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1.  INTRODUCTION 

Polychaetes of the family Sabellariidae are tubicu-
lous marine worms that inhabit both shallow and 
deep waters. These animals construct their tubes by 
gluing grains of sand with cement containing pro-
teins and high levels of phosphate, calcium, and 

magnesium (Gruet 1972, Stewart et al. 2004). The 
tubes are fixed to rocks or other hard substrate such 
as algae, mollusc shells, plant roots (Kirtley 1994, 
Pohler, 2004), and soft sediments, if stable (van der 
Reijden et al. 2021). Some gregarious sabellariid spe-
cies, in particular those of the genera Sabellaria and 
Phragmatopoma, build extensive reefs in intertidal 
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and shallow subtidal areas (Kirtley 1994, van der Rei-
jden et al. 2021). Sabellariid reefs have been re -
corded in coastal areas of many regions around the 
world, including in the north-eastern Atlantic in 
Europe (Wilson 1970a, 1971, Dubois et al. 2002), 
North Sea (van der Reijden et al. 2021), Mediterran-
ean (Gravina et al. 2018), the Americas (McCarthy et 
al. 2003, Sepúlveda et al. 2003, Aviz et al. 2018), Asia 
(Achary 1969, Pohler 2004), and Australia (Shepherd 
& Thomas 1982). These structures provide microhab-
itats for a variety of benthic organisms and contribute 
to coastal biodiversity (Achary 1969, Dubois et al. 
2002, Jones et al. 2018, Aviz et al. 2019, Bonifazi et al. 
2019). In addition to their biological role, sabellariid 
reefs can modify the morphology of substrates, stabi-
lize beach sediments, and protect the coastline from 
wave action (Kirtley 1967, Bruschetti 2019). 

Sabellariid reefs experience major morphological 
changes over time, beginning with the initial settle-
ment phase and leading to extensive structures, 
which are in turn eventually destroyed (Gruet 1972, 
Curd et al. 2019, Lisco et al. 2021). The structural 
cycle of the intertidal reefs of S. alveolata (Linnaeus, 
1767) can be classified into 4 principal phases based 
on long-term studies (Gruet 1972, 1986): (1) the set-
tlement phase is based on the aggregation of larvae 
and the initiation of the construction of overlapping 
tubes that lie at an acute angle to the substratum 
(‘veneer-type reef’); (2) the growth phase is when the 
structure becomes increasingly dense and inter-
linked, thus forming a tapestry of regular mushroom-
shaped mounds (‘hummock-type reef’), which may 
aggregate to form barriers and even extensive plat-
forms; (3) the stagnation phase occurs when the 
structure stops growing both in terms of height and 
width; and (4) the destruction phase is when the 
worms suffer mass mortality and the structure is 
eroded by wind and waves; it may disappear either 
partially or completely (Gruet 1972, 1986, Gravina et 
al. 2018, Bonifazi et al. 2019). Other classifications 
and new terminologies have been proposed to de -
scribe the physical appearance and phases of these 
bioconstructions including describing the reef mor-
phology at the macro- and/or microscale (Curd et al. 
2019, Griffin et al. 2020, Lisco et al. 2021, Ventura et 
al. 2021). Others have attempted to link these physi-
cal criteria to the physiological state of the tube-
building polychaetes (Curd et al. 2019). 

Once destroyed, the reef may eventually be recon-
structed depending on the availability of larvae and 
favourability of the local hydrodynamic conditions. 
While these 4 phases are typical of the process, they 
are not always demarcated clearly, and thus erosion 

may occur during the growth phase, and the reef 
may be destroyed well before the stagnation phase 
(Gruet 1986, Lecornu et al. 2016, Lisco et al. 2021). A 
number of different factors have been implicated in 
the destruction of sabellariid reefs, including hydro-
dynamics, i.e. waves, currents, and storms (Gruet 
1971, Wilson 1971, Gravina et al. 2018, Jackson-Bué 
et al. 2021), silting by sand or mud (Gruet 1971, 
 Wilson 1971, Desroy et al. 2011, Eeo et al. 2017), 
low temperatures (Hommeril & Larsonneur 1963), 
anthro po genic impacts such as trampling or fishing 
(Vorberg 2000, Dubois et al. 2002, Plicanti et al. 2016, 
Bonifazi et al. 2019, van der Reijden et al. 2019), 
overgrowth of epibionts (Dubois et al. 2006), and 
inadequate settlement and recruitment (Wilson 1971, 
Gruet 1972). 

The potential longevity of a sabellariid reef is still 
unclear, and temporal stability may occur at either 
the reef (small patches) or habitat scale, i.e. thou-
sands of square metres (Jackson-Bué et al. 2021). In 
intertidal areas, sabellariid reefs are naturally short-
lived and strongly influenced by seasonal shifts in 
environmental conditions, whereas reefs on more 
stable substrates and in more sheltered locations 
with less intense hydrodynamics are more long-last-
ing (Holt et al. 1998, Hendrick & Foster-Smith 2006, 
Ingrosso et al. 2018). Well-developed reefs are the 
re sult of the colonization of the site by successive 
generations of worms and are typically much older 
than the current resident population (Wilson 1971, 
Gruet 1986). 

