 POF
of 6-9 mm in length (Fig. 5) and neither eggs nor
atretic oocytes. Three ripe eggs—Ileftovers of the
destroyed egg mass captured with the female —were
18 mm in length, much larger than the POF. Their
outer envelope was rigid and opaque, not transpar-
ent. However, it cannot be completely excluded that
eggs belonged to another brooding female of the
same or different species that escaped the fishing
gear. The length—-frequency distribution of POF was
unimodal. This female appeared absolutely normal
(Fig. 6), though after opening there was an impres-
sion that its digestive gland was a bit smaller than it
should be. Oviductal glands were deep purple
(Fig. 4B). No spermatophore was found in the ovary.

Muusoctopus longibrachus akambei

Ovaries of spent females (Fig. 4C) contained 139 to
251 POF that were 12-21 mm in length, and up to
8 yolky eggs 21-25 mm long. The eggs exhibited
patchy colouration and large separated yolk droplets
that may have been signs of degeneration, because
those patterns have never been seen in mature
ovaries preserved the same way (author's pers. obs.).
Two females also had one residual atretic oocyte
each (Fig. 5). The POF length—frequency distribution
in every female was unimodal. Females themselves
looked normal, their digestive glands being of the
same size as in mature animals. Their oviductal
glands were pale brownish-purple, in contrast to
deep purple in mature pre-spawning females. No
spermatophores were found inside the oviductal
glands or in the ovary.

DISCUSSION

Brooding deep-sea octopodids are extremely diffi-
cult to obtain. However, analysis of existing literature
has shown that 4 spent females of deep-sea ele-
donins were caught by bottom trawls, but not all of
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Fig. 4. Spent ovaries of (A) Graneledone macrotyla, (B) Adelieledone polymorpha and (C) Muusoctopus longibrachus akambei.
DO: distal oviduct; OG: oviductal glands; POF: post-ovulatory follicles; RE: residual ripe oocytes

them were recognised. Two of them were thought to
be aberrant maturing animals, and because of this
their ovaries were illustrated, allowing proper identi-
fication of their reproductive status. One of these
ovaries was from Adelieledone polymorpha (Fig. 4A
in Barratt et al. 2008) and one was from Graneledone
macrotyla (Fig. 9D in Guerra et al. 2012). Empty POF
in these ovaries were considered to be: (1) smaller
oocytes of another batch (Barratt et al. 2008) and (2)
oocytes with widely opened cases in the distal pole
and with a flaccid consistency —either an artefact of
freezing, apoptosis or atresia (Guerra et al. 2012). Be-
cause both spent females had a few residual post-
spawning eggs that were interpreted as the most
advanced batch, both groups of authors came to the
conclusion that there was a possibility of multiple
egg release by these eledonins, at least by some indi-
viduals. This supposition might be checked by com-
paring the number of POF with actual fecundity.
Spent and brooding females found in the present
study looked like normal mature octopuses. This is
similar to the observation of a spent specimen of Par-
eledone turqueti, 'which did not appear to differ
noticeably in condition to other specimens’ (p. 588,

Barratt et al. 2008). This is not surprising for species
surviving for more than 1 yr after spawning. Spent
females might differ from mature animals in terms of
the colour of oviductal glands, which were paler in
brooding animals of Graneledone macrotyla and
Muusoctopus longibrachus akambei but not in
Adelieledone polymorpha.

The present study shows that numbers of POF found
in spent brooding females of all 3 species were very
similar to actual fecundity of pre-spawning females
(Kuehl 1988, Laptikhovsky 2001, Barratt et al. 2008,
present study). In Graneledone macrotyla, respective
values were 84 POF vs. 75-134 (mean 92.0) eggs.

Spent females of Adelieledone polymorpha had
87 POF (present study) and 75 POF with 6 residual
yolk oocytes, 2 of which already began to degenerate
(Barratt et al. 2008), compared with an actual species
fecundity of 71 to 128 eggs (Barratt et al. 2008). The
specimen described by H. I. Daly had 9 mature
oocytes and 30 POF of 3-6 mm length in the ovary
(Daly 1996 cited in Barratt et al. 2008).

In Muusoctopus Ilongibrachus akambei, the total
number of POF (139-251) was also similar to the
fecundity of mature females (75-234 eggs; Laptik-
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hovsky 2001), and no oocytes for the second batch
were found in pre-spawning or spent ovaries.

The number of POF might be a good tool to esti-
mate actual fecundity in brooding deep-sea and
polar octopodids when egg mass is not available, as

206 28 2390091 94 1998). Duration of embryogenesis in

Muusoctopus and Sasakiopus, which
brood much larger eggs of 16-27 mm
at a year-round bottom temperature
of 2-4°C in the Bering Sea was esti-
mated, using an equation relating
these 3 parameters, to be 19-21 mo (Laptikhovsky
1999a,b). For Graneledone pacifica living at 2°C, this
estimation was almost 4 yr (Voight & Grehan 2000).
For the entire 4 yr the clutch is brooded by a female
that occasionally eats available prey to support ener-
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Fig. 6. A spent female Adelieledone polymorpha

getic requirements (Wood et al. 1998), so it can be
concluded that the duration of life in these octopods
is several years. The spawning period of 2-3 wk is
just a short episode in such a life span.

