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1.  INTRODUCTION

Sandeels (or sand lance) of the family Ammodytidae
are small, slender fish that are an important component
of food webs in the North Atlantic (Sherman et al.
1981, Harwood & Croxall 1988, Sparholt 1990,
Wanless et al. 1998). In the North East Atlantic, the
lesser sandeel Ammodytes marinus is the most abun-
dant species, supporting the largest fishery in the
North Sea and, previously, an inshore fishery off the
Scottish west coast. In both regions they are a common
prey of seabirds, seals and cetaceans (Halley et al.
1995, Santos et al. 2004, Wanless et al. 2018, Wilson &
Hammond 2019) and are regarded as a species of con-
servation importance. Due to the magnitude of the
fishery and the importance of sandeels to marine pred-
ators, there is considerable interest in their distribution

and population dynamics (Monaghan 1992, Carroll et
al. 2017, Wilson & Hammond 2019, Hill et al. 2020).
Studies of sandeel distribution have been useful in ex-
plaining the foraging locations of sandeel predators,
such as piscivorous seabirds and ceta ceans (Monaghan
et al. 1996, Wright & Begg 1997, Wanless et al. 1998,
Herr et al. 2009). However, information on sandeel dis-
tribution at a much larger scale is required in order to
identify possible areas where foraging marine preda-
tors and human activity may be in conflict.

In common with other Ammodytes species, A. mar-
inus has a close association with sandy substrates
into which they burrow, following a planktonic larval
phase (Reay 1970, Wright et al. 2000, Tien et al. 2017,
Greene et al. 2020). Sediment preference of A. mari-
nus is well established from both field-based and
experimental studies, with low silt and high sand
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fractions affecting presence and density (Wright et
al. 2000, Holland et al. 2005, Tien et al. 2017). Buried
sandeels are capable of sustaining their oxygen
requirements by the advection of oxygen-rich water
towards their mouth by gill ventilation (Behrens et al.
2007), which may be enhanced by hydrodynamic
forcing related to the topographic relief of the sedi-
ment surface, where high densities often occur
(Wright et al. 2000, Freeman et al. 2004). Despite the
considerable evidence base on habitat preference in
A. marinus, knowledge of their distribution outside
fished areas is very limited and there is currently no
distribution model for this species.

There are many sources of local information on the
benthic distribution of A. marinus from grab and
dredge samples, some of which have been used to
support fishery assessments (Wright et al. 2000,
Greenstreet et al. 2006, Engelhard et al. 2008, ICES
2010). Information on the distribution of fishing activ-
ity in the North Sea compiled from fishing fleets
(Jensen et al. 2011) and vessel monitoring system
activity (Engelhard et al. 2008, ICES 2010) also pro-
vides an indication of where large sandeel aggrega-
tions occur. However, fisheries targeting A. marinus
operate where this species aggregates to feed, which
is usually at the edge of the banks (Jensen 2001,
Mackinson & van der Kooij 2006), and foraging
schools may migrate several km from the areas
where they bury each day (Engelhard et al. 2008, van
der Kooij et al. 2008, Wright et al. 2019). Conse-
quently, fishing distribution is only related to benthic
distribution at a coarse scale and is also not relevant
to areas where fishing is either not permitted or con-
strained by varying ground suitability. Many of the
areas where seabirds, mammals and fish congregate
to feed on sandeels have been found in regions
where there is little or no data on sandeel presence or
density (Monaghan et al. 1996, Temming et al. 2004).
This has led several researchers to infer sandeel
distribution from sediment characteristics alone
(Mac leod et al. 2004, Anderwald et al. 2012), which
may fail to reflect important environmental charac-
teristics of sandeel habitat.

Correlative species’ distribution models (SDMs), in
which field observations are coupled with correspon-
ding environmental variables within a statistical
modelling framework, are now being used increas-
ingly for marine species (Melo-Merino et al. 2020).
There are a wide variety of modelling algorithms that
can be used for SDMs with varying degrees of com-
plexity, ranging from ‘simple’ regression models to
more complex machine learning techniques. One
key application of SDMs is to make predictions be-

yond the geographic area originally sampled. How-
ever, model algorithms which fit complex, non-linear
relationships, such as machine learning techniques
or generalised additive models, can overfit the train-
ing data and therefore perform poorly when applied
to new areas (Merow et al. 2014, Bell & Schlaepfer
2016, Gregr et al. 2019). This issue can be alleviated
by methods that give the user more control over the
form of response curves, leading to better predictions
(Merow et al. 2014, Gregr et al. 2019). In addition to
model complexity, predictive performance is also im-
proved when transferring to areas with similar envi-
ronmental conditions and for species with more spe-
cialised niches (Jarnevich et al. 2015, Yates et al.
2018, Qiao et al. 2019). Given the availability of ap-
propriate environmental variables, SDMs can inform
broader scale spatial management in species that are
difficult and costly to sample, which is the case for
many marine species (Reiss et al. 2015).