On the French coast, the complete morphological 
cycle of S. alveolata reefs may take 10 yr at some 
sites (Gruet 1986), and multi-year stability has been 
recorded at other sites (Lecornu et al. 2016, Jackson-
Bué et al. 2021). Ages of more of 60 yr have been doc-
umented for some Mediterranean reefs of S. alveo-
lata (Ingrosso et al. 2018). S. vulgaris Verrill, 1873 
reefs in Delaware Bay (USA) are thought to undergo 
decadal cycles of growth and decline (H. Wells 1970), 
but other observations have shown that S. vulgaris 
reefs may be established and decline within a few 
years (Brown & Miller 2011). Reefs of S. spinulosa 
(Leuckart, 1849) are invariably short-lived or sea-
sonal; they typically last only 1 or 2 yr, depending on 
the prevailing physical and biological conditions 
(Hendrick & Foster-Smith 2006, Gravina et al. 2018, 
Lisco et al. 2021). 

The ecology of sabellariid reefs is still poorly known 
in the tropics. In Brazil, at least 3 sabellariid species 
(Phragmatopoma caudata Krøyer in Mörch, 1863, S. 
nanella Chamberlin, 1919, and S. wilsoni Lana & 
Gruet, 1989) are known to build reefs, but no data are 
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available on their colonization cycle. S. wil soni is en-
demic to the Atlantic coast of South America, from 
French Guiana to Argentina, where it is found on 
beaches (Lomônaco et al. 2012, Ataide et al. 2014, 
Aviz et al. 2018) and on the inner continental shelf 
(Lana & Gruet 1989, Lana & Bremec 1994, Santos et 
al. 2010). On the Amazon coast, S. wilsoni builds ex-
tensive reefs on sandy beaches (Ataide et al. 2014, 
Aviz et al. 2019) that in turn undergo major and sys-
tematic temporal changes in structure (Aviz et al. 
2018). These initial findings led to the present study 
that was based on the monitoring of an S. wilsoni reef 
off Algodoal-Maiandeua Island in northern Brazil 
over 1 yr. The objectives of the study were to (1) de -
scribe the changes in the structure of the reef and the 
polychaete population over the course of the year, (2) 
describe the temporal fluctuations in the climate, 

salinity, and hydrodynamics of the study area, and (3) 
identify the relationship between these fluctuations 
in environmental parameters and the morphological 
changes in the reef and the structure of the local 
polychaete population. 

2.  MATERIALS AND METHODS 

2.1.  Study area 

Algodoal-Maiandeua Island (00° 36’ S, 47° 34’ W) 
is located in the northeast of the state of Pará, on 
the Brazilian Amazon coast. The island is sur-
rounded on 3 sides by rivers and estuarine channels, 
with its northern portion facing the Atlantic Ocean 
(Fig. 1). The region is dominated by semidiurnal 
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Fig. 1. (A−C) Location of the Sabellaria wilsoni reef monitored in the present study off Algodoal-Maiandeua Island in Pará,  
northern Brazil. (D) Area modelled and the bathymetry (m) of the grid domain used in the hydrodynamic model
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macrotides with an amplitude of 4−7 m (Silva et al. 
2011). Beaches on the island have a broad mid-
littoral zone of 200−400 m (Rosa Filho et al. 2011), 
and are covered by fine sand, with outcrops of later-
itized sandstone that are often colonized by Sabel-
laria wilsoni. As the reefs are established on large 
rocky outcrops, they are typically composed of co -
hesive clusters of hummocks. The S. wilsoni reef 
monitored in the present study was a formation of 
the platform type, with a total area of 1101 m2 (da 
Silva 2015). This reef was located in the lower mid-
littoral zone of Caixa D’Água beach (Fig. 1), in the 
northeastern extreme of the island, on the margin of 
the Marapanim River. 

The climate on the Amazon coast is driven by sea-
sonal shifts in the position of the Inter-Tropical Con-
vergence Zone (ITCZ) and instability lines (Marengo 
1995, Souza-Filho et al. 2009). In this region, the rainy 
season (January−June) occurs when the ITCZ shifts to 
the Southern Hemisphere, resulting in slight ly lower 
air temperatures. During the dry season (July−
December), the ITCZ shifts to the Northern Hemi-
sphere, creating higher air temperatures and lower 
rainfall rates, due primarily to the influence of the in-
stability lines associated with the local sea breezes 
(Marengo 1995, Pereira et al. 2012). This seasonal dy-
namic causes well-marked fluctuations in salinity 
(Dittmar & Lara 2001), sediment load (Jaeger & Nit-
trouer 1995), and hydrodynamic conditions (Pereira et 
al. 2012). Trade winds are also an important atmos-
pheric force in the equatorial region, and their sea-
sonal fluctuations are also associated with the migra-
tion of the ITCZ (Geyer et al. 1996). These winds shift 
from predominantly southeast−easterly in the dry sea-
son, to northeasterly in the rainy season, when their 
velocity is lower, in general (Souza-Filho et al. 2009). 

