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1.  INTRODUCTION

The collection of ornamental marine fish for the
aquarium trade can cause negative environmental
impacts, including decreased biodiversity from over-
extraction and damage to habitats from destructive
fishing practices (Lecchini et al. 2006, Calado et al.
2017). For a growing marine aquarium trade to be
sustainable, a greater reliance on cultured fish is
essential. A key impasse to the commercialisation of
many marine fish species is high mortality during the
early larval stage due to a lack of suitable live feeds
(Yúfera & Darias 2007, Hamre et al. 2013). Poor first
feeds are a common cause of mortality because larval
fish have small energy reserves, high metabolic
demands, and limited capacity to capture and digest
food (Fisher et al. 2007, Yúfera & Darias 2007,
Rønnestad et al. 2013). These limitations appear
exacerbated in small fish larvae as they are more sus-

ceptible to starvation and mortality during the larval
stage compared to their larger counterparts (Miller et
al. 1988, Pepin 1991, Olivotto et al. 2017).

The early larval stages of many species of marine
fish consume only live prey (Dhont et al. 2013). Fish
larvae frequently reject artificial diets because move-
ment is required to trigger their feeding response
(Langdon 2003, Conceição et al. 2010). Food must also
be small enough to be ingested. Fish larvae are only
able to capture prey that is 25−60% of their mouth
gape (Shirota 1970, Fernández-Díaz et al. 1994, Øster-
gaard et al. 2005). The 2 most common live feeds used
in aquaculture, rotifers Brachionus spp. and brine
shrimp Artemia spp., are often too large for fish larvae
that have small mouth gapes (<200 µm), such as the
early larval stages of acanthurids, chaetodontids,
pomacanthids, and some serranids (Nagano et al.
2000a,b, Su et al. 2005, Moorhead & Zeng 2010). A
lack of live feeds suited to fish larvae with small mouth
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gapes is an impediment to closing the lifecycle of
many commercially important fish species (Holt 2003).

Attempts to develop live feeds suited to larvae with
small mouths have focused on copepod nauplii and,
to a lesser extent, ciliates (Nagano et al. 2000a, Støt-
trup 2000, Olivotto et al. 2005, Ajiboye et al. 2011).
Both copepod nauplii and ciliates have the appropriate
size (20−90 µm) for consumption by small larval fish
(Nagano et al. 2000a, McKinnon et al. 2003). Copepod
nauplii are highly nutritious and, when fed to marine
fish larvae, improve fish survival and growth com-
pared to common live feeds such as rotifers (Hamre et
al. 2008, Olivotto et al. 2008, Karlsen et al. 2015, Zeng
et al. 2018). Recent breakthroughs in closing the life-
cycles of some ornamental fish species have been fa-
cilitated using copepod nauplii as live feeds (DiMag-
gio et al. 2017, Callan et al. 2018). However, the
difficulty and high cost of producing copepods con-
strains their use in commercial aquaculture (Alajmi &
Zeng 2014, Kline & Laidley 2015, Franco et al. 2017).
Conversely, ciliates can be easily cultured at high
densities but are not nutritious enough to sup port
high larval fish survival (Nagano et al. 2000a,b, Oliv-
otto et al. 2005, de Freitas Côrtes et al. 2013, Leu et al.
2015). The limitations of copepods and ciliates in
aquaculture highlight the need to assess the suitabil-
ity of other small invertebrates as live feeds.

Oyster larvae may be a suitable live feed for small-
mouthed fish larvae due to their small size, nutri-
tional profile, and the ease of producing large num-
bers with minimal cost. Trochophores and early
veligers of oyster species such as the cosmopolitan
Crassostrea gigas and Australasian Saccostrea glom-
erata are similar in size (50−70 µm) to ciliates and
copepod nauplii (Table 1). Many oysters are highly
fecund, with each female producing millions of eggs
(Davis & Chanley 1956, Gallager & Mann 1986,
O’Connor et al. 2008). Oysters provision their larvae
with high levels of the nutrients that are required by
larval fish, including protein and polyunsaturated
fatty acids (PUFAs) as both neutral lipids and phos-
pholipids (Chu & Webb 1984, Massapina et al. 1999,
Soudant et al. 1999, Caers et al. 2002). Oyster and
other bivalve veligers are consumed by fish larvae in
the wild and in captivity (Howell 1979, Harding 1999,
Cabrera & Hur 2001, Harding et al. 2015, Nack et al.
2015), although survival rates of fish larvae fed oys-
ters vary considerably among species (0−80%)
(Howell 1979, Watanabe et al. 1996, Cabrera & Hur
2001). Further research is required to fill know -
ledge gaps about the potential of oyster larvae as live
feeds for many types of fish, such as the larvae of
marine ornamental finfish (Oliver et al. 2017).

