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INTRODUCTION

The order Dinophysiales (Dinophyceae) is a group of
thecate dinoflagellates exhibiting a highly diverse
morphology and trophic mode. This order consists of
3 families — Amphisoleniaceae, Dinophysiaceae and
Oxyphysiaceae — which contain 12 genera and 282
species (Fensome et al. 1993, Steidinger & Tangen
1996, Gómez 2005). While the genus Dinophysis
includes 104 species, which are more than in any of the
other genera, the genera Metaphalacroma and Oxy-
physis each contain only 1 species (Gómez 2005). Al-
though species belonging to the Dinophysiales show
worldwide distribution in the marine environment,

some genera show a restricted distribution pattern; for
example, genera such as Ornithocercus and Histioneis
are confined to tropical waters, and Oxyphysis is
restricted to the North Pacific (Foissner 2006, Taylor et
al. 2008).

The genus Oxyphysis was usually included in the
Amphisoleniaceae (e.g. Schiller 1933, Loeblich 1982)
until Sournia (1984) separated it into its own family.
The family Oxyphysiaceae is characterized by the
location of the ventral pore at the apex, unlike the fam-
ilies Amphisoleniaceae and Dinophysiaceae in which
the pore is situated ventrally (Fensome et al. 1993). The
family currently contains O. oxytoxoides only (as a
type species), which is a laterally compressed, moder-
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ately elongate, and thecate heterotrophic species
(Kofoid 1926). Our knowledge of the ecophysiology,
life cycle and molecular phylogeny of O. oxytoxoides is
limited, although its feeding mechanism and behavior
have been reported (Inoue et al. 1993).

Intergeneric relationships within the Dinophysiales
have received much attention over the past ~80 yr. Due
to its structural similarities with the genus Oxytoxum,
Kofoid (1926) considered the genus Oxyphysis as a
possible link between the orders Dinophysiales and
Peridiniales. Kofoid & Skogsberg (1928) proposed, for
the first time, a hypothetical evolutionary radiation for
the dinophysoids, based on information about struc-
tural resemblance and degree of specialization in the-
cal morphology. Abé (1967) considered that the elon-
gate genera Amphisolenia and Triposolenia arose from
the genus Oxyphysis. Taylor (1980) proposed that gen-
era such as Metaphalacroma, Pseudophalacroma,
Oxyphysis, Proheteroschisma and Heteroschisma ex-
hibit morphological experimentation of the apical plate
region and represent several short lines rather than a
continuing evolutionary sequence. Very recently,
Jensen & Daugbjerg (2009) examined the phylogenetic
relationships among 6 genera (Amphisolenia, Citha-
ristes, Dinophysis, Histioneis, Ornithocercus and Pha-
lacroma) based on LSU rDNA sequences and — based
on compiled information from Kofoid & Skogsberg
(1928), Tai & Skogsberg (1934), Taylor (1980) and Hal-
legraeff & Lucas (1988) — hypothesized that Oxyphysis
radiated from Metaphalacroma. Handy et al. (2009)
addressed relationships among 4 genera (Dinophysis,
Histioneis, Ornithocercus and Phalacroma) in the
Dinophysiaceae based on rDNA sequences. None of
these studies, however, included O. oxytoxoides in the
phylogenetic analysis to resolve intergeneric relation-
ships among genera in the order Dinophysiales.

The objectives of this study were (1) to document the
spatial distribution of the heterotrophic dinoflagellate
Oxyphysis oxytoxoides along the Korean coasts, (2) to
establish O. oxytoxoides in culture with the ciliate prey
Myrionecta rubra, (3) to sequence the nuclear-encoded
LSU rDNA of our Korean strains of O. oxytoxoides (and
to check for any regional variations), and (4) to resolve
the phylogenetic relationship of O. oxytoxoides within
the order Dinophysiales.

MATERIALS AND METHODS

Sampling. Samples were taken from 15 sites along
the Korean coast (Fig. 1) during the following periods:
26 to 30 July, 24 to 27 August and 23 to 26 September
2005, and 11 to 14 May 2006. During each of the sam-
pling periods, samples were collected from all of the
15 sites. During each sampling, surface water samples

(300 ml) were collected using a bucket and then imme-
diately fixed with acidic Lugol’s solution (2% final
conc.).

