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INTRODUCTION

Surface migratory myctophid fishes that migrate at
night from the mesopelagic layer up to the surface are
commonly collected there in neuston nets. A 5 to
10 min tow often yields several species (Ogawa 1961,
Hattori 1964, Kawaguchi et al. 1972, Watanabe &
Kawaguchi 1999). These migrants to surface waters
are closely related species and genera of the subfamily
Myctophinae (Paxton 1972). This surface migratory

behavior starts after transformation from larvae to
juveniles. The larvae are distributed in the upper
200 m layer both during the daytime and at night (Loeb
1979, 1980, Moser & Smith 1993). Myctophid fishes are
thought to migrate to the surface to feed in the pro-
ductive epipelagic zone, which contributes to their
flourishing abundance in the open sea. Generally, the
tropical and subtropical species feed mainly in the
epipelagic zone at night (Clarke 1978, Hopkins & Baird
1985, Kinzer & Schulz 1985), while the subarctic and
transitional water species feed during both night and
day (Tyler & Pearcy 1975, Pearcy et al. 1979, Moku et
al. 2000). In the Kuroshio region, Myctophum asperum,
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M. nitidulum, Symbolophorus evermanni and Centro-
branchus brevirostris are the 4 most abundant of
such migratory species (Hattori 1964, Watanabe 1998).
There are considerable data on the feeding habits of
myctophid fish that migrate to midwaters (e.g. Merrett
& Roe 1974, Baird et al. 1975, Clarke 1978, 1980,
Kinzer & Schulz 1985, Hopkins & Gartner 1992), but
data for surface migratory species are limited (Gore-
lova 1975, 1984, Hopkins & Gartner 1992).

In this study, we aimed to determine the main diet
and nighttime feeding chronology of the juvenile myc-
tophid species Myctophum asperum, M. nitidulum,
Symbolophorus evermanni and Centrobranchus brevi-
rostris, which migrate to the upper 1 m layer at night
in the Kuroshio Current region. We also estimated the
impact of nocturnal feeding by these 4 species on the
biomass of epipelagic zooplankton.

MATERIALS AND METHODS

All samples were collected in the Kuroshio region of
the western North Pacific (29 to 36°N, 130 to 144°E)
from January to March during each of the 10 yr: 1961,
1964, 1968, 1971, 1973, 1977, 1980, 1984, 1988 and
1992. Typical sampling coverage is shown in Fig. 1.
Sampling was conducted at night, at 58 to 131 stations
(on average, 95) per year during the Japanese Fish-
eries Agency’s survey of eggs and larvae of commer-
cially important fishes. To collect samples, we used a
conical plankton net (mouth opening, 130 cm dia-
meter; Maruchi type A net; Nakai 1962, Watanabe &
Kawaguchi 1999) placed within 1 m of the surface at
shipside, towed at 1 m s–1 (2 knots) for 5 to 10 min.
Samplings were made consecutively at 1 to 3 h inter-
vals along the grid line designed to cover the average
Kuroshio area, resulting in variation in sampling time

and distance from Japan but which were averaged
each year.

We studied the feeding habits of individuals that
were from 10 to 30 mm in standard length (SL). Fish of
this size range were the most frequently caught, and
formed the first mode in the size frequency distribution
and are considered as 0+ years old (Watanabe 1998).
After measuring wet weights (wet wt) of the body of
each fish and its stomach contents, we identified each
prey item in the stomach to the lowest possible taxo-
nomic level and also measured its wet wt. Additionally,
we measured total length and width for prey specimens
collected in 1971 and 1988, when more than 25 individ-
uals were collected for each of the 4 myctophid species.

We calculated the stomach content index (SCI), i.e.
the mean wet wt of stomach content given as a percent-
age of body weight, for 23 to 35 individuals for each
hour between 19:00 and 05:00 h. For hours during
which the sample size was fewer than 20 individuals,
we pooled the sample with specimens collected in other
years (1972, 1974 to 1976, 1985, 1986). We defined the
feeding peak as the hour during which the SCI was
statistically higher than the values immediately before
or after, and higher than the mean SCI for the night.
When the peak spanned 2 h, we tested whether the val-
ues before and after the peak were significantly lower.

