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ABSTRACT: Studying the biogeography of amphipod crustaceans is of interest because they play
an important role at lower trophic levels in ecosystems. Because they lack a planktonic larval
stage, it has been hypothesized that marine benthic amphipod crustaceans may have short disper-
sal distances, high endemicity, and spatial turnover in species composition, and consequently high
global species richness. In this study, we examined over 400000 distribution records of 4876
amphipod species, and identified 12 regions of endemicity. The number and percent of endemic
species peaked at 30°-35°S and coincided with 3 of these regions of high endemicity: Australia,
New Zealand, and southern Africa. Pelagic species of marine amphipod crustaceans were more
cosmopolitan than benthic species. The latitudinal patterns of richness (alpha, gamma, and ES50)
and species turnover were at least bimodal. Most occurrence records and greater alpha and
gamma richness were in mid-latitudes, reflecting sampling bias. Both ES50 and beta diversity had
similar richness in the tropics, mid-latitudes, and on the Antarctic shelf around 70°S. These 2
indices exhibited a sharp dip in the deep Southern Ocean at 55°S. ES50 peaked at 30°-35°S and
a small dip was apparent near the equator at 5°~10° N. Beta diversity was driven mostly by turnover
rather than nestedness. These findings support the need for conservation in each realm of species
endemicity —and for amphipods, particularly in Antarctica and the coastal mid-latitudes (30°-
35°S) of the Southern Hemisphere.
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1. INTRODUCTION

Biogeographic information can inform how to prior-
itize conservation and detect environmental change
(Spellerberg & Sawyer 1999, Heads 2015, Lomolino
et al. 2017). The biogeography of amphipod crus-
taceans is of interest because these organisms play a
crucial role in ecosystems as a link between lower
and higher trophic levels, and between benthic and
pelagic communities (Michel et al. 2016, Griffiths et
al. 2017). It has been generally believed that species
diversity decreases with (higher) latitude and that
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equatorial regions have the most species (Hillebrand
2004). However, recent literature reviews and data
analysis of 65000 marine species (Chaudhary et al.
2017), razor clams (Saeedi et al. 2017), planktonic
foraminifera (Brayard et al. 2005), and amphipod
crustaceans (Chaudhary et al. 2016) found a bimodal
latitudinal gradient with reduced species richness
around the equator. While Menegotto & Rangel
(2018) argued that this pattern was due to insufficient
sampling near the equator, Chaudhary et al. (2017)
used rarefaction indices of diversity to adjust for sam-
pling effort, and still found the pattern.
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The geographic patterns of species endemicity
indicate how evolutionary history has led to the pres-
ent patterns of species richness. At a global scale, 30
marine biogeographic realms have been mapped
based on the distribution of 65000 species (Costello
et al. 2017). However, each taxon can have distinct
patterns of distribution, diversity, and evolutionary
history (Briggs & Bowen 2012, Watling et al. 2013).
Most amphipod crustaceans are benthic (97 % of
9980 valid species) and all lack planktonic larvae
(Barnard & Karaman 1991, Arfianti et al. 2018). It has
been suggested that these species may have small
distribution ranges, high endemicity, and show a
robust biogeographic pattern (Myers & Lowry 2009).
Their patterns of endemism may thus support, mod-
ify, and/or subdivide biogeography based on other
taxa. If benthic amphipods have greater endemicity
than other taxa, then their regions of endemicity may
nest within those of other taxa, such as in the realms
proposed by Costello et al. (2017). Myers & Lowry
(2009) hypothesized that due to the Gondwanaland
fragmentation 150 million years ago (Ma), amphi-
pods will have distinct regions of endemicity in
Madagascar, India, Australia, New Caledonia, and
New Zealand. However, there have been no global-
scale analyses of marine amphipod biogeography to
place this in context.

There are 3 main indices of species richness used
in biogeography; alpha, gamma, and beta diversity.
Alpha diversity is the number of species at a local
scale, and it is strongly affected by sampling effort.
Gamma, the regional scale diversity index, is less
sensitive to sampling bias because it accounts for
overlap in species composition between adjacent
cells (Chaudhary et al. 2017). The amount of turnover
in species composition between samples (beta diver-
sity) helps explain the mechanisms that maintain
these 2 indices (Kraft et al. 2011, McClain et al. 2012).
Thus, biogeographic analyses should report all 3
diversity measures and consider sampling effort. In
this paper, we studied marine amphipod biogeogra-
phy by analyzing regions of endemicity and latitudi-
nal gradients for these 3 measures of diversity.

