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ABSTRACT: The functional approach, using morphology and/or ecological traits, allows grouping
of species that play similar roles in an ecosystem. Although species may have unique functions,
some may overlap in key morphological traits, leading to similar functions (i.e. functional redun-
dancy). To understand the functional roles of southwestern Atlantic labrids, we analyzed 21 spe-
cies, focusing on morphological characteristics linked to habitat use, feeding habits and swimming
ability, and further taking ontogeny into account by analyzing 3 size categories (small, medium and
large) that vary in life history aspects. A comprehensive functional analysis using 11 functional
traits defined according to 12 morphological measurements was performed to generate a consensus
tree that segregated species into 9 functional groups. Body elongation was the most important char-
acteristic separating parrotfishes from wrasses. Small size class was separated from medium and
large size class wrasses and parrotfishes through eye size and eye positioning, respectively. Thalas-
soma noronhanum was grouped with invertivorous species, despite its classification as a plankti-
vore in previous studies. This species, together with Xyrichtys splendens and Scarus zelindae,
showed no size-related shifts in functional role with increasing size. Although recognized as mem-
bers of different trophic guilds, different size classes of different labrid species may play similar
functional roles. This suggests the need for taking size and species identity into account when
measuring functional diversity and redundancy in reef ecosystems, key features for maintaining the
health and robustness (i.e. resistance/resilience) of reef systems.
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INTRODUCTION

Labridae (including wrasses, parrotfishes and oda-
cines) is one of the most representative families in
terms of species richness on reef systems. Its 637
recognized species are morphologically highly diverse
and harbor a great variety of shapes, behaviors and
ecological characteristics (Walker & Westneat 2002,
Kuiter 2010). Parrotfishes and odacids (tribes Scarini
and Odacini, respectively) were previously classi-
fied in families separate from Labridae, but recent
comprehensive phylogenetic studies have now
included all of them within Labridae (Clements et al.
2004, Westneat & Alfaro 2005, Baliga & Law 2016). In
the southwestern Atlantic (SWA), 26 labrid species
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(distributed among 11 genera) are recognized, 12 of
which are endemic to the Brazilian Province (com-
posed of the Brazilian coast and oceanic islands;
Floeter et al. 2008). Morphological diversity might
be a result of the evolutionary history of different
lineages or the emergence of morphological novel-
ties inside a clade (Wainwright 2007). Labridae line-
ages provide many examples of morphological
characteristics leading to diversification (see Alfaro
et al. 2005), as exemplified by clades dominated by
herbivores, in particular scrapers/bioeroders (e.g.
Scarus and Sparisoma), carnivores (e.g. Doratono-
tus), planktivores (e.g. Clepticus) and predators of
benthic invertebrates (e.g. Bodianus, Halichoeres
and Xyrichtys).
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The evolution of many traits closely linked to feed-
ing habits and swimming ability is detectable in
Labridae phylogeny (Choat 1991, Streelman et al.
2002, Westneat & Alfaro 2005). Studies on functional
ecology have pointed to fin shape and size, as well as
body shape, as being highly influential in fish swim-
ming ability and habitat use (Bellwood & Wainwright
2001, Fulton & Bellwood 2002, Wainwright & Bell-
wood 2002, Albouy et al. 2011). In addition, feeding
ecology is mainly influenced by mouth gape (i.e. depth
and width) and orientation (i.e. inferior or superior),
as well as dentition arrangement and type (i.e. coa-
lesced, caniniform or incisiform) (Gatz 1979, Clifton
& Motta 1998, Albouy et al. 2011). Body shape and
size may influence the preference for diurnal micro-
habitats and sleeping sites. Wrasses (elongated and
relatively small) tend to hide in crevices or bury
themselves within the sandy bottom (Potts 1973, Nishi
1989), while parrotfishes (taller and more robust)
often lie on the bottom of the reef. Although each
species (and ontogenetic stages) may have unique
functions in the environment, different species may
have overlapping traits and play similar ecological
roles (Halpern & Floeter 2008), thus being pooled
into the same functional groups. The more species
within each functional group, the higher the func-
tional redundancy. For instance, if 2 coexisting spe-
cies perform the same function, the absence of one
species will not cause the loss of that function in the
ecosystem (Bellwood et al. 2004, Halpern & Floeter
2008). Therefore, increased functional redundancy is
expected to result in a more stable ecosystem (Guille-
mot et al. 2011).

