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ABSTRACT The relationship between the scyphozoan Nausitoe punctata and the horny sponges 
Cacospongia scalans, Dys~dea avara and D. fragdis was analyzed. Evidence was found for utilization of 
the thecae of N. punctata as a substitute for skeletal fibres. Consequently some metabolic costs 
associated with skeleton-buildng may be reduced for the sponge. Further potential benefits for the 
scyphozoan, e.g. protection against predation and mechanical disturbance, and trophic advantages, are 
discussed This association is suggested to be non-parasitic and mutualistic, and widely distributed 
among 6 orders and 8 families of the Demospongiae which occur throughout the Northwestern 
Mediterranean. 

INTRODUCTION 

Mutualistic associations between organisms are 
thought to play an important role in structuring marine 
communities (Vance 1978). Such relationships contri- 
bute, along with competition, predation and physical 
disturbance, to increased complexity and diversity in 
certain benthic ecosystems (Osman & Haugsness 
1981). They have been traditionally considered to be 
more widespread in tropical than in temperate zones as 
a result of environmental stabihty (Futuyma 1973, May 
1973) and biotic pressure (high levels of predation and 
competition) (Addicot 1984). 

Sponges are reported to be one of the benthic 
invertebrate groups that most frequently host other 
benthic invertebrates (Santucci 1922, Pearse 1932, 
1950, Arndt 1933, Fishelson 1966, Long 1968, Pansini 
1970, Sube 1970, Bacescu 1971, Sara & Vacelet 1973, 
Frith 1976, Ruetzler 1976, Uebelacker 1977, Peattie & 
Hoare 1981). They are microcosms in which different 
levels of interaction between host and colonizer may be 
present. The high number of inhabitants of some of the 
sponges studied (up to 200 specimens of the polychaete 
Syllis spongicola per cm2 of sponge; Bacescu 1971) 
made them worthy of being described as 'living hotels' 
(Pearse 1950). Quantitative comparisons of sponge 
dwellers with inhabitants of the surrounding substrata 
showed that certain sponges are very efficient ecologi- 
cal niches (Ruetzler 1976) and,  in some cases, behave 
as ecological islands (Uebelacker 1977). 

Generally, these associations are considered to be 
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harmless relationships in which organisms occupy the 
interstitial spaces of the sponge without causing any 
noticeable damage to its structure (mere inqullinism). 
Nonetheless, some cases of true mutualism have been 
reported (Bloom 1975, Forester 1979). When mor- 
phological or cytological alterations of the sponge 
became evident, the association has been convention- 
ally considered parasitism without analysing the 
balance of costs versus possible benefits for both part- 
ners (Connes et al. 1971). Thus, the invasion of sponges 
by the scyphozoan Nausitoe punctata Kolhker 1853 
(Syn. : Stephanoscyphus rniriabilis Allman 1874, Spon- 
gicola fistularis Shultze 1877), could be considered a 
case of parasitism on the basis of the surface mor- 
phological changes of inhabited sponges and because 
it also disturbs their functional orifices. In addition, the 
polyp growth, although apparently limited (Werner 
1979), and the continuous generation of new polyps by 
branching does not enable the sponge to recover and 
lull the invader, in contrast to the situation described 
for other colonizers with limited growth like the cirripe- 
dian Acasta spongites Poli (Ruetzler 1976). Moreover, 
new planules arising from the scyphomedusae, result- 
ing from annual polyp strobilation (Werner 1979) can 
occupy new functional orifices in successive genera- 
tions. 

In light of the above, one could reasonably suppose 
that, if no benefits were obtained by the sponge, inva- 
sion by the scyphozoan would probably cause consid- 
erable damage, ending in the death of the sponge. 
However, long-term observations of such highly 
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infested sponges casts some doubt upon the parasitic 
nature of the association, since they remained alive and 
grew for years (present study). Furthermore, if 
Nausitoe punctata is a parasite, the sponge's reaction 
would tend toward its isolation (Connes 1968, Sube 
1970, Connes et al. 1971, Uriz 1983) whereas if not, 
some interaction between the 2 partners could be 
expected. 

The question that arose from these observations was 
whether infested sponges were in a regressive state as 
a consequence of a parasitic relationship or, on the 
contrary, were in some way benefitting from the pre- 
sence of the scyphozoan. If some benefits for the 
scyphozoan were also found, this association could be 
considered a facultative mutualism (Boucher et al. 
1982, Addicot 1984). 