The mean annual temperature on the Amazon coast 
fluctuates from 24 to 27°C (Nobre et al. 2013), and an-
nual precipitation (based on 30 yr of monitoring) is 
2200−2800 mm (Moraes et al. 2005). Total precipita-
tion in the rainy season is approximately 1700 mm, 
while in the dry season it is around 500 mm (Moraes 
et al. 2005). 

2.2.  Monitoring of the reef 

Samples were collected at the reef on Caixa 
D’Água Beach once a month on the spring tide be -
tween May 2008 and April 2009. The samples were 
collected along 2 transects established perpendicular 
to the coastline. Two areas on each transect were 
delimited for sampling, one of which was located at 

the low tide line, and the other 50 m further inshore, 
to ensure the sampling of the full extension of the 
reef (the complete sampling designs are illustrated in 
Ataide et al. 2014). Four samples were collected per 
month in each area with a cylindrical core (10 cm 
diameter, 40 cm depth). The volume (measured by 
the water displacement method) and height (relative 
to the rocky substrate on which the reef was fixed) of 
each sample were recorded during collection. The 
samples were fixed in 5% saline formalin. 

The percentage cover (coverage) of the reef in re -
lation to the substrate was also recorded each month 
in 4 quadrats (1 m2) placed randomly within each 
area. The condition of the reef was also re corded 
each month, with the reefs being allocated to differ-
ent phases, based on the percentage cover of consol-
idated tubes and the visual evaluation of erosive 
patches (see Aviz et al. 2018). 

In the laboratory, the animals present in each sam-
ple were extracted from the tubes and counted. The 
length of the thorax plus abdomen (the caudal ap -
pendix was excluded because it is easily lost) was 
measured in 10 individuals selected randomly from 
each sample, with the aid of a stereoscopic micro-
scope. Although the opercular crown is considered to 
be a good proxy of body size in other sabellariids 
(Gruet 1984, Faroni-Perez 2014), no significant rela-
tionship was found between the diameter of the 
oper cular crown and body length (thorax plus 
abdomen) in fixed (10% formaldehyde) S. wilsoni 
specimens (Aviz et al. 2018). 

2.3.  Sampling of environmental variables 

Samples of surface water were collected each 
month during the ebb and flood tides to determine 
salinity (with an optical refractometer) and the con-
centration of suspended particulate matter (using a 
0.45 μm porosity filter). Data on air temperature, 
rainfall, and wind speed and direction were obtained 
from the meteorological station in Salinópolis (ap -
proxi mately 30 km east of the study site) and were 
provided by the Brazilian National Meteorological 
Institute (INMET). Daily tide ranges were obtained 
from the Directorate of Hydrography and Navigation 
(DHN-Brasil 2008). 

The SisBaHiA® wave generation module (Rosman 
2018) was used to model the local wind waves. These 
wind-driven waves are generated locally within a 
specific area, in which they are energized by the 
overlying wind, and are related strongly to the local 
wind field (Rosman 2018). Using domain geometry 
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and wind data, this modelling permits the calcula-
tion of the temporal variation in 3 wave parameters: 
(1) significant height = height of the highest third of 
the waves measured during the monitoring period; 
(2) orbital velocity = oscillatory velocity of the water 
on the sea bed provoked by the wave action; and (3) 
bottom shear stress = short-term oscillatory stress on 
the sea bed, which has a direct influence on the 
resuspension of the sediment and the remobilization 
of the organisms it contains. We modelled the whole 
domain of Caixa D’Água beach (Fig. 1c), an area of 
approximately 3000 km2, resulting in a network with 
375 nodes. The wind data analyzed in the present 
study were provided by INMET and covered a stan-
dard area, while the data on the bathymetry and 
rugosity of the study area were provided by the 
Physical Oceanography Laboratory at the Federal 
University of Pará in Belém. The simulation covered 
a 2 yr period (2008 and 2009), with a 40 s time inter-
val. The model was validated using the in situ hydro-
dynamic data collected at Caixa D’Água beach by 
Borba (2011). The results were filtered for the target 
period and area (Fig. 1D). 

2.4.  Data analysis 

The density, both by volume (ind. l−1) and area (ind. 
m−2), and length of the S. wilsoni worms, and the 
height and coverage of the reef were compared 
among the different phases of the cycle using a 1-way 
ANOVA, with the Student-Newman-Keuls test being 
applied for a posteriori comparisons of the means. 
Prior to these analyses, the data were examined for 
normality (Shapiro-Wilk test) and homo scedasticity 
of variance (Cochran’s test), and when necessary, the 
density (ind. l−1) of S. wilsoni was fourth-root trans-
formed and reef coverage was arcsine transformed. A 
5% significance level was considered in all analyses. 
The tests were run in the R software (version 3.3.0). 

