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INTRODUCTION

Having evolved an intimate association with the
seafloor, flatfish are some of the most cryptic of fish
species, relying upon a highly specialized detection
minimization strategy to avoid predation. Along with
their unique morphological adaptations, dermal chro-
matophores allow flatfish to mimic sediment color and
texture (Ramachandran et al. 1996, Ellis et al. 1997),
rendering them nearly invisible. The effectiveness of
these physical attributes is further enhanced by behav-
ioral tactics; sensing the approach of threat, juvenile
flatfish cease movement, lower their body profile

and/or bury in the sediment (Ryer et al. 2004, Lemke &
Ryer 2006a).

Although effective, detection avoidance through
inactivity and burial comes at a cost, as it is incompati-
ble with foraging. Where predation risk is intermittent,
this cost may be negligible; however, under chronic
risk the potential exists for behavioral inhibition of
feeding that leads to predator-induced growth sup-
pression. Through growth suppression, predators may
influence the individual fitness of prey and prey popu-
lation growth through processes other than direct
removal (Lima 1998). Further, since predator density
may vary spatially, predator-induced growth suppres-
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sion may play a role in determining habitat quality and
the ultimate contribution of various juvenile habitats to
the support of adult populations.

Acceptance of suppressed growth and its conse-
quences for fitness may not represent a viable long-
term strategy for many species. In some instances, ani-
mals may acclimate to elevated predation risk and
resume feeding (threat allocation hypothesis, Lima &
Bednekoff 1999). In other instances, animals may emi-
grate to habitats where predation risk is lower (Crow-
der & Cooper 1982, Werner & Hall 1988, Ryer et al.
2007). Another solution is for animals to reallocate
feeding to times of the day when they are less vulnera-
ble to predation. Salmonids have been observed to
shift feeding to times when predators are less active or
they themselves are less likely to be detected (Fraser &
Metcalfe 1997, Metcalfe et al. 1998). In nursery embay-
ments around Kodiak Island, Alaska, age-0 northern
rock sole Lepidopsetta polyxystra (hereafter rock sole)
feed predominantly at dusk, behavior that Hurst et al.
(2007) speculated was associated with avoidance of
predation. In another study of age-0 juveniles of 3 spe-
cies, viz. rock sole, English sole Parophrys vetulus and
Pacific halibut Hippoglossus stenolepis, rock sole
behavior was the most conservative, or ‘risk averse’ of
the three (Lemke & Ryer 2006a). Rock sole were more
likely to remain buried and inactive than the other spe-
cies, either in the presence or absence of predators.
Perhaps as a consequence, rock sole were the least
vulnerable to predation in standardized predator chal-
lenges (Ryer et al. 2004, Lemke & Ryer 2006b). Given
their ‘risk averse’ nature, we hypothesized that the
adoption of a dusk feeding periodicity could be the
means by which rock sole have mitigated this conflict
between feeding and predator avoidance. We con-
ducted an experiment to determine whether chronic
predation risk would suppress the growth of juvenile
rock sole, and if so, whether growth suppression would
be mitigated by allowing fish access to food under con-
ditions that lessened their conspicuousness to preda-
tors, i.e. low light conditions simulating dusk. We
tested these hypotheses by comparing the growth of
age-0 rock sole fed under daylight conditions with that
of fish fed under light levels simulating dusk, both in
the presence and absence of predators.

MATERIALS AND METHODS

Age-0 rock sole were collected from Chiniak Bay, Ko-
diak Island, Alaska, using a beam trawl (2 m wide, 3 mm
mesh size), then transported to the US National Marine
Fisheries Service (NMFS) laboratory at the Hatfield
Marine Science Center in Newport, Oregon, USA. Fish
were maintained in 2 m diameter tanks with a thin layer

of sand on the bottom and flow-through seawater at 9°C
(± 1°C). Rock sole were fed to satiation thrice weekly
on 2 mm food pellets. Predators used in experiments
were age-3 walleye pollock Theragra chalcogramma
(28–35 cm total length). These pollock had been raised
from age-0 juveniles in the laboratory with no experi-
ence of live prey, and preliminary observations indicated
they rarely consumed juvenile flatfish. However, experi-
ence with similar predator–prey experiments (Lemke &
Ryer 2006a) suggested that the juvenile rock sole would
nevertheless respond to the presence of pollock with
stereotypic anti-predator behavior.