2. MATERIALS AND METHODS
2.1. Data source and cleaning process
Data on the geographic distribution of amphipods
were obtained from the Ocean Biogeographic Infor-

mation System (OBIS 2019) and the Global Biodiver-
sity Information Facility (GBIF 2019). We checked the

suitability of the data using the 'SpeciesGeoCoder’
package (Topel et al. 2017) in R v.3.4.4 (R Core Team
2016), removing data with missing values and non-
numeric values in the coordinates. Although Indone-
sia is at the centre of the world's most biologically
diverse marine region, i.e. the Coral Triangle (Allen
2008, Asaad et al. 2018), only a few occurrence data
of amphipods from Indonesian waters were available
in OBIS and GBIF. Thus, we added additional data of
amphipod occurrences in Indonesian waters from
published literature, namely Pirlot (1933, 1934, 1936,
1938), Laubitz (1991), Ortiz & Lalana (1997, 1999),
and Arfianti & Wongkamhaeng (2017). Where publi-
cations lacked geographic coordinates (i.e. longitude
and latitude), we placed the occurrences in the cen-
tre of the indicated sea, bay, or strait that had been
sampled. All records then were combined into a sin-
gle data set. We excluded any duplicated records and
fossil data. We verified taxonomic names against the
World Register of Marine Species (WoRMS) (Horton
et al. 2019). All occurrence records at the subspecies
level, synonyms, and misspellings were corrected to
the valid species name and included. We removed
data that were mapped to land using the clip feature
in ArcGIS v.10.3 (ESRI). After this process, we had a
data set consisting of 428 053 occurrences for 4876
species (Table S1 in the Supplement at www.int-res.
com/articles/suppl/m638p083_supp.pdf).

2.2. Species richness

Alpha species richness was calculated as the mean
and 1 SE of species occurrences in each 5° latitude—
longitude cell for each 5° latitudinal band. Gamma
species richness was the total number of species in
each 5° latitudinal band. Both alpha and gamma (to a
lesser extent) richness are biased by sampling effort.
Thus, we calculated the expected number of species
(ES) among 50 random, repeatedly sampled samples
(ES50) to standardize the data and account for sam-
pling effort (Gotelli & Colwell 2011), using the
‘'vegan' package (Oksanen et al. 2013) based on
Hurlbert's (1971) formulation, and the standard
errors based on Heck et al. (1975).

2.3. Endemicity analysis

Pelagic amphipods were excluded (Table S2) from
the biogeographic analysis because initial analysis
showed they were relatively cosmopolitan and some-
times abundant. Thus, they could bias biogeographic
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analysis into grouping often distant cells into the
same group. After we removed pelagic species, we
had 400608 occurrences of benthic species. Intro-
duced species of amphipods were removed from the
data set based on Ahyong et al. (2019), because ini-
tial analyses found they significantly confused bio-
geographic analyses.

We uploaded the data set to Infomap Bioregions
(Edler et al. 2017) and used a minimum latitude-
longitude cell size of 4° to get a reasonable balance
between sample coverage and spatial resolution. Fol-
lowing initial analyses, we set 100 records for the
minimum cell capacity to avoid distortions in the
analyses due to small sample sizes. The analysis first
mapped geographic areas according to the similarity
of their species composition. It also identified which
species were common and characteristic of each
group of geographic cells (Edler et al. 2017), which
we termed biogeographic regions. We termed spe-
cies with more than one occurrence record but pres-
ent sequentially in less than five 5° longitude—
latitude cells and less than five 5° latitudinal bands as
endemic; this classified 1920 species as endemic
(Table S3). The proportion of endemicity was the
proportion of total species listed in Table S3 of
gamma richness in each 5° latitudinal band.

2.4. Beta diversity

Beta diversity was studied using 3 components:
Sorensen (the overall beta diversity), Simpson
(species turnover independent of species richness),
and nestedness (Baselga et al. 2007, 2012). Each
was calculated in 100 random samples of eleven
5 x 5° cells within 5° latitudinal bands consecutive
across longitude to determine a value for each
band. Eleven was the minimum number of 5 x 5°
cells with occurrence data. Any 5° latitudinal bands
with less than 50 species were excluded from the
analysis. The turnover and nestedness components
were separated to reveal the contribution of each
component to overall beta diversity (Baselga et al.
2007, Castro-Insua et al. 2016). All calculations
were performed using the 'betapart’ package in R
(Baselga et al. 2018).