Functional roles, resource use and performance
may be quantified by measuring ecologically rele-
vant functional traits of species (Bellwood & Choat
1990, Bellwood et al. 2002). Community-level studies
on reef fish have been conducted, aimed at distin-
guishing species’ functional roles (Ferreira et al.
2004, Halpern & Floeter 2008). However, the within-
family functional ecology remains poorly explored
for reef fishes, possibly because great morphological
similarities would lead to functional overlap. None-
theless, detailed studies on functional traits/roles
would provide evidence for coexistence rules, trophic
interactions and redundancy within families, as well
as different impacts of species on the ecosystem (Du-
may et al. 2004). Understanding the functional roles
of fish species in reef ecosystem health is important
for conservation issues, since ecosystem equilibrium
depends, partially, on well-preserved functions and
species redundancy within functional groups (Bell-
wood et al. 2004).

Here, we evaluated the functional differentiation
among 21 SWA labrid species based on morphologi-
cal traits and their correlation with habitat use (e.g.
eye position, linked to the vertical position in the
water column), feeding habits (e.g. oral width and
gape surface, related to prey size) and swimming
ability (e.g. caudal peduncle throttling, related to
caudal propulsion efficiency). Conversely, we in-
ferred how much these different and phylogeneti-
cally related species are similar based on morphol-
ogy and performance profiles, and how this affects
different functional roles. In addition, we included a
size-class variation by considering intra- and inter-
specific changes among small, medium and large
size classes, which could represent different onto-
genetic stages.

MATERIALS AND METHODS
Data collection

Morphometric measurements were performed on
158 specimens of 21 labrid species from 9 genera
available in major ichthyological collections for
Brazilian reef fishes (CIUFES, MZUSP, and ZUEC-
PIS; collection acronyms follow Sabaj-Pérez 2014).
Changes in form due to preservation processes are
stronger for smaller individuals (i.e. shrinking) than
larger ones (Parker 1963, Fox 1996, Fey & Hare
2005). Deformation is highest in the first 3 d of pre-
servation and reduces to less than 0.1% after 90 d
(Fey & Hare 2005). All our specimens were fixed
and stored using the same method (10 % formalin to
70 % ethanol) for at least 90 d of preservation, thus
minimizing the variation and increasing homogene-
ity within samples. Five species found in the Brazil-
ian Province (Floeter et al. 2008) were not included
here due to their rarity, lack of ontogenetic stages or
non-availability in ichthyological collections: Bodi-
anus insularis Gomon & Lubbock 1980, Halichoeres
radiatus (Linnaeus 1758), Halichoeres sazimai Luiz,
Ferreira & Rocha 2009, Lachnolaimus maximus
(Walbaum 1792) and Nicholsina usta (Valenciennes
1840). Size-class classification of species was based
on body size using the maximum standard length
(SLax) according to available literature, except in
cases when this value was less than our own data
(Table 1). Small sized fishes (S) were represented by
individuals with SL < Y3 of SL,.x, medium-size (M)
were between Y3 and %3 of SL,.., and large-sized
fishes (L) showed SL > %3 of SL., (Nagelkerken &
van der Velde 2002).
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Table 1. Size limits (mm) between small and medium (S/M) and medium and large (M/L) size classes of 21 southwestern Atlantic labrid

species. The maximum standard length (SL,,.) reached by the species and its reference are shown; n: number of individuals in each

size class. Trophic guilds are based on Randall (1967), Westneat (1995) and Ferreira et al. (2004): MIF: mobile invertebrate feeders;
PLK: planktivores; MCAR: micro-carnivores; HERB: herbivores