This study predicts the potential distribution of A.
marinus in parts of the Greater North Sea and Celtic
Seas OSPAR regions. SDMs were developed using
data on lesser sandeel abundance and sediment from
grab surveys in the east of Scotland, together with
lower resolution environmental data. Grab sampling
has been widely used to investigate sandeel distribu-
tion in several studies (Wright et al. 2000, Høines &
Bergstad 2001, Holland et al. 2005, Baker et al. 2019).
Zero counts in grab surveys may reflect unsuitable
habitat or low densities of sandeel in suitable habitat
due to the small area sampled by this gear (Holland
et al. 2005). However, the sampling approach does
allow the environmental relationships to be parame-
terised using data on sandeel abundance and associ-
ated sediment collected at a high spatial resolution.
Model validation is important when extrapolating
model outputs to non-sampled areas (Elith & Leath-
wick 2009), which could be a constraint in this study,
so independent data from other benthic sampling in
both the North Sea and Celtic Seas regions were
used to validate model predictions.

2.  MATERIALS AND METHODS

2.1.  Determining the relationship between
sandeels and environmental variables

2.1.1.  Data

Lesser sandeel Ammodytes marinus abundance data
based on Day grab samples (sample area 0.096 m2)
from Holland et al. (2005, see their Table 1) were used



Langton et al.: Distribution model for sandeel 147

to parameterise the model as they provide point esti-
mates of both sandeels and corresponding sediment
composition. The surveys took place off the Firth of
Forth, Scotland, between 1998 and 2003, inclusive.
Samples were predominantly collected at times
when sandeels were buried all day and during a
period of low to average stock size (ICES 2020a) so
that all but the most marginally suitable habitat may
be expected to be colonised. Two core samples of
sediment were taken for particle size analysis (PSA)
from the Day grab before sorting for sandeels. The
PSA of the sediment core samples were used to esti-
mate percentage of silt (<63 μm), sand (63 μm to
2 mm) and gravel (>2 mm) (Holland et al. 2005). In
total, there were 2885 data points. If pebbles prevent
the grab closing, it is possible that using data from a
grab survey may result in a bias towards softer sedi-
ments. However, generally the Day grab collected an
adequate sample on the first deployment (Holland et
al. 2005), and extensive RoxAnn surveys have shown
that the study area has low roughness and hardness,
indicating a predominance of softer sediments that
are suited to the Day grab (Greenstreet et al. 2010).

Along with sediment characteristics, the model
also included variables that were derived from
bathymetry, as these have been found to be relevant
for other benthic species and were available at an
appropriate resolution for the extent of the study
area. Bathymetry data were downloaded from the
EMODnet Bathymetry Portal (https://portal.emod-
net-bathymetry.eu/#) on 10 Jan 2019 at a resolution
of 1/16 arc minutes (which is approximately 65 ×
115 m in the Firth of Forth). A slope layer was gener-
ated with the ‘terrain’ function in the ‘raster’ (Hij-
mans 2019) package in R v.3.6.2 (R Core Team 2019).
The depth and slope values for the grab locations
were extracted from these original layers using the
‘extract’ function, also from the ‘raster’ package.

2.1.2.  Model selection

Seventy percent of the grabs did not contain any
sandeels. Zero-inflation, having more zeros than
would be expected based on count distributions such
as the Poisson or negative binomial, is common in fish
abundance data. To address zero-inflation, absences
can be separated into 2 broad categories. Firstly, there
are the absences, where the species is not observed in
a certain location because the habitat is unsuitable
(true zeros or structural zeros). Then there are the ab-
sences when the habitat is suitable but the species is
not recorded, possibly linked to low local abundance

or stochasiticity in the observation process resulting in
an absence record, even when present in the area
(false zeros or sampling zeros; Zuur et al. 2009).

Two groups of statistical models are available to
ana lyse zero-inflated data: hurdle models and zero-
inflated models. Hurdle models (a.k.a delta models)
are a 2 step approach. During the first step, the data
are modelled as presence/absence data. In the second
step, the abundances observed in the presence-only
data are modelled using an appropriate distribution
that cannot produce zeros, such as a truncated Poisson
(Zeileis et al. 2008). Zero-inflated models are a type of
mixture model and also have 2 components. Again, the
first component involves modelling the presence/
absence data; however, in contrast to the hurdle
model, the second component models the count data
using a distribution that can produce zeros (which
would represent true zeros) (Zeileis et al. 2008, Zuur
et al. 2009). The difference between the 2 models is
that the hurdle model does not distinguish between
the different types of zero during model fitting, while
the zero-inflated model separates the true and false
zeros into the 2 components (Zuur et al. 2009).