Cephalopods have very flexible reproductive stra-
tegies, often exhibiting a variety of spawning pat-
terns between individuals (von Boletzky 1986, 1988,
Gabel-Deickert 1995), so there is a possibility for
some individuals to spawn eggs in 2 (perhaps even
more) batches separated by a long period of time.
Such a gap would be necessary for the second batch
do grow due to a restricted body capacity. Bimodal
size distribution of viable eggs was found in a single
female of both Sasakiopus salebrosus (Laptikhovsky
1999a) and Adelieledone polymorpha (Barratt el al.
2008) and a possibility of multi-batch spawning was
corroborated by a extended POF distribution in a
spent female A. polymorpha (present study). It is
likely that such a strategy represents an individual
variation, such as in the large-egged cuttlefish Sepia
officinalis, in which most females are simultaneous
terminal spawners, but some individuals spawn
intermittently (von Boletzky 1986, 1988).

Among the 2 sampled brooding females of Grane-
ledone pacifica (Voight & Grehan 2000), one had 3
residual oocytes of 21.5 mm and 63 flattened oocytes.
The latter likely were POF and their number was
similar to the fecundity observed in a pre-spawning
animal. Eggs were probably laid as a single batch
because all the POF were of the same size (10 mm).

Thus, it can be concluded that deep-sea and polar
(both Arctic and Antarctic) octopodids normally are
not multiple spawners, as has been suggested (Rocha
et al. 2001, Bello 2006, Guerra et al. 2012), though
they can lay a single clutch as several mini-batches
during to 1-3 wk. These actual mini-batches are
formed from a single large batch growing more or
less synchronously in the ovary. Atresia of yolk
oocytes probably plays an important role in the size
segregation of batches at early and advanced matu-
ration stages in Antarctic fish through the selective
reabsorption of oocytes of intermediate size (La Mesa
et al. 2007 and references therein). This process has
never been seen in deep-sea and cold-water octo-
pods and squid, in which early maturation stages are
invariantly to degenerate, whereas intermediate
stages develop into the actual fecundity (Laptik-
hovsky 1999a, Laptikhovsky et al. 2007). However,
some individual females can probably spawn this
synchronously developed egg portion as several
batches with a significant time gap in between.

The problem with interpretation of the type of
spawning from length-frequencies of oocytes is
complicated by the fact that maturing females
always have an extended range of oocyte sizes,
often polymodal. This might lead to the incorrect
perception of egg maturation as occurring in sepa-
rate, distinctive batches. Such an extended range of
egg sizes has been described in every large-egged
deep-sea octopodid where the process of oocyte
growth has been studied: Eledone moschata (Onsoy
& Salman 2004), Graneledone pacifica (Bello, 2006),
Muusoctopus spp. and Sasakiopus salebrosus (Lap-
tikhovsky 1999a, 2001), Muusoctopus spp. and Bathy-
polypus sponsalis (Barratt et al. 2007, Gonzdlez et
al. 2008), Adelieledone polymorpha and Pareledone
turqueti (Barratt et al. 2008), and Graneledone
macrotyla (present study). In all cases where pre-
spawning females were available to study, it was
shown that only one viable batch eventually
remained in their ovaries, aside from a few small
mostly already atretic oocytes.

Larger egg size and hence higher parental invest-
ment into individual offspring at the cost of lower
fecundity are particular for cephalopods in relatively
stable environments (Nigmatullin & Laptikhovsky
1994, Rocha et al. 2001), so it is not surprising to
find these characteristics in deep-sea and polar
octopodids. However, terminal spawning seems to
be a strange evolutionary choice for these habitats,
particularly because cirrate octopods that live at
similar depth ranges and produce eggs of similar
size exhibit continuous spawning with eggs laid
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individually (Villanueva 1992, Laptikhovsky 1999a).
A phenomenon similar to single-batch terminal
spawning also exists in the deep-sea squid families
Onychoteuthidae, Cranchidae, Gonatidae and
Bathyteuthidae (Seibel et al. 2000, Laptikhovsky &
Arkhipkin 2003, Laptikhovsky et al. 2007, Bush et
al. 2012), of which at least Gonatidae and Bathy-
teuthidae are also brooders. In contrast to octopods,
females of these squid families carry the egg mass
in their arms, so they are not able to feed even occa-
sionally during the incubation period. However,
their eggs are smaller and developmental time is
presumably shorter, which makes female survival
until hatching possible, based totally on expendi-
tures of stored food reserves. Brooding may restrict
both deep-sea squid and octopods to a simultaneous
terminal spawning strategy because of the costs in
terms of energy, time and predation risk associated
with parental care (Wood et al. 1998, Barratt et al.
2007). In this case, the flexibility of reproductive
strategy to ensure reproductive success might be
achieved by an extended spawning period of the
entire population rather than of individuals.
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