Lastly, we measured the gill raker interval on the
lower branch of the first gill arch for each species
except Centrobranchus brevirostris, whose degener-
ated gill rakers are adapted to pteropod feeding
(Bekker 1966).

RESULTS

Prey group composition

The 4 species exhibited resource partitioning, al-
though prey composition was sometimes biased due to
the small sample size (Fig. 2). No remarkable geo-
graphical difference was observed in diets of the 4 spe-
cies in the years when large sample size was available.
Over the 10 yr sampled, unidentifiable stomach content
weights were 9.2 ± 5.4% (mean ± SD), 4.3 ± 3.4%, 8.0 ±
8.1% and 7.3 ± 5.9% of the total stomach contents for
Myctophum asperum, Symbolophorus evermanni, M.
nitidulum, and Centrobranchus brevirostris, respec-
tively. These prey items were excluded from Fig. 2.

Myctophum asperum

This species mainly ate appendicularians and a variety
of the crustaceans available in the habitat (Fig. 2a).
Appendicularians were the most common prey in 6 of
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Fig. 1. Sampling localities in 1971
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the 10 years (1964, 1968, 1973, 1980, 1984 and 1992) and
accounted for 36 to 86% of the total weight of identified
stomach contents (Fig. 2a). In 1961 and 1971, copepods
were the most common prey item (53 and 32%, respec-
tively); the next most common was appendicularians in
1961 and amphipods in 1971 (47 and 29%, respectively).
Euphausiids were the most common prey item in 1977
and 1988 (45 and 41%, respectively), followed by ap-
pendicularians (28 and 32%, respectively). In 1964, 1973
and 1980, amphipods were the second most common
prey item (22 to 34%) (Fig. 2a).

Symbolophorus evermanni

Euphausiids and amphipods were the main
prey items found in identified stomach con-
tents, indicating that this fish depends on
larger-sized crustaceans (Fig. 2b). Euphausiids
were the most common prey eaten during all
10 years, accounting for 44 to 100% of the total
weight of stomach contents. Amphipods ac-
counted for 0 to 29% and copepods for 0 to
27% (Fig. 2b).

Myctophum nitidulum

This species preyed mostly on copepods and
amphipods with occasional euphausiids and ap-
pendicularians (Fig. 2c). During the 10 years,
copepods and amphipods were the first or sec-
ond most common prey items, accounting for
66 to 100% of the total weight of identified
stomach contents. Euphausiids constituted 6 to
15% in 1971, 1977 and 1980; appendicularians
contributed 12 to 34% in 1964, 1984 and 1988
(Fig. 2c).

Centrobranchus brevirostris

This species fed exclusively on gelatinous
zooplanktons, i.e. pteropods and appendicular-
ians (Fig. 2d). Pteropods were the most abun-
dant prey item, being 65 to 100% of the total
weight of identified stomach contents in 9 of
the 10 years; whereas appendicularians ac-
counted for 2 to 35% in 7 of the 10 years. These
2 prey groups accounted for more than 83% of
the total prey in 9 of the 10 years, but only 33
in 1980 (Fig. 2d). Copepods, euphausiids and
amphipods were occasionally eaten and ac-
counted for 0 to 67, 0 to 11 and 0 to 3% of the
total prey, respectively.

Size of prey species or genera

We identified 11 prey species belonging to 14 genera
in 416 stomachs of the 4 myctophid species collected in
1971 and 1988 (Table 1). These species comprise much
of the zooplankton community found in the subsurface
waters in the Kuroshio region at night (Kidachi & Ito
1979, Kidachi et al. 1983, Hirota et al. 1984, Nakata
1997).