Four regression models capable of dealing with
zero-inflated count data were initially developed for
the Firth of Forth grab data: hurdle models with a left-
truncated Poisson or negative binomial distribution
with a log link for the count component, and zero-in-
flated models assuming a Poisson or a negative bino-
mial distribution with a log link. For all models, a bi-
nomial distribution with a logit link function was
assumed for the zero component. A left-truncated dis-
crete distribution was used for the hurdle model as
this is more suited to count data than the lognormal
distribution often used for fish abundance data (Lau-
retta et al. 2016). Using this regression framework
gives a high level of control over the nature of the re-
lationships that are fitted by the model, reducing the
chance of overfitting to the survey data.

Collinearity between the candidate explanatory
variables was assessed using scatterplots and Pear-
son correlation coefficients. Percentage of gravel and
sand were highly correlated, therefore gravel was
not included (see Fig. S1a in the Supplement at
www. int-res. com/ articles/ suppl/ 667 p145 _ supp. pdf).
Variable inflation factors were calculated for the re -
maining variables and these were all under 2, so no
further variables were removed. Data exploration
also suggested that percentage silt and slope were
right-skewed, and so these were square root trans-
formed. The starting point for fitting the models was
a linear additive relationship for √percentage silt,
percentage sand, depth and √slope in both compo-

http://www.int-res.com/articles/suppl/m667p145_supp.pdf
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nents of the model. To determine if any of these vari-
ables could be dropped from the model without
reducing the fit, a backwards stepwise selection pro-
cess was applied by removing each term in turn to
see if this resulted in a decrease in the Akaike infor-
mation criterion (AIC). Once the AIC was at its mini-
mum from backwards selection, a forwards selection
process was undertaken for all dropped linear terms,
second degree polynomials and 2 way interactions to
allow non-linearity to be included. Forwards selec-
tion continued until adding another term either
increased the AIC or decreased it by less than 2.
Models were fitted with the ‘countreg’ package in R
(Zeileis et al. 2008, Zeileis & Kleiber 2018).

Hanging rootograms indicated that the 2 models fit-
ted using a Poisson distribution for the count compo-
nent had a poorer fit compared to the ones fitted with
a negative binomial distribution (Fig. S2) (Kleiber &
Zeileis 2016). Further diagnostic plots for the hurdle
and zero-inflated negative binomial models were
similar, indicating no unexplained spatial or temporal
patterns in sandeel abundance (Figs. S3−S6), and
therefore model evaluation metrics were obtained for
the 2 models using k-fold cross validation to determine
which had the greatest predictive performance.

The Firth of Forth grab records were divided into
16 blocks of varying areas, which contained approxi-
mately the same number of data points. Each cross-
validation fold included 4 random blocks. A block
design was used to increase the independence
between the training and test data compared to sim-
ple random partitioning of all data points. The 4-fold
cross validation was repeated 125 times, each with
different random groups of blocks, giving 500 evalu-
ations. Each of the 500 random partitions were iden-
tical for the hurdle and zero-inflated model. Negative
log likelihood, AIC and Bayesian information crite-
rion (BIC) for the fitted model were recorded. The
predictive performance of the model was assessed
based on measures of discrimination, accuracy and
calibration for the test data (Norberg et al. 2019). The
ability of the model to discriminate between pres-
ence and absence was evaluated using the area
under the receiver operating curve (AUC), and with
the Spearman rank (ρ) and Pearson (r) correlation
coefficients for abundance. Root mean squared error
(RMSE) and average absolute error (AVEerror) were
used as measures of accuracy (Norberg et al. 2019). A
simple linear model was fitted between the observed
and predicted abundances for the withheld data to
evaluate model calibration. A perfectly calibrated
model would have an intercept of 0 and a gradient of
1 (Potts & Elith 2006).

2.1.3.  Deviance explained, variable importance and
response curves

As deviances are not easily defined for hurdle
or zero-inflated models, the McFadden pseudo-R2

was calculated for the selected model. The McFad-
den pseudo-R2 is calculated as 1 minus the ratio
of log likelihood of the fitted model to the null model
(McFadden 1977).

The importance of each variable on the predicted
occurrence and count component was estimated
using the same protocol implemented by Thuiller et
al. (2009), where each variable is permuted randomly
and the model fitted to the new data set. If a variable
is important to the model prediction, there will be
little correlation between the prediction from the
original data set and the prediction when that vari-
able has been permuted. The importance is therefore
estimated as 1 − r. As this method involves random
permutation of the data, there is stochasticity in the
re sult, therefore the procedure was repeated 500 times
for each variable.