Cell isolation and cultures. Seawater samples for
establishing cultures, and for carrying out single-cell
polymerase chain reaction (PCR), were collected using
a 20 µm plankton net from 4 sites in September and
December 2009 (Fig. 1, Table 1). Oxyphysis oxytox-
oides cells (1 to 6 cells per sampling site) were isolated
from the concentrated plankton samples using drawn
Pasteur glass pipets under an inverted microscope
(Olympus model IX51) or a stereomicroscope (Olym-
pus model SZX7). The isolated single cells were used
for either setting up cultures or as templates for single-
cell PCR to determine a partial LSU rDNA sequence
(see ‘DNA extraction, PCR amplification and DNA
sequencing’ below). To establish cultures, individual
cells were first washed at least 5 times in GF/F-filtered,
autoclaved seawater and then transferred into 6-well
Nunc plates (NunclonTM) containing 3 ml of f/2-Si
medium with salinity 30 (+5% v/v soil extract). Then,
the ciliate Myrionecta rubra strain MR-MAL01, which
was grown using the cryptophyte strain CR-LOHA-
BE01 as prey, was provided at a concentration of about
1000 cells ml–1 as a food source for O. oxytoxoides. All
cultures used in this study were maintained at 20°C on

280

Fig. 1. Sampling sites along the Korean coasts. Open circles
indicate sites where samples for single-cell PCR were also 

collected
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a 14 h light:10 h dark cycle, with cool-white fluorescent
lamps providing 50 µmol photons m–2 s–1.

Cell enumeration and microscopy. For enumeration
of heterotrophic Oxyphysis oxytoxoides and mixo-
trophic Dinophysis acuminata, Lugol’s-fixed samples
were first concentrated 6-fold to 50 ml; 1 ml of the con-
centrated samples was then loaded into a SedgeWick
Rafter chamber and whole area of the chamber was
scanned.

Live observations of the feeding process were made
in a 6-well plate using an Olympus IX51 microscope at
400× magnification and recorded with a Sony Progres-
sive 3CCD color video camera attached to a digital
image time-lapse recording system (TCS Korea).
Video sequences were frame-grabbed, and individual
frames were exported in BMP format. Bright-field and
epifluorescence micrographs of live cells or Lugol’s-
fixed cells were taken at 1000× magnification using a
digital camera (PowerShot G5) coupled to the Olympus
BX51 microscope equipped with differential interfer-
ence contrast and fluorescence cube (U-MWB2, 450 to
480 nm excitation, 500 nm emission).

DNA extraction, PCR amplification and DNA
sequencing. Single-cell PCR technique was used to
obtain partial LSU rDNA sequences. Individual Oxy-
physis oxytoxoides cells isolated from each sampling
site (Table 1) were put into 10 µl of Tris-EDTA (TE)
buffer (pH 8.0). The cells were then heated to 95oC for
10 min to achieve cell lysis. One microliter of each
heat-treated specimen was used as a template to
amplify the LSU rDNA (D1–D3 region). Amplification
of LSU rDNA was performed using a primer set, D1R
(5’-ACC CGC TGA ATT TAA GCA TA-3’) and D3B (5’-
TCG GAG GGA ACC AGC TAC TA-3’) (Hansen et al.
2000). The PCR reaction mixture (25 µl) consisted of
1µl of template DNA, 0.5 µl of a 10 mM solution of each
dNTP, 1 µl of 10 mM primers, 2.5 µl of 10× Taq buffer
(DiastarTM), and 0.6 unit of Taq DNA polymerase (Dias-
tarTM). The PCR reaction was performed using MyGe-
nieTM 96 Gradient Thermal Block (Bioneer) according
to the following protocol: an initial denaturation step at
94°C for 4 min, 35 cycles at 94°C for 1 min, 43°C for 50 s
and 72°C for 1.5 min; we used a post-extension step of

72°C for 5 min. The size of the PCR products was ~1 kb
when analyzed by electrophoresis in 1.5% agarose
gels and visualized with ethidium bromide. The ampli-
fied products were directly sequenced using the same
primer set for PCR, D1R and D3B. Sequencing was per-
formed with an Applied Biosystems automated
sequencer (ABI 3730xl) at Macrogen Corp, Seoul,
Korea. The LSU rDNA sequences have been deposited
in GenBank under accession numbers HM563682 and
HQ131916.