MATERIAL AND METHODS 

Sponges inhabited by the scyphozoan Nausitoe 
punctata were monitored for 2 yr at  1 to 6 mo intervals 
on rocky semi-dark substrata between 8 and 30 m 
depth in the littoral zone of Blanes (Northwestern 
Mediterranean, Iberian Peninsula). The percentage of 
infested sponges was calculated in a restricted uniform 
area of about 200 m'. From January to May 1991, a total 
of 150 infested and non-infested specimens of the 
horny sponges Cacospongia scalaris Schmidt, Dysidea 
avara (Schmidt) and Dysidea fragilis (Montagu) were 
collected by SCUBA, and placed in an open-system 
aquarium with seawater pumped directly from the sea, 
for further examination. Some specimens were trans- 
ferred to small closed-system aquaria in order to 
observe the production of scyphomedusae and to study 
the growth of the sponge skeleton after killing the 
scyphozoan. 

Specimens carefully cleaned of accompanying fauna, 
flora and substratum were weighed after being drained 
for 20 S. Sponge wet weight was calculated by subtract- 
ing from the entire specimen weight (i.e. sponge plus 
scyphozoan) a value obtained by multiplying the 
number of polyps of scyphozoans present by the mean 
wet weight of a representative polyp (0.01 ? 0.004 g) 
(mean of 50 polyps). The weight of small rocks and 
calcareous debns attached to the sponges, which 
became evident when the cell material of the speci- 
mens was eliminated, was also subtracted. 

Microscopical observations and measurements (con- 
ule number, polyp number, length of the scypho- 
zotheca protruding from the sponge) were made with a 
Wild M8 stereomicroscope, following 3 d of specimen 
adaptation to aquarium conditions. They were con- 
ducted without removing the specimens from seawater 
to avoid contraction or damage due to handling. A 1 cm 

square frame was placed on the sponge surface, and 
the number of polyps inside this frame counted under a 
stereomicroscope. The process was repeated through- 
out the whole sponge surface of every specimen of 
each species, carefully preventing overlap between 
squares. 

Optic and SEM observations of the sponge skeleton 
and horny thecae of the scyphozoan were carried out 
on specimens whose organic matrix was previously 
removed by decay in seawater. Skeletal parts fixed in 
4% formalin were dehydrated by immersion in a 
graded series of ethanol, subjected to the critical point, 
coated with gold palladium in a sputtering E-5000 and 
observed through a Hitachi scanning electron micro- 
scope. 

The skeleton dry weight of the sponge was obtained 
after dehydration at 90 "C to constant weight. The dry 
weight of the scyphothecae present in each specimen 
was subtracted from the sponge-scyphozoan dry 
weight. This value was estimated by multiplying the 
mean dry weight of a representative theca (calculated 
from 50 individuals) by the number of thecae present in 
a given individual. 

The relationship between the number of primary 
fibres reaching the sponge surface (conules) and the 
number of polyps of the Scyphozoa, and that between 
the sponge skeleton weight and the number of polyps, 
per sponge biomass unit, were described using regres- 
sion analyses ('Microstat' by Ecosoft, Inc., 1978-85). 

Since an increase in the habitual amount of fouling 
could indicate a deficient health state in benthic sessile 
organisms (pers. obs.), comparisons of the presence (G- 
test for an R X C contingency table) and abundance in 
percent cover (Student's t-test) of fouling, between 
infested and non-infested sponges (Sokal & Rohlf 
1979), were performed in order to obtain complemen- 
tary information on the health state of the infested 
sponges. Estimates of sponge surface area covered by 
epibionts were derived from projecting the sponge 
image, through a camera clara, onto a 'Genius' digitizer 
linked to the computer by the program HiPad2 (mod- 
ified version of the original design by K. Foreman of the 
Woods Hole Oceanographic Institution). 

RESULTS 

In the studied area, sponge species inhabited by 
scyphozoans were numerous with horny sponges 
(Order Dictyoceratida and Dendroceratida) being the 
most frequently colonized (Table 1). The scyphozoan 
infesting the sponges was a colonial, branched form 
belonging, on the basis of morphological characteristics 
of the polyp and medusa, to the species Nausitoe punc- 
tata Kolliker (Werner 1970, Chapman & Werner 1972). 
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Table 1 Relative frequency in which sponge species host 
Scyphozoa in the studied area 

Order Species Relative fre- 
quency range 

Dictyoceratida Spongia officinalis < l  % 
Ircinia oros < l  YO 
Cacospongia scalaris 21-50 O h  

Cacospongia mollior 1-10 O/O 

Dendroceratida Dysidea avara" 11-20 % 
Dysidea fragdisa 21-50 % 
Pleraplysilla spinifera < l  YO 