There is growing interest in developing larval rear-
ing protocols for ornamental fish to offset destructive
wild collection (Lecchini et al. 2006, Calado et al.
2017). Many of the fish families that dominate the
ornamental trade — Acanthuridae, Pomacanthidae,
and Chaetodontidae — have larvae with small mouth
gapes and cannot be reliably sourced from aquacul-
ture. Of these fishes, the blue tang Paracanthurus
hepatus is among the most popular and widely
traded, but consumer demand is met completely by
wild collection (Militz & Foale 2017, Rhyne et al.
2017). Although there has been some success in clos-
ing the lifecycle of P. hepatus, high mortality rates
during the early larval stage results in few larvae
reaching the juvenile stage (Ho et al. 2013, Calado
2017, DiMaggio et al. 2017). Improving the efficacy
of live feeds is a key step to overcoming the bottle-
neck during the early larval stage of P. hepatus
(DiMaggio et al. 2017).

In this study, we examined the use of oyster larvae
as a first feed for small-mouthed larval fish, using
P. hepatus as a model species. We first tested whether
P. hepatus consume oyster larvae, and compared
growth and survival of P. hepatus fed rotifers or oys-
ter larvae. To understand whether different stages of
oyster larvae varied in their value as first feeds, we
compared the growth and survival of P. hepatus fed
oyster trochophores that were allowed to develop
into the veliger stage with fish larvae fed only tro-
chophores. Finally, in an attempt to improve the
digestibility of oyster trochophores, we conditioned
them in acidic water to reduce their calcification and
compared the survival of P. hepatus fed these versus
regular oyster trochophores.

2.  MATERIALS AND METHODS

2.1.  Paracanthurus hepatus broodstock

Larval P. hepatus were obtained from 9 broodstock
housed at the National Marine Science Centre,
New South Wales (NSW), Australia (30° 16.05’ S,
153° 08.25’ E). Broodstock were held in an indoor
7000 l recirculating tank at 27.5−29°C, pH 8−8.1,
35 ppt salinity, and given a simulated natural pho-
toperiod. Broodstock were fed daily with a mixed diet
of commercial pellets (API® Tropical Pellets, Mars;
Hikari Marine-A®, Hikari Seaweed ExtremeTM,
Kyorin Food Industries) and dried seaweed Porphyra
sp. Broodstock spawned naturally, and floating fertil-
ized eggs were collected overnight in a 50 l egg col-
lector for use in experiments.
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2.2.  Effects of live feeds on growth and survival
of P. hepatus

During January 2018, fertilized eggs were trans-
ferred from the egg collector to a 12 l aerated incuba-
tion tank provided with 0.2 l min−1 flow-through sea-
water (filtered to 1 µm and UV-treated; hereafter
FSW), and incubated at 27.5−28°C. At 24 h post-
hatch, P. hepatus larvae were stocked into 12 l cylin-
drical black plastic tanks at a density of 100 larvae
tank−1. Abnormal larvae that could not maintain their
position in the water column or were swimming er -
ratically were not used in experiments.

Experimental tanks were kept in heated water
baths to maintain a water temperature of 27.5−28°C.
Each tank was fitted with a 50 mm ∅ banjo screen
with 250 µm mesh that maintained the water volume
at 12 l and an airstone providing very fine aeration.
Tanks were provided with 0.1 l min−1 flow-through
FSW until the larvae had developed the ability to
feed exogenously at 3 d post-hatch (dph). Water
quality parameters during experiments were
always with in pH 8.0−8.1, >7.5 mg l−1 dissolved
oxygen, and 35.0−36.0 ppt salinity, measured in all
tanks daily using a Hach HQ40d multi-controller fit-
ted with a Hach PHC101 temperature-compensated
pH probe, a Hach LDO101 probe, and a Hach
CDC101 conductivity probe. The photoperiod was
12 h light:12 h dark, with a light intensity of 2000 lx at
the level of the tanks.