Phylogenetic analysis. The LSU rDNA sequences
were compared to the sequences of closely related
taxa within the Dinophysiales obtained from the Gen-
Bank database using a BLAST search. Prorocentrum
micans and P. minimum were used as an outgroup,
since prorocentroids and dinophysoids not only
appear to be derived from peridinioids (Taylor 2004),
but also share several unique morphological charac-
ters, including the sagittal suture and the megacystic
growth zone (Fensome et al. 1993). Sequences includ-
ing 59 in-group taxa and the 2 outgroup taxa were
aligned using ClustalX v.1.83 (Thompson et al. 1997)
and manually adjusted using MacClade v.4.08 (Mad-
dison & Maddison 2002). The alignment was trimmed
to 747 positions (D1–D2 region) for phylogenetic
analysis. Phylogenetic trees were inferred using max-
imum likelihood (ML) and Baysian inference. Model-
test v.3.7 (Posada & Crandall 1998) was used to select
the most appropriate model of substitution for the ML
method, run with PAUP* v.4b10 (Swofford 2003). The
GTR + I + Γ (–lnL = 8575.6182, I = 0.1440, G = 0.7642)
model was selected as the best-fit model for the
dataset. ML analysis was performed using RAxML
(Stamatakis 2006) with the rapid bootstrapping option
and 1000 replicates. Baysian analysis was run with
MrBayes v.3.1.2 (Ronquist & Huelsenbeck 2003). Pos-
terior probability was determined in 2 runs, each with
4 Markov Chain Monte Carlo (MCMC) processes for
10 million generations, sampled every 100 genera-
tions, and followed a burn-in of 1 million genera-
tions. The MCMC output files were checked for sta-
tionarity with Tracer v.1.5 (http://tree.bio.ed.ac.uk/
software/tracer/).
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Sampling Latitude Longitude Sampling Salinity Temperature No. of cells
sites (°N) (°E) dates (2009) (psu) (°C) isolated

Gunsan 35° 56’ 16” 126° 31’ 45” Sep 11 31.0 25.5 1
Bukshin 34° 51’ 34” 128° 25’ 08” Sep 19 28.2 25.6 5
Dangdong 34° 59’ 21” 128° 24’ 29” Sep 11 29.8 26.3 3
Masan 35° 12’ 04” 128° 34’ 42” Sep 11 27.7 24.7 6

Sep 19 30.6 24.0 3
Dec 28 31.6 nd 1

Table 1. Summary of position of sampling sites, sampling dates, salinity, water temperature, and numbers of Oxyphysis 
oxytoxoides cells isolated for single-cell PCR along the Korean coasts. nd: not determined
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RESULTS

Abundance of Oxyphysis oxytoxoides in Korean
coastal waters

The abundance of Oxyphysis oxytoxoides ranged from
undetectable levels to 9.7 × 103 cells l–1 during 4 sam-
pling periods (Fig. 2A). Except for August 2005, when O.
oxytoxoides was not observed across all sampling sites,
the highest cell concentrations were always found at
Masan. During the same period, the abundance of Dino-
physis acuminata ranged from undetectable levels to
11.5 × 103 cells l–1 (Fig. 2B). The highest cell concentra-
tions of D. acuminata were also found at Masan.

Cultivation of Oxyphysis oxytoxoides

When grown in a salinty 30 f/2-Si medium at 20°C in
a 14 h light:10 h dark cycle (50 µmol photons m–2 s–1)
and supplied with the marine ciliate Myrionecta rubra

as prey, Oxyphysis oxytoxoides grew well (Fig. 3A). We
managed to maintain the culture under these growth
conditions for ~5 mo, after which, unfortunately, we lost
the culture due to an accident. During cultivation, the
highest cell density was 38 × 105 cells l–1. No sustained
growth was observed in the absence of the ciliate prey.