Verongida Aplysina aerophoba < l  % 

Poecilosclerida Crambe crambe 1-10 % 
Phorbas tenacior 21-50 % 

Petrosida Petrosia ficiforrnis < l  % 

Halichondrida Hernimycale colurnella 1-10 % 

a Species included in the order Dendroceratida according 
to Boury-Esnault et al. 1990 

In the horny sponges studied, each conule (surface 
protrusion) represents the apex of a primary skeletal 
fibre, the main structural support built by the sponge to 
grow upwards (Fig. 1). The aquiferous system of the 
horny sponges is organized in such a way that many 
inhalant orifices, corresponding to several inhalant 
cavities, surround a conule (Fig. 2B). The sponge ecto- 
some of the infested specimens rose up around the 
polyps in the same way as it did on the tips of the 
primary fibres in non-infested specimens. In all 3 
sponge species, the polyps of the scyphozoan were 
surrounded by inhalant orifices, as the conules were in 
non-infested specimens. In each case, their tentacles 
were pointed directly against the inhalant flow (Fig. 
2A). 

A 2 to 3 mm wide zone devoid of any sponge fibre 
was present underneath the sponge ectosome of the 
most infested specimens of both species of Dysidea, the 
thecae of Nausitoe punctata being the only stiff struc- 
ture supporting the sponge tissues in this zone (Figs. 1B 
& 2D). When N. punctata died, as  was the case after 2 
mo of maintenance in aquaria without any food supply, 
the sponges grew over the thecae of the scyphozoan 
and new primary fibres quickly formed, starting from 
the thecae and building new conules at the sponge 
surface (Fig. 1C). 

Primary fibres were absent from specimens of 
Dysidea avara with 10 or more polyps cm-' and from 
those of D, fragilis with more than 19 polyps cm-' (Fig. 
2D). In contrast, they were always present in Caco- 
spongia scalaris (Fig. 2C), even in the most infested 
specimens, since the number of polyps cm-2 was 
always less than the species-specific number of conules 
cm-' (Table 2). The species-specific mean distance 

Fig. 1 Dysidea avara. Schematic representation of the skele- 
ton: (A) Specimen without Nausitoe punctata; (B) specimen 
with live polyps of N. punctata; (C) the same specimen as in 
(B) after killing the scyphozoan. (1) Surface conules; (2) pri- 

mary (main) fibres; (3) secondary fibres 

between conules (Table 2) was maintained in infested 
specimens with some or all conules replaced by polyps. 

Primary fibres of Dysidea fragilis, D, avara and C. 
scalaris and secondary fibres of Dysidea spp. are filled 
with foreign material consisting of sponge spicules, 
calcareous debris or sand (Vacelet 1959). In the case of 
D. avara and D. fragilis, primary and secondary fibres 
were difficult to differentiate in infested specimens 
because primary fibres were short and tortuous. 
Moreover, they sometimes joined 2 scyphozoan thecae 
similarly to secondary fibres (Fig. 3C). In any case, the 
scarce primary fibres were notably shorter than those of 
non-infested specimens. Evidence of a solid linkage of 
sponge fibres to the horny thecae of the scyphozoan 
was obtained from the scanning electron microscope 
observations for the 3 sponges. No zone of inhibition 
between the attached fibre and the horny tube was 
distinguishable, both forming a unique solid structure 
as a result of joint growth (Fig. 3). 
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Fig. 2. (A) Dysio,, ,iagilis. A heavily infested specimen. (B) Surface of a horny sponge showing the ostia distribution around 
a conule. (C) Theca of Nausitod punctata surrounded by mainly secondary but also primary fibres of Cacospongia scalaris. 

(D] Thecae of N. punctafa attached to the skeletal net of D. fragilis 

Table 2. Cacospongia scalaris, Dysidea avara and D. fragilis. Number of surface conules per cm2 and distance between conules in 
non-infested specimens 