Response plots for occurrence probability for each
variable were created by changing the variable of in-
terest across the range in the Firth of Forth data, and
holding the remaining variables at the mean. The oc-
currence probabilities were calculated using the
logistic model fitted with the ‘glm’ function (R Core
Team 2019), to allow standard errors to be plotted. Par-
tial responses were generated for each 2 way variable
combination. Partial responses were calculated by pre-
dicting the density for all the data points used to fit the
model, for each combination of the 2 variables of inter-
est. The density of sandeels was predicted using the
 final fitted model and is, therefore, the product of the
prediction from the 2 components of the model.

2.2.  Geographic predictions of sandeel distribution

2.2.1.  Study regions

The model was used to predict sandeel distribution
across UK areas of the Greater North Sea region from
Shetland to south of the protected sandbanks off
Norfolk, and the shelf sea areas in the north of the
Celtic Seas OSPAR region (https:// www. ospar. org/
convention/ the-north-east-atlantic) around the west
of the Scotland, Northern Ireland and northern parts
of Ireland (Fig. 1). Maps showing the depth, slope
and sediment fractions for both study regions are
provided in Fig. S7. Given the importance of sedi-
ment characteristics to sandeels, the extents of these
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model domains were influenced by the availability of
PSA records. Areas expected to be exposed rock,
based on Downie et al. (2016), Brown et al. (2017)
and Geological Survey of Ireland (2018), were
masked out of the study region.

2.2.2.  Environmental variables

Point records of sediment PSA data for the study
regions were downloaded from the British Geologi-
cal Survey (www.bgs.ac.uk/GeoIndex/offshore.htm
[accessed January 2019]), Marine Recorder (JNCC
2019) and INFOMAR (Geological Survey of Ireland
2018). Layers of percentage silt, sand, and gravel
were interpolated from the point records by inverse
distance weighting using the ‘gstat’ package (Gräler
et al. 2016). The layers were produced at a 200 m
 resolution in Lambert azimuthal equal area projec-
tion for Europe (https:// spatialreference. org/ ref/ epsg/
etrs 89-etrs-laea/). The 3 component sediment layers
were adjusted to ensure each cell summed to 100%.

The EMODnet Bathymetry data was again used for
depth and slope. These were re-projected to match
the resolution and coordinate reference system for
the sediment layers. This was a lower resolution than
the original source.

Extrapolating beyond the environmental condi-
tions used in the initial fitting of the model can
reduce predictive performance. For each of the 4
variables included in the model, the areas of the
study regions that are outside the range used to fit
the model were mapped to assess the spatial extent
where extrapolation may occur. Collinearity shift,
where the degree of correlation between explana-
tory variables in the new location differs from that in
the data used to fit the model, can also reduce the
predictive power of the model (Feng et al. 2019).
Collinearity shift between the grab survey data and
the 2 study regions was assessed visually using scat-
terplot matrices and Pearson correlation coefficients.

2.2.3.  Model validation

The predictive performance of the sandeel distri-
bution model for the 2 study regions was tested with
independent data that were not used in the develop-
ment of the model. For the North Sea region, sandeel
density data were available from sandeel assessment
area 4 (SA4) dredge surveys conducted be tween
2008 and 2019 (Fig. 1a; ICES 2010). These surveys
target sandeels; however, the dredge has both lower

Fig. 1. Study region for parts of the (a) Greater North Sea re-
gion and (b) Celtic Seas region and the locations of data from
benthic fishing surveys that were used to validate the model.
In the North Sea region the Grande Ouverture Verticale
(GOV) trawls are from the North Sea International Bottom
Trawl Survey. The GOV trawls in the Celtic Seas region in-
clude the Scottish West Coast Bottom Trawl survey, the Scot-
tish West Coast Ground-fish survey and the Irish Groundfish
survey. The North Sea region also includes dredge surveys 

for sandeel assessment area 4 (SA4)
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efficiency and higher size selectivity
than grabs (Holland et al. 2005,
Johnsen & Harbitz 2013) and so can
only give an indication of relative
abundance. The same model discrimi-
nation, accuracy and calibration met-
rics used during cross-validation were
calculated for these data. The dredge
data were randomly permuted 999
times to allow the statistical signifi-
cance of AUC, RMSE and model cali-
bration to be determined.

Bottom trawl survey data using
Grande Ouverture Verticale (GOV)
trawls for both regions were down-
loaded from the DATRAS database
(ICES 2020b). The data included 1972−
2020 and 1985−2018, for the North Sea
and Celtic Seas regions, respectively
(Fig. 1). Sandeels are generally too
small to be fully selected in GOV trawl
panels and so this gear cannot be used
to reliably estimate abundance (Wright
et al. 2019); therefore, only model discrimination met-
rics were calculated for these data. In addition, poly-
gons of the locations of sandeel fishing grounds
(Jensen et al. 2011) were mapped onto the predicted
occurrence for the North Sea.