Rotifers (Brachionus sp., S-strain, Port Stephens
Fisheries Institute) were cultured in 2 identical 200 l
black fibreglass tanks filled with 28°C, 35 ppt salinity
FSW. Each tank of rotifers was fed 50 ml of Nanno
3600 (Instant Algae®, Reed Mariculture) daily and were
maintained at a density of 100−150 ml−1. Oxygen satu-
ration was kept above 7.5 mg l−1 and 20% of the vol-
ume of each tank was exchanged daily. Rotifers were
harvested from each tank on alternate days. Rotifers
(mean ± SE length = 191.5 ± 2.3 µm, width = 150.2 ±
8.2 µm, n = 50) were washed with FSW in a 45 µm wet
sieve before being fed to larval P. hepatus.

A total of 60 adult Sydney rock oysters Saccostrea
glomerata were sourced from a commercial producer
at Urunga, NSW, 3 d before each experiment and
maintained in tanks containing 25 l of 25−26°C flow-
through seawater. Each tank was fed 10 ml of Pavlova
sp. algal paste (Pavlova 1800, Instant Algae®, Reed
Mariculture) daily, during which water flow was
stopped for 3 h.

Natural spawning could not be induced, so multi-
ple ripe female and male oysters were strip-spawned
as required. Eggs were pooled in a 5 l beaker filled

with 0.5 µm FSW. Pooled sperm was added incre-
mentally and fertilization checked microscopically.
When >90% of eggs had been fertilized, as evi-
denced by a fertilization envelope, embryos were
added to a cylindro-conical culture tank containing
150 l of gently aerated FSW (25−26°C) for ~10 h to
develop to the trochophore stage. Immediately before
feeding to P. hepatus larvae, oyster trochophores
(diameter = 52.6 ± 0.3 µm, n = 50) were washed in a
15 µm wet sieve and counted. When trochophores
were required for multiple feeds throughout the day
(see Section 2.2.5), trochophores were held in FSW at
4°C for up to 8 h in an aerated 1 l cylindro-conical
bottle. This halted the development of the trocho -
phores without causing mortality. Oysters held at 4°C
were acclimated at ~27°C for 10 min prior to feeding.

To test the effectiveness of oyster larvae and rotifers
as live feeds for newly hatched P. hepatus larvae,
tanks were randomly assigned to 1 of 4 diet treat-
ments, with 3 replicates treatment−1. The 4 diets were
oyster trochophores (15 ml−1), rotifers (5 ml−1), rotifers
and oyster trochophores (3 and 10 ml−1, re spectively),
and an unfed control. P. hepatus were fed once at the
beginning of each light cycle until 5 dph. Prey densi-
ties were varied so the biomass among treatments
were similar. All tanks were inoculated with live
Nannochloropsis oculata at a density of 3 × 105 cells
ml−1 to improve prey contrast and reduce photo-
taxism (Cobcroft et al. 2012). Tanks were flushed dur-
ing each dark cycle with 27°C FSW at a rate of 0.1 l
min−1 to remove all remaining live feeds, algal cells,
and waste. No water exchange occurred during the
light cycle.

At 3 and 5 dph, 5 larval P. hepatus were removed
from each replicate 6 h after the beginning of the light
cycle, anaesthetized (1 ppm AQUI-S®, New Zealand
Ltd), placed on a stage micrometer, and photo -
graphed using an Olympus DP26 camera mounted
on a stereo microscope. If fewer than 5 larvae re -
mained in a replicate, all fish were sampled. ImageJ
1.51j8 imaging software was used determine whether
live feeds had been consumed by measuring the prey
incidence and gut area of P. hepatus larvae. Prey
incidence is expressed as the percentage of larvae
that had material in the gut (Pereira-Davison &
Callan 2018) (Fig. 1). Notochord length, body depth,
and eye diameter were also measured from photo-
graphs of the 5 dph P. hepatus larvae (Thépot et al.
2016). Survival rates of P. hepatus larvae were deter-
mined at 5 dph by counting the remaining fish in
each replicate and are reported as a percentage of the
larvae initially stocked to each replicate tank minus
the 5 fish removed from each replicate at 3 dph.
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2.3.  Effects of oyster larval stage on growth and
survival of P. hepatus

