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ABSTRACT: Many symbiotic associations characteristic of tropical and subtropical oceanic waters 
were observed near shore during a long-term study of the microbiota in the northern part of the Gulf of 
Aqaba, Red Sea. Among such associations were the heterotrophlc dinophysoid genera Omithocercus, 
Histioneis and Citharistes with cyanobacterial symbionts. The detection of these heterotroph-autotroph 
consortia repeatedly coincided with extended nitrogen limitation in the fall season. Populations of 
free-living cyanobacteria, with known N fixation capability, such as the unicellular Synechococcus/ 
Synechocystis spp. and colonial forms, e.g. Trichodesmiurn spp., also peaked at the same time. We 
propose that heterotrophic dinoflagellate hosts may provide the cyanobacterial symbionts with the 
anaerobic microenvironment necessary for efficient N fixation. Thus, these self-supporting consortia 
increase in numbers during the long period of stratification and nitrogen limitation in the oligotrophic 
subtropical waters of the Gulf of Aqaba. 
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INTRODUCTION 

The heterotrophic dinophysoid genera Ornithocer- 
cus, Histioneis and Citharistes are common mostly in 
deep oceanic waters of tropical and subtropical seas 
(Gaines & Elbrachter 1987, Taylor 1987). They are 
devoid of photosynthetic pigments, have no evidence 
of phagotrophic inclusions in their cytoplasm (Gaines 
& Elbrachter 1987, Taylor 1987) and are thought to feed 
osmotrophically (Droop 1974). These dinoflagellates 
often host clusters of cyanobacteria, rod-ovoid or 
spherical shaped, corresponding to Synechococcus 
carceranus Norris and Synechocystis consortia Norris 
respectively. The cyanobacterial symbionts, also known 
as phaeosomes (Norris 1967, Taylor 1982, 1990), are 
located between the upper and lower lists of the 
horizontal groove of the cells, as in Omithocercus 
and Histioneis (congeneric according to Balech 1971) 
or within special chambers inside the cells, as in 
Citharistes. 

'Addressee for correspondence 

The dinoflagellate-phaeosome consortia were re- 
corded in the plankton of the northern part of the Gulf 
of Aqaba at Stn A (depth 600 m) during a long-term 
study of the microbiota of this marine environment 
(Fig. 1, inset). Their occurrence, so close to shore, in 
spite of their oceanic preferences, may be related to 
the particular configuration of the Gulf, a very narrow 
shelf and steep submarine slopes harboring very deep 
water masses. The peculiar geomorphological features 
of the Gulf may thus favor CO-existence of what are 
typically considered oceanic and neritic species 
(Smayda 1958). The oligotrophic nature of the Gulf, 
especially in its northern part (Klinker et al. 1978, 
Levanon-Spanier et al. 1979, Reiss & Hottinger 1984 
and references therein, Weickert 1987), constitutes an 
additional factor in the occurrence of oceanic symbiotic 
associations among the microplankton in general and 
of dinoflagellate-cyanobacteria consortia in particular 
(Guillard & Kilham 1977, Hallegraeff & Jeffrey 1984, 
&mor et al. 1992). The recurrent appearance of hetero- 
trophic dinoflagellates harboring symbionts primarily 
during the autumn season, following many months of 
thermal stratification, prompted this study. 
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MATERIALS AND METHODS 

Water samples were collected 4 times yr-' using 
Niskin bottles from a series of depths (0-5, 20, 60, 80, 
100, 120, 150, 200, 300, 400, 500, 600 m) at a reference 
station (Stn A) located 2 miles from shore where the 
water depth is 550 to 600 m (Fig. 1). 

Water samples (300 to 400 ml) were concentrated on 
25 mm polycarbonate filters using the filter-transfer- 
freeze (FTF) method (Hewes & Holm-Hansen 1983) 
and cells were measured, counted and photographed 
by epifluorescence and transmitted light microscopy. 
The orange or yellow fluorescence characteristic of 
phycoerythrin-rich cyanobacterial symbionts contrasted 
sharply with the green fluorescence of the hetero- 
trophic dinophysoid hosts when using this technique. 
The cell recovery efficiency of the FTF method was 
shown to be high (Hewes et al. 1984). In our own hands 
(calibrated by comparing live and FTF counts of cul- 
tures of the naked dinoflagellate, Oxyrrhis sp.) recovery 
ranged between 85 and 98% (Gordon unpubl.). The 
detection limit of our cell counts allowed us to detect 
1 cell in 0.3 to 0.4 l sample, or 2.5 to 3.5 cells 1-l .  How- 
ever, if we consider the total volume filtered per cruise 

Fig. 1. Location of Stn A (see inset) a t  the northern end of the (at least 300 ml), the 
Gulf of Aqaba, Red Sea limit per cruise drops to about 0.5 cells 1-l. 