Species Size limits (mm) nS,M,L Reference Trophic

S/M M/L  SLjax for SLax guild
Bodianus pulchellus (Poey, 1860) 77 154 232 3,33 Gomon (2006) MIF
Bodianus rufus (Linnaeus, 1758) 126 252 378 3,33 Present study MIF
Clepticus brasiliensis Heiser, Moura & Robertson, 2000* 82 165 248 2,3,3 Heiser et al. (2000) PLK
Cryptotomus roseus Cope, 1871 43 88 130 1,1,3 Robins & Ray (1986) HERB
Doratonotus megalepis Gunther, 1862 30 60 100 3,31 Kuiter (2010) MCAR
Halichoeres brasiliensis (Bloch, 1791)® 131 262 395 3,33 Rocha & Rosa (2001) MIF
Halichoeres dimidiatus (Agassiz, 1831)® 90 180 270 3,33 Present study MIF
Halichoeres penrosei Starks, 1913%" 40 80 119 3,33 Present study MIF
Halichoeres poeyi (Steindachner, 1867) 61 123 183 3,33 Present study MIF
Halichoeres rubrovirens Rocha, Pinheiro & Gasparini, 2010 ab 77 154 231 1,1,3 Rocha et al. (2010) MIF
Scarus trispinosus Valenciennes, 18403 200 400 600 1,1,3 Moura et al. (2001) HERB
Scarus zelindae Moura, Figueiredo & Sazima, 20012 110 220 332 3,1,2 Moura et al. (2001) HERB
Sparisoma amplum (Ranzani, 1841)° 130 260 390 3,33 Moura et al. (2001) HERB
Sparisoma axillare (Steindachner, 1878)3" 145 290 436 3,2,3 Present study HERB
Sparisoma frondosum (Agassiz, 1831)3® 115 230 345 3,1,2 Moura et al. (2001) HERB
Sparisoma radians (Valenciennes, 1840)* 66 132 200 1,2,1 Kuiter (2010) HERB
Sparisoma rocha Pinheiro, Gasparini & Sazima, 20102P 101 202 305 3,3,3 Present study HERB
Sparisoma tuiupiranga Gasparini, Joyeux & Floeter, 2003% 51 104 154 3,2,3 Gasparini et al. (2003) HERB
Thalassoma noronhanum (Boulenger, 1890)° 42 85 128 3,33 Present study PLK
Xyrichtys novacula (Linnaeus, 1758) 100 200 300 2,3,0 Quignard (1966) MIF
Xyrichtys splendens Castelnau, 1855 46 93 140 1,3,3 Kuiter (2010) MIF
3Brazilian Province endemic species; "Red listed species (MMA 2014)

Fig. 1. Morphometric measurements performed on each specimen. The species model is Doratonotus megalepis Giinther 1862.

(A) Side view; (B) front view. SL: standard length; Ed: eye diameter; Eh: eye height; Hd: head depth; PFl: pectoral fin length;

PFd: pectoral fin depth; CPd: caudal peduncle depth; Bd: body depth; CFd: caudal fin depth; Bw: body width; Md: mouth
depth; Mw: mouth width

Morphometric measurements and functional traits

A total of 12 morphological measurements (Fig. 1)
obtained by using an analogical caliper rule with
0.05 mm precision were used to calculate 11 func-
tional traits (Table 2) (based on Gatz 1979, Fulton et
al. 2001, Dumay et al. 2004, Albouy et al. 2011,
Claverie & Wainwright 2014).

Two coded variables were added in the analysis
considering that (1) herbivorous, carnivorous and
planktivorous exert a distinct function (Wikramana-
yake 1990, Winemiller 1991) and (2) the maximum
size of each species/size class is correlated with their
functional roles (Bonaldo & Bellwood 2008, Francini-
Filho et al. 2008). Species were classified according
to their number of teeth and dentition type (DT) (see
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Table 2. Functional traits derived from 12 morphometric measurements, with abbreviations (see Fig. 1), formula, ecological
meaning and references for selected traits. na: not applicable

Functional trait Abbreviation Formula Ecological meaning

Oral gape surface Osf (Mw x Md)/(Bw x Bd) Nature/size of captured items (Albouy et al. 2011)

Oral width Orw Mw/SL Size of captured items (Gatz 1979)

Eye size Edst Ed/Hd Prey detection (Albouy et al. 2011)

Eye position Eps Eh/Hd Vertical position in the water column (Gatz 1979)

Body transversal shape Bsh Bd/Bw Vertical position in the water column/hydrodynamism
(Gatz 1979)

Pectoral fin shape PFsh PFl/PFd Pectoral fin use for maneuverability (Dumay et al. 2004)

Pectoral fin relative area PFra (PF1 x PFd)/(SL x Bd)  Swimming/hydrodynamism (Fulton et al. 2001)

Caudal peduncle throttling CPt CFd/CPd Caudal propulsion efficiency through reduction of drag
(Albouy et al. 2011)

Body elongation index BEi SL/Bd Elongated bodies allow swimming closer to substratum
(Claverie & Wainwright 2014)