Feeding

Observations of live cells under the microscope, us-
ing cells from our established cultures, revealed that
the nutritional mode of Oxyphysis oxytoxoides was
phagotrophy by myzocytosis (Fig. 3B,C). The ciliate
Myrionecta rubra, with pronounced jumping behavior,
was captured upon mechanical contact. After making
physical contact, O. oxytoxoides pierced M. rubra with
a peduncle (Fig. 3B, see video available as supplemen-
tary material online at www.int-res.com/articles/suppl/
a062p279_supp/). Once the ciliate had been trapped,
the dinoflagellate swam around towing the attached

ciliate. At that time, O. oxytoxoides
started gradually to consume the ciliate.
During the early stage of feeding (i.e. cap-
turing of prey and swimming), most cilia
were shed from the ciliate’s body (Fig. 3C).
During feeding, O. oxytoxoides sucked
out the contents of the prey using a pe-
duncle that extended from the flagellar
pore. As the feeding process proceeded,
the number of food vacuoles increased
within the O. oxytoxoides cell (Fig. 4). Epi-
fluorescence microscopy revealed that the
food vacuoles within O. oxytoxoides emit-
ted bright yellow-orange fluorescence
under blue-light excitation (Fig. 4B,C),
typical of cryptophycean phycobilin
(phycoerythrin).

LSU rDNA sequences

The partial LSU rDNA (domains
D1–D3; 917 nucleotides) of Oxyphysis oxy-
toxoides was successfully amplified from a
total of 19 individual cells. All but 1 of the
sequences was identical, in spite of 4 differ-
ent sampling sites and dates. One excep-
tion was found for a cell isolated from Gun-
san coastal water, which differed from the
other isolates by only 1 nucleotide. The se-
quences from our isolates were also identi-
cal to the O. oxytoxoides sequence (acces-
sion no. EF613359) deposited in the
GenBank database (Kim & Kim 2007).
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Phylogenetic analyses

The phylogenetic analyses of 59 in-group taxa of
Dinophysiales and 2 outgroup taxa were performed on

the basis of partial LSU rDNA, including the D1–D2
domains (747 bp). The optimal tree yielded by
Bayesian analysis is shown in Fig. 5. The tree topolo-
gies of most major groups were largely congruent with

the maximum likelihood (ML) tree,
although discrepancies were found in a
few branches.

The Amphisolenia species formed a
strongly supported basal clade (Clade
A) with a 100% ML bootstrap value
and a posterior probability (PP) of 1.
The remaining dinophysoids divided
into 2 highly supported groups labeled
Clade B and Clade C, respectively.
Clade B was strongly supported by an
ML bootstrap value of 98% and PP of 1
and included Oxyphysis oxytoxoides
and Phalacroma species, except for P.
apicatum and P. cfr. argus. O. oxytox-
oides clustered with P. acutum and the
type species P. porodictyum, but the
relationship was not well supported
(an ML bootstrap value of 50% and PP
of 0.53). Clade C formed by Histioneis,
Ornithocercus, Citharistes, Dinophysis
and 2 Phalacroma species (P. apicatum
and P. cfr. argus) was moderately sup-
ported by a PP of 1 and an ML boot-
strap value of 83%, but the relation-
ship between the genera was not well
resolved. Interestingly, P. apicatum
and P. cf. argus were distantly related
to the other Phalacroma species in
Clade B. It is unclear whether the
genus Dinophysis is monophyletic, as
species belonging to the genus formed
4 lineages within Clade C.
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Fig. 3. Oxyphysis oxytoxoides. Live cells of (A) a culture grown on the ciliate Myrionecta rubra as prey during this study, (B)
O. oxytoxoides with a recently captured M. rubra prey organism, and (C) peduncle-feeding (myzocytosis) on M. rubra. Arrows

indicate a peduncle extending from the flagellar pore. Scale bars = 20 µm

Fig. 4. Oxyphysis oxytoxoides. (A–C) Light and (D–F) epifluorescence micro-
graphs of live cells (A) with no food vacuoles, and (B,C) with several food
vacuoles within the cell. Note that some food vacuoles are filled with orange
fluorescent plastids derived from the ciliate prey Myrionecta rubra. Scale bar = 