Multiple regression was used to identify the envi-
ronmental variables that best explain the temporal 
variability observed in the sabellariid population 
parameters (density and body size of the worms) and 
reef conditions (height and coverage). A stepwise 
forward procedure was used to determine the subset 
of environmental variables that best explained the 
ob served variation (Tabachnick & Fidell 1996). Prior 
to the regressions, the degree of collinearity between 
environmental variables was estimated using Pear-
son’s correlation coefficient, and any variables that 
were strongly correlated (r ≥ 0.8) were excluded from 
all subsequent analyses. 

3.  RESULTS 

3.1.  Reef conditions 

The morphological changes on the reef were classi-
fied into 3 phases: (1) preserved (May−August 2008), 
when the reef has a compact, continuous mass, with a 
mean cover of at least 70%, (2) eroded (September−
December 2008), when many open spaces appear 
within the reef (mean cover = 10−60%), and blocks 
have been detached or are becoming dislodged, and 
(3) recuperation (January−April 2009), when the reef 
is still low-lying and limited in extent (mean cover = 
50−60%). 

During the preserved phase, the reef grew both 
vertically and horizontally (Table 1, Fig. 2). Through -
out the eroded phase, however, intense erosion oc-
curred, resulting in the almost complete disappear-
ance of the aggregates (Fig. 2B,C). The recuperation 
of the reef began in January, at the onset of the rainy 
season, through the mass recruitment of juveniles, 
which colonized the rocks (Fig. 2D) and abandoned 
worm tubes (Fig. 2E). The reef continued to grow in 
February and March, forming mushroom-shaped 
hummocks (Fig. 2F,G), which coalesced to form a 
new platform (Fig. 2H,I). Coverage was significantly 
greater in the preserved phase, whereas height did 
not vary significantly among the phases (Table 1). 

3.2.  Sabellaria wilsoni population structure 

The density of the sabellariids varied significantly 
among the different structural phases (Table 1), with 
2 peaks. The first and most intense peak occurred 
during the preserved phase (June and August 2008), 
while the second, less intense peak was recorded in 
January and February 2009, in the recuperation 
phase (Fig. 3). There was a significant reduction in 
the number of worms during the eroded phase, in 
particular in December 2008 (Table 1, Fig. 3). 

The distribution of S. wilsoni by size class (Fig. 4) 
indicates that the original reef platform, in May 2008, 
was formed by individuals of varying sizes, with body 
lengths of 1−21 mm. The presence of smaller classes 
indicates that a number of recruitment events oc-
curred during the subsequent months, most notably 
in June and October−January. In December 2008 and 
January 2009, the population was formed predomi-
nantly by small individuals, with a body length of less 
than 7.5 mm. In the following months, there was an 
increase in the frequency of individuals in larger size 
classes (Fig. 4). 
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Phase                        Month      Coverage          Height            Worm density                 Worm size     Proportion of  
                                                        (%)                  (cm)                (ind. l−1)             (ind. m−2)            (mm)     mature worms (%) 
                                                            
Preserved (P)        May-2008   75.0 ± 3.5         9.8 ± 0.7          324.9 ± 58.1      29573 ± 9551        7.5 ± 0.3               13 
                               Jun-2008    71.9 ± 2.3        13.3 ± 1.3       1590.9 ± 159.7  201377 ± 8132        9.2 ± 0.3               53 
                                Jul-2008     80.0 ± 1.9        12.7 ± 1.3       2002.8 ± 153.7  253513 ± 20218      7.7 ± 0.2               69 
                               Aug-2008    81.9 ± 2.3        17.0 ± 1.2       1908.6 ± 195.2  241598 ± 19453      8.6 ± 0.2               40 
Eroded (E)              Sep-2008    60.0 ± 3.3        16.6 ± 1.3         643.5 ± 125.5    79375 ± 24713      9.8 ± 0.2               72 
                                Oct-2008    26.9 ± 7.1        14.6 ± 1.3         541.0 ± 181.1    68481 ± 16431    10.4 ± 0.2              100 
                               Nov-2008    10.0 ± 3.3        12.1 ± 0.7         297.0 ± 320.6    37595 ± 22918    10.3 ± 0.2               90 
                               Dec-2008    10.0 ± 3.8        11.7 ± 0.7         112.2 ± 49.1      11487 ± 58905      6.5 ± 0.2               34 
Recuperation (R)   Jan-2009    50.0 ± 5.3        11.8 ± 1.1       1245.8 ± 50.9    190562 ± 5559        6.3 ± 0.2               48 
                               Feb-2009    62.5 ± 3.7        12.6 ± 1.1       1814.8 ± 256     213188 ± 6443        6.9 ± 0.1               75 
                               Mar-2009    60.0 ± 3.0        12.3 ± 1.2         858.8 ± 195.1  101305 ± 35306      8.6 ± 0.2               85 
                               Apr-2009    50.0 ± 5.3        12.5 ± 1.1         223.3 ± 46.0      28259 ± 25968    12.1 ± 0.2               65 
ANOVA                                                                                                                                                     
F (df)                                          F(2,93): 80.30**    F(2,189): 2.06     F(2,189): 15.81**   F(2,189): 19.56**F(2,1917): 17.19**             
Post hoc (SNK)                           P > R > E         P = R = E           P > R > E            P = R > E         E = P > R                  