Dentition type DT na Nature of feeding habits (Pouilly et al. 2003)

Size class limit SClim na Size limit between small, medium and large

Pouilly et al. 2003) as follows: (1) species with few
(<50), caniniform or conical teeth (associated with
biting or cutting food items); and (2) species with
many (>50) filiform teeth (associated with scraping or
excavating). The second coded variable was the size
limit between size classes and the maximum size (see
Table 1). For instance, Bodianus pulchellus has a
SLhax 0f 232 mm; thus, the top limit for the small class
(following Nagelkerken & van der Velde 2002, as
cited above) is 77 mm, and for the medium class is
154 mm. Therefore, size was coded 77, 154 or 232
depending upon the size class to which the specimen
belonged. These limit values were inserted to each
size class of each species as a coded variable prior to
standardization.

Resource use was classified by assigning species to the
trophic categories mobile invertebrate feeders (MIF),
planktivores (PLK), micro-carnivores (MCAR) and her-
bivores (HERB) (see Table 1; Randall 1967, Westneat
1995, Ferreira et al. 2004, Ferreira & Gongcalves 2006).

Statistical analyses

To group species according to morphological simi-
larity and to differentiate the function of each group in
the environment, we ran a sequence of 3 analyses.
Clustering was performed through a consensus tree
using 2 distances (Gower's and Euclidean) and 5
grouping methods (Ward, Single, Complete, un-
weighted pair group method with arithmetic mean
[UPGMA] and weighted pair group method with aver-
aging [WPGMA]) based on functional traits. All vari-
ables were centered and reduced (mean = 3; SD = 1)
prior to analysis. A similarity profile routine (SIMPROF)

was applied (o = 0.05; 9999 permutations) on the
groups produced in the consensus tree. SIMPROF uses
the final cluster, searching for the best arrangement of
branches, calculating between every pair of samples
(here, species and respective size class) (Clarke et al.
2008). SIMPROF shows which groups are significantly
different from each other by assigning different colors
to them. The analysis was performed using the Gener-
alized Functional Diversity Index (GFD) with source
codes provided by Mouchet et al. (2008) and using the
‘clustsig’ package (Whitaker & Christman 2014) imple-
mented in R (R Core Team 2017). To elucidate which
variables (traits) drove the differentiation between
functional groups, discriminant analyses were run
for each dichotomy (see Table 3) and for each group
in comparison to all the other species groups (see
Table 3). A stepwise method with a maximum number
of 22 steps, maximum partial F to enter = 3.84, and
maximum partial F to remove = 2.71 was used. Corre-
lation within functional traits was tested through
Spearman's rank correlation test (Fig. S1 in the Sup-
plement at www.int-res.com/articles/suppl/m588p135
supp.pdf) using R (R Core Team 2017%).

RESULTS

The trait-based consensus tree segregated the 21
labrid species into 9 functional groups. Discriminant
analyses performed a posteriori to the SIMPROF test
revealed the body elongation index (BEi) to be the
most important trait (Table 3) for separating parrot-
fishes (tribe Scarini) from wrasses (other tribes), fol-
lowed by caudal peduncle throttling (CPt) and pec-
toral fin relative area (PFra). Within parrotfishes, BEi
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Table 3. Functional traits characterizing each functional group and examples of species that fit in each group. Groups listed in
the first column correspond to the groups assigned in Figs. 2 & 3. Significant traits were detected through discriminant analysis
testing each single group against all others. S: small; M: medium; L: large

Functional Characteristic functional traits Examples

group

1 Coalesced teeth, higher positioned eye and thicker Sparisoma amplum (S) and Sp. axillare (S)
caudal peduncle

2 Coalesced teeth, deeper body, smaller species, smaller Sparisoma rocha (M/L) and Sp. radians (M/L)
eye and thicker caudal peduncle

3 Larger species, thicker caudal peduncle and lower Scarus trispinosus (M), Sp. amplum (L) and
positioned eye S. axillare (L)

4 Elongated body, coalesced tooth and narrow mouth. Cryptotomus roseus (S/M)

5 Narrow mouth, shallow and elongated body, smaller Halichoeres rubrovirens (M) and H. poeyi (M)
eye, and smaller species

6 Thinner caudal peduncle, higher positioned eye, H. brasiliensis (L) and H. dimidiatus (L)
canine teeth and larger species