Growth trials were conducted under conditions simu-
lating both daylight and dusk, utilizing 6 replicate 2.9 m
diameter (6400 l) arenas, also supplied with seawater at
9°C (± 1°C). Each arena bottom was covered by a 3 cm
deep layer of a 2:1 mixture of coarse (1.0 mm) and
medium (0.5 mm) sand, which allowed age-0 flatfish to
bury completely. Rock sole in each of 6 groups (15 fish
to a group) were measured for total length (nearest
mm) and weighed (nearest 0.01 g), prior to introduction
to arenas. Three randomly chosen arenas also received
2 predators, i.e. pollock. Both predators and rock sole
were accustomed to a 12:12 h photoperiod, with dark-
ness from 19:00 to 07:00 h; for this first set of ‘daylight’
trials this photoperiod was continued. In the first set of
trials, light levels in the bottom center of the arenas was
approximately 2 µmol photons m–2 s–1 during the day
and <1 × 10–7 µmol photons m–2 s–1 at night. This day-
time illumination is typical of 12 m bottom mid-day
light levels at our Holiday Beach Kodiak nursery site,
with 12 m corresponding to approximately the center of
the age-0 rock sole depth distribution (Hurst et al.
2007). Both pollock and juvenile rock sole were fed 3
times weekly at 15:00 h. First, the pollock were fed to
satiation on gel food (1 cm3 cubes), with all excess food
immediately removed to preclude being consumed by
northern rock sole. By feeding pollock first, we satiated
the fish and precluded their consumption of flatfish
food. Next, juvenile rock sole were fed a 5% ration
(based upon the combined weights of fish for each
arena) of commercial moist food pellets. Pellet ener-
getic content was approximately 13.5 kJ g–1. Prelimi-
nary investigation revealed that these 2 mm pellets
softened into a dilute paste within 2 h, after which the
juvenile flatfish were unable to effectively feed upon
them. This assured that the food was available for only
a relatively short period of time. After 3 wk, all rock sole
were netted, measured and weighed, and then re-
turned to their respective arenas. Rations were recalcu-
lated. After another 3 wk, fish were again removed
from arenas, measured and weighed.

The second set of ‘dusk’ trials was identical in all
respects to the first, except for the photoperiod and that
the fish were given access to food during a dusk transi-
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tion period. In these dusk trials, the photoperiod was
shifted such that daylight occurred from 06:30 to
15:00 h and night from 18:30 to 03:00 h, with 3.5 h dusk
and dawn transitions from 15:00 to 18:30 h and 03:00 to
06:30 h, respectively. Light levels for day and night
were the same as in the previous trials. The initiation of
dusk (15:00 h) began with the turning off of the over-
head fluorescent light, and the turning on of overhead
‘white’ light emitting diodes (LEDs), which provided a
light level of approximately 2 × 10–2 µmol photons m–2

s–1. Rock sole were fed at 15:30 h, which typically took
5 min. Immediately after food was introduced to the
arenas, the LED light level was gradually lowered over
a 5 min period to approximately 2 × 10–3 µmol photons
m–2 s–1. This dusk light level (2 × 10–3 µmol photons m–2

s–1), while 3 orders of magnitude below the daytime
illumination, is still 2 orders of magnitude above the
threshold at which age-0 rock sole lose the ability to
capture prey using visual cues (Hurst et al. 2007). LEDs
remained at this level until 18:30 h, when they were
turned off (<1 × 10–7 µmol photons m–2 s–1). The dawn
transition began with the LEDs turned on at a level
of 2 × 10–3 µmol photons m–2 s–1 at 03:00 h. Light
remained constant until 06:30 h when the fluorescent
lights were switched on (2 µmol photons m–2 s–1). We
assume that any incidental differences in light cycles
between daylight and dusk treatments in no way con-
founded our comparison of illumination level during
feeding. More specifically, we assume that the sudden
illumination shifts in the daylight trials did not stress
fish, thereby influencing growth, in comparison to the
dusk trials where these shifts were more gradual. In
holding tanks, we routinely observed rock sole swim-
ming to the water’s surface at the approach of humans,
in anticipation of feeding, behavior that would not be
expected in stressed fish (C. Ryer pers. obs.).