Table 1. Characteristics of the Sabellaria wilsoni reef of Caixa D’Água beach (Algodoal-Maiandeua Island, Brazilian Amazon 
Coast) monitored in the present study between May 2008 and April 2009. Results of ANOVA and Student-Newman-Keuls 
(SNK) test, for comparison among the different structural phases. Values are given as mean ± SE; asterisks indicate significant  

results (**p < 0.01). Data on the proportion of mature worms are from Aviz et al. (2016)

Fig. 2. Principal structural changes in the Sabellaria wilsoni reef monitored between May 2008 and April 2009 off Caixa 
D’Água Beach (Algodoal-Maiandeua Island, Brazilian Amazon Coast). (A) Preserved phase: July 2008 − well-developed plat-
form; (B,C) Eroded phase: September 2008 − initial destruction (B) and December 2008 − mass destruction of the reef (C); (D−I) 
Recuperation phase: January 2009 − resettlement on rocky substrate (D); January 2009 − resettlement on destroyed reef (E); 
February 2009 − formation of mushroom-shaped hummocks (F); March 2009 − coalescence of mushroom-shaped hummocks  

(G,H); March 2009 − new reef platform (I)
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3.3.  Environmental characteristics  
of the study area 

The highest rainfall rates were recorded January 
through July (rainy season), together with the lowest 
temperatures and salinity (Fig. 5A,B). Two peaks 
were recorded in the concentration of suspended 
particulate matter, the first in July−August and a 
second, higher peak in December−January (Fig. 5B). 
The highest tidal ranges were recorded during the 
equinoctial spring tides, in March (height: 5.5 m) 
and September (5.4 m), while the lowest (3.5 m) 
occurred in neap tide, between August and October 
(Fig. 5C). In the rainy season, the winds blew pre-
dominantly from the northeast and were less intense 
than during the dry season (Fig. 5D), resulting in 
milder hydrodynamic conditions (Figs. 5E,F & 6). 
During the dry season (reef-erosion phase), the 
winds were more intense, primarily easterly and 
east−northeasterly (Fig. 5D), provoking more ener-
getic waves (Figs. 5E & 6) and greater bottom shear 
stress (Fig. 5F). 

The best-fitting regression models were found for 
reef coverage (R2 = 0.68) and S. wilsoni density (R2 = 
0.46). Wave height was the variable that best 
explained sabellariid density and body size and reef 
height, while salinity best explained reef coverage 
(Table 2, Fig. 7). A negative relationship was ob -
served between wave height and polychaete density, 
as well as between wave height and reef coverage 
(Fig 7A,D). By contrast, salinity was related posi-
tively to reef coverage (Fig. 7D), as well as to density 
and size of the worms (Table 2, Fig. 7A,B). There was 
a tendency for the height of the reef to increase as 
wave height increased, and for coverage to increase 
with tidal range (Table 2, Fig. 7C,E). 

4.  DISCUSSION 

Sabellariid reefs occur in a delicate balance be -
tween the phases of growth, stagnation, and erosion, 
which are driven by physical and biological pro-
cesses (Gruet 1986, Brown & Miller 2011, Eeo et al. 
2017, Gravina et al. 2018, Lisco et al. 2021). Local 
hydrodynamics are undoubtedly among the princi-
pal factors affecting the distribution and develop-
ment of sabellariid reefs. Up to a certain point, the 
sabellariid mode of life depends on the movement of 
the water, which is essential to resuspend the grains 
of sand and food particles required by these organ-
isms (Vovelle 1965, R. Wells 1970, Brown & Miller 
2011). However, extreme hydrodynamic conditions 
may have a negative effect on reef development due 
to erosion or silting with mud or sand (Wilson 1971, 
Gruet 1972, Eeo et al. 2017, Lisco et al. 2021). Ex -
treme conditions may also affect the capacity of the 
worms to capture grains of sand (Vovelle 1965, Wil-
son 1971) or of the larvae to settle on the reef (Wilson 
1970b, Pawlik & Butman 1993, Lisco et al. 2021). 

