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1.  INTRODUCTION 

Limited empirical information on the geographical 
distributions of taxa (Wallacean shortfall; Whittaker 
et al. 2005) can impact the assessment of species rar-
ity resulting in misguided conservation prioritiza-

tions (Coddington et al. 2009). Field surveys, espe-
cially those conducted using random sampling stra -
tegies, can generate additional biodiversity data to 
mitigate this; however, such surveys are costly, time-
consuming, and ineffective for rare species be cause 
human resources are limited (Hirzel & Guisan 2002, 
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ABSTRACT: Niche modeling for rare and range-restricted species can generate inaccurate pre-
dictions leading to an overestimation of a species geographic distribution. We used an iterative 
ensemble modeling approach and model-stratified field surveys to improve niche model formula-
tion and better understand the ecological drivers of Ivesia webberi distribution. I. webberi is a US 
federally threatened herbaceous species, narrowly distributed in the western Great Basin Desert. 
Niche models for I. webberi were fitted using 10 replicates each of 6 modeling algorithms, while 
geographical projections of habitat suitability were generated using weighted ensembles of mod-
els with optimal performance. The resulting model projections were used to guide field surveys for 
5 yr, generating additional spatial data, which were added to the existing dataset for subsequent 
modeling. Model performance across iterations was investigated and niche differences in the spa-
tial dataset were explored. Model-guided field surveys resulted in the discovery of several new 
locations of I. webberi and an expansion of the species known range by 63 km. Model perform-
ance was higher in the earlier overfitted niche models. Overfitting was corrected in the final mod-
els, and predicted habitat suitability reduced from 5.98% in the 2015 model to 3.34% in the 2020 
model. Findings show that I. webberi niche is associated with biotic, topographic and bioclimatic 
variables. Furthermore, a partial overlap was observed between environmental conditions of the 
initial and the new locations (Schoener’s D = 0.47), which can be decomposed into 93% of niche 
stability. This indicates that the majority of the newly discovered locations are within the environ-
mental niche of the initial data.  
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Guisan et al. 2006). Therefore, scientists and conser-
vation managers have considered other cost-effec-
tive methods to stratify and prioritize field surveys 
using, for example, expert opinion and quantitative 
niche modeling. Species distribution models (SDMs) 
can relate the occurrences of taxa to their ecological 
conditions to quantify the realized niche, i.e. species 
known locations due to environmental tolerance ob -
served in the field (Hutchinson 1957). These SDMs 
generate geographic predictions of species habitat 
suitability that can be used to stratify and optimize 
sampling efficiency (Chiffard et al. 2020). Moreover, 
integrating the new spatial data from model-guided 
sampling can reduce spatial bias in subsequent mod-
eling iterations, improve the predictive accuracy of 
SDMs for rare species, and reliably identify biologi-
cally relevant environmental factors (Singh et al. 
2009, Rinnhofer et al. 2012). 

Understanding the distribution of rare species is 
critical for effective conservation planning, but with 
few, incomplete and biased spatial data, it can be 
challenging to model the niches of rare species with 
high predictive accuracy (Hernandez et al. 2006, 
Wisz et al. 2008), a condition referred to as the rare 
species modeling paradox (Lomba et al. 2010). This is 
because fewer occurrence points in a spatial dataset 
indicates low prevalence, which weakens the analyt-
ical power of the models and inflates bias in SDMs 
(Vaughan & Ormerod 2003). Furthermore, correla-
tive species distribution models include the underly-
ing assumption that species are in equilibrium with 
their environment (i.e. temporal and spatial station-
arity) and that all important and biologically relevant 
variables have been included in the niche model 
(Elith & Leathwick 2009). This presents challenges to 
modeling rare species because the inclusion of many 
predictors when occurrences are few can lead to 
model overfitting (Wisz et al. 2008, Jarnevich et al. 
2015). Moreover, limited natural history knowledge 
makes predictor variable selection challenging and 
potentially subjective for rare species (Aranda & 
Lobo 2011). Consequently, poorly fit models and mis-
judgments of model predictions can lead to over- or 
underestimation of the species niche and result in 
poorly informed management decisions (Ramesh et 
al. 2017, Burns et al. 2020). Despite the development 
of several statistical methods to reduce prediction 
errors in SDMs, the most practical way is to increase 
occurrence data for rare species, which is inevitably 
linked with data collection during field surveys. 
Therefore, geographical predictions of SDM for rare 
species should not be treated as truth, but can be 
used as hypotheses for further ecological or biogeo-

graphical investigations (Stockwell & Peterson 2002, 
Jarnevich et al. 2015, Sofaer et al. 2019). 