We used the 'strucchange’ package in R to com-
pute the number and position of breaks for the opti-
mal partition of latitudinal gradients (Zeileis et al.
2015). The breakpoints of ES50, Sorensen dissimilar-
ity, Simpson dissimilarity, and nestedness were mod-
eled by performing piecewise regressions using the
‘segmented’ package in R (Muggeo 2008).

3. RESULTS

The global map of 4876 marine amphipod species
shows that these organisms are distributed worldwide
in coastal areas (Fig. 1). The 5 species with most
occurrence records were Monoporeia affinis, Coro-
phium volutator, Ampelisca brevicornis, Bathyporeia
elegans, and A. tenuicornis, with 18 217-7400 occur-
rences, respectively (Table 1). The most widespread
species globally were Themisto gaudichaudii, Phro-
nima sedentaria, Primno macropa, T. abyssorum, and
T. Iibellula from the suborder Hyperiidea, all of
which are pelagic species (Table S2). They were
found in at least 10 of the 5° latitudinal bands and
more than 50 of the 5° cells (Table S2). Many species
were rare, with 41 % of benthic and 20 % of pelagic
species occurring in only one 5° cell (Fig. 2).

3.1. Species richness patterns with latitude

The number of sample records peaked at 50°N,
with 139812 occurrence records (Fig. 3a). Alpha and
gamma richness were at least bimodal, with a dip
around the equator. Peaks for alpha richness were
found at 70°N and 30°S, with 37 and 34 species, re-
spectively. For gamma richness, peaks were evident
at 45°N and 30° S, with 671 and 859 species, respec-
tively (Fig. 3b,c). The observed alpha richness and the
number of sample records per 5 x 5° longitude-
latitude cell were highly correlated (Spearman rho =
0.89, p < 0.05; Fig. S1). A high correlation was also
found between gamma richness and the number of
sample records per 5° latitudinal band (Spearman
rho = 0.85, p < 0.05; Fig. S1). These correlations indi-
cated that alpha and gamma richness were signifi-
cantly influenced by sampling effort. In contrast, ES50
and the number of sample records were not correlated
(Spearman rho = -0.03, p > 0.05; Fig. S1). Piecewise
regressions of ES50 showed 3 latitudinal breakpoints:
a sharp dip at 55° S, and peaks at 35°S and 70° N. This
increased model fit (r? = 0.49) compared to a linear re-
gression (r? = 0.003) (Fig. S2). A high value of ES50
was still found around 30° S, as with alpha and gamma
richness. A distinct dip was apparent at 55°S, and a
small dip near the equator at 5°-10° N (Fig. 3d).

3.2. Beta diversity
The low latitudes around the equator had higher

beta diversity, with a peak at 10°N (Fig. 4). Latitudes
around Antarctica, 70°-75°S, also showed high beta



86 Mar Ecol Prog Ser 638: 83-94, 2020

a
....... R [ _lo-25
s %
INNEREI kY
7 e\ ~ B 26 - 50
3 EEEL =aay 51-200
T ugehmy AT —
s Bt l“% \“b FHHHR & i H I 201 - 500
X : 5 \ A HH Il 501 - 4000
ey T Rl T 7 /
T : Il 4001 - 80463
T :
b ; e,
oy .. % A
N i e S W TR
I = l
f T ) AT Jnasas [ 16 -50
HTHT T P v & SR B Ig I 51 - 100
‘Y 1 ;*’1{‘ Mllén‘ % 1; f\_ 7 H #H'}' g
; ; _ ! 5. : 7 : I 101 - 200
M S 2 7]
LLEVN T IRENNNNENNNESBRNNNN, lfﬁ' V.
ol -
il INBNERRENSSS
LT
= . }J”‘
c . 3