The oyster trochophores developed to the veliger
stage after ~6 h in the experimental tanks, and, as
veligers possess a calcified shell, this may have
reduced their digestibility. To test whether different
oyster larval stages varied in their quality as a feed
for larval P. hepatus, we tested 3 diet treatments
using the experimental tanks and setup described in
Section 2.2, with 3 replicates treatment−1. The 3 diet
treatments were oyster trochophores only, trocho -
phores that were allowed to develop into veligers,
and an unfed control. All tanks receiving oyster
 larvae were fed trochophores at a density of 15
trocho phores ml−1 at the beginning of the light cycle.
Tanks in the trochophore-only treatment were given
2 additional feeds of oyster trochophores 4 and 8 h
after the beginning of the day cycle. Replicates re -
ceiving additional feeds were flushed for 2 h with
27°C FSW at 0.25 l min−1 prior to each feed, which
removed >90% of existing trochophores before they
could develop into veligers. This flushing did not
change the water temperature, pH, or salinity com-
pared to tanks that were not flushed. N. oculata was
added during the water exchange to maintain the ini-
tial cell density. After flushing, the trochophores
were restocked at a density of 15 ml−1 using trocho -
phores stored at 4°C as previously described. All
other treatments received no water exchange during
the light cycle. All tanks were flushed each night
cycle with 27°C FSW at a rate of 0.1 l min−1 to remove
all oyster larvae, algal cells, and waste. At 3 and 5
dph, prey incidence and gut area were measured as

described in Section 2.2. Similarly,
notochord length, body depth, eye
diameter, and survival of P. hepatus
were measured at 5 dph as described
in Section 2.2.

2.4.  Effect of exposing oyster
trochophores to acidic water on

survival of P. hepatus

During January 2019, fertilized
eggs (~12 h post-spawn) were trans-
ferred from the egg collector directly
into sixteen 12 l cylindrical black plas-
tic tanks filled with 27°C FSW at a
density of 600 eggs tank−1. Tanks
were set up as per Section 2.2, except
there was no aeration. At 24 h post-

hatch, tanks were provided with 0.1 l min−1 flow-
through FSW until P. hepatus larvae had developed
the ability to feed exogenously at 3 dph. Water qual-
ity parameters during experiments were as per Sec-
tion 2.2. The photoperiod was 16 h light:8 h dark,
with a light intensity of 2000 lx at the level of the
tanks.

A total of 60 ripe adult S. glomerata were sourced
from a commercial producer at Urunga the day before
the experiment and kept dry at room temperature
(~20°C) to prevent spontaneous spawning. Each
night prior to feeding, multiple female and male oys-
ters were thermally induced to spawn (O’Connor et
al. 2008) in individual 750 ml plastic containers.
Gametes were pooled, fertilised, and checked as per
Section 2.2 and embryos were added to a 10 l
 cylindro-conical culture tank containing gently aer-
ated FSW (~25°C) for ~8 h to develop to the tro-
chophore stage. Oyster trocho phores were washed in
a 15 µm wet sieve, counted, and transferred into
four 1 l cylindro-conical aerated bottles filled with
FSW; 2 containing 1.1 × 106 trocho phores, and the
other 2 containing 2.2 × 106 trocho phores. Seawater in
one bottle of each trocho phore density was reduced
to pH 4.8 by addition of 8% HCl solution. This pH
was chosen as it rapidly deformed and ruptured tro-
chophore integuments (Fig. 2), indicative of compro-
mised shell calcification, without inducing mortality.

Bottles holding 1.1 × 106 trochophores were left at
~25°C for 2 h before the being used for the day’s first
feed. Bottles containing 2.2 × 106 trochophores were
held at 4°C for subsequent feeds that day. Oysters
held at 4°C were acclimated at ~27°C for 10 min prior
to feeding.

Fig. 1. Paracanthurus hepatus larvae 3 d post-hatch exhibiting (A) a gut filled 
with oyster veligers and (B) an empty gut. Scale bar = 500 µm
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To investigate whether exposing oyster trocho -
phores to acidic water improved their quality as a feed
for larval P. hepatus, we tested 3 diet treatments with
6 replicates treatment−1. The 3 diet treatments were
oyster trochophores exposed to pH 4.8 seawater,
trochophores kept in ambient seawater (pH 8.0−8.1),
and an unfed control. All tanks were inoculated with
live Chlorella like at a density of 3 × 105 cells ml−1. All
tanks receiving oyster trochophores were fed at a
density of 15 trochophores ml−1 at the beginning of
the light cycle with 2 additional feeds at 5 and 10 h
after the initial feed. All tanks were flushed for 2 h
with 27°C FSW at 0.25 l min−1 prior to each feed,
which removed >90% of trochophores before they
developed into veligers. C. like was added during the
water exchange to maintain the initial cell density.
After flushing, trochophores were restocked at 15 ml−1