Evidence on the distribution of Sabellaria wilsoni 
indicates that this species prefers low-energy myxo-
haline to polyhaline environments (Lana & Gruet 
1989, Lana & Bremec 1994, Aviz et al. 2018), even 
though it does appear to be capable of colonizing 
more exposed coastlines (Dos Santos et al. 2011, 
Lomônaco et al. 2012). S. wilsoni forms small clumps 
on rocky substrates, where the individual tubes may 
be associated with stones or with other colonial organ-
isms such as corals and even other sabellariids (Lana 
& Gruet 1989, Lomônaco et al. 2012). To date, ex -
 tensive reefs of S. wilsoni, with areas of over 1000 m2, 
have only been recorded on Algodoal-Maiandeua Is-
land on the Brazilian Amazon Coast where they are 
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Fig. 3. Monthly variation (mean 
± SE) in the abundance of 
Sabel laria wil so ni (bars), reef 
coverage (shaded area), and 
height (line) on the reef off 
Caixa D’Água beach on Algo-
doal-Maiandeua Island, on the  

Brazi lian Amazon Coast
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Fig. 4. Monthly variation in the distribution of the body size classes (body length = thorax + abdomen) of the Sabellaria wil -
soni specimens collected each month between May 2008 and April 2009 from the reef off Caixa D’Água beach on Algodoal- 

Maiandeua Island, on the Brazilian Amazon Coast. N = 160 ind. mo−1
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seen on sheltered, sandy estuarine beaches in the 
lower intertidal to shallow subtidal zones. 

The structural fluctuations observed in the S. wil -
soni reefs on Algodoal-Maiandeua Island were influ-
enced primarily by temporal variations in the local 
hydrodynamics, which, like rainfall, are driven by 
the shift of the ITCZ (Marengo 1995, Souza-Filho 
et al. 2009). During the dry season (September−
December), the increased hydrodynamic stress re -
sulting from the changes in the direction and inten-

sity of the wind, together with the formation of 
stronger waves, provoked a marked decrease in 
worm density and erosion of the reef, which lost 
more than 80% of its original area. Data from numer-
ical modelling of the waves were consistent with the 
empirical data from other Amazonian beaches; these 
data indicate a direct relationship between the wave 
energy and wind speeds (Geyer et al. 1991, Monteiro 
et al. 2009). The rainy season offers ideal conditions 
for reef development, when the hydrodynamic con-
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Fig. 5. Monthly variation in the environmental parameters monitored and modelled during the present study at Caixa 
D’Água beach (Algodoal-Maiandeua Island, Brazilian Amazon Coast). Parameters: (A) total rainfall (bars) and mean air tem-
perature (line); (B) total suspended particulate matter (SPM; bars) and water salinity (line) (mean); (C) tidal elevation; (D) 
wind direction (arrows) and intensity (line). Modelling data: (E) significant wave height (range for each hour/day/month);  

(F) wave-induced bottom shear stress. All error bars are SE
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Fig. 6. Significant wave heights (bimonthly scenario) produced by the SisBaHiA® hydrodynamic model. The circle indicates  
the Sabellaria wilsoni reef. Data from Caixa D’Água beach (Algodoal-Maiandeua Island, Brazilian Amazon Coast)



Aviz et al.: Dynamics of an Amazon Sabellariidae reef

ditions are less intense, de spite the increase in rain-
fall and the related reduction in salinity. 

Exposure to tidal action is another important factor 
in controlling the horizontal extension of the reefs. 
The study beach has a semi-diurnal macrotidal re -
gime with a tidal range of over 6 m, and most coastal 
processes are driven by the tide and its seasonal fluc-
tuations (Klein & Short 2016, Pereira et al. 2016). The 
beginning of the erosive phase in September 2008 
coincided with the equinoctial spring tides that can 
generate exceptionally strong tidal currents on the 
beaches of Algodoal-Maiandeua Island (Pereira et al. 
2012). The following months (October and Novem-
ber) had the lowest tidal ranges, which implies that 
the reef located in the lower intertidal zone remained 
submerged for longer periods. Therefore, it was ex -
posed to more energetic waves and currents that 
may have contributed to its erosion. 

The more intense hydrodynamics of this period not 
only destroyed the reef, but might have also led to 
mortality of the reef-building worms while also im -
pacting recruitment of the juveniles that may other-
wise have compensated for the impacts caused by the 
erosion. This conclusion is supported by shifts in the 
size and density of the worms during the year. There 
was a significant increase in both the density of 

sabellariids and the growth of the reef (horizontal and 
vertical) following periods of intense recruitment 
(June 2008 and January 2009). In the eroded phase, 
while settlement occurred, the number of newly re -
cruited worms may not have been sufficient to en sure 
the recuperation of the reef. A deficit of sabellariid 
larvae and juveniles has been associated with both 
pre-settlement factors (production, survival, disper-
sion, and behaviour of the larvae in the water 
column) and post-settlement factors (survival and the 
interaction between the recruits and physical  factors). 