The discovery of new locations of targeted species 
from SDM-guided field surveys is well documented 
in the literature (e.g. de Siqueira et al. 2009, Williams 
et al. 2009, Särkinen et al. 2013, Burns et al. 2020). 
These novel discoveries underscore the importance 
of SDMs as an important conservation tool. SDMs 
have been used to evaluate the degree of species rar-
ity (Broennimann et al. 2006) and identify areas that 
may serve as future climatic refugia (Sousa-Silva et 
al. 2014). Furthermore, SDMs are also used to ad -
vance scientific knowledge of species–environment 
relationships (Jiménez-Valverde et al. 2011) and 
identify niche-constraining environmental factors 
(Gorban et al. 2011). SDM predictions are often inte-
grated into models of population and landscape 
genetics (e.g. Ikeda et al. 2017, Banerjee et al. 2019), 
and spatial phylogenetics (e.g. Thornhill et al. 2017). 
Beyond conservation uses, newly discovered occur-
rences may have significant ecological contributions 
to the understanding of the overall species niche. For 
example, additional occurrence points may be found 
either within the existing realized niche space or in 
areas with different ecological conditions, thus 
expanding the species environmental niche. The 
COUE (centroid shift, overlap, unfilling and expan-
sion) framework can be used to quantify realized 
niches of species from different ranges and catego-
rize the niche position of newly discovered occur-
rences (Broennimann et al. 2012). This framework 
has been used to investigate niche dynamics be -
tween the native and invaded ranges of invasive spe-
cies (Broennimann et al. 2012, Strubbe et al. 2013), as 
well as niche evolution vs. conservatism be tween sis-
ter taxa (Villegas et al. 2021). 

The aim of this study was to assess the benefits of 
using an iterative sampling approach that alternates 
between niche modeling and model-guided field sur-
veys versus a presence/absence model ing approach 
using only data available at the onset of the study to 
predict the distribution of a rare plant (Ivesia webberi 
A. Gray). Therefore, we asked the following questions: 
(1) Which environmental variables determine the dis-
tribution of I. webberi and how does the species–en-
vironment relationship change with each iteration of 
the SDMs given additional spatial data? (2) Do addi-
tional distribution data alter habitat suitability map 
projections across modeling iterations? (3) Is the envi-
ronmental niche conserved throughout the modeling 
iterations? (4) Do modeling iterations improve the 
predictive accuracy of species distribution models for 
I. webberi? 
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2.  MATERIALS AND METHODS 

2.1.  Study species and study area 

Ivesia webberi is a US federally listed threatened 
perennial forb restricted to the eastern foothills of the 
Sierra Nevada and the adjacent western edge of the 
Great Basin Desert. I. webberi was estimated to have 
originated between 1.3 and 3.8 million yr ago (Töpel 
et al. 2012) and may be one of the many Great Basin 
Desert neoendemic and phylogenetically young taxa 
that have not had enough time to fully colonize their 
range (Kraft et al. 2010, Thornhill et al. 2017). At the 
outset of our study, it was known from 23 spatially 
ag gregated locations, occurring in or near ephemeral 
washes and dry forest meadow gaps in mostly gently 
sloped areas (Witham 2000). These ‘presence’ loca-
tions were visited multiple times between 2015 and 
2020, and therefore are not prone to positional error. 
The locations have experienced varying degrees of 
biological invasion pressures from Bromus tectorum, 
Taeniatherum caput-medusae and Poa bulbosa, as 
well as disturbances from wildfires, cattle grazing 
and off-highway vehicle use. 

The study extent was defined by a 60 km buffer 
from marginal ranges of populations known as of 
2015. The species produces achenes which are not 
adapted for long-range dispersal; therefore, the study 
area was restricted in order to mask out expansive ad-
jacent unsuitable areas of playas in the central Great 
Basin Desert. This modeling decision was guided by 
natural history, which indicates that the species grows 
in sparsely vegetated low sagebrush (Artemisia ar-
buscula) communities in mid-elevation areas of the 
western Great Basin Desert and the adjacent northern 
Sierra Nevada eastern foothills (Federal Register 
2014). Climatic conditions in these sites are character-
ized by relatively mild winters and hot summers (Sve-
jcar et al. 2017). Temperatures range from an average 
of –5.8°C in the winter to an average of 28°C in the 
summer, and annual precipitation varies between 25 

and 33 cm, most of which falls as snow or rain during 
the winter months. 

2.2.  Distribution data 

We began species distribution modeling in 2015 
with 23 occurrence points and 758 absence points 
ob tained from the Nevada Natural Heritage Program 
(NNHP; Table 1). The absence points represent areas 
where I. webberi was not detected during historical 
surveys by NNHP botanists and citizen scientists. 
Additional spatial points were added following itera-
tive modeling and field validation cycles in predicted 
suitable habitats. In all modeling iterations, the ab-
sence points were thinned using a 7.5 km distance in 
spThin R package version 0.2.0 (Aiello-Lammens et 
al. 2015) to reduce the effects of spatial aggregation 
and mitigate low prevalence in the spatial dataset. 
Additionally, absence points within 5 km of an occur-
rence point were removed to avoid false negatives. 
The remaining absence points were merged with the 
presence points for niche modeling (Table 1). 