20 µm. The scale in (A) applies to all panels
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Fig. 5. Phylogenetic tree of 59 in-group taxa of Dinophysiales species and 2 outgroup taxa of prorocentroids inferred from
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According to the phylogenetic analyses, Clades A
and C included species containing phycobilin-pig-
mented endosymbionts (Amphisolenia) (Lucas 1991,
Tarangkoon et al. 2010), cyanobacterial ectosym-
bionts (Histioneis, Ornithocercus and Citharistes)
(Carpenter 2002, Tarangkoon et al. 2010), or mixo-
trophic species having phycobilin pigment (Dino-
physis) (Park et al. 2006, 2008), whereas Clade B con-
tained mostly heterotrophic species (Oxyphysis and
Phalacroma) (present study; Inoue et al. 1993, Jensen
& Daugbjerg 2009).

DISCUSSION

Feeding and food source

To our knowledge, this is the first report of extended
cultivation of Oxyphysis oxytoxoides using the marine
ciliate Myrionecta rubra as prey. The heterotrophic
dinoflagellate O. oxytoxoides occurs usually in low
numbers (less than a few cells per ml) in coastal marine
environments (e.g. Nakane et al. 2008). Indeed, during
the field sampling along the Korean coasts between
2005 and 2006, we observed maximum cell densities of
11.5 × 103 cells l–1 (Fig. 2A). Given the general low
abundance of O. oxytoxoides in natural environments,
cell densities (38 × 105 cells l–1) obtained in culture
established in this study are remarkable, suggesting
that the mixotrophic ciliate M. rubra may be an appro-
priate prey for developing cultures of the heterotrophic
dinoflagellate. More interestingly, O. oxytoxoides
often co-occurred with the mixotrophic dinoflagellate
Dinophysis acuminata in field samples, indicating that
both dinoflagellates may be feeding on a common pool
of prey (e.g. the ciliate M. rubra). Indeed, Park et al.
(2006, 2008) and several subsequent studies (e.g.
Nagai et al. 2008, Nishitani et al. 2008) showed that
mixotrophic Dinophysis species grow well when pro-
vided with the ciliate M. rubra as prey, as O. oxytox-
oides did in the present study. Given that M. rubra is a
cosmopolitan species (Taylor et al. 1971, Lindholm
1985), our result indicates that, in addition to
mixotrophic Dinophysis spp. and heterotrophic O. oxy-
toxoides, other dinophysoids might feed on this ciliate
as a common food source either to meet nutritional
demands or to acquire kleptoplastids.

In addition to Oxyphysis oxytoxoides, several other
dinophysoids have been observed feeding on ciliates
using a peduncle. For example, Hansen (1991) found
that the heterotrophic species Phalacroma rotundatum
(known as Dinophysis rotundata; Jensen & Daugbjerg
2009) and Dinophysis hastata were able to feed on the
ciliate Tiarina fusus by myzocytosis. As in the present
study, Inoue et al. (1993) also observed that O. oxytox-

oides fed on loricate and non-loricate ciliates by the
use of a peduncle. Mixotrophic Dinophysis spp. were
also observed feeding on Myrionecta rubra by myzocy-
tosis (Park et al. 2006, 2008, Nagai et al. 2008, Nishitani
et al. 2008). Very recently, Tarangkoon et al. (2010)
observed, with transmission electron microscopy, that
Ornithocercus magnificus and Ornithocercus quadra-
tus have a peduncle. Further, they observed that
Ornithocercus spp. contained numerous food vacuoles
with trichocyst-like remnants that most likely origi-
nated from an ingested ciliate. While myzocytosis is
also common in numerous species belonging to Peri-
diniales (e.g. Pfiesteria spp.; Lewitus et al. 1999), sub-
sequent findings of the presence of a peduncle for sev-
eral genera, as well as widespread distribution of the
species having a peduncle across Clades B and C
within the dinophysoids, indicate that species belong-
ing to the dinophysoids may be fundamentally hetero-
trophic (Schnepf & Elbrächter 1988) with a common
feeding mechanism.