Long-term monitoring of S. alveolata reefs has in-
dicated that hydrodynamic conditions and a de cline 
in settlement are the principal factors responsible for 
the onset of the destruction phase (Gruet 1972, 1986, 
Lisco et al. 2021). Sabellariid reefs are found in envi-
ronments with high hydrodynamic stress such as 
beach surf zones, and thus they are subject to con-
stant erosion (Wilson 1971). Individual worms are 
constantly harvesting sand to rebuild their tubes 
(Vovelle 1965), and the damage caused by the ap-
pearance of cracks and breaks in the reef blocks may 
only be minimized by the successive recruitment of 
larvae in the deteriorated areas (Wilson 1971, Gruet 
1972, Ventura et al. 2021). Secondary settlement may 
thus play a fundamental role in the vertical and hori-
zontal growth of the reef (Gruet 1986, Ventura et al. 
2021). 

In the reef monitored here, S. wilsoni reproduces 
continually and reaches a reproductive peak when 
100% of the individuals are either mature or spawn-
ing. This is approximately 1 mo after the onset of the 
erosive phase (Aviz et al. 2018). It is likely that the 
numbers of larvae sufficient for the settlement and 
recuperation of the reef will only become available 
after this period. The duration of the planktonic lar-
val stage of S. wilsoni is unknown, but in S. alveolata, 
this period lasts between 4 and 10 wk (Dubois et al. 
2007). In this case, the December/January recruits 
would have been produced during the preceding 
October−November spawning peak. The occurrence 
of these reproductive peaks may, in fact, represent a 
strategy that guarantees the persistence of the reef 
following its destruction. On the coast of Florida 
(USA), studies on Phragmatopoma californica (Barry 
1989) and P. lapidosa (McCarthy et al. 2003) showed 
reproductive peaks in response to severe, but sub-
lethal, damage from major storms. In the Mediterran-
ean, the annual reefs of S. spinulosa, a semelparous 
species, grow from the spring and early summer 
through to the fall after spawning events in the win-
ter and early spring. There is a destructive phase 
during the winter (Gravina et al. 2018). In contrast, 
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                               Beta             SE               t                 p 
 
Density: F = 34.13, p < 0.01, adjusted R2 = 0.46 
N = 192 
Intercept                                                    8.54         <0.01 
Salinity                   1.15           0.15           7.5           <0.01 
Wave height         −1.27           0.14         −8.26         <0.01 

Body size: F = 7.28, p < 0.01, adjusted R2 = 0.30 
N = 192                                                                             
Intercept                                                   13.77         <0.01 
Salinity                 −0.501         0.129        −3.92         <0.01 
Wave height         0.534         0.128         4.18         <0.01 

Reef height: F = 14.61, p < 0.01, adjusted R2 = 0.17 
N = 192                                                                             
Intercept                                                   10.52         <0.01 
Salinity                  0.018         0.129         0.14           0.87 
Wave height         0.251         0.129         1.95           0.05 

Reef coverage: F = 55.54, p < 0.01, adjusted R2 = 0.68 
N = 96                                                                               
Intercept                                                   14.36        <0.01 
Salinity                  2.340         0.144       −16.34        <0.01 
Tidal elevation     0.743         0.069       −10.79        <0.01 
Wave height        −1.788         0.147        12.18        <0.01

Table 2. Best-fit models of the stepwise multiple linear re-
gression of the data on the Sabellaria wilsoni population 
and its reef, and the environmental variables re corded off 
Caixa D’Água beach (Algodoal-Maiandeua Island, Brazilian  

Amazon Coast)
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Fig. 7. Relationship among the Sabel-
laria wilsoni population (A: worm den-
sity; B: body length), reef characteris-
tics (C: reef height; D,E: coverage) and 
the environmental variables recorded 
at Caixa D’Água beach (Algodoal-
Maiandeua Island, Brazilian Amazon  

Coast)
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S. alveolata has a retrograde phase that was evident 
at the beginning of autumn after the destructive 
phase in summer. This matches the beginning of 
recruitment; similarly, the growth phase continues 
from spring to early summer (Bonifazi et al. 2019). 

Studies have suggested that changes in wind in -
tensity and direction as well as changes in coastal cir-
culation patterns can lead to the dispersal of S. alveo -
lata larvae to areas relatively far away from reefs. 
This may also cause a recruitment deficit and a de -
cline in the reefs (Dubois et al. 2007, Ayata et al. 
2009). This phenomenon is conceivable for S. wilsoni 
larvae. While no specific data are available for the 
Marapanim estuary, the seasonal variation in the flu-
vial input and in the direction and intensity of the 
prevailing winds, and the position of the ITCZ are all 
known to have a significant influence on coastal cir-
culation patterns in other sectors of the Amazon coast 
(Nittrouer & DeMaster 1996, da Silva et al. 2009). 