using trochophores stored at 4°C as described in Sec-
tion 2.3. All tanks were flushed each night cycle with
27°C FSW at a rate of 0.2 l min−1 to remove all oyster
larvae, algal cells, and waste. Survival rates of P.
hepatus larvae were determined at 5
and 10 dph by counting the remaining
fish in each replicate and re ported as a
percentage of the larvae initially
stocked to each replicate tank.

2.5.  Statistical analysis

Data for prey incidence, growth, and
survival of larval P. hepatus were ana-
lysed using 1-way ANOVA in SPSS
v24.0 with diet as a fixed factor.
 Normality and homoscedasticity were
checked graph ically using P–P plots
and plots of standardised residuals
against predicted values. Data for
prey incidence were not normally dis-
tributed or homoscedastic, and trans-
forming the data did not have any
effect, but given the nature of these

data, this was expected. This should be taken into
account when interpreting our prey incidence
results. Tukey’s HSD tests were used when ANOVA
indicated there were significant differences among
diet treatments (p < 0.05).

3.  RESULTS

3.1.  Effects of live feeds on growth and survival
of larval Paracanthurus hepatus

At 3 and 5 dph, >75% of P. hepatus had prey in
their gut when fed either oyster larvae alone or oyster
larvae combined with rotifers (1-way ANOVA, 3 dph:
F3,8 = 81.22, p < 0.001; 5 dph: F3,8 = 38.42, p < 0.001;
Figs. 1 & 3). Up to 6.7% of P. hepatus fed rotifers had
prey in their guts, while all unfed fish larvae had
empty guts (Fig. 3A,B).

At 3 dph, the gut area of P. hepatus was larger in
fish fed oyster larvae or oyster combined with rotifers
compared to fish fed rotifers or unfed controls (F3,8 =
14.45, p = 0.001; Fig. 3C). At 5 dph, the gut area of
P. hepatus fed oyster larvae was significantly larger
than those fed rotifers or unfed controls (F3,8 = 6.96,
p = 0.013; Fig. 3D). The gut area of 5 dph P. hepatus
fed oyster larvae combined with rotifers was not
 different from all other treatments (Fig. 3D).

At 5 dph, there was no difference in the notochord
length (F3,8 = 0.14, p = 0.93), body depth (F3,8 = 0.49, p =
0.70), or eye diameter (F3,8 = 1.95, p = 0.20) of P. hepatus
among the 4 diet treatments.
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Fig. 2. Typical Saccostrea glomerata trochophores exposed
to (A) ambient seawater, (B) pH 4.8 seawater for 2 h and (C)
pH 4.8 seawater and refrigeration for 12 h. Scale bar = 25 µm

Fig. 3. Effects of diet on (A,B) prey incidence and (C,D) gut area of larval Para-
canthurus hepatus at (A,C) 3 and (B,D) 5 d post-hatch (dph). Prey incidence:
the percentage of larvae with material in the digestive tract. Data are means ±
SE, n = 3. Bars with the same letters are not significantly different according to

1-way ANOVA followed by Tukey’s HSD test (p < 0.05)
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The survival rate of 5 dph P. hepatus fed exclu-
sively oyster larvae (x– = 6.3%) was significantly
greater than those fed only rotifers (x– = 1.4%)
(F3,8 = 4.55, p = 0.039; Fig. 4). Survival of P. hepatus
fed oyster larvae combined with ro tifers (x– = 4.9%)
or unfed controls (x– = 2.5%) was not different from
all other treatments (Fig. 4).

3.2.  Effects of oyster larval stage on growth and
survival of P. hepatus

At 3 and 5 dph, >85% of P. hepatus larvae had
prey in their guts when fed either only oyster
trocho phores or trochophores that developed into
veligers, while all unfed fish had empty guts (3 dph:
F2,6 = 91.5, p < 0.001; 5 dph: F2,6 = 41.52, p < 0.001;
Fig. 5A,B).