7 Broader mouth, canine teeth and thicker caudal peduncle. Bodianus spp. (M) and Doratonotus megalepis (L)

8 Larger eyes and canine teeth Thalassoma noronhanum (S/M/L) and

Halichoeres spp. (S)

9 Long and wide pectoral fin, deeper and fusiform body Clepticus brasiliensis (M/L)

and lower positioned eye
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Fig. 2 (continued on next page). Functional traits-based consensus tree for 21 south-
western Atlantic labrid species. Numbers 1 to 9 represent the functional groups iden-
tified; colors denote functional groups detected by SIMPROF test. Inserts show the
leading (first) trait discriminating the 2 branches of each of the 9 basal dichotomies,
as detected by discriminant analysis testing each dichotomy (see Table 3). S: small;
M: medium; L: large. (a) Tribe Scarini. Cry ros: Cryptotomus roseus; Sca tri: Scarus
trispinosus; Sca zel: Scarus zelindae; Spa amp: Sparisoma amplum; Spa axi: Spari-
soma axillare; Spa fro: Sparisoma frondosum; Spa rad: Sparisoma radians; Spa roc:
Sparisoma rocha; Spa tui: Sparisoma tuiupiranga. (b) Non-Scarini. Bod pul: Bodianus
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separated the most elongated species, Cryptotomus
roseus, from all others (Fig. 2). Spearman tests
showed that a number of traits were inter-correlated
(see Fig. S1 in the Supplement), with a particularly
strong negative relationship between eye size and
size class limit (Figs. S1 & S2). Scarini segregated into
4 tunctional groups (Fig. 2a), with one single-species
group (group 4). With eyes higher-positioned on the
head and small mouth area, group 1 comprised almost
all small-sized individuals, the medium-sized Spari-
soma frondosum and Scarus zelindae, and the large-
sized C. roseus and Scarus trispinosus. Medium and
large-sized individuals of most species and small
ones of Sc. trispinosus and Sp. frondosum formed
groups 2 and 3, with traits opposite to those of group 1.
The fourth group comprised small and medium indi-
viduals of the slim-bodied C. roseus, which are even
more elongated than larger specimens.

Within wrasses, most medium and large-sized
specimens assembled into groups 5, 6 and 7 due to
their small eyes, with further segregation linked to
depth of the caudal peduncle (Fig. 2b). However, small
Xyrichtys spp., which have laterally compressed and
deep bodies were also included in group 5. Small-
size classes of all other species, along with medium

Doratonotus megalepis, Halichoeres penrosei and
Thalassoma noronhanum were clustered into group
8 due to disproportionally large eyes. Medium and
large size classes of the planktivore Clepticus
brasiliensis were isolated from carnivores in group 9
primarily because of their small oral gape, high body
and long pectoral fins.

DISCUSSION

After evaluating the morphological similarities
among 21 labrid species and 3 size classes based on
functional traits and ecological attributes, we were
able to infer their functional role on SW Atlantic
Ocean reefs. Our findings indicate that species that
are generally classified in the literature as belonging
to different trophic groups may perform similar func-
tional roles (i.e. high morphological overlap), rein-
forcing the difference between these 2 concepts
(Blondel 2003). The current segregation of parrot-
fishes into different functional groups, based on
field observations and dietary analysis (e.g. browsers,
scrapers, excavators and herbivorous—detritivorous;
Bonaldo & Bellwood 2009, Francini-Filho et al. 2010,
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Cordeiro et al. 2016), was not retrieved here. Our
analysis therefore suggests that closely related spe-
cies may not always perform similar functional
roles. A similar pattern was recorded for cichlids by
Cochran-Biederman & Winemiller (2010), who showed
that closely related species were not the most eco-
logically similar. We found that parrotfish functional
groups based on morphological features (groups 1 to
4; Fig. 2a) were composed of a mix of species from
previous functional classifications (e.g. large Spari-
soma amplum and Scarus trispinosus— excavators —
grouped with scrapers Sparisoma spp.; see Fig. 2a).
Recent evidence suggests that parrotfishes may tar-
get distinct food sources, such as endo- and epilithic
microorganisms (Clements et al. 2017) and even
copepods (Kramer et al. 2013). Thus, more detailed
studies integrating ecomorphology, foraging behav-
ior and diet will be necessary for attaining a compre-
hensive trophic/functional classification of parrotfish
and other labrids, and to better understand the im-
pacts over the benthic community and resource/use
partitioning.