Although trials at the 2 light levels were conducted
consecutively, all fish were from a single cohort. A
comparable range of fish sizes was assigned to each
trial. As a result, neither mean (±SD) fish total length
(65.9 ± 8.1 mm) nor mean (±SD) fish weight (3.54 ±
1.32 g) at the initiation of trials differed as a conse-
quence of predator presence/absence (length: F1,2 =
0.11, p = 0.775; weight: F1,2 = 0.62, p = 0.512), light
level (length: F1,2 = 4.37, p = 0.172; weight: F1,2 = 0.05,
p = 0.849) or their interaction (length: F1,2 = 0.06, p =
0.826; weight: F1,2 = 0.00, p = 0.993). Mass specific
growth rates (SGR) for each fish were determined for
each of 2 consecutive 3 wk growth periods. In lieu of
individual markings, the fish in each tank were
assumed to have maintained a rank order in body size
throughout the experiment. In cases of predation with-
out recovery of dead prey, the size rank of the missing
fish was identified through pairing of final sizes of sur-
vivors with initial sizes in the order that yielded the

lowest variation in SGR. Fish lost to predation or scav-
enging (n = 15, out of 180 total fish) were not included
in analyses, which were conducted separately for
weeks 1 to 3 and 3 to 6 of the experiment. Similarly,
another 18 fish died, were recovered, accounted for
and eliminated from analysis. The number of fish left
after 6 wk ranged between 9 and 14 for each trial, with
no difference in mortality attributable to predator pres-
ence/absence (F1,8 = 2.88, p = 0.128), light (F1,8 = 0.02,
p = 0.881) or their interaction (F1,8 = 1.17, p = 0.312).
The effects of predator presence and light level on
growth rates of rock sole were examined with factorial
ANOVA. Growth rates of individual fish were used as
the level of observation in the analysis, with replicate
tanks (n = 3 per treatment combination) treated as a
random factor nested within light and predator treat-
ment.

RESULTS

During the first 3 wk of the experiment, rock sole
growth was influenced by both predator presence and
timing of feeding relative to the diel light cycle (Fig. 1).
In both light conditions, predator presence resulted in
significantly lower growth rates (F1,8 = 6.061, p =
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Fig. 1. Mean ±SE mass specific growth rate (% wt increase
d–1) for replicate groups of fish during (a) the first 3 wk and
(b) the second 3 wk of an experiment in which age-0 rock sole
were given access to food at light levels approximating either
daytime or dusk conditions, both in the presence and absence 

of chronic predator presence. n = 3 for each bar
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0.039). Similarly, both in the absence and presence of
predators, rock sole growth rates were higher when
fish were fed under dusk conditions (F1,8 = 5.608, p =
0.045). There was no significant interaction effect
between time of feeding and predator presence (F1,8 =
1.25, p = 0.30), but the combined effects of daytime
feeding and predator presence resulted in negative
growth in this treatment.

Results during the second 3 wk of the experiment
were generally similar, with highest growth rates
observed in the absence of predators when fish were
fed under dusk conditions. However, in this case, the
effects of predator presence (F1,8 = 2.797, p = 0.132),
feeding time (F1,8 = 1.815, p = 0.215), and their interac-
tion (F1,8 = 0.064, p = 0.807) were not significant.

These growth rate measurements were consistent
with behavioral observations made during the experi-
ments. Throughout the daylight period, rock sole gen-
erally remained buried. When food was introduced to
the arenas, rock sole emerged from the sand and
moved about the bottom consuming food pellets. It
appeared that rock sole were inhibited by the presence
of predators and daylight illumination and therefore
less likely to emerge from the sediment to forage.

DISCUSSION

It is generally assumed that the principal effect of
predators upon prey populations is the direct removal
of prey via capture and consumption. Yet, indirect,
non-consumptive predator effects also have the poten-
tial to influence prey behavior, growth and ultimately,
fitness (Lima 1998). While many studies have demon-
strated short-term suspension of feeding in response to
perceived risk, fewer have demonstrated the longer
term consequence of reduced growth (Nakaoka 2000,
Pratt & Fox 2002, Harter & Heck 2006). By amputating
damsel bug (Nabis spp.) mouthparts, Nelson et al.
(2004) demonstrated that predator disturbance alone
was sufficient to reduce population growth of their pea
aphid Acyrthosiphon pisum prey. Aphids respond to
damsel bug predators by reducing time spent feeding,
presumably influencing individual growth and off-
spring production. Suppressive effects of predators
upon hard clam Mercenaria mercenaria (Nakaoka
2000), walleye Stizostedion vitreum (Pratt & Fox 2002)
and juvenile pinfish Lagodon rhomboids (Harter &
Heck 2006) growth have also been documented. Rock
sole confined to laboratory tanks with predators and
with access to food only during daylight hours,
arguably had to make the best of a bad situation. When
confronting imminent predation risk, rock sole bury,
remain motionless (Lemke & Ryer 2006a) and suspend
feeding (K. Boersma, C. Ryer, T. Hurst, S. Heppell, S.