2.3.  Predictor variables 

A total of 72 predictor variables describing eda phic, 
topographic, land cover, vegetative cover and climatic 
factors were assembled for fitting space distribution 
models (SDM) for I. webberi (see Table S1 in the 
 Supplement at www.int-res.com/articles/suppl/n050
p047_supp.pdf). To avoid overfitting and maintain a 
1:10 ratio of predictor variables to occurrence points 
(Harrell et al. 1996), the full set of predictor variables 
was reduced to 6 uncorrelated predictors (Table 2) 
 using a combination of the Kendall r correlation coef-
ficient (r > 0.6), feature selection runs in Boruta R 
package version 4.0.0 (Kursa & Rudnicki 2010) and 
re cursive feature elimination algorithm in caret R 
package version 6.0-78 (Kuhn 2008). 
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Year         Presence       Raw absence       Thinned          Predictor variables used for final modeling 
                   points                points              absence            
 
2015               23                     758                     53                Perennial herbaceous cover, Topographic Position Index (TPI) 

and annual evapotranspiration 

2018               26                    1652                    90                Perennial herbaceous cover, TPI and cosine aspect 

2019               27                    1881                    75                Perennial herbaceous cover, TPI and cosine aspect 

2020               32                    2289                   102               Perennial herbaceous cover, TPI and summer mean precipitation

Table 1. Iterative niche modeling with increasing number of presence and absence points for Ivesia webberi

https://www.int-res.com/articles/suppl/n050p047_supp.pdf
https://www.int-res.com/articles/suppl/n050p047_supp.pdf
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The climatic variables (cumulative actual evapo-
transpiration [AET], minimum monthly temperature 
and summer sea sonal precipitation) were down sam-
pled from the Parameter-elevation Relationships on 
Independent Slopes Model (PRISM) climatic data 
normals (1971–2000) (Daly et al. 2008), from 800-m to 
30-m spatial resolution using the Climatic Water 
Deficit Toolbox (Dilts et al. 2015) and ordinary krig-
ing. The cosine-transformed aspect, ranging from –1 
(south-facing slope) to +1 (north-facing slope), was 
derived from slope using the formula: θ × cos(α), 
where θ is slope (in percentage) and α is aspect (in 
radians), while slope was calculated from the 1 arc-
second digital elevation models (DEM; USGS 2017). 
Perennial herbaceous vegetative cover, a vegetation 
type raster layer, was ob tained from the Multi-Reso-
lution Land Characteristics (MRLC) development of 
the 2016 US National Land Cover Database (NLCD; 
Xian et al. 2013). Topographic Position Index (TPI) 
was calculated from the DEM using the formula de-
scribed by Weiss (2001). 

2.4.  Iterative ensemble niche modeling and   
model-based sampling 

The SDMs were fitted at 30 m resolution to capture 
the landscape and ecological heterogeneity in the 
study area, particularly in the I. webberi locations that 

occur within forest gaps. An ensemble modeling ap-
proach was used in all niche modeling iterations. The 
use of multi-algorithm ensemble models renders pre-
dictions less susceptible to biases, assumptions or lim-
itations of any individual algorithm while broadening 
the types of environmental response functions that 
can be identified (Araújo & New 2007). SDMs have 
been developed from a wide range of modeling tech-
niques including regression, classification and ma-
chine learning algorithms (Lauzeral et al. 2012). Be-
cause these algorithms have different predictive 
performances under different contingencies (Li & 
Wang 2013), fitting of niche models using different al-
gorithms and combining their model parameters to 
build a consensus or ensemble model is often recom-
mended (Marmion et al. 2009). Ten replicates of 6 
algo rithms (Boosted Regression Trees, Random 
Forests, Maximum Entropy, Artificial Neural Net-
works, Generalized Additive Models and Generalized 
Linear Models) were fitted using the biomod2 R pack-
age (Thuiller et al. 2009). All statistical packages were 
implemented in R statistical software version 4.0.2 (R 
Core Team 2020). See Table S2 for modeling details. 

Model performance was evaluated using 4 metrics: 
(a) true skill statistic (TSS; Allouche et al. 2006), (b) 
area under the curve (AUC) of the receiver operating 
characteristics plot (Hanley & McNeil 1982), (c)TSS-
based specificity and (d) Boyce Index (Boyce et al. 
2002). In each modeling iteration, 3 predictors, se -

50

Predictor variable                                        Relationship with species 
 
Cumulative actual                                      An estimate of the amount of water removed from an area by both evapo ration and  
 evapotranspiration (AET)                         transpiration. Cumulative AET, a direct predictor, is a proxy estimate of plant 

 productivity 
Cosine aspect                                              Higher values indicate north-facing slopes which receive less sunlight 
Perennial herbaceous vegetative cover    A spatial vegetative cover delineation representing native grasses, perennial 

forbs and cacti, which includes areas of I. webberi distribution. It is considered a 
representation of biotic interactions and accounts for community assemblage in 
sites harboring I. webberi 

Minimum monthly temperature                A direct predictor that potentially influences plant distribution (Araújo & Rozen -
feld, 2014). Vegetative and seed regeneration of I. webberi are dependent on cold 
stratification that characterizes late winter and early spring  seasons 

Summer seasonal precipitation                  A direct predictor that potentially influences plant distribution. Summer precipi-
tation causes surface runoffs which facilitate localized gravity-enhanced seed 
dispersal and colonization of empty niches. Precipitation and temperature in 
winter and spring seasons influence the phenology of I. webberi 

Topographic position index (TPI)              A scale-dependent variable describing the elevation of a cell in relation to the 
mean elevation of the neighboring cells. At the scale of 333 m, TPI distinguishes 
between mountains and valleys in the study area. The study area is character-
ized by topographic heterogeneity which can limit dispersal and distribution, 
and also act as proxy for microclimatic conditions 