The genera and species of copepods found in Mycto-
phum asperum and M. nitidulum were generally simi-
lar. Unique to M. nitidulum, however, were Candacia
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Fig. 2. Wet weight composition of prey groups for the 4 myctophid species
in the Kuroshio region: (a) Myctophum asperum; (b) Symbolophorus ever-
manni; (c) Myctophum nitidulum; and (d) Centrobranchus brevirostris. n
indicates the number of stomachs examined (number of empty stomachs 

in parentheses)
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sp., Euchaeta rimana and Lucicutia sp.
Although the size ranges of Pleuro-
mamma, Paracalanus and Oithona spp.
individuals eaten by M. asperum and M.
nitidulum overlapped (Table 1), individu-
als eaten by M. asperum were significantly
larger (mean ± SD, 20.9 ± 3.3 mm SL)
than those eaten by M. nitidulum (20.8 ±
2.5 mm SL) for 3 prey species: Calanus
sinicus (0.6 to 0.8 vs 0.4 to 0.6 mm carapace
width), Calanus spp. (0.5 to 0.8 vs 0.3 to
0.6 mm) and Corycaeus spp. (0.3 to 0.4 vs
0.1 to 0.2 mm) (U-test, p < 0.05). All 4 spe-
cies fed on Calanus and Paracalanus spp.,
probably because they are very abundant
in Kuroshio surface waters (Kidachi & Ito
1979, Nakata 1997).

The amphipod Lestrigonus schizoge-
neios was consumed by all 4 species,
accounting for 91 to 100% of the total
number of amphipods identified in stom-
achs (Table 1). The individuals found in
Myctophum nitidulum stomachs were
significantly smaller than those eaten by
M. asperum (0.9 vs 0.5 mm mean cara-
pace width, U-test, p < 0.05), which is
similar to the calanoid copepods men-
tioned above. However, Platyscelus ser-
ratulus, the size of which was 1.5 to 2
times larger than L. schizogeneios, was
eaten only by M. nitidulum.

Symbolophorus evermanni ate primarily
euphausiids, in particular Euphausia sim-
ilis and E. nana (Table 1). Most of the
Euphausia consumed by the other 3 spe-
cies were less than 12.3 mm in total length
and therefore probably E. nana.

The pteropods that we identified
were all Clio pyramidata and were con-
sumed only by Centrobranchus brevi-
rostris (Table 1).

Gill raker interval

Gill raker intervals (slit width) were 0.08 to 0.18 mm,
0.09 to 0.16 mm and 0.06 to 0.15 mm for Myctophum
asperum, Symbolophorus evermanni and M. nitidulum
individuals of 15.0 to 30.0 mm SL, respectively (Fig. 3).

267

Fig. 3. Slit width of gill rakers on a lower branch of the first
gill arch in relation to body length in Myctophum asperum, 

Symbolophorus evermanni and M. nitidulum

Fig. 4. Temporal change in stomach content weight at night (SCI), given as per-
centage of fish body weight, for: (a) Myctophum asperum; (b) Symbolophorus
evermanni; (c) Myctophum nitidulum; and (d) Centrobranchus brevirostris.
n indicates the number of stomachs examined. Vertical bars indicate ±SE. Bro-
ken lines indicate a significant difference between both sides of the line; dot-
ted lines indicate a significant difference between the peak value and the 

values 2 h before or after the peak (U-test, *p < 0.01, **p < 0.05)
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These data indicate that the 3 species have gill raker
intervals small enough to retain small copepods such
as Paracalanus and Oithona spp. (Table 1). However,
some prey species or genera were segregated by size
and fish species, indicating that the fishes feed selec-
tively in the top 1 m water layer at night rather than
randomly filtering water through gill rakers.

Feeding chronology

Changes in SCI by the hour at night (feeding
chronology) showed species-specific patterns of feed-
ing activity (Fig. 4).

Myctophum asperum

Feeding peaks were from 24:00 to 01:00 h (5.1% SCI)
and 02:00 to 03:00 h (4.0% SCI) (Fig. 4a). The SCI for
01:00 to 02:00 h (2.7%) was significantly lower than
the SCI values immediately before and after (U-test,
p < 0.01 and p < 0.05).

Symbolophorus evermanni

Feeding activity fluctuated around the mean (2.2%
SCI) throughout the night, with a significant peak
(3.9%) at dawn (04:00 to 05:00 h) (U-test, p < 0.05)
(Fig. 4b).