Boersma unpubl. data), a tactic that facilitates detec-
tion avoidance (Ellis et al. 1997), but if utilized for an
extended period, would impact growth. In our experi-
ment, this indirect predation effect was intense enough
to produce negative growth during the first 3 wk of the
experiment. However, predator avoidance that results
in a negative energetic balance is not a viable long-
term strategy and at some point fish should begin feed-
ing to avert starvation (Lima 1998, Lima & Bednekoff
1999). Growth in rock sole may have rebounded some-
what during the subsequent 3 wk period, although this
was not statistically demonstrable.

Since reduced growth has negative consequences
for fitness (Sogard 1997), it is expected that fish will
seek to mitigate this effect through multifaceted
responses (Lind & Cresswell 2005) that allow for con-
tinued growth. For example, rather than simply
increasing vigilance (Pulliam & Caraco 1984) or time
spent in highly structured habitats (Laurel et al. 2003,
Ryer et al. 2004), prey may also concurrently modify
how they interact with conspecifics, e.g. forming more
cohesive schools (Ryer & Olla 1996, Hurst 2007). Fish
may also reallocate vulnerable activities to times when
predators are less active or they themselves are less
likely to be detected (Fraser & Metcalfe 1997, Metcalfe
et al. 1998). Juvenile fish are generally less vulnerable
to visual predators during the night (Laurel et al. 2003).
Perhaps as a consequence, juvenile flatfish spend less
time buried when ambient illumination is low (Curran
& Able 1998, Stoner & Titgen 2003). When fed under
low illumination, age-0 rock sole appeared less inhib-
ited in their feeding and, despite the presence of
predators, grew at a rate closer to that of control fish. In
Kodiak nursery embayments, juvenile rock sole
abstain from daytime feeding, instead concentrating
feeding during dusk (Hurst et al. 2007). Our laboratory
experiment suggests this feeding periodicity is likely to
be a response to predation. While juvenile flatfish have
lowered visual acuity under nighttime illuminations,
which reduces their encounter rates with prey (Hurst
et al. 2007), shifting to a crepuscular foraging periodic-
ity might nevertheless represent the best strategy for
juvenile rock sole by balancing predation risk with for-
aging ability to minimize suppression of growth. The
fact that growth was greater under dusk feeding con-
ditions, regardless of predator presence or absence,
suggests that this is partially an evolutionary response,
rather than a strictly facultative behavioral tactic.

Our experiment was conducted in laboratory arenas
at a predator density (~0.3 m–2) that might seem unreal-
istic in many estuarine and/or coastal waters. However,
juvenile rock sole did not rapidly acclimate to elevated
predator density during 3 wk, despite low predation
mortality (8% over 6 wk), attesting to the risk-averse
nature of this species (Lemke & Ryer 2006a). Despite
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this innate aversion to risk, their greater willingness to
feed under low illumination suggests that ambient illu-
mination plays an important role in modulation of feed-
ing behavior in rock sole and is consistent with ob-
served rock sole feeding in the wild (Hurst et al. 2007).
This indicates that our experiment, although conducted
under laboratory conditions, reflects the tradeoffs that
determine when these fish feed.

Lastly, our results have implications for understand-
ing habitat quality (Beck et al. 2001, Dahlgren et al.
2006). Realization of physiological growth potential in
flatfish is traditionally considered to be under the con-
trol of ambient water temperature (Van der Veer &
Witte 1993, Hurst & Abookire 2006) and food availabil-
ity (Van der Veer et al. 1994). Our work suggests that
growth of juvenile flatfishes can be further restricted
by behavioral inhibition in response to predator pres-
ence. Unless juvenile fish can either emigrate or alter
behavior so as to mitigate this effect, the higher mortal-
ity rates of fish in nursery grounds with abundant
predators (a direct effect) will be compounded by
reduced growth rates in those habitats (an indirect
effect). Ryer et al. (2007) speculated that observed
differences in rock sole growth between nursery
embayments around Kodiak Island Alaska may repre-
sent differential growth suppression arising from local
differences in predator abundance. As predation is
typically size-selective (Sogard 1997), fish leaving
nurseries at a smaller size may subsequently suffer
higher mortality, contributing less to the adult popula-
tion. Further research into predator induced growth
suppression is warranted, as it may represent an
important process influencing habitat quality for
juvenile fish.
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