Table 2. Descriptions of 6 uncorrelated predictor variables used to fit preliminary niche models for Ivesia webberi. The 3 
predictor variables used for the iterative niche models were selected from this pool. All predictors were resampled to 30 m  

resolution
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lected from the 6 uncorrelated variables, were used 
to fit the niche models. Models were fitted with 80% 
of the data with 20% used for k-fold cross-validation 
(Araújo et al. 2005, Thuiller et al. 2009). Model repli-
cates with TSS ≥ 0.7 were averaged into ensemble 
models which were used to produce geographic pro-
jections of habitat suitability (Marmion et al. 2009, 
Thuiller et al. 2009). On the habitat suitability maps, 
cells with ≥0.5 occurrence probability were consid-
ered suitable to delineate areas with higher habitat 
suitability values for field validation surveys. Uncer-
tainty in habitat suitability projections was visualized 
on maps of coefficients of variation from the iterative 
niche ensemble models (Hortal 2008). 

Habitat suitability maps produced by the SDMs 
were used to guide field validation surveys to areas 
of high predicted probability of occurrence. The non-
thinned absence points were overlaid on the pre-
dicted habitat map and predicted suitable and un -
suitable areas that had not been previously surveyed 
were selected for field validation. To increase 
chances of detection, field validation surveys were 
done between May and June of each year when the 
plants were in bloom. Additional spatial data from 
the field surveys were used in the subsequent model-
ing iteration and site selection for post-modeling 
field validation. The iterative modeling and field sur-
veys were repeated for 5 yr. For each newly discov-
ered population, we calculated the distance to the 
nearest previously known occurrence with the FNN 
R package version 1.1.3 (Beygelzimer et al. 2019). 

The relative importance of the predictor variables in 
all iterative SDMs was evaluated using the jackknife 
test (Phillips et al. 2006), while species–environment 
relationships were described with partial response 
curves using the evaluation strip method (Elith et al. 
2005) as implemented in the biomod2 R package. We 
assessed the trends and statistical significance of the 
model performance across the years of iterative niche 
modeling to investigate whether additional spatial 
data improved the overall predictive accuracy of the 
iterative ensemble SDMs. Mean scores of the 4 model 
performance metrics for each of the 6 algorithms (10 
replicates each) were regressed against the years of 
iterative SDMs using multivariate multiple linear re-
gression (MMLR). The statistical significance of the 
MMLR models was corrected using the Tukey post-
hoc test. 

We also assessed the reliability of these iterative 
SDM predictions by checking for model overfitting 
with a spatial cross-validation approach using block 
partitioning. Spatial block partitioning is a nonran-
dom allocation of spatial data to reduce the effect of 

spatial bias and autocorrelation in ecological models 
(Valavi et al. 2019). The entire study area was di -
vided into 6 equal latitudinal and longitudinal bins, 
which were then clustered into 3 spatial blocks. Two 
spatial blocks were used for model training, while 
the third block was used for testing. Spatial block 
partitioning was done in the blockCV R package ver-
sion 2.1.4 (Valavi et al. 2019), whereas the niche 
models were conducted in biomod2 R package ver-
sion 3.5.1 using similar model tuning as used for the 
iterative SDMs. Partitioning our relatively small spa-
tial dataset could only meet the requirements for 
modeling with Random Forest, Maximum Entropy 
and Artificial Neural Networks, which were then 
used for the spatial block-based ensemble niche 
modeling. Overfitting was assessed as the difference 
be tween the block (training) and test AUC values 
(Warren & Seifert 2011). 

2.5.  Assessment of the change in I. webberi niche 
across modeling iterations 

We used the COUE framework to investigate the 
position of the new locations relative to the initial 
niche of I. webberi. The COUE framework, based 
on the principal component analysis (PCA), allows 
for direct comparison of species–environment rela-
tionships (Broennimann et al. 2012). To calculate 
the niche metrics, a kernel density function is ap -
plied to smoothen the varying sampling sizes of the 
2 sets of occurrence points within a PCA gridded 
environmental space (Broennimann et al. 2012, 
Petitpierre et al. 2012). We calculated niche overlap 
(Schoener’s D), stability, expansion and unfilling 
between the initial (2015) and a combination of all 
new (2018-2020) I. webberi locations, based on the 
environmental space of the 6 uncorrelated predictor 
variables. Schoener’s D is calculated from the envi-
ronmental occupancy of the 2 niches and it ranges 
from 0 (no overlap) to 1 (total overlap). No overlap 
and total overlap represent niche divergence and 
similarity, respectively (Brown & Carnaval 2019). In 
this study, niche stability represents the proportion 
of the environmental space in the newly discovered 
locations available in the initial occurrences’ envi-
ronmental space, whereas niche expansion repre-
sents the proportion of the environmental space in 
the new locations that are not available in the initial 
locations. A niche unfilling estimate was used to 
investigate whether the new occurrences only colo-
nized a limited portion of the environmental space 
of the initial occurrences (Petitpierre et al. 2012, 
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Guisan et al. 2014). Given that habitat suitability 
map projections of the initial occurrences were used 
for field validation surveys, the COUE framework 
was implemented using a niche similarity test, 
which assumes that the environmental niches in the 
new occurrences are similar to the initial occur-
rences (Liu et al. 2020, Pili et al. 2020). The niche 
similarity test generated random estimates of 
Schoener’s D, niche stability, expansion and unfill-
ing, using 1000 randomizations of the niche posi-
tions of the initial and newly discovered occur-
rences. These randomizations were used to check if 
the observed niche overlap and stability were 
higher and if observed niche expansion and un -
filling were lower than expected by chance. Fur-
thermore, we extracted the initial niche density val-
ues at the new locations to quantify the degree of 
niche stability or expansion in the new locations. 
Niche density values range from 0 to 1, with 0 rep-
resenting new locations outside the initial niche (i.e. 
niche expansion) and 1 representing new locations 
in the core of the initial niche. The niche similarity 
test was run with the development version 3.2.1 of 
the ecospat R package available on github (Di Cola 
et al. 2017). 