Myctophum nitidulum

SCI values were below the mean (3.5%) before
24:00 h but increased gradually to the peak (7.3%)
from 03:00 to 04:00 h (Fig. 4c).

Centrobranchus brevirostris

Two notable peaks, 1.5 to 1.8 times higher than the
mean (3.0% SCI), occurred from 20:00 to 21:00 h
(4.6%) and from 22:00 to 23:00 h (5.3%) (Fig. 4d). The
SCI values decreased to 1.5% from 24:00 to 01:00 h
and then gradually increased to 3.8% from 04:00 to
05:00 h (Fig. 4d).
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Fig. 5. Relationship among the main prey categories, their sizes and feeding
peaks for the 4 myctophid fishes, Myctophum asperum, Symbolophorus ever-

manni, Myctophum nitidulum and Centrobranchus brevirostris
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Resource partitioning

Fig. 5 shows the major prey items of the 4 species in
relation to the peak feeding hours in Fig. 4. There was
no overlap of main prey category or peak feeding time
among the 4 species, suggesting that trophic competi-
tion is reduced because the species differ in prey type,
prey size and peak feeding hours in the upper 1 m
layer during the night (Fig. 5).

DISCUSSION

Resource partitioning

Other myctophid species in the subtropical and trop-
ical Atlantic and Pacific Oceans choose the species and
size of their prey (Merrett & Roe 1974, Clarke 1980,
Roe & Badcock 1984, Hopkins & Baird 1985, Hopkins &
Gartner 1992). The myctophid fish studied here appear
to behave similarly to such species, except that they do
not engage in opportunistic, random filter feeding.
Because their gill raker slits are small enough to filter
prey of all sizes (as shown by the stomach contents),
random filter feeding does not explain why Mycto-
phum asperum, Symbolophorus evermanni and M.
nitidulum consume different prey. Microscale spa-
tiotemporal distributions of each prey organism and
each myctophid species are required to explain the
mechanisms of the observed resource partitioning in
the surface layer of the open sea.

Peak feeding hours

The myctophid species in this study differ in peak
feeding time, as do fish found off Hawaii, in the tropi-
cal western Pacific, in the transitional western North
Pacific, and in the subtropical eastern North Atlantic
(Merrett & Roe 1974, Gorelova 1975, Clarke 1978, Roe
& Badcock 1984, Kawamura & Fujii 1988). However,
our nighttime catches of the 4 myctophid species did
not significantly differ by the hour (H. Watanabe
unpubl. data), suggesting that the density of mycto-
phids that migrate to surface waters is maintained
throughout the night in the upper 1 m layer in the
waters of the Kuroshio region. Similar results have
been reported for Myctophum nitidulum in this study
area (Hattori 1964). The nighttime densities of some
species of copepods, euphausiids and amphipods in
the surface layer, however, are known to change with
time according to the species’ vertical migration in the
equatorial and subarctic areas of the Pacific Ocean and
the Southern China Sea (Roger 1971, Roe 1984, Roe et
al. 1984, Williams & Conway 1984, Hirota 1987, Hattori

1989). Thus, prey density and composition probably
fluctuate temporally during the night in the top 1 m
layer of the open sea. The feeding activity of myc-
tophids that migrate vertically over the day and night
usually peaks when prey density in the habitat is high-
est (Clarke 1978, Roe & Badcock 1984, Kinzer & Schulz
1985). Therefore, the chronology of nocturnal feeding
by myctophids that migrate to the surface may be
affected by temporal changes in zooplankton density
and also by the feeding condition (such as being full
versus hungry) of the fishes themselves. Notably, M.
asperum and Centrobranchus brevirostris, the species
that consume gelatinous plankton, had 2 and 3 feeding
peaks, respectively (Fig. 4). These species probably
digest these low-nutrient, gelatinous prey quickly and
thus need to ingest large numbers of them.