At 3 and 5 dph, the gut areas of P. hepatus fed only
oyster trochophores and trochophores that devel-
oped into veligers were not different from each other,
but were significantly larger than unfed fish (3 dph:
F2,6 = 9.34, p = 0.014; 5 dph: F2,6 = 85.49, p < 0.001;
Fig. 5C,D).

There was no statistical difference in the notochord
length (F2,6 = 0.88, p = 0.46) and body depth (F2,6 =
0.67, p = 0.55) of 5 dph P. hepatus among any of the
diet treatments. In contrast, the eye diameter of P.
hepatus fed only oyster trochophores (x– = 0.191 mm)
was significantly wider than unfed P. hepatus (x– =
0.174 mm) (F2,6 = 11.40, p = 0.009; Fig. 6). The eye
diameter of P. hepatus fed oyster trochophores that
developed into veligers (x– = 0.184 mm) did not differ
from all other treatments (Fig. 6).

The survival rate of 5 dph P. hepatus fed only oyster
trochophores (x– = 9.12%) was significantly higher
than unfed fish (x– = 1.75%) (F2,6 = 5.55, p = 0.043;
Fig. 7). Survival of P. hepatus fed trocho phores that

developed into veligers (x– = 5.96%)
was not different from any other treat-
ment (Fig. 7).

3.3.  Effect of exposing oyster 
trochophores to acidic water on

survival of P. hepatus

At 5 dph, P. hepatus fed oyster tro-
chophores exposed to pH 4.8 seawater
had significantly higher survival (x– =
41.3%) than those fed regular tro-
chophores (x– = 13.4%), while unfed
fish had significantly lower survival
(x– = 2.6%) than all other treatments
(F2,15 = 21.39, p < 0.001; Fig. 8A). At
10 dph, the only surviving treatment
was P. hepatus fed oyster trochophores
exposed to pH 4.8 seawater (x– =
0.33% survival; Fig. 8B).
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Fig. 4. Effect of diet on survival of Paracanthurus hepatus to
5 days post-hatch. Data are means ± SE, n = 3. Bars with the
same letters are not significantly different according to 1-way

ANOVA followed by Tukey’s HSD test (p < 0.05)

Fig. 5. Effects of diet on (A,B) prey incidence and (C,D) gut area of larval
Paracanthurus hepatus at (A,C) 3 and (B,D) 5 days post-hatch (dph). Diets:
oyster trochophores only (Troch.), oyster trochophores that developed into
veligers during the feeding period (Troch./vel.), and unfed. Prey incidence is
the percentage of larvae with material in the digestive tract. Data are means ±
SE, n = 3. Bars with the same letters are not significantly different according to 

1-way ANOVA followed by Tukey’s HSD test (p < 0.05)

Fig. 6. Effects of diet on the eye diameter of larval Para -
canthurus hepatus at 5 d post-hatch. See Fig. 5 for further

details
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4.  DISCUSSION

This study tested oyster Saccostrea glomerata lar-
vae as a first feed for the commercially important
ornamental fish Paracanthurus hepatus. We found
that P. hepatus readily consumed oyster larvae, but
almost never consumed ro tifers. Survival and growth
of P. he patus larvae was poor when fed oyster tro-
chophores that developed into ve ligers, possibly
because veligers have an indigestible shell. The sur-

vival of P. hepatus was better when fed oyster larvae
only at the trochophore stage, and best when oyster
trochophores had their calcification compromised in
acidic water before being fed to the fish. Despite this
promising result, few P. hepatus survived beyond 10
dph when fed oyster trochophores, possibly due to
nutritional deficiencies. Improving the nutritional
quality of oyster trochophores may improve their
value as a live feed for larval marine fish.

In this study P. hepatus did not eat, and therefore
did not survive, when fed rotifers. Rotifers are an
established live feed for the larvae of many fish spe-
cies (Conceição et al. 2010), but are unlikely to be
suitable for fish larvae with small mouth gapes that
require very small prey (Holt 2003, Moorhead &
Zeng 2010, Ho et al. 2013, but see Lee et al. 2018).
The rotifers in this study were larger than the mouth
gape of larval P. hepmtus (110−170 µm; Nagano et al.
2000a, Ho et al. 2013) and were likely too large to be
consumed by the early larval stages of P. hepatus.
This result adds to the growing body of literature
demonstrating the unsuitability of conventional live
feeds for the small-mouthed larvae of many marine
fish (Doi et al. 1997, Su et al. 2005, Moorhead & Zeng
2010, DiMaggio et al. 2017).