Species Conule no. cm-2 D~stance between conules (mm) 
Min. Max. Mean SD Mean SD 

C. scalaris 15 24 18.3 3.2 1 .O 0.4 
D. avara 8 12 10.1 1.4 4.3 0.6 
D. fragilis 29 3 7 31.6 2.4 1.0 0.1 
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Dysidea fragilis exhibited the highest levels of infes- 
tation (30 polyps cm-') followed by D. avara and 
Cacospongia scalaris (11 polyps cm-') (Fig. 4) .  A sig- 
nificant negative correlation was found between the 
conule number (number of primary fibres reaching the 
surface) and the number of polyps of Nausitoepunctata 
per cm2 of sponge surface. A linear regression was 
obtained for C. scalaris and D. avara (r2 = 0.87, 
p <0.001 in both cases) while an exponential line best 
described the relationship of D. fragilis (r2 = 0.93, 
p <0.001) (Fig. 4). A strong negative correlation was 
also found for the 3 sponge species between the 
skeletal sponge weight and the number of polyps of N. 
punctata, per sponge biomass unit. A logarithmic 
regression (r2 = 0.83, p<0.001) was obtained for C. 
scalaris while a power model gave the best fit for D. 
avara (r2 = 0.83, p<0.001) and D. fragilis (r2 = 0.88, 
p <0.001) (Fig. 5). 

In all the sponges under study, oscula were conspicu- 
ous and clearly differentiable from ostia. Nausitoepunc- 
tata occupied inhalant orifices and may have formed 

Fig. 4.  Cacospongia scalaris, Dysidea avara and D. fragilis. 
Relationships between the number of surface conules and the 

number of polyps of Nausitoe punctata per cm2 of sponge 

Polyp No. 

Fig. 5. Cacospongia scalaris, Dysidea avara and D. fragilis. 
Relationships between skeleton dry weight and number of 

polyps per sponge biomass unit 

new ones. However, individuals never actually 
occupied oscula (Fig. 2A). There was even a 3 to 7 mm 
wide zone of 'oscular influence', devoid of scyphozoans. 

Some differences in the mean length of the thecae 
protruding from the sponge were found among the 3 
sponge species (Fig. 6A). The thecae protuded much 
more in the case of Cacospongia scalaris (F = 1.8 mm; 
SD = 0.43) than in Dysidea avara (P = 1. l mm; SD = 0.24) 
and D. fragilis (F = 0. l ; SD - 0.02). The maximum length 
of the polyps of Nausitoepunctacta living in the sponges 
under study was 10 mm (E = 7.6, SD = 1.9 mm) in C. 
scalaris, l l mm (F = 7.8, SD = 2.4 mm) in D. avara and 13 
mm (f7 = 9.6, SD = 3.4 mm) in D. fragilis (n = 50 polyps). 

No significant dependence (G-test) was found 
between the presence of Nausitoe punctata and that of 
fouling in any of the sponge species studied (Fig. 6B). 
Nevertheless, the total area fouled was significantly 
greater in infested than in non-infested specimens of 
Cacospongia scalaris (p<0.05; t-test). Due to the 
interaction of this sponge with the cirripede Acasta 
spongites (a species, always present, which also plugs 
the sponge's functional orifices) and N. punctata, it was 
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a ' "  C. scalaris D. 

Sponge species 

Fig. 6 .  (A) Nausitoepunctata Mean length of tubes protruding 
from sponges ( + l  SD). (B)  Presence of other epibionts in 

sponges infested and non-infested by N. punctata 

not possible to evaluate the sole influence of N. punctata 
in the sponge cover by epibionts. 

DISCUSSION 

Possible benefits versus costs for the scyphozoan 

That some advantages are gained by the Scyphozoa 
from this association can be deduced from the fact that 
all specimens were associated with sponges in the 
study area. Moreover, the greater mean length of polyp 
thecae of individuals inhabiting sponges (9.6, 7.8 and 
7.6 mm, in Dysidea f r a g h ,  D. avara and Cacospongia 
scalaris, respectively), than that of free polyps (mean 
6.8 mm) (Werner 1970), may also be an  indication of 
some trophic advantage for Nausitoe punctata dwel- 
ling in sponges. 

The most likely benefits of this relationship for the 
scyphozoan are: (1) protection against physical disturb- 
ances, as the sponge strengthens the scyphozoan col- 
ony by integrating its own skeleton with the 
scyphotheca of Nausitoe punctata, (2) trophic advan- 
tages, as inhalant flow carries out small organic partic- 

les susceptible to capture by the tentacles of the 
scyphozoan. (The positioning of the polyp tentacles 
against a slow flow, as in the inhalant flow created by 
the sponge, has been shown in other cnidarians to be 
optimal for capturing particles; Patterson 1991); and (3) 
chemical defence against potential predators, as the 3 
sponges exam~ned  exhibit toxicity (Arnade et al. 1987, 
Unz et al. in press). The scyphozoan will have had to 
develop resistance against the sponge's chemical 
defences in order to make this association successful. 
Nevertheless, these adaptative processes are common 
in epibionts, symbionts and predators of toxic species 
(Hay et al. 1988, Hoppe 1988, Paul & Van Alstyne 1988, 
Hay et al. 1989, Uriz et  al. in press). 