Prey organisms

Some myctophids (such as Lampanyctus alatus,
Bolinichthys longipes, Diaphus perspicillatus and
Ceratoscopelus warmingi) that migrate to midwaters
feed frequently on pigmented copepods belonging
to Euchaeta, Pleuromamma, Candacia and Oncaea
(Gorelova 1978, Clarke 1980, Hopkins & Baird 1985,
Kinzer et al. 1993). This diet has also been reported in
the equatorial Pacific for species such as Myctophum
spinosum and M. nitidulum that migrate to surface
waters (Gorelova 1975). However, the species in this
study that migrate to the surface fed mostly on non-
pigmented Paracalanus copepods, probably because
these copepods are abundant in Kuroshio surface
waters (Kidachi & Ito 1979, Nakata 1997).

Centrobranchus also consumes gelatinous zooplank-
ton in the Gulf of Mexico (C. nigrocellatus; Hopkins &
Gartner 1992) and the tropical western North Pacific
(C. andreae; Gorelova 1975). The stub-like degener-
ated gill raker that is diagnostic of this genus (Bekker
1966) very likely evolved as a result of exclusive feed-
ing on gelatinous zooplankton, especially pteropods.

Impact of predation by myctophids on surface
zooplankton biomass

Myctophids that migrate to the surface excrete food
about 2 to 4 h after feeding in subtropical and tropical
waters where temperatures range between 13 and
22°C (Gorelova 1975, 1984, Clarke 1978). Mean
surface water temperatures at the stations at which
Myctophum asperum, Symbolophorus evermanni, M.
nitidulum and Centrobranchus brevirostris were sam-
pled are 18.2°C (ranging from 11.6 to 22.6°C; n = 3348),
18.4°C (11.5 to 22.3°C; n = 2101), 18.0°C (7.3 to 22.6°C;
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n = 525) and 18.9°C (14.3 to 22.3°C; n = 522), respec-
tively (Watanabe 1998). At these temperatures, the
time to excretion would be about 2 to 4 h after feeding.
We assumed a time to excretion of 4 h and estimated
the impact of predation on zooplankton biomass by
summing the highest SCI values observed from 19:00
to 23:00 h, 23:00 to 03:00 h and 03:00 to 05:00 h. We
estimated a maximum predation impact of 12.5% for
M. asperum at night, based on interval estimates of
3.2% (from 19:00 to 23:00 h), 5.1% (from 23:00 to 03:00
h) and 4.2% (from 03:00 to 05:00 h). Similarly, we used
sums of the lowest SCI values (1.9%, 2.7% and 3.5%)
over these same 3 time periods to estimate 8.1% as the
minimum predation impact. Thus, we estimate that M.
asperum consumed 8.1 to 12.5% of its body weight in
zooplankton biomass per night. Based on similar calcu-
lations, nighttime zooplankton rations were estimated
as 5.1 to 8.5% for S. evermanni, 9.7 to 14.0% for M.
nitidulum and 7.1 to 12.2% for C. brevirostris. Consid-
ering that migratory myctophid fishes generally feed
mainly at night in subtropical and tropical waters
(Gorelova 1973, Baird et al. 1975, Clarke 1978, Hop-
kins & Baird 1985, Kinzer & Schulz 1985), these values

are valid estimates of the daily rations for these spe-
cies. Gorelova (1984) reported that daily rations of
juvenile surface migratory myctophids such as M.
asperum, M. spinosum and Hygophum proximum
(17 to 28 mm SL) in the tropical waters of the Pacific
are approximately 10 to 20 % of the body wet wt. This
estimate is almost 1.5 to 2 times of magnitude higher
than our estimate for the Kuroshio region in the west-
ern North Pacific.