The most striking discordance between phyloge-
netic proximity and functional roles was between
Bodianus and Clepticus. Baliga & Law (2016) suggest
that Clepticus is the sister group of Bodianus, despite
the difference in trophic ecology, swimming mode
and habitat use (see Kuiter 2010). Here, the nomi-
nally planktivorous Thalassoma noronhanum is clus-
tered with mobile invertebrate feeders (Bodianus,
Halichoeres and Xyrichtys), which is in accordance
with observations showing that it does feed on
mobile invertebrates (Rocha et al. 2001, Longo et al.
2015) and ectoparasites (Francini-Filho et al. 2000)
rather than only plankton (Ferreira et al. 2004,
Floeter et al. 2007). According to Fulton et al. (2017),
Thalassoma presents efficient high-speed swimming
combined with trophic versatility which allows it to
dominate extreme coral reef habitats around the
world (Fulton et al. 2017). In the Labridae phylogeny
(see Baliga & Law 2016), Thalassoma groups are
interspersed with other wrasse groups, including the
Caribbean Halichoeres maculipinna (Miiller & Tro-
schel, 1848), a sister species of the Brazilian endemic
Halichoeres penrosei. Thus, phylogenetic constraints
within the Labridae family may be significant only
for groups with small morphological variations and
represented by few lineages (Bellwood et al. 2006).

The ontogenetic approach clearly segregated small
from large fishes in this family, where size is gener-
ally correlated with the initial (female) and terminal
(male) sexual phases. Labrids usually form harems
(Streelman et al. 2002) in schools with medium and

large-sized males, and functional redundancy was
expected within these sizes once they explore similar
resources. All the Halichoeres species in our analysis
had the small-sized individuals in the same func-
tional group (group 8; Fig. 2b). Wainwright (1988)
reported a difference in prey items between Carib-
bean Halichoeres spp. and between ontogenetic sta-
ges related to jaw crushing strength, with juveniles
eating soft-bodied prey. The exception to our smaller
individuals in the labrid groups were Xyrichtys spp.,
in which smaller phases clustered with medium and
larger-size groups, including those from X. splen-
dens and X. novacula (group 5; Fig. 2b). The Xyrich-
tys group is related (but not closely so) to the Hali-
choeres + Thalassoma groups (Baliga & Law 2016),
which may be the cause of such a morphological dif-
ferentiation (all Xyrichtys species and size classes are
in groups 5 and 6; Fig. 2b).

Although different traits segregate small-sized
individuals across the labrid spectra (i.e. eye position,
eye size and class size limit), these traits are highly
correlated (see Fig. S1 in the Supplement). In fishes,
eyes grow throughout the life of the individual
through the addition or elongation of retinal cells
(Fernald 1991, Wilkens 2007) but become propor-
tionally smaller with increasing size (Gould 1966).
However, visual acuity is expected to improve as the
absolute eye diameter increases, leading to higher
capacity of prey or predator detection (Albouy et al.
2011). This typical ontogenetic allometry is probably
associated with approaching the optimal functioning
of the organ early in life (Boyle & Horn 2006) or to
physiological energy requirements in early life stages
(Post & Parkinson 2001). The presence of large-sized
classes among small-sized ones in several functional
groups produced here (e.g. large Cryptotomus ro-
seus, Fig. 2a; T. noronhanum, Fig. 2b) may represent
cases of neoteny (i.e. retention of juvenile character-
istics in adults) (Shea 1983).