Larval P. hepatus readily consumed oyster tro-
chophores and veligers. The larvae of a wide range
of fish species consume bivalve larvae when offered
as a live feed during larviculture (Howell 1979, Hard-
ing 1999, Cabrera & Hur 2001, Ma et al. 2013, Hard-
ing et al. 2015). Bivalve larvae are rarely found in the
guts of wild oceanic fish larvae, probably because
bivalves are rare in these environments (Llopiz 2013,
Djurhuus et al. 2018). However, in estuaries where
bivalves are common, larval fish frequently consume
bivalve larvae (Harding 1999, Baker & Mann 2003,
Paolucci et al. 2007, Nack et al. 2015). It is likely that
P. hepatus readily consumed oyster larvae because
they were an appropriate size. Larval fish are thought
to prefer prey size that is 25−60% of their mouth
gape, and the oyster larvae we used were ~30% of
the mouth gape of P. hepatus (Shirota 1970, Fer-
nández-Díaz et al. 1994, Cunha & Planas 1999, Øster-
gaard et al. 2005). The presence of rotifers did not
appear to inhibit oyster larvae consumption, which
indicates that larval P. hepatus, like other fish spe-
cies, are able to select appropriately sized prey
(Cunha & Planas 1999, Yúfera & Darias 2007).

The swimming behaviour of prey is an important
factor in determining the rate at which they are cap-
tured and consumed by larval fish. Early studies sug-
gested the conspicuous ‘stop-start’ movement of cope-
pods was the reason that they are common in wild

664

Fig. 7. Effect of diet on survival of Paracanthurus hepatus to 
5 days post-hatch (dph). See Fig. 5 for further details

Fig. 8. Effect of diet on survival of Paracanthurus hepatus at
(A) 5 d post-hatch (dph), and (B) image of 10 dph P. hepatus
with corresponding survival rate. Diets: oyster trochophores
exposed to pH 4.8 seawater (Acid troch.), regular oyster
trocho phores (Troch.), and unfed. Data are means ± SE,
n = 6. Bars with the same letters are not significantly differ-
ent according to 1-way ANOVA followed by Tukey’s HSD

test (p < 0.05)
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larval fish guts (Peterson & Ausubel 1984, Buskey et
al. 1993). However, recent research has found that
because the early stages of many fish larvae have
limited swimming and hunting abilities, they prefer
slower-moving prey without predator escape
responses (Turingan et al. 2005, Beck & Turingan
2007, Robinson et al. 2019). Oyster larvae display a
slow, almost continuous spiralling swimming pattern
and were readily eaten by first-feeding P. hepatus. A
wide spectrum of prey swimming be haviours have
triggered successful feeding responses by P. hepatus
(Lee et al. 2018). This supports the idea that fish lar-
vae do not require that prey have a specific swim-
ming action to trigger a feeding response, and a
greater range of organisms than previously thought
may be useful as live feeds (Bruno et al. 2018).

Although P. hepatus readily consumed oyster lar-
vae, the growth and survival of P. hepatus fed oyster
trocho phores that subsequently developed into ve -
ligers was similar to unfed controls. This is similar to
Lim (1993) and Cabrera & Hur (2001), who ob served
poor growth and survival of fish larvae fed exclu-
sively bivalve trochophores and veligers. Con versely,
Howell (1979) found high survival (80%) in Scoph-
thalmus maximus larvae fed oyster veligers, al -
though larval length and survival was greatest when
their diet contained rotifers. The poor survival and
growth of P. hepatus fed oyster larvae is likely due to
the trocho phores developing into indigestible shelled
veligers (Lee et al. 2006, Ma et al. 2013, Nack et al.
2015). Supporting this, we observed intact veliger
shells at the end of the digestive tract of larval P.
hepatus (Fig. 1A). This problem could be mitigated
by flushing veligers out of larval rearing systems and
replacing them with newly developed trochophores,
as is done with other live feeds when they have lost
their nutritional value (Woolley et al. 2012).