1111 po
T eng ¥
T \\’;W'x\ PR [ Jo-1
r‘-{zr'-“ 1&..{”\_ SRR L0 R e
1 BN (4] ! ! [ERRN p—
g ns it muguny Pt T -5
HH = y : N 4
l 1 4 -
R AnRER T = 1\1 i Blc-12
A% X 3 § RESE nat N
1 }\1%{ 1111 1§31 -13-28
Ruuaus A I”_l,{ﬁ';'rrrrmﬁﬂfi
T T 117 y 2
Ll LU,
1 I8 ]
1t 1131
iRy J
e VA

Fig. 1. Global map of marine amphipod crustacean (a) occurrences, (b) species richness (gamma), and (c) expected number of
species among 50 random samples (ES50) in 5° cells. White areas: land

diversity. The lowest beta diversity was found at pattern was mostly driven by species replacement
55°S and 75° N. The partition of this total beta diver- rather than nestedness (Fig. 4).

sity into turnover and nestedness components Piecewise regressions of the Sorensen index re-
showed that spatial turnover (Simpson index) con- vealed 3 latitudinal breakpoints: a dip at 55°S, and

tributed most to beta diversity (Simpson = 0.84, nest- peaks at 35°S and 35°N (Figs. 4 & S3). This piece-
edness component = 0.13). Thus, the beta diversity wise regression (r? = 0.87) increased model fit com-
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Table 1. The top 20 marine amphipod species with the most
occurrence records

Species No. of records
Monoporeia affinis 18217
Corophium volutator 14817
Ampelisca brevicornis 10440
Bathyporeia elegans 9789
Ampelisca tenuicornis 7400
Ampelisca spinipes 6776
Perioculodes longimanus 6353
Harpinia antennaria 6344
Bathyporeia guilliamsoniana 6272
Urothoe elegans 6140
Urothoe poseidonis 6019
Themisto gaudichaudii 5673
Microdeutopus gryllotalpa 5338
Pontoporeia femorata 4906
Pariambus typicus 4716
Phtisica marina 4210
Themisto abyssorum 4140
Nototropis vedlomensis 3919
Unciola irrorata 3787
Othomaera othonis 3777
100
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Fig. 2. Occurrence of pelagic (red circles) and benthic (black

squares) species in 5° cells. Species are ranked from most to

least number of cells present, indicating the far greater

number of benthic than pelagic species, and that pelagic
species generally occur in more cells

pared to the linear regression (r? = 0.06). One break-
point in the Simpson index was found at 10° S, which
increased the model fit from r? = 0.001 to r* = 0.83.
Piecewise regressions of the nestedness component
(r? = 0.71) increased model fit compared to the linear
regression (r? = 0.06), with 2 latitudinal breakpoints
at 2°S and 20° N (Fig. S3). Thus, species turnover was
highest in the tropics from 35°S to 35°N, and on the
Antarctic continental shelf around 70-75°S.

3.3. Regions of endemicity

We found 12 biogeographic regions for marine
benthic amphipod crustaceans (Figs. 5 & S4). All
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Fig. 3. Latitudinal species richness of marine amphipod crus-

taceans for (a) total number of records in 5° latitudinal bands,

(b) alpha richness + SE, (c) gamma richness, and (d) the ex-

pected number of species among 50 individuals (ES50 + SE).
Lines: piecewise regressions

regions aligned with realms defined in Costello et
al. (2017), although there was insufficient data of
amphipod occurences, and thus 9 realms (South-
east Pacific; Gulf of California; Gulfs of Aqgaba,
Aden, Suez, Red Sea; Mid-South Tropical Pacific;
Offshore Indian Ocean; Offshore West Pacific; Off-
shore mid-East Pacific; Gulf of Guinea; and Chile)
were not detected in the present study. The highest
number of records was in Europe while the 'Lac-
cadive Sea and Bay of Bengal' had the fewest
records at 255 (Table 2). The highest number of spe-
cies was in Australia (region 4) with 1016 species,
and the lowest number was in the ‘South and East
China Sea' with 71 species. The common, character-
izing, and endemic species for each region are listed
in Tables 2 & S4.

Almost half of the amphipod species were
endemic (Table S3). The latitudinal pattern for the
number of endemic species and the proportion of
all species that were endemic in 5° latitudinal
bands showed that latitudes between 30° and 40°S
had a high number and proportion of endemic
species. Both patterns had a concordant peak at
35°S. In the Northern Hemisphere, latitudes
30°-40° N showed a high proportion and number of
endemic species (Fig. 6). The number of endemic
species, and the proportion of species that were
endemic, were highly correlated (Spearman rho
0.87, p < 0.05; Fig. S6).