Additionally, we quantified the number of pre-
dicted suitable raster cells (≥0.5 probability of 
occurrence) in the habitat suitability maps. We also 
performed a niche overlap analysis on the geo-
graphic projections of habitat suitability between 
the 2015 (initial) and 2020 (final) model iterations 
for each iterative niche model using the I similarity 
metric, which is based on Hellinger distance (War-
ren et al. 2008). The I similarity metric ranges from 
0 to 1, representing the degree of pairwise similar-
ity in niche model projections. This map-based 
niche overlap test is a cell-by-cell comparison with 

a randomization test of geographical predictions of 
the 4 iterative SDMs (Warren et al. 2008) and it 
was performed in the dismo R package (Hijmans et 
al. 2017). 

3.  RESULTS 

3.1.  Environmental variables associated  
with the ecological niche of Ivesia webberi and 

 species–environment relationship change across 
the space distribution models (SDMs) 

Throughout the iterative SDMs from 2015 to 2020, 
the perennial herbaceous vegetative cover consis-
tently contributed the most to the fitted distribution 
of I. webberi (Fig. 1). In the 2020 model iteration, 
I. webberi showed an asymmetric and threshold 
response curve for perennial vegetative cover, with 
suitable sites occurring in areas with moderate 
(>20%) to high native perennial forb cover (Fig. 2a). 
TPI was the second most important predictor across 
all model iterations. The response curve for TPI is 
bimodal and asymmetric, illustrating that I. webberi 
occurs on sites that are either gentle lateral valleys or 
ridges (Fig. 2c). Cumulative AET was the third most 
important predictor in the 2015 niche model iteration 
(Fig. 1a). The cosine-transformed slope aspect, a 
proxy for exposure to sunlight, came third in the 2018 
and 2019 iterations (Fig. 1c,d), while summer sea-
sonal precipitation was the third most important pre-
dictor for the 2020 iteration (Fig. 1d). The response 
curve for summer seasonal precipitation shows a 
threshold response, where the probability of I. web-
beri occurrence was maximized at >25 mm summer 
precipitation, beyond which the curve flattened 
(Fig. 2b). 
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Fig. 1. Variable contributions to the iterative niche modeling for Ivesia webberi from (a) 2015 to (d) 2020. The 3 predictors used 
for each year of iterative modeling were selected from the preliminary modeling. Herb: perennial herbaceous vegetative cover; 
TPI: Topographic Position Index at 333 m; Cum. AET: cumulative actual evapotranspiration; Aspect: cosine-transformed aspect;  

Precip: summer mean precipitation
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3.2.  Impact of modeling iterations and  
field  surveys on the distribution and  

ecological niche of I. webberi 

The iterative ensemble SDMs and model-guided 
field surveys resulted in the discovery of 7 new loca-
tions of I. webberi (30.4% of the initial dataset), while 
2 additional new locations (8.7% of the initial dataset) 
were discovered opportunistically by local bota nists. 
The distance from the new locations to the closest 
known locations ranged from 30 m to 63 km (Table 3). 
As a result, the northern distribution range of the spe-
cies was expanded by 63 km (Table 3). However, the 
percentage of the suitable raster cells in the ensemble 
habitat projections decreased from 5.98% in 2015 to 
3.34% in 2020 (Fig. 3). Despite the decrease in the 
percentage of suitable grid cells, niche overlap be-

tween the geographical projections of the 2015 and 
2020 model iterations was high (Hellinger’s I = 0.89). 
The model projections also predicted higher probabil-
ity of I. webberi occurrence in locations near the cen-
ter of the study area (Fig. 3). Prediction uncertainties 
(coefficients of variation) were relatively low across 
all 4 projections (Fig. 4). 