3.  RESULTS

3.1.  Relationship between sandeels and
 environmental variables

While the values of the evaluation metrics were
similar between the 2 models, they were significantly
different (Table 1). Considering negative log likeli-
hood, AIC, RMSE, AUC, r and model calibration, the
hurdle model appears to conform better than the
zero-inflated model; the reverse is true for BIC and
AVEerror. Given that the hurdle model generally had
higher predictive performance, this model was cho-
sen to be used in the subsequent analyses.

The binomial component of the hurdle model
explained 30% of the deviance in lesser sandeel Am -
modytes marinus occurrence. The final hurdle model
had a McFadden pseudo-R2 of 0.15. The McFadden
pseudo-R2 has values lower than R2 derived from
ordinary regression, and a value of 0.15 is estimated
to be approximately equivalent to an R2 of 0.35
(Domencich & McFadden 1974, McFadden 1977). In
the zero component, the model included quadratic

terms for percentage silt, percentage sand, depth
and slope, and the interactions between percentage
sand and percentage silt, percentage sand and depth,
and depth and slope (Table S1). The count compo-
nent included percentage silt, percentage sand and
quadratic terms for depth and slope (Table S1).

Silt content was the most important variable in de-
termining occurrence (Fig. 2), with sandeels being
absent when silt content is >~15% (Figs. 3 & 4). The
interaction plots also highlight the strong influence of
silt content, as density is predicted to be zero after the
15% threshold, regardless of the value of any other
variable (Fig. S8). Sand content and depth had roughly
equal influence on sandeel occurrence and abun-
dance, both contributing around 30% to the count
component (Fig. 2). For depth and sand, the presence
and size of the peak sandeel density varies depending
on the other environmental variables (Fig. S8). The
response curves indicate that, under average condi-
tions, occurrence peaks at a sand content of around
70% (Fig. 3), but that the greatest sandeel density oc-
curs at a higher sand content as the silt content de-
creases (Fig. 4). The model predicts that sandeels are
absent at depths >60 m and <20 m, with occurrence
highest at 40 m (Fig. 3). As the final model includes in-
teraction terms for depth and sand, and depth and
slope, the shape of the depth response changes with
these variables. The depth with the greatest density of
sandeels is positively related to slope, but negatively
related to sand content (Fig. 4). Slope is also important

Hurdle Zero-inflated p

Negative log likelihood 2631.70 ± 227.952 2646.98 ± 227.192 <0.001
AIC 5309.40 ± 455.904 5323.97 ± 454.385 <0.001
BIC 5440.03 ± 455.905 5414.84 ± 454.386 <0.001

Model discrimination
AUC 0.83 ± 0.033 0.83 ± 0.039 0.002
ρ 0.53 ± 0.078 0.53 ± 0.078 0.03
r 0.42 ± 0.071 0.40 ± 0.074 <0.001

Model accuracy
RMSE 4.92 ± 1.466 5.10 ± 1.590 <0.001
AVEerror −0.11 ± 0.578 −0.02 ± 0.597 <0.001

Model calibration
Intercept 0.14 ± 0.344 0.28 ± 0.478 NA
Gradient 0.96 ± 0.376 0.85 ± 0.378 NA

Table 1. Evaluation metrics (mean ± SD) for the hurdle and zero-inflated model
of sandeel abundance based on 125 rounds of 4-fold cross validation and statis-
tical differences based on a paired t-test. The negative log-likelihood, Akaike
information criterion (AIC), Bayesian information criterion (BIC), Spearman
correlation (ρ), Pearson correlation coefficient (r), Area under the receiver oper-
ating curve (AUC), residual mean square error (RMSE), average absolute error
(AVEerror) and the intercept and gradient of linear regression between observed 

and fitted sandeel abundance are shown. NA: not applicable
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in determining sandeel abundance (Fig. 2), with sand -
eels preferring shallower slopes (Figs. 3 & 4).

3.2.  Predicted sandeel distribution and 
model validation

The model predicts that sandeels are absent from
the majority of the area of the study regions. In the
North Sea, the highest predicted sandeel occurrence
and densities are over Dogger Bank and North Nor-
folk sandbanks in the southern North Sea (Fig. 5).
The probability of sandeel presence was significantly
higher within the sandeel grounds than outside
(Mann-Whitney test = 1.5 × 1012, p < 0.001), although
there were fishing grounds in depths ≥60 m where
the model predicts sandeel to be absent. In the Celtic
Seas region, the model predicted high likelihood of
sandeel presence and densities east of Dublin, the
north east coast of Donegal, north and west of Islay
and to the north of Lewis (Fig. 6).