Other more hypothetical advantages such as habitat 
for recruitment (settlement and fixation) could also be 
considered, since planules may be attracted towards a 
suitable substratum (sponge) either by chemical cues 
or by a mechanical response to the inhalant current 
produced by the sponge (up to 1 cm S-' in aquarium 
specimens). 

No costs derived from this association for the 
Scyphozoa are evident from this typological study, 
although some costs would be expected from any 
rnutualisitic relationship if rnutualism is considered to 
denve from antagonistic interactions (Thompson 1988). 
These might be better investigated at the population 
level. The restriction of the distribution of Nausitoe 
punctata to that of its sponge host could be considered 
a potential cost. 

Possible benefits versus costs for the sponge 

The most likely benefits obtained by the sponge are 
linked to the use of the horny thecae of the scyphozoan 
as skeletal fibres. Sponges do not identify the theca of 
Nausitoe punctata as a parasite, since they do not 
isolate it, but as a primary fibre or suitable substratum, 
since mainly secondary but also primary fibres were 
found fused to it. This could represent a significant 
metabolic saving, because the skeleton appropriates a 
considerable portion of metabolic sponge effort 
(McClintock 1987, Desqueyroux-Faundez 1990). 

Another role of the primary fibres may be to provide 
support to sponge cells carrying sandy particles from 
the sponge surface along the fibres (Teragawa 1986). 
This could also be performed by the thecae of the 
Scyphozoa, as they provide the necessary membrane 
tension to the sponge ectosome, similar to the tips of 
the primary fibres in non-infested specimens. The 
tubes of Nausitoe punctata also provide support for the 
sponge tissues and help for the organization of the 
aquiferous system. The 3-dimensional growth acquired 
by the sponges without the necessity of building pri- 



254 Mar Ecol. Prog. Ser 81. 247-255, 1992 

mary fibres is advantageous to the sponge growth 
thanks to a more efficient pumping of water (Vogel 
1977). On the other hand, the scyphozoan cleans the 
water surrounding the sponge of large particles likely 
to foul the ostia. Its movements may also cause mi- 
croturbulence, increasing the residence time of the 
small particles, and, consequently, the probability of 
being carried into the sponge via currents. 

The plugging of the ostia by Nausitoe punctata does 
not seem to cause severe damage to the sponge. Reor- 
ganization of the aquiferous system would appear to be 
the main cost to the sponge derived from this associa- 
tion. Some onfices of the inhalant region remain func- 
tional and additional ostia can be easily formed due to 
the ectosome tension of these sponges (Teragawa 
1990). Consequently, water inflow can be offset with- 
out excessive additional costs through both remaining 
and new-formed orifices. 

The differences in the mean length of the thecae 
protruding from the 3 sponge species could be ascribed 
to different levels of coupling in growth rates between 
the scyphozoan and the sponge. 

The healthy state of sponges of the genus Dysidea is 
supported by the epibiosis data since a benthic organ- 
ism in a 'regressive' state is characterized by a signifi- 
cant increase in its fouled surface. In the 3 sponges 
studied, the presence of fouling was significantly inde- 
pendent of the presence of Nausitoe punctata. Only in 
Cacospongia scalaris, was the total coverage by 
epibionts significantly greater in infested individuals. 
In this case the association seems to be slightly nega- 
tive for the sponge. The length in which the polyps of 
N. punctata protrude from this species, higher than that 
in the species of Dysidea, supports this assumption. 
Nevertheless, the simultaneous association of C. 
scalaris with another specific partner (Acasta spon- 
gites) surely influences the outcome of its interaction 
with the scyphozoan, since correlated outcomes are 
frequent in multiple associations (Thompson 1988). It 
would be desirable to investigate the influence of N. 
punctata on specimens free of the cirripede, but this 
would also be unrealistic, since no specimens without 
A. spongites occur in the area under study. 

As shown in coral communities (Glynn 1976), a sys- 
tem that appeared to be parasitic seems on closer 
~nspection, to reveal mutualistic interactions. However 
a more thorough experimental approach would be 
necessary to confirm the mutualistic nature of this 
association. Experiments should be focused on sub- 
stratum preferences (sponge versus others) of the 
planulae (scyphozoan) during the settlement process, 
differential growth rates of sponges and scyphozoans 
living with and without each other, under the same 
environmental conditions, and predation pressure on 
scyphozoans inside and outside sponges. 
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