From evolutionary and ecological points of view,
several questions still remain open. For example,
despite having a common feeding mechanism (i.e.
peduncle feeding), why do mixotrophic Dinophysis
species and heterotrophic Oxyphysis not treat the plas-
tids obtained from the ciliate prey M. rubra in the same
way? The mixotrophic Dinophysis species are known
to feed on the ciliate prey Myrionecta rubra and
actively retain its plastids (i.e. kleptoplastidy; Nagai et
al. 2008, Park et al. 2006, 2008, Minnhagen et al. 2011),
whereas the heterotrophic Oxyphysis feeds on the
same prey but digests the plastids. Does Dinophysis
have an ability to discern the plastids from the rest of
the ingested prey? Or, does Oxyphysis not yet have the
ability to retain the plastids from the prey? From an
ecological point of view, it would be interesting to test
whether Oxyphysis can successfully compete with
Dinophysis for a common ciliate prey, M. rubra, and
whether Oxyphysis can survive on other prey.
Addressing these questions in the future will improve
our knowledge of plastid evolution and will help us to
better understand complex biological interactions of
protistan planktonic food webs.

Phylogenetic relationships

Our phylogenetic analyses including Oxyphysis
oxytoxoides did not greatly affect the overall topology
of the Dinophysiales obtained by Jensen & Daugbjerg
(2009) and Handy et al. (2009): while Amphisolenia
formed an early divergent basal group, the remaining
dinophysoids diverged into 2 separate groups, the
first formed of Oxyphysis and Phalacroma, the second
of Histioneis, Ornithocercus, Citharistes and Dino-
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physis. Abé (1967) believed that the elongate genera
Amphisolenia and Triposolenia evolved from the
genus Oxyphysis. Taylor (1980) considered genera
such as Metaphalacroma, Pseudophalacroma, Oxy-
physis, Proheteroschisma and Heteroschisma to rep-
resent several short lines rather than a continuing
evolutionary sequence as in the Dinophysis–Ornitho-
cercus–Citharistes–Histioneis series. Jensen & Daug-
bjerg (2009) hypothesized that Oxyphysis radiates
from Metaphalacroma, based on compiled informa-
tion from previous studies. However, it seems
unlikely that O. oxytoxoides diverged early from the
ancestor of the dinophysoids, which was hypothe-
sized when based only on morphology in the previous
studies. Rather, our phylogenetic analyses showed
that O. oxytoxoides shared a more recent common
ancestor with Phalacroma species than with other
dinoflagellates.

On the other hand, it is noteworthy that Clade B,
formed of Oxyphysis and Phalacroma species, con-
tained mostly heterotrophic species, except for Pha-
lacroma mitra, which was recently reported to contain
kleptoplastids of haptophyte origin (Koike et al. 2005),
and P. rapa, which is known to contain chloroplasts
whose nature has not yet been determined — i.e. are
they true, permanent chloroplasts or kleptoplastids
derived from chrysophyte or prymnesiophyte sym-
bionts (Hallegraeff & Lucas 1988)? Aside from Clade B,
the other 2 clades (A and C) are characterized by the
presence of phycobilin-containing plastids or cyano-
bacterial endo- (or ecto-)symbionts, although eukary-
otic endosymbionts within Amphisolenia and Tri-
posolenia have also been observed (Tarangkoon et al.
2010). Taylor (2004) thought that the phycobilin-con-
taining dinophysoids Dinophysis, Amphisolenia and
Triposolenia seemed more closely related to each other
than to more morphologically complex (i.e. more elab-
orate in shape and size of the cingular and sulcal lists)
genera such as Ornithocercus, Histioneis and Citha-
ristes. However, our phylogenetic analysis suggests
that the phycobilin-containing dinophysoids are not
monophyletic, which also agrees with the phylogenetic
analyses made by Handy et al. (2009) and Jensen &
Daugbjerg (2009).

Sinophysis is thought to be an ancestor of the dino-
physoids (Taylor 1980) and is known to host numerous
cyanobacterial symbionts (Escalera et al. 2010). Thus,
it may be likely that species belonging to the dino-
physoids, which once had symbionts, may be skillful in
feeding on, or having symbiotic relationships with,
phycobilin-containing microalgae (cyanobacteria and
cryptophyte). This may partly explain why dino-
physoids are highly specialized in either having phy-
cobilin-pigmented plastids or hosting cyanobacterial
symbionts.
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