Collinearity shift maybe occurring during the re-
gional predictions, as both study regions have higher

correlation between sand and silt content than ob-
served in the grab data (Fig. S1). There are areas in
both study regions with a higher silt content than was
observed in the Firth of Forth survey data used to fit
the model (Fig. S9). Large parts of the 2 regions are
outside the depth range of the grab survey data, par-
ticularly towards the north of the North Sea region
and the north-west of the Celtic Seas region (Fig. S9).

AUC values ranged between 0 and 1, with values
over 0.7 indicating adequate discrimination ability
(Pearce & Ferrier 2000). The AUC values for occur-
rence predictions were >0.7 for all 3 validation data
sets and close to 0.8 for the GOV trawl data (Table 2).
The ρ and r were all positive and significant except r
for the Celtic Seas GOV data (Table 2). The model is
therefore able to discriminate areas where sandeels
are likely to be present and reflects relative differ-
ences in density. The RMSE for the North Sea SA4
dredge data indicates that the model’s accuracy at
predicting density of sandeels is significantly better
than random; however, the positive AVEerror and
 gradient close to zero for model calibration shows
that the model over-predicts density in the dredge
(Table 2). This is as expected given the relative effi-
ciency of grabs and dredges.

4.  DISCUSSION

The model captured the general pattern and scale
of lesser sandeel Ammodytes marinus distribution
expected from the location of large fishing grounds
reported in the central North Sea (Jensen et al. 2011)
and the small grounds to the north (Wright 1996) and
west of Scotland. Several of the predicted habitat
patches are in areas where seabirds and marine
mammals are thought to congregate to feed on
sandeels (Wright & Begg 1997, Macleod et al. 2004,
Anderwald et al. 2012). These included aggregations
around Jura, Islay and Colonsay that are within the
Inner Hebrides and the Minches Special Area of
Conservation (SAC) and large areas in the Southern
North Sea SAC, both of which are designated for har-
bour porpoise Phocoena phocoena. The model also
predicts an area of high density of sandeels in North-
east Lewis Marine Protected Area, which was desig-
nated for sandeels in 2020 and previously fished.

A hurdle model was generally the best fitting
model and had a higher predictive performance.
Potts & Elith (2006) similarly found that the hurdle
model out-performed alternatives. These predictions
were also consistent with past evidence on the rela-
tionship between presence and percentage silt

Fig. 2. Relative importance (mean ± SD, n = 500) of the ex-
planatory variables for sandeel abundance from the (a) oc-
currence probability and (b) count component of the hurdle 

model
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(Wright et al. 2000, Holland et al. 2005, Tien et al.
2017). The high explained deviance in the occur-
rence model was probably related to differences in
the spatial resolution of sample data corresponding
to fish abundance and sediment particle size, as this
would lead to less spatial error in the training data
compared to most marine SDMs that compare
catches from the mid-points of trawls with interpo-
lated physical data of even coarser resolution
(González-Irusta & Wright 2016). Although using the
localised grab data to parameterise the relationships
between sandeel abundance and environmental
variables possibly led to high explanatory power, it
resulted in extrapolation for silt and depth when
making predictions at the regional scale (Fig. S9).
Given the strength of the evidence that sandeels are
absent when silt is greater than 15%, model predic-
tions in areas with higher silt content should be rea-
sonable. A significant proportion of the 2 regions are
outside the depth range of the Firth of Forth survey
data (Fig. S9), and predictions are less certain for
these areas. Despite the presence of extrapolation
and collinearity shift, both of which have been shown

to reduce the predictive performance of models
(Feng et al. 2019), the evaluation of the model using
independent data demonstrated that it had signifi-
cant discrimination ability in both regions.

Silt fraction was the most important variable in pre-
dicting occurrence, which is consistent with the
avoidance of this sediment type by sandeels in choice
experiments (Pinto et al. 1984, Wright et al. 2000).
The modelled presence response to silt percentage
was similar to past studies where occurrence
declined from 0−10% silt (Wright et al. 2000, Tien et
al. 2017). Permeability and the characteristics of the
boundary layer affect the rate of water percolation
through sediments (Huettel et al. 1996). As perme-
ability of sediments is a function of grain size and
porosity (Chilingar 1964), silt-rich sediments tend to
have small interstitial water volume and low rates of
water exchange. Given that sandeels need to be able
to draw water from the surface through pores in the
sediment (Behrens et al. 2007), which could be
clogged by even small amounts of silt (reducing per-
meability), there is a clear physiological explanation
for the avoidance of silt-rich sediment.