We found that P. hepatus larvae fed only oyster tro-
chophores, by flushing out oyster larvae before they
developed to veligers, had significantly higher sur-
vival (9.12%) than unfed controls (1.75%) at 5 dph.
This survival is still low relative to other species of
similarly aged fish (Olivotto et al. 2006, Fielder &
Heasman 2011, Pereira-Davison & Callan 2018), and
all fish were dead by 7 dph. We observed that P.
hepatus were unable to completely digest tro-
chophores (Fig. 9A). While oyster trochophores are
less calcified than veligers and do not have a shell,
they do have calcified structures and are composed
of about 8% aragonite (Lee et al. 2006). We suggest
that the rudimentary gut of first-feeding P. hepatus is
not capable of fully digesting prey with even minimal
calcification. Calcification plays an important role in

determining the suitability of small invertebrate lar-
vae as live feeds for larval fish.

P. hepatus larvae fed only oyster trochophores had
significantly greater eye development than larvae
that were unfed, but there was no difference in body
length or depth of P. hepatus among any diet treat-
ments. Eye development is important in larviculture,
as it improves the vision and ability of larval fish to
capture prey (Yúfera & Darias 2007). Greater opsin
protein concentrations and an associated increase in
prey capture ability has been shown in 5 dph Thun-
nus thynnus fed diets high in docosahexanoic acid
(DHA) (Koven et al. 2018). Bivalve larvae contain
high proportions of PUFAs such as DHA, which may
explain greater eye development by P. hepatus fed
trochophores (Caers et al. 2002). However, a substan-
tial increase in eye diameter is usually not seen as
early as P. hepatus displayed in this study (Roo et al.
1999, Gisbert et al. 2002, Thépot et al. 2016). During
the early larval stage, many fish instead prioritise
body growth to improve swimming ability (Osse et al.
1997, Yúfera & Darias 2007). Further research is
required to understand why P. hepatus appears to
prioritise growth in eye diameter instead of body size
up to 5 dph.

P. hepatus fed oyster trochophores conditioned in
pH 4.8 seawater had higher survival compared to fish
fed untreated trochophores. The survival rate of 5 dph
P. hepatus fed trochophores exposed to acidic water
exceeds that of yellow tang Zebrasoma flavescens
fed copepod nauplii to the same age (Pereira-Davi-
son & Callan 2018). While bivalve larvae have been
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Fig. 9. (A) Saccostrea glomerata trochophores (circled) ob-
served swimming in the digestive tract of a 3 day post-hatch
(dph) Paracanthurus hepatus larvae. (B) 3 dph P. hepatus
larvae fed oyster trochophores exposed to pH 4.8 seawater.
Digestion of trochophores is evidenced by lack of visible intact

oysters and homogenous grey matter in the gut
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previously tested as a live feed for fish larvae (Howell
1979, Lim 1993, Cabrera & Hur 2001), this study is
the first to use acidic water to compromise oyster tro-
chophore calcification to improve its value as a live
feed. Acidic conditions impact the ability of bivalve
larvae to calcify and cause abnormalities (Parker et
al. 2009, Gazeau et al. 2013). We chose pH 4.8, as it
was the lowest pH oyster trochophores could tolerate
and caused extreme deformities (Fig. 2). We ob -
served that first-feeding P. hepatus were able to digest
oyster trochophores exposed to pH 4.8 seawater
(Fig. 9B). Exposing oyster trochophores to pH 4.8
seawater facilitated the survival of P. hepatus beyond
the first-feeding period to 10 dph.

This study highlights the potential for oyster larvae
to be used as a live feed for P. hepatus and possibly
other fish larvae with small mouth gapes. Oyster lar-
vae have the appropriate size and movement to illicit
a feeding response by larval fish, challenging the
paradigm that larval fish require live feeds like cope-
pods that have a ‘stop-start’ swimming movement
(Bruno et al. 2018). We were able to improve the di -
gestibility of oyster trochophores by conditioning them
in acidic seawater. The low survival of P. hepatus at
10 dph may be due to the oyster trochophores not
providing the fish a nutritionally complete diet, but
this requires further research. One method to im -
prove larval fish survival may be to manipulate the
diet of oyster broodstock to alter the nutritional pro-
file of their larvae (see the Supplement at www.int-
res. com/articles/suppl/q011p657_supp.pdf) (Caers et
al. 2002, Uriarte et al. 2004, González-Araya et al.
2012). Future studies should also investigate the bio -
security risks involved with using wild oyster offspring
in intensive systems as well as costs associated with
maintaining reproductive oyster brood stock year-
round for commercial live feed production.
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