3.3.  I. webberi  niche dynamics across  
modeling iterations 

The first 2 principal component analysis (PCA) axes, 
both representing topo-climatic gradients, ex plained 
49% of the variation in the data (Fig. 5, Table S3), 
while the third axis, re presenting the perennial vege-
tation cover, ex plained an ad ditional 17.4% of the 
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Fig. 2. Partial response plots showing the predicted probability of Ivesia webberi occurrence in (a) Perennial herbaceous 
vegetative cover, (b) summer mean precipitation and (c) Topographic Position Index. The partial response plots were gener-
ated using the Boosted Regression Trees, while the histograms represent the predicted values from 10 000 randomly sampled 
background points from the 3 variables used for the niche modeling. The black line represents the average response for the 
10 modeling replicates, and the grey shading shows the SD. The partial response plots for each of the 10 model replicates of  

the 6 SDM algorithms are included in Fig. S1 in the Supplement

Location name                         Finding                                                                       Year       Niche    Predicted      Distance  
                                                                                                                                                  density     habitat      from known  
                                                                                                                                                                  suitability   location (km) 
 
Wildcat Hill                              Opportunistic: discovered by Bureau of Land       2018        0.27          0.73               8.07 
                                                 Management (BLM) staff during land surveys 
Unit 6 extension                      Model: predicted suitable sites near known          2018        0.87          0.59               0.38 
                                                 location 
Smoke Creek Road                 Opportunistic: discovered during California          2019        0.86          0.37              62.98 
                                                 Native Plant Society vegetative surveys 
Unit 4 extension                      Model: high predicted suitability                             2020        0.38          0.62               0.03 
South end of HJWA                Model: high predicted suitability                             2020        0.58          0.64               2.99 
HJWA south end #2                Model: suitable sites near known location              2020        0.71          0.30               2.26 
Private land discovery #1       Model: suitable sites near known location              2020        0.21          0.21               1.39 
Private land discovery #2       Model: suitable sites near known location              2020        0.36          0.28               2.23 
New Smoke Creek Road        Model: suitable sites near known location              2020        0.83          0.15               1.22

Table 3. Niche density, predicted habitat suitability and distance of new locations to the nearest neighbor in the initial points
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Fig. 3. Predicted geographical distribution of Ivesia webberi in the western Great Basin Desert, with both the original and new 
occurrence points overlay. Red pixels: predicted high probability areas of I. webberi occurrence; orange and grey pixels: inter-
mediate to low probability of species occurrence; blue pixels: zero to low probability of species occurrence (non-suitable areas). 
Green occurrence points: original  I. webberi occurrence points; yellow occurrence points: novel I. webberi populations
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Fig. 4. Coefficients of variation within the ensemble predictions of Ivesia webberi in the western Great Basin Desert, with 
both the original and new occurrence points overlay. Red pixels: low prediction uncertainty areas; orange and grey pixels:  

intermediate to low prediction uncertainty areas; blue pixels: high prediction uncertainty areas in model predictions
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variance (Table S3). The PCA niche 
similarity test shows that the environ-
mental niche of the new occurrences 
overlaps that of the initial occurrences 
with marginal significance (Schoener’s 
D = 0.47; p = 0.05). This finding was 
corroborated by the niche stability re-
sult, showing that the environmental 
niche of the new occurrences is similar 
to the initial occurrences (niche stabil-
ity = 0.93; Fig. 5), although this high 
value was marginally significant (p = 
0.09; Fig. 6). Furthermore, the values 
of the new locations in the niche den-
sity of the initial occurrences ranged  
from 0.21 to 0.87 (Table 3). This shows 
that these new points are found within 
the initial niche, indicating niche sta-
bility. However, niche changes be-
tween the initial and new occurrences 
were due to unfilling (estimate = 0.47; 
p = 0.11) rather than expansion (esti-
mate = 0.07; p = 0.09; Fig. 6). The ma-
jority of the randomized niche overlap 
and stability estimates were lower than 
the observed values (Fig. 6a,b), while 
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Fig. 6. Randomized values for (a) niche overlap, measured as the Schoener’s D, (b) niche stability, (c) niche expansion and (d) 
niche unfilling between the initial and novel occurrence locations for Ivesia webberi. The r on each plot represents the actual 
niche metric. For each niche estimate, 1000 randomizations were done using a niche similarity test that randomly shifts the  

centroids of the initial and novel realized niches

Fig. 5. Principal component analysis biplot of the environmental predictors 
(see Fig. 1 and Table 2 for definitions) that influence Ivesia webberi niche in 
the western Great Basin Desert. These absence and presence data are combi-
nations of initial (black) and new locations (red). Green area: niche occupied 
only by the initial occurrences (unfilling); blue area: niche occupied by both 
initial and novel occurrences (stability); pink area: niche occupied only by the  

new locations (expansion)
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the majority of the randomized expansion and unfill-
ing estimates were higher than the observed values 
(Fig. 6c,d). 

3.4.  Effect of the modeling iterations on the 
 predictive accuracy and reliability of SDMs for 

I. webberi 

Fig. 7 shows the mean performance metrics for the 
iterative ensemble SDMs between 2015 and 2020. 
The true skill statistics (TSS)-based model perform-
ance scores significantly decreased from 0.70 in 2015 
to 0.60 in the 2020 model iterations (Tukey post-hoc: 
p = 0.01). Similarly, the area under the curve (AUC) 
scores significantly decreased from 0.83 to 0.72 
between the 2015 and 2020 model itera tions (Tukey 
post-hoc: p = 0.02). However, both Boyce Index and 
specificity showed non significant (p > 0.05) changes 
between the 2015 and 2020 model iterations (0.43 to 
0.34 and 90.14 to 92.53, respectively). The predictive 
performance of the spatial block niche modeling for 
the 2015 spatial data indicates model overfitting 
(AUCBLOCK = 0.81, AUCTEST = 0.47), in contrast to the 
2020 spatial data which did not ex hibit overfitting 
(AUCBLOCK = 0.47, AUCTEST = 0.52). 