The biomass of myctophids that migrate to surface
waters was estimated for the top 5 m in the studied
area from 1971 to 1984 (Watanabe 1998). Zooplankton
biomass in the upper 150 m was measured at each
myctophid sampling station (Kuroda 1991). Based on
these biomass data, we estimated the zooplankton
biomass consumed by the 4 myctophid species per
night, and their feeding impact, for 5 years between
1971 and 1984 (Table 2). Our calculations indicate
that, by consuming individuals of 10 to 30 mm SL, the
4 species removed 2.30 to 3.71%, 2.39 to 3.71%, 0.89
to 1.38% and 3.13 to 5.05% of the total zooplankton
biomass per night in the top 150 m during 1973, 1977,
1980 and 1984, respectively (Table 2). Hopkins &
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M. asperum S. evermanni M. nitidulum C. brevirostris Total
of the 4 species

Nighttime ration (% of body weight) 8.1–12.5 5.1–8.5 9.7–14.0 7.1–12.2 –

1971
Zooplankton biomass 111 mg m–3* 
Myctophid biomass (mg m–3)** 31.2 42.1 14.0 21.8 109.0
Nighttime ration (mg m–3) 2.53–3.90 2.15–3.58 1.36–1.96 1.55–2.66 7.59–12.10
Predation impact (% of 111 mg m–3) 2.28–3.51 1.94–3.23 1.23–1.77 1.40–2.40 6.84–10.90

1973
Zooplankton biomass 69 mg m–3*
Myctophid biomass (mg m–3)** 8.7 12.0 1.7 1.7 24.0
Nighttime ration (mg m–3) 0.70–1.09 0.61–1.02 0.16–0.24 0.12–0.21 1.59–2.56
Predation impact (% of 69 mg m–3) 1.01–1.58 0.88–1.48 0.23–0.35 0.17–0.30 2.30–3.71

1977
Zooplankton biomass 38 mg m–3*
Myctophid biomass (mg m–3)** 4.4 3.4 3.3 0.9 12.0
Nighttime ration (mg m–3) 0.36–0.55 0.17–0.29 0.32–0.46 0.06–0.11 0.91–1.41
Predation impact (% of 38 mg m–3) 0.95–1.45 0.45–0.76 0.84–1.21 0.16–0.29 2.39–3.71

1980
Zooplankton biomass 53 mg m–3*
Myctophid biomass (mg m–3)** 3.6 2.1 0.3 0.5 6.5
Nighttime ration (mg m–3) 0.29–0.45 0.11–0.18 0.03–0.04 0.04–0.06 0.47–0.73
Predation impact (% of 53 mg m–3) 0.55–0.85 0.21–0.34 0.06–0.08 0.08–0.11 0.89–1.38

1984
Zooplankton biomass 30 mg m–3*
Myctophid biomass (mg m–3)** 3.2 10.0 0.6 1.5 15.3
Nighttime ration (mg m–3) 0.26–0.40 0.51–0.85 0.06–0.08 0.11–0.18 0.94–1.51
Predation impact (% of 30 mg m–3) 0.87–1.33 1.70–2.83 0.20–0.27 0.37–0.60 3.13–5.03

Table 2. Estimates of the predation impact on zooplankton by the 4 species Myctophum asperum, Symbolophorus evermanni,
Myctophum nitidulum and Centrobranchus brevirostris per night in the top 5 m in the Kuroshio Current region from January to
March in 1971, 1973, 1977, 1980 and 1984. *Mean zooplankton biomass (wet weight) in the top 150 m of the studied area from 
January to March (Kuroda 1991), **biomass (wet weight) of each myctophid species in the top 5 m at night (Watanabe 1998)
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Gartner (1992) reported that predation by myctophids
removes 2% of the zooplankton biomass per night in
the upper 200 m of the eastern Gulf of Mexico. This
value takes into account predation by species that
migrate to both surface and midwaters, so the impact
on zooplankton of nocturnal predation by myctophids
that migrate to the surface is higher in the Kuroshio
region of the western North Pacific than in the Gulf of
Mexico. In 1971, zooplankton biomass from January
to March in the study area was 1.5 to 3 times greater
than in any other year from 1972 to 1988 (Kuroda
1991) and biomass of the 4 myctophid species was 4 to
15 times greater in 1971 than in any other year from
1957 to 1988 (Watanabe 1998). Thus, our estimate of
predation impact of 6.84 to 10.90% by the 4 species
combined for 1971 (Table 2) is probably so high
because recruitment was high; Japanese sardine
recruitment was also high in 1971, the year that the
biomass began to rebound.
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