Fig. 2. (a) Histioneis milneri Murray & Whitting, (b) H. carinata Kof., (c) Citharistes regius, (d) H. biremis Stein, (e) Ornithocercus 
quadratus, ( f )  0 splenddus. All of these heterotrophic dinoflagellates are associated with phaeosomes (cyanobacterial 
symbionts). The phaeosomes (P) are unicellular cyanobacteria of the Synechococcus or Synechocystis types, characterized by 
yellow/orange autofluorescence [see arrow in (b)],  and they are generally considerably larger than the free-living Synechococ- 
cus/Synechocystis spp. in these waters. Phaeosornes are located either between the cingular Lists of the horizontal groove, or 

w i t h  specialized chambers inside the cell. Scale bars = 20 pm 
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Biomass of SynechococcuslSynechocystis spp. was 
determined by multiplying mean cell counts by 
mean cell volume (determined by microscope measure- 
ments) and converting the biovolume to carbon biomass 
using the Strathman (1967) conversion factor (250 fg 
C pm-". 

Nitrate concentration in the seawater samples was 
determined by a Technicon I1 autoanalyzer (Krom et  al. 
1991). 

RESULTS AND DISCUSSION 

An analysis of the plankton samples collected over 
a period of nearly 5 yr a t  Stn A in the Gulf of Aqaba 
indicated a recurring appearance of dinophysoid- 
cyanobacteria consortia almost exclusively during the 
autumn (Table 1, Fig. 2). A total of 25 positive observa- 
tions of such consortia were made in the fall months of 
October and November (1989, 1990, 1991 and 1992), 
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Table 1. Summary of the seasonal appearance and depth distribution of tion. The latter is already strong in sum- 
dinophysoids with unicellular cyanobacterial symbionts collected at Stn A in mer (Fig, 3; Levanon-Spanier et al. 
the northern Gulf of Aqaba, Red Sea. Dinophysoid abundance ranged from 1979), We thus feel the development of 
3 to 6 cells I- '  Species codes are as follows -a: Histioneis milneri Murray 
& Whittina: b: H. carinata Kof.; c: Cithadstes reaius Stein; d: H. birernis Stein: the p0pulations discussed is likely 
e: ~rnitho>ercus quadratus Schutt; f: 0. splendibus Schutt; g: H. para Murray related to nutrients and stratification 
& Whitting; h: H. dubia Bohm; i: H. minuscula Rampi; j: Histioneis sp.; than to any other of the major environ- 

k: Histioneis sp.; 1: H. schiUen Bohm mental factors. 

Date Depth (m) 
0-20 20-40 40-60 60-80 80-100 100-120 120-140 

Jul 1988 
Sep 1988 
Oct 1989 
Dec 1989 
Mar 1990 
May 1990 
Jul 1990 
Oct 1990 k k 
Nov 1991 g k c c,h,l c,i 
Mar 1992 a 
Jul 1992 
Oct 1992 b,d,e,f,g,h,k g,h h k 
Mar 1993 

while only 3 observations were recorded during other 
seasons, 2 of them during March 1990 and the third 
during March 1992. 

Extreme nutrient limitation is an outstanding and 
well-documented feature of the fall season in the waters 
of the Gulf of Aqaba (Levanon-Spanier et  al. 1979, Reiss 
& Hottinger 1984, Lazar & Erez 1991). This limitation, 
especially of nitrate, results from the extended depletion 
of nutrients from the euphotic zone from spring to fall. 
The nutrients disappear during a long period of thermal 
stratification, which begins in April-May of each year 
and lasts until the onset of winter vertical mixing, ap- 
proximately in December. Fig. 3 shows the effect of a 
typical full annual cycle of destratification and stratifi- 
cation on the depth-profiles of nitrate and of free-living 
cyanobacteria. In November 1991, nitrate was already 
depleted in the top 150 m of the water. In March 1992, 
nitrate was replenished in the top layer as a result of 
the winter mixing. The profiles from July and October 
1992 show the slow deepening of the nitrate-stripped 
layer. This process coincided with the emergence of 
detectable populations of the dinophysoid symbiotic 
associations (Fig. 2, Table 1). 

Different factors can influence rnicroplanktonic 
population structure. The major factors are light, tem- 
perature, physical characteristics and nutrients. In the 
Gulf of Aqaba, temperature varies only from 21 "C in 
winter to 26°C in summer (Reiss & Hottinger 1984). 
Both light and temperature conditions are quite similar 
in October-November and in March-April. The only 
major factors which are quite different between fall 
and spring are the nutrients and the thermal stratifica- 

We propose that the symbiotic consor- 
tia discussed here begin to grow during 
the late spring. By July, nitrogen lirnita- 
tion is already severe, but the dino- 
physoid populations are still too small to 
reach our detection limit of 0.5 cells 1-l. 
Their numbers peak in the fall, following 
the extended period of both nitrogen lim- 
itation (which favors efficient N fixers) 
and stratification, which allows slow 
growers such as dinoflagellates and N 
fixers to build up their populations. 