Fig. 3. Response curves for the occurrence probability of sandeel against the 4 explanatory variables (mean ± SE) from the
hurdle model. All other variables were held constant at their mean in the grab data
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Fig. 4. Interaction plots showing the partial response curves for the predicted density of sandeels (no. m−2) for each explana-
tory variable and key interactions included in the final model; (a) the response to sand content at different levels of silt, (b)
the response to silt content for different levels of sand, (c) the response to depth at different levels of sand, (d) the response
to depth at different slopes and (e) the response to slope at different depths. For each combination of variables being tested, 

predictions were made for all Firth of Forth survey records; mean ± SE are displayed
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The positive effect of sand fraction on density is
consistent with early reports that sandeels tend to
inhabit areas of ‘clean sand’ (Macer 1966, Reay 1970,
Meyer et al. 1979) and the seeming importance of
sand to sandeel presence in the Firth of Forth grounds

(Greenstreet et al. 2010). Similarly, Tien et al. (2017)
found a significant positive relationship with medium-
coarse sand and A. marinus density. This might be
related to its suitability for burrowing. In support,
although experiments indicate that sandeels are

Fig. 5. (a) Predicted probability of occurrence of sandeel with known sandeel fishing grounds (Jensen et al. 2011), and (b)
 predicted density of sandeels (no. m−2) for the North Sea region. The upper limit of the density scale is greater than 99.9th

percentile
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capable of penetrating even large gravel ≥16 mm
(Pinto et al. 1984), they prefer sediments of low shear
strength (Endo et al. 2019), and numbers decline
when offered sediments with a high percentage of
gravel (Wright et al. 2000). Estimates of maximum
median grain size occupied by A. japonicus, which is
linked to shear stress (Endo et al. 2019), were also
similar to that re ported for A. marinus (Wright et al.
2000). Observations on the time taken to enter the
gravel-rich sediment suggests that this preference
could also be related to the slow speed of penetration
(J. Verspoor & P. J. Wright unpubl. data). Hence,
while sandeels do occasionally occupy high gravel
content sediment (Holland et al. 2005), the effort and
potential risk from predators during entry may ex -

plain why sand is preferred. Consequently, if coarser
sediment types were under represented in the grab
data, it is unlikely to reduce the reliability of the fit-
ted model.

Within the limitations of preferred sediment, slope
was a significant explanatory variable, especially for
predicting density. The avoidance of strongly sloping
habitat is consistent with reports of buried sandeels
on the tops of sand banks (Jensen 2001, Engelhard et
al. 2008). The model prediction indicates that high
sloping sites are avoided, and this is supported by
acoustic observations that indicate sandeels emerge
and then move off the tops of the banks to the side of
banks to feed on plankton (Jensen 2001, van der Kooij
et al. 2008).

Fig. 6. (a) Predicted probability of occurrence of sandeel and (b) the predicted density of sandeel (no. m−2) for the Celtic Seas 
region. The upper limit of the density scale is greater than 99.9th percentile
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The preferred depth range of 30−50 m for A. mari-
nus is consistent with the recorded depth distribution
of most grounds in the North Sea where sandeel
fisheries operate (Macer 1966, Jensen et al. 2011)
and falls within the range reported for Shetland
(Wright et al. 2000). However, A. marinus can occur
between depths of 12 and 120 m (Wright et al. 1998,
Tien et al. 2017) and some important grounds in the
northern North Sea are at depths of around 70 m,
such as the Turbot Bank off north-east Scotland
(Jensen et al. 2011). That similar areas of depth were
not in the training data set explains why this and
other deep grounds were not predicted by the model
— demonstrating a weakness in parameterising the
model from one area, as the derived depth relation-
ship may simply reflect local conditions that are a
proxy for some other physical influence. For exam-
ple, the general trend towards finer sediments and
declining water velocity with depth may be relevant,
as most aggregations are found in areas of sand
ripples where the net residual flow is likely to be
>0.5 m s−1 (Wright et al. 1998, 2000). Clearly, further
work is needed to consider local variation in sandeel
abundance in relation to residual flow rate, and how
this interacts with depth.

When comparing the distribution of sandeel habi-
tat predicted by the model with current and historic
fishing grounds (Wright 1996, Jensen et al. 2011),
there appears to be few unexploited areas. In gen-

eral, large expanses of suitable sedi-
ment occur in tidally formed sand
banks and ridges, which are largely
accessible to fishing. However, there
are some areas where patches of sand
are mixed in among rocky areas, lead-
ing to some very small sandeel fish-
ing grounds around the Shetland
Isles (Wright 1996), and even smaller
patches only accessible to foraging
predators (Monaghan et al. 1996). As
habitat for burying is likely to be
a physical constraint on carrying
 ca  pacity for sandeels, the extent of
 predicted habitat from this study
might explain regional differences in
maximum fishery landings. For exam-
ple, the Scottish west coast only com-
prised small patches of habitat, with
landings from the fishing grounds in
this region only peaking at 24.4 kt.
Similarly, the peak landings from
grounds around the Shetland Isles
peaked at 52 kt. In contrast, peak