88 Mar Ecol Prog Ser 638: 83-94, 2020

1.00 1.0
| g ||
* | ik H
IS
< 0.95 = JH
3 ]
(o]
& 0.90 3
7))
[0
3 My
0.85 0 Sl
60 -30 0 30 60 60 -30 0 30 60
Latitude Latitude

Fig. 4. Latitudinal patterns of beta diversity (+ SE) for (a) Sorensen total dissim-
ilarity, (b) Simpson dissimilarity (above) and nestedness component (below) in
5° latitudinal bands. Lines: piecewise regressions

(Costello et al. 2017). In contrast to
these groups, macrobenthos is far
richer in species, reflecting the
heterogeneity of seabed habitats
and risk of predation when dispers-
ing. However, pelagic amphipods
are of similar size to their benthic
relatives. They may avoid preda-
tion in the open pelagic waters by
being relatively transparent, living
within gelatinous zooplankton, hav-
ing good eyesight, and being agile
swimmers. Only 3% of amphipod
species are pelagic (Arfianti et al.

2018). As predicted, we found that
benthic species were less wide-

spread than pelagic species (Fig. 2).
While 20% of pelagic species only
occurred in one 5° cell, 41 % of ben-
thic species did. The top 5 most
widespread species are all pelagic
(Table S2) and are sampled regu-
larly in net-based oceanographic
sampling programs (e.g. Vinogradov
et al. 1996, Zeidler & De Broyer
2009). That there are far fewer
pelagic than benthic amphipod spe-
cies thus supports the hypothesis

N\
1
Sy

Fig. 5. Biogeographic regions based on benthic marine amphipod crustaceans,
showing regions overlaid on the original map (see Fig. S4). For details of
characterizing and common species of each region, see Tables 2 & S4

4. DISCUSSION

The 5 species of marine amphipods that we found
with the most occurrence records are typically com-
mon and abundant in seabed sediments (e.g. Mead-
ows & Reid 1966, Bonsdorff 1992, d'Udekem d'Acoz
2004, Sundelin et al. 2008). Most samples of amphi-
pods were from the continental shelves (Fig. la),
reflecting the ease of sampling shallow depths near
the coast. To account for sampling bias, we calcu-
lated ES50 and found that richness was still highest
in the shallow waters near the continents (Fig. 1c).

4.1. Benthic and pelagic amphipod richness

It has been proposed that pelagic species, both
microscopic plankton and larger nekton, are more
widespread than benthic species because of the
mobility and relative homogeneity of their habitat

that higher gene flow in more wide-
spread pelagic species limits specia-
tion (Costello & Chaudhary 2017).

4.2. Biogeographic regions and endemicity

A total of 12 biogeographic regions were found for
marine benthic amphipod crustaceans, and they
matched realms defined by Costello et al. (2017). The
fact that this study only employed benthic amphipod
crustaceans but revealed the same realms as in
Costello et al. (2017) indicates that benthic amphi-
pods are representative species to map marine bio-
geography based on endemicity (i.e. realms). How-
ever, 9 other realms were not observed due to gaps in
amphipod distribution records. More data may
reveal additional biogeographic regions in South
America, central East Pacific, Africa, the Red Sea, and
the Mediterranean.

The latitudes between 30°S and 40°S had the
highest number and proportion of endemic species,
peaking at 30°S (Fig. 6). These latitudes are con-
cordant with 3 biogeographic regions, i.e. southern
Africa, Australia, and New Zealand. In total, 80 %
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1998, 2010, Dauvin et al. 2013). Over
one-quarter of the Mediterranean
marine biota are endemic (Fredj et al.
1992, Coll et al. 2010) and 46% of
Mediterranean amphipod species are
considered endemic (Bellan-Santini
1990). This high endemicity may be
due to the Messinian Crisis, a geologi-
cal event during which the sea largely,
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Fig. 6. Latitudinal patterns of (a) number of endemic species and (b) propor-
tion of species (gamma richness) that were endemic, in 5° latitudinal bands.