4.  DISCUSSION 

Within a 5-yr period, our iterative modeling ap -
proach resulted in the discovery of 9 novel locations 
(representing 39% of the initial known distribution) 
and a 63 km expansion of the predicted geographical 
range of a federally threatened perennial forb. The 
discovery of new locations from model-guided field 
surveys is frequently reported for rare species in the 
literature and highlight the importance of SDMs and 
model-guided field surveys in conservation. As a 
result of enlarged occurrence datasets and known 
ranges, many threatened species have subsequently 
been delisted from the US Endangered Species Act 
(Keinath et al. 2014, Sofaer et al. 2019). Additionally, 
with sufficient spatial data, models can reliably iden-
tify biologically relevant ecological factors that sup-
port species persistence and predict their potential 
distributions. In this study, the number of Ivesia web-
beri occurrences increased by 39% (from n = 23 to n 
= 32) and  Ivesia webberi patch occupancy in many of 
the new locations compares well with those of the 
original locations. Therefore, findings from this study 
can guide decisions on future I. webberi manage-
ment. Moreover, previous studies have also reported 
major revisions to conservation management and 
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Fig. 7. Boxplots showing the performance of species distribution models (n = 10 replicates each for 6 algorithms) in (a) area under 
curve (AUC) of the receiver operating characteristic plot, (b) Boyce index (BI), (c) specificity, and (d) true skill statistic (TSS) across 
the years of iterative niche modeling (shown on x-axes). The bold lines represent median values, while the boxes illustrate the  

lower and upper quartiles. The lower and upper whiskers represent the lowest and highest values, respectively
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reserve designs due to the additional biodiversity 
data from model-guided field surveys (Platts et al. 
2010), in cluding decisions re garding translocation of 
species of conservation concern (Draper et al. 2019). 
Findings of multiple analyses show that the majority 
of the new locations are found within the environ-
mental niche of the initial occurrences. We observed 
high niche stability (93%) and low niche expansion 
(7%) between the environmental conditions in the 
initial and new occurrences. Moreover, both the ini-
tial niche density values of the new locations and the 
niche dynamics plot (Fig. 5) illustrate the position of 
the new locations within the realized niche space of 
the initial occurrences. This is not surprising, consid-
ering that the field validation surveys that resulted in 
the discovery of these novel locations were based on 
initial models. The observed niche overlap and sta-
bility estimates are higher than the majority of the 
randomly generated niches, whereas niche unfilling 
and expansion are lower than most of the random 
niches generated in the similarity test (Fig. 6). In 
spite of the nonsignificant randomization results, 
these findings provide partial support for niche simi-
larity between the initial and novel occurrences. The 
marginally significant randomizations (0.05 < p < 
0.15) could be attributed to a limited statistical power 
due to the low number of occurrences and high 
degree of geographical similarity in both the initial 
and new datasets (Brown & Carnaval 2019). The 
unfilled portion of the niche (Fig. 5) suggests that 
there may be more I. webberi locations yet to be dis-
covered or suitable habitat yet to be colonized due to 
the species limited dispersal capacity. 

Additional spatial data can significantly impact the 
predictive performance of iterative niche models, due 
to their effect on model parameters (Guisan et al. 
2006). In this study, we observed changes in model 
performance and geographical projections, despite 
the minimal changes in the 3 predictors used across 
all model iterations. Specificity is based on omission 
error rates, which represent the percentage of false 
negatives in the spatial data. Therefore, slight in -
creases in specificity across the model iterations sug-
gest that the additional spatial data slightly reduced 
presence–absence ratio in the overall spatial data and 
also reduced the model omission errors (Lauze ral et 
al. 2012, Chiffard et al. 2020). However, the re duction 
of AUC and TSS, and Boyce Index values in all but the 
final model iteration may be attributed to overfitting 
due to insufficient occurrences in the dataset. Addi-
tional spatial datasets from multi-year sampling may 
have corrected model overfitting, but they also re-
sulted in reduced SDM performance. This is consistent 

with previous studies that also reported re duced 
niche performance when correcting overfitting in 
niche models (Guisan et al. 2006, Peterson et al. 2007). 
Therefore, a fair performance assessment for iterative 
niche modeling should focus on model generalizabil-
ity as the primary measure of performance as opposed 
to model fit for any given year. A rigorous approach to 
assessing model generalizability (or lack of over-fit-
ting) is to use spatially independent data for model 
validation, as in the spatial block niche modeling ap-
proach employed in this study. Secondly, some of the 
additional absence points were sampled from areas 
that were predicted to be suitable. This can introduce 
noise into spatial data used for iterative niche model-
ing because the absence of I. webberi in these pre-
dicted suitable sites may be due to dispersal limitation 
(Lobo et al. 2010, Lauzeral et al. 2012). Field observa-
tions support the suitability of some of these surveyed 
sites because they have similar edaphic and topo-
graphic features, and the occurrence of common asso-
ciates like Balsa morhiza hookeri, Artemisia arbuscula, 
Antennaria di morpha and Phlox longifolia. McCune 
(2016) reported similar circumstances where common 
floristic associates of several studied plants were 
found in sites predicted to be suitable. Therefore, the 
inclusion of such absence points in iterative niche 
models can result in the underprediction of the poten-
tial niche and a reduction in model performance 
(Araújo & Peterson 2012). 