landings in SA4 and SA1 were 147 and 605 kt,
respectively (ICES 2020a). Habitat patchiness in -
ferred from the model, when combined with infor-
mation on larval transport, can also help explain
the high levels of connectivity in A. marinus across
the central North Sea, but not with the Firth of
Forth Banks (Wright et al. 2019) given the low den-
sity of habitat patches between them. The small
aggregations around Shetland and the large inter-
patch distances to grounds further south around
Orkney may also help explain the limited exchange
between these areas (Wright 1996, Gibb et al.
2017). Due to high rates of larval transport, larvae
from the small grounds north of the Outer Hebrides
tend to mix with those from Orkney (Proctor et al.
1998), and occasional transport from Orkney to
Shetland appears important to recruitment in that
area (Wright 1996, Gibb et al. 2017). The relative
hydrographic isolation of banks off the Firth of Forth
and those further south results in differences in
early environmental exposure that are reflected in
different recruitment trends (ICES 2020a) and the
annual breeding success of kittiwakes Rissa tridatyla
at colonies utilising these regions (Olin et al. 2020).

A number of fish and mammalian predators can
catch sandeels in the sediment (Hobson 1986), and
certain diving seabirds have been found to aggre-
gate over such areas of preferred sandeel habitat
(Monaghan et al. 1996). Sandeel distribution can be

North Sea GOV
SA4 dredge North Sea Celtic Seas

Estimate p Estimate p Estimate p

Model discrimination
AUC 0.71 <0.001 0.82 <0.001 0.79 <0.001
ρ 0.41 <0.001 0.38 0 0.32 <0.001
r 0.44 <0.001 0.03 <0.001 0.05 0.056
Model accuracy
RMSE 32.5 <0.001
AVEerror 17.0 NA
Model calibration
Intercept 0.07 <0.001
Gradient 0.003 <0.001

Table 2. Validation of the hurdle model of sandeel distribution and data from
North Sea sandeel assessment area 4 (SA4) dredge surveys and Grande Ou-
verture Verticale (GOV) surveys. Spearman correlation (ρ), Pearson correla-
tion coef ficient (r), Area under the receiver operating curve (AUC), residual
mean square error (RMSE), average absolute error (AVEerror) and the intercept
and gradient of linear regression between observed and fitted sandeel density
are shown. The statistical significance of AUC, RMSE and model calibration
 results were determined using random permutations of the data (n = 999). NA:
not applicable. Model accuracy and model calibration metrics were not calcu-
lated for the GOV surveys as this gear cannot be used to reliably estimate 

sandeel abundance
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an important influence on the distribution of such
predators at sea, as in the case with common guille-
mots Uria aalge during the breeding season (Wright
& Begg 1997), and foraging for sandeels may explain
why some predators aggregate over patches of sand
and avoid mud (Aarts et al. 2008). As a consequence,
studies have used evidence of sand as a predictor of
sandeel availability to predators (Wanless et al. 1998,
Macleod et al. 2004, Anderwald et al. 2012). How-
ever, it is likely that such studies will have over-
 estimated the extent of sandeel habitat. For example,
while the present model did predict habitat to the
west of Mull as suggested by Macleod et al. (2004),
the extent of these patches were smaller. Neverthe-
less, the habitat patches predicted by the present
study were consistent with the June sightings of
Minke whale Balaenoptera acutorostrata in that
study, supporting the view that this species may con-
gregate on sandeel grounds at certain times of year.
Due to technological advances in GPS tagging, it is
now possible to analyse habitat use by marine top
predators at a relatively fine spatial scale (Aarts et al.
2008, Wakefield et al. 2017) and identify where for-
aging behaviour occurs (Bennison et al. 2018). Future
comparisons between the sandeel distribution model
and predator foraging sites could help identify the
key sandeel areas used by predators. This capability
illustrates that the distribution model from this study
could help refine inferences of sandeel presence and
density for spatial predator−prey studies.

The present study demonstrates the effective
development of a predictive distribution model for
an ecologically and commercially important fish
species with a dependence on a specific habitat.
This model will alert marine planners to potential
areas where possible anthropogenic impacts on
sandeels should be considered, such as sand extrac-
tion, marine renewable developments and fishing
with gears that cause significant benthic distur-
bance, such as dredges (Eleftheriou & Robertson
1992). It will also improve the basis for spatial com-
parisons between predators and sandeels and iden-
tify areas where further direct observations are
needed. The predicted distribution map for sandeels
could then be updated to incorporate new data on
sandeel occurrence or environmental variables, and
this would ensure that the best available informa-
tion is being used for the management of the spe-
cies at a regional scale.
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