The proposed function of the hetero- 
trophic dinophysoid host in the dinofla- 
gellate-cyanobactena consortia reported 

NOVEMBER 91 3 1 I 1 MARCH92 I 
E 0 2 4 6 8 1 0 1 2  0 2 4 6 8 1 0 1 2  

/ JULY92 1 1 OCTOBER92 1 
Synechococcus/Synechocystis Nitrate - . . . .A.. . 

Fig. 3. Seasonal vertical profiles of nitrate (NOT) concentra- 
tion (pM) and free-living Synechococcus/Synechocystis spp. 

biomass (pg C 1-') at Stn A, 1991-1992 
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here (Fig. 2) is provision of the anaerobic microenvi- 
ronment necessary for N fixation by the cyanobacterial 
symbionts in oligotrophic waters. The activity of the 
nitrogen-fixing enzyme nitrogenase requires low oxy- 
gen tension for its synthesis and activity (Postgate 
1982). However, low oxygen conditions are scarce in 
oligotrophic waters (Paerl et al. 1987). Cyanobacteria 
have evolved a variety of strategies to fix nitrogen in 
oxygenated waters, such as heterocysts (Wolk 1982). 
Colonial non-heterocystous cyanobacteria form regions 
of low oxygen tension at the center of their colonies 
to enable nitrogenase activity (Kallas et al. 1983, Paerl 
et al. 1989). Even non-colonial, non-heterocystous chro- 
ococcoid cyanobacteria are able to fix nitrogen, albeit 
less efficiently (cells alternate between aerobic photo- 
synthesis and anaerobic N fixation metabolisms) in 
highly oxygenated, oligotrophic waters (Kallas et al. 
1983, Leon et  al. 1986, Mitsui et al. 1986, S p ~ e r  & 
Shanmugam 1987, Paulsen et  al. 1991). 

There are several lines of evidence supporting our 
proposition: 

(1) Cyanobacteria have been shown to exude a large 
proportion of their fixed carbon (Raven 1987). By 
supplying the host with respirable organic exudates, 
the cyanobacterial symbionts are likely to accelerate 
oxygen consumption in their immediate proximity, and 
thus to activate the nitrogenase for a longer time than 
their free-living peers. 

(2) The abundance of free-living Synechococcus/ 
Synechocystis sp., which constitutes a major fraction of 
the total autotrophic biomass in the Gulf water year- 
round (Neori et  al. unpubl.), increased in the surface 
waters in correlation with nitrate limitation, and 
usually peaked in the autumn (Fig. 3) .  Nitrate and 
SynechococcuslSynechocystis sp. were evenly distrib- 
uted throughout the water column only during the 
winter mixing (Fig. 3). 

(3) Populations of the diazotrophic filamentous 
cyanobacterium Trichodesmium thiebautii and the 
colonial chroococcoid cyanobacterium Aphanocapsa 
littoralis also occurred almost exclusively in the 
autumn (Gordon unpubl.). They were not detected 
during the winter mixing, instead, seasonal peaks 
were observed in populations of large autotrophic 
phytoplankton, mainly diatoms and dinoflagellates, as 
well as the heterotrophic tintinnids (which occupy the 
same ecological niche as the symbiotic dinophysoids) 
(Kirnor & Golandsky 1977, Levanon-Spanier et al. 1979, 
Kimor & Golandsky-Baras 1981, Gordon unpubl.). 

In conclusion, we feel there is evidence that popula- 
tions of some cyanobacteria increase during the N- 
limitation months, conceivably due to their N fixing 
capability. There is also evidence that larger N fixing 
cyanobacteria may have some advantages over free- 
living single cells in creating sites of low oxygen ten- 

sion in highly oligotrophic waters. Our hypothesis is 
that in the consortia discussed here, the heterotrophic 
dinoflagellate hosts provide their unicellular cyano- 
bacterial symbionts with similar advantages. This 
premise has yet to be examined experimentally. 

If our hypothesis is correct, one could still question the 
ecological relevance of organisms with such low abun- 
dances as the discussed dinophysoid-cyanobacterial 
consortia in the Gulf waters. However, even non- 
abundant microplankters may substantially contribute 
to nutrient and plankton dynamics in oligotrophic 
waters (Villareal & Carpenter 1989, Goldman 1993). If 
the syn~biosis makes N fixation of the symbionts more 
efficient, the consortia may contribute to the nitrogen 
and productivity dynamics of the euphotic zone in the 
Gulf more than their numbers suggest. Additionally, 
their population increase serves as a n  easily distin- 
guishable and useful bioindicator of extreme and ex- 
tended oligotrophic conditions, as occur in the Gulf of 
Aqaba in the fall of each year. It will be interesting to 
examine this relationship in other regions of the world 
oceans. 
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