Lines: piecewise regressions

of the southern temperate region species in Aus-
tralia are believed to be endemic (Condie & Harris
2006). The processes which have generated the
high numbers of endemic species in Australia,
including 7 endemic genera of amphipods (Myers
& Lowry 2009), can be attributed to the continent's
long isolation, i.e. its separation from Gondwana-
land at least 150 Ma and then from Antarctica
about 53 Ma (Veevers & McElhinny 1976, Poore
2001).

New Zealand is a highly isolated continental
landmass in the south-western Pacific Ocean. It
was part of Gondwana (Cowie & Holland 2006)
but separated about 80 Ma and reached its present
distance from Australia around 50-60 Ma (Cooper
& Millener 1993, McLoughlin 2001). Thus, only a
few species can have arrived in New Zealand in
recent times, apart from human introductions.
Amongst its amphipod fauna, New Zealand's isola-
tion is reflected in the endemic genera Neo-
cyproidea and Paraleptamphopus and endemic
family Rakiroidae. In addition, 15 of 17 species of
Phoxocephalidae described from New Zealand are
endemic (Myers & Lowry 2009, Webber et al.
2010). Of the 365 New Zealand marine and estuar-
ine amphipods, 55% (194 species and 35 genera)
are endemic (Webber et al. 2010). Similarly, 51 %
of marine species are endemic to New Zealand,
which is the highest percent marine endemicity of
any country (Costello et al. 2010). South Africa
also has a high number of endemic marine species:
28-30% of all 12000 marine species, including
33 % of 454 amphipod species (Costello et al. 2010,
Griffiths et al. 2010).

The smaller peak of endemicity evident at 40°N
overlapped with the Mediterranean Sea, an area
known to have high amphipod diversity (e.g. Ruffo

Latitude

but not entirely, dried out following
the closure of the Strait of Gibraltar.
Thus, a relict but isolated Tethyan
amphipod fauna survived (Bellan-
Santini 1990).

4.3. Latitudinal patterns of species richness and
beta diversity

The latitudinal pattern of beta diversity (Sorensen
index) was like that of ES50 and was mostly driven
by turnover in species composition (Simpson dissimi-
larity index) (Figs. 3d & 4b). High turnover in the
equatorial regions could be explained by the high
variability of habitats there, such as coral reef and
seagrass ecosystems and a range of other habitats
(Shurin 2007, Costello et al. 2017, Asaad et al. 2018,
Chaudhary 2019). In addition, land masses in this
region are a barrier for marine species’ dispersal
(Chaudhary 2019). In contrast, the smaller area and
lack of such barriers in the Arctic and Southern
oceans result in higher connectivity and less ende-
micity within their latitudes. Hence, there was only
one biogeographic region in each of the Arctic-
Boreal and Southern Ocean (Fig. 5), but 10 regions in
the tropics to temperate latitudes.

That the peak of species richness, as alpha and
gamma diversity, number and percent of endemic
species, and ES50, in the southern hemisphere
was around 30°-35°S (Fig. 3) contrasts with find-
ings for razor clams (Saeedi et al. 2017) and
fossil and marine species (Chaudhary et al. 2016,
2017). These studies found the peak in diversity
was in the Northern Hemisphere with respect to
gamma diversity for razor clams, and alpha diver-
sity for fossil and marine species. However,
Chaudhary et al. (2017) found gamma diversity
and ES50 to have equal peaks in the Northern and
Southern Hemispheres. That the number of sample
records in the Southern Hemisphere was only
one-tenth of the number in the Northern Hemi-
sphere confirms that the peak in richness around
30°-35°S was not due to high sampling effort, but
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rather due to the patterns of endemicity discussed
previously.

The dip near the equator at 5°-~10° N was observed
in alpha, gamma, and ES50, as found in the recent
syntheses of 65000 species and 50 000 fossil marine
species by Chaudhary et al. (2016, 2017), although
our dip is much smaller and not as obvious. This find-
ing supports the non-unimodality hypothesis in the
richness patterns of marine species (Chaudhary et al.
2016, 2017), which is highly correlated with sea sur-
face temperature (Chaudhary 2019). This dip at the
equator appears to be due to high temperatures
because it has become more prominent in recent
decades (Chaudhary 2019), as predicted by climate
warming models (Poloczanska et al. 2013).