Claverie & Wainwright (2014) showed that the BEi
is the main driver of diversification within 56 families
of tropical Indo-Pacific reef fishes. Such a feature is
also directly linked to swimming speed and endurance,
mainly in fishes with rigid bodies that minimize un-
dulation during swimming (Walker et al. 2013). For
species in which the main power for propulsion is
provided by pectoral fins, such as Labridae (Bell-
wood & Wainwright 2001), flexible bodies and high
caudal throttling (e.g. compared to scombrids) would
also promote more maneuverability and the acceler-
ation needed to feed or flee from predators in the
highly-complex 3-dimensional maze of reef environ-
ments. Here, BEi showed a remarkable influence in
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some of the deepest cluster dichotomies, such as the
segregation of herbivores (Scarini) from invertivores/
planktivores (wrasses), evidencing its importance in
food acquisition (Walker et al. 2013). BEi also isolated
the early (S and M size classes) developmental
phases of C. roseus from other parrotfishes (Fig. 2a),
possibly a result of evolutionary history within Labri-
dae species. Cryptotomus is older than Sparisoma
and Scarus (Robertson et al. 2006, Smith et al. 2008)
and appears phylogenetically isolated from other
Scarinii (Baliga & Law 2016), which may plausibly
lead to functional divergences. Considered to mostly
feed on seagrass, C. roseus and Nicholsina usta (Va-
lenciennes, 1840) are the only Scarini to harbor teeth
not fully coalesced and caniniform at the top (West-
neat 2002), suggesting that they also explore non-
vegetal food sources. Beside the expected allometry
in body proportions typical of the high growth rates
found in juveniles (Gould 1966), slender bodies (i.e.
high BEi) are useful to the burying habits at the set-
tlement stage (Lara 2008, Leis et al. 2011). While this
behavior is known to persist into adulthood of many
wrasses, C. roseus is the only known parrotfish that
buries itself (Bolhke & Chaplin 1968), an activity cer-
tainly facilitated by its slender body. This species also
produces a mucus cocoon (after burrowing into the
sand) in which to sleep, probably protecting itself
from predators and parasites during the night (Saz-
ima & Ferreira 2006, Grutter et al. 2011).

No clear differentiation in functional morphology
among Sparisoma and Scarus species was found
(except for those linked to size classes), reinforcing
the hypothesis that the functions played by these
species are strongly size-dependent (Bonaldo & Bell-
wood 2008, Francini-Filho et al. 2008, Bonaldo et al.
2014). This is especially clear in Scarus spp., with
large S. trispinosus acting as excavators while small
ones are scrapers (Francini-Filho et al. 2008, Bonaldo
et al. 2014). Scarus species also showed clear differ-
ences in body shape and size, features that may lead
to differences in habitat use and food selection, thus
possibly reducing competition and facilitating spe-
cies coexistence (McAfee & Morgan 1996, Streit et
al. 2015).

Functional redundancy would vary in accordance
with assemblage composition, where the absence of
a species (or its rarity) could allow another species
to thrive owing to reduced competition. Lower-
than-expected redundancy would also be attained if
species clustered into the same functional group (see
groups 1 to 3) played different roles. Further studies
could use more refined traits (see Wainwright &
Bellwood 2002, Schmitz & Wainwright 2011) and

approaches (Clements et al. 2017) to better elucidate
functional relationships within SWA labrids.
Excavating is a critical functional role for the main-
tenance of resistance and resilience of coral reef eco-
systems (Bellwood et al. 2003, 2004). This is only per-
formed by large and medium-sized Sc. (rispinosus
and Sp. amplum in the SWA (Francini-Filho et al.
2010, R. B. Francini-Filho unpubl. data). This low
redundancy highlights their fragility and regional
susceptibility to natural and anthropogenic impacts
such as overfishing (Francini-Filho & Moura 2008).
However, the abundance and biomass of scrapers
and excavators tend to differ depending on site (see
Ferreira et al. 2004), and thus the combined impact
of these 2 groups over the substratum should vary
in accordance with their relative importance in the
community. Therefore, the fishery management strat-
egy of implementing size limits for catches clearly
cannot be applied casually to excavating parrot-
fishes, as their functional role changes with size and
they have a striking importance to bioconstruction,
e.g. through sediment accretion (see Perry et al. 2015).
Overfishing of parrotfishes led Brazilian authorities
to red list most large-sized parrotfishes (MMA 2014).
Because species may exert particular roles and
functional redundancy is null (as for C. roseus and
Clepticus brasiliensis within Atlantic labrids), low or
unrecognized, one should not overestimate redun-
dancy levels (Guillemot et al. 2011), and conservation
measures need to evaluate each species within an
ecosystem framework. Other labrid assemblages
that are more diverse (e.g. Caribbean and Indo-
Australian) may be more redundant, more stable and
less prone to function loss caused by extinction of a
single species (Guillemot et al. 2011). The functional
approach to identify the ecological roles that labrids
play in SWA reefs provides valuable insights into
the interlaced effects of morphology and size and
highlights a number of possible conservation pitfalls.
The complementation of the analysis with other ap-
proaches (e.g. diet, stable isotopes, population demo-
graphy) is fundamental to enhance our understand-
ing and sharpen our tools to support conservation
programs for species, communities and whole habitats.
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