The biology of a species may also affect the predic-
tive performance of niche models (Marmion et al. 
2009, Regos et al. 2019), particularly the performance 
of iterative SDMs following the addition of new spa-
tial data (Guisan et al. 2006, Lauzeral et al. 2012). 
Despite its relatively restricted geographical range, I. 
webberi is locally abundant in occurrence locations 
and it exhibits mixed mating system (Borokini et al. 
2021). These traits suggest high colonization poten-
tial and wider niche breadth (Grant & Kalisz 2020), 
which fits the description of satellite-type species 
(Hanski 1982, Collins et al. 1993). For satellite-type 
species, low dispersal capacity limits the full colo-
nization of suitable habitat and may reduce predic-
tive performance of SDMs (Edwards et al. 2005). 
Araújo & Peterson (2012) cautioned that areas of 
commission errors should be interpreted carefully for 
species with fewer occurrences because they may 
represent suitable habitats that are yet to be colo-
nized (i.e. potential niche). This may be true for the 
neo-endemic I. webberi, which may not yet be in 
equilibrium with its suitable environment (Araújo & 
Pearson 2005) because it has not yet fully colonized 
its range (Kraft et al. 2010, Thornhill et al. 2017). To 
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reduce spatial bias in iterative SDMs, additional spa-
tial data must be collected using stratified sampling 
from both sites with predicted higher and low proba-
bilities of species occurrence (Edwards et al. 2005, 
Guisan et al. 2006). Additionally, absence points too 
close to presence points in ordination space (thus 
sharing similar environmental conditions) should be 
excluded from subsequent modeling. 

A combination of biotic and topo-climatic variables 
contributes to the niche of I. webberi. Throughout 
modeling iterations, perennial herbaceous cover and 
TPI consistently contributed the most to I. webberi 
distribution, while cumulative AET, cosine aspect 
and summer seasonal precipitation also contributed 
to the species niche in model iterations. The peren-
nial herbaceous cover may have constrained I. web-
beri niche to areas of suitable vegetative community, 
thus representing a biotic component of the species 
niche. Vegetative land cover is reported in the litera-
ture as an important predictor of habitat suitability 
for rare plants (Gogol-Prokurat 2011, McCune 2016). 
TPI illustrates topographic heterogeneity, which im -
pacts microclimatic conditions and influences plant 
distribution and diversity in high-altitude and het-
erogeneous landscapes (Chardon et al. 2014, Thorn-
hill et al. 2017). The greater probability of I. webberi 
occurrence in areas with higher cosine aspect in the 
2018 and 2019 model iterations shows that the spe-
cies prefers cooler north-facing slopes which receive 
less sunlight. Though topographic variables are not 
proximal (Austin 2002), they have been used suc-
cessfully as spatial delineators and to represent miss-
ing climatic variables especially in high-altitude 
areas, map species habitat suitability, re duce niche 
model overprediction and increase model perform-
ance (Lassueur et al. 2006, Fois et al. 2018). 

Summer seasonal precipitation and cumulative 
AET, the bioclimatic variables, represent the avail-
ability of water and energy which governs the timing 
of spring regeneration and seed germination in I. 
webberi. Summer seasonal precipitation may play an 
important role in I. webberi seed dispersal, as has 
been ob served for spring-germinating plants in other 
cold deserts of the world (Chen et al. 2019). Field 
observations show that I. webberi seeds are dis-
persed by gravity-assisted surface run-off due to 
summer precipitation, resulting in the colonization of 
interspace microsites and decommissioned roads and 
trails. This localized seed movement due to summer 
precipitation was also reported for I. tweedyi and I. 
lycopodio ides var. scandularis (Moseley 1993, Pollak 
1997). Taken together, the SDM predictions are con-
gruent with field observations that I. webberi suit-

able habitats are found on gentle slopes and ridges 
dominated by native perennial forbs, herbs, annual 
grasses and fewer stands of native shrubs, inter-
spersed with bare ground or gravel-covered micro -
sites. Unfortunately, these sites are vulnerable to 
anthropogenic disturbances and colonization by in -
vasive species which have altered wildfire regimes 
in  the Great Basin Desert (Chambers et al. 2014, 
Morris & Rowe 2014). 

Species with small population size and restricted 
geographical distributions are more vulnerable to fu-
ture environmental changes and are frequently tar-
gets of conservation priority (Lomba et al. 2010, 
Sousa-Silva et al. 2014). In this study, we explored 
the efficacy of 2 complementary approaches for ad -
dressing the challenges associated with SDMs for rare 
species: iterative ensemble modeling and model-
guided field sampling. These 2 complementary ap-
proaches can reduce spatial bias, allow for model 
fine tuning that can improve model performance and 
increase the chances of detecting novel locations 
that can either fill the realized niche space or expand 
the species niche breadth, and hence, the known 
 geographical distribution. Improved model perform-
ance will enhance reliable assessment of species–
environment relationships. Iterative SDMs are partic-
ularly important for guiding future efforts to improve 
species distribution datasets and allow for a tighter in-
tegration of models with data, leading ultimately to 
more accurate and ecologically meaningful SDMs. 
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