A sharp dip of species richness in ES50 was appar-
ent at 55°S in the Southern Ocean. Antarctica is sur-
rounded by 4000-6000 m depths, and the depth of
the break between the shelf and the slope in the
Southern Ocean is at least double the depth of the
shelf break on other continents (Knox 2006, Harris et
al. 2014). This may form a biogeographic barrier for
benthic species. There were sample records for ben-
thic and pelagic amphipod species from 45°-75°S
(Fig. S5), and ES50 was low from 45°-70° S, with low-
est species richness at 55°S. Another study on the
Southern Ocean deep-sea biodiversity reported sim-
ilar findings; i.e. the Southern Polar Front around
52°S had a low diversity and abundance of many
macrofauna taxa including Amphipoda (Brandt &
Ebbe 2009). Although an expedition at 748-6348 m
depth in the Weddell Sea (70°S) and adjacent areas
did not report any amphipod species despite the dis-
covery of 674 isopod species (of which 585 were new
to science; Brandt et al. 2007a), this was because the
amphipod samples (except for the scavengers caught
by baited traps) had not been identified (A. Brandt
pers. comm). Thus, whether the number of amphipod
species at 55°S is as exceptionally low as our results
suggest merits confirmation. Nevertheless, the deep-
sea amphipod assemblage at 55°S is distinct from
that on the Antarctic shelf as shown by the indices of
species turnover (beta diversity) (Fig. 5).

Species richness on the Antarctic continental shelf
between 70 and 80° S was similar to latitudes north of
45°S. Clarke (2008) also found that the Antarctic
shelf has comparable benthic (including Amphipoda)
diversity to some tropical and temperate shelves.
This similar richness contrasts with the hypothesis
that polar regions have low diversity due to the
harshness of the environment (Willig et al. 2003,
Payer et al. 2013). That the Arctic is species-poor
compared to Antarctica seems to be due to the long

isolation and high endemicity of Antarctica since the
breakup of Gondwana (Brandt et al. 2007b, Saucede
et al. 2014).

Other studies on amphipods in the Southern Ocean
have reported the same pattern as we found, i.e. that
the shelf area between 0-1000 m had more species
than the area deeper than 1000 m (De Broyer et al.
2007, De Broyer & Jazdzewska 2014). These findings
contradict the hypothesis that the deep sea has a high
richness (Grassle 1989, Snelgrove 1999, Rex & Etter
2010). Even though the deep sea comprises more
area, it is cold (<4°C) with low productivity, and con-
tains a more limited number of habitats compared to
shallow waters with high primary productivity and
complex biogenic habitats like coral reefs, kelp
forests, seagrass meadows, shell beds, and other epi-
faunal assemblages that provide 3-dimensional habi-
tat for many species (Costello & Breyer 2017, Costello
& Chaudhary 2017, Havermans & Smetacek 2018).
The relative homogeneity of deep-sea environments,
varying little in temperate, salinity, and habitat,
means that the same deep-sea species may inhabit
large geographic areas and depth ranges (Costello
et al. 2018).

5. CONCLUSIONS

We found that pelagic amphipod species were
more widespread and far less species-rich than ben-
thic species. This reflects the greater homogeneity of
pelagic than benthic habitats, and thus likely higher
gene flow. Similarly, greater homogeneity in deep-
sea than shelf depth zones may partly explain the
greater number of species on the Antarctic continen-
tal shelf compared to the deep-sea Southern Ocean,
in addition to the high Antarctic endemicity.

Although there were 10 times more sample records
from the Northern Hemisphere, species richness
peaked in the Southern Hemisphere and thus was
not due to sampling effort. These peaks were concor-
dant with the high number and proportion of
endemic species, and aligned with 3 regions of high
endemicity: Australia, southern Africa, and New
Zealand. Beta diversity was lower in higher latitudes,
probably due to greater connectivity and gene flow
of species across a smaller total area of longitudes
than in the low latitudes, and fewer land barriers.
The 12 regions of endemicity found for amphipods
matched well with previously proposed marine bio-
geographic realms. Thus, amphipods do not appear
to have a more complex global biogeography than
other marine taxa due to their lack of planktonic life
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stage. Their latitudinal gradients are broadly similar
to other marine taxa but have higher richness in tem-
perature Southern Hemisphere latitudes and Antarc-
tica, reflecting regional endemicities. Conservation
planning should note the importance of these regions
(realms) of endemicity when designing global net-
works of marine reserves.
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under the Creative Commons Attribution licence (CC BY 1.0).
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