Another possibility may be that under extreme hy -
dro dynamic conditions, most S. wilsoni larvae may 
be unable to settle. Those that are recruited may be 
un able to survive and are washed away by waves 
and currents or killed by the impact of the waves. 
These negative effects on recruitment have been 
linked to the decline of the S. alveolata reefs (Wilson 
1974). There is some evidence that reef-forming 
sabellariid larvae can recognize adequate substrates 
during the settlement process, likely responding to 
either chemical (the presence of adults or dead reefs) 
or physical (hydrodynamic conditions) cues (Wilson 
1968, Pawlik 1986, Pawlik et al. 1991, Pawlik & But-
man 1993). Laboratory experiments also indicate that 
P. californica larvae respond first to water flow condi-
tions and only subsequently to the chemical stimuli 
that induce metamorphosis (Pawlik et al. 1991, Paw-
lik & Butman 1993). These results suggest that P. cal-
ifornica larvae avoid settling in areas with slow-flow-
ing water and prefer faster currents, but only when 
the hydraulic energy levels permit adequate contact 
and physical fixation. 

It is important to note that the S. wilsoni platform 
monitored here was not completely eroded. At the 
end of the destructive phase, small clumps of the 
original platform still persisted. This resulted in only 
minor variations in the height of the reef during its 
cycle. Debris from the old platform is important for 
the establishment of the new reef given that sabel-
lariid larvae settle and metamorphose preferentially 
on the cemented tubes of conspecific adults (Pawlik 
1986, 1988). 3D mapping of an S. alveolata reef 
showed that the erosive process is spatially random 
be yond the 4 m colony scales. It alternates between 

groups of rapidly-accreting, short-lived colonies of 
sediment tubes and slowly-accreting, long-lived 
colo  nies (Jackson-Bué et al. 2021). These dynamic, 
reef-scale structural changes may cancel each other 
out and result in an apparently stable reef structure 
over larger spatial and temporal scales (Jackson-Bué 
et al. 2021, Ventura et al. 2021). 

The densities recorded here, despite the relatively 
high maximum values, were within the range of 
values recorded for most other reef-building sabellari-
ids, e.g. Idanthyrsus cretus (72200 ind. m−2) in Las Per-
las, Panama (Barrios et al. 2009), P. lapidosa (44000−
84000 tubes m−2) in Florida (McCarthy et al. 2003), and 
P. caudata (39420−65090 ind. m−2) in São Paulo, Brazil 
(Faroni-Perez 2014) as well as the congeners S. alveo-
lata (13807−60000 ind. m−2) in Mont Saint-Michel Bay 
(Caline et al. 1992, Dubois et al. 2002) and in the Cen-
tral Tyrrhenian Sea (43100−157100 tubes m−2) (Boni-
fazi et al. 2019), and S. spinu losa (18875−36975 tubes 
m−2) in the Italian Mediterranean (Gravina et al. 2018). 
Reef-building sabellariids are r-strategist species, 
char acterized by marked demographic fluctuations, 
catastrophic mortality, and high rates of recovery 
(Gian grande 1997). This life history strategy allows 
the species to survive in highly variable or unpre-
dictable environments; they respond to shifts in envi-
ronmental conditions with high reproductive rates and 
rapid development (Krebs 1994, Giangrande 1997). 

The body size and density of S. wilsoni had a posi-
tive relationship with salinity. This pattern was con-
firmed by the major reduction in density observed 
during the recuperation phase (March and April 
2009) and the low values recorded in March 2008. We 
believe that this reflects high mortality due to the ex-
tremely low salinity (6−11) recorded during these 
months. Although S. wilsoni can survive under highly 
variable conditions and can tolerate salinity levels 
ranging from 0.5 to 35 (Lana & Gruet 1989, Bremec & 
Giberto 2004), low salinity may be a limiting factor in 
the development of dense populations. Sabellariids 
are primarily marine species, and few taxa are found 
in areas subject to extreme fluctuations in salinity 
(Hutchings 2000). While there are no specific data on 
S. wilsoni, low salinity is known to cause mortality, 
reduce fecundity, and inhibit reproduction to varying 
degrees in estuarine polychaetes (Daunys et al. 2000, 
Pechenik et al. 2000). In Delaware Bay (USA), the dis-
tribution of S. vulgaris is determined by low salinity 
(<6), which prevents survival (Curtis 1975). Adult 
P. caudata and P. californica can tolerate brackish wa-
ters containing up to 30−40‰ seawater (Mauro 1977); 
these conditions are typical of those in which S. alveo-
lata is normally found (Gruet 1972, Dubois et al. 2007). 
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Another important point is that there is some 
decoupling between the physiological state of the 
worms and the actual reef types or phases (Curd 
et al. 2019). Curd et al. (2019) showed that worms 
sampled in retrograding reefs (i.e. displaying signs 
of erosion) were healthy and less physiologically 
stressed than worms sampled in prograding (grow-
ing) bioconstructions, possibly due to lower intra -
specific competition and hence greater food avail-
ability. In the case of S. wilsoni reefs, it is likely that 
salinity is a key factor underlying the health of the 
builder-worms and consequently the persistence of 
their constructions. 

Quantifiable and reliable criteria are needed to 
evaluate the ecological state of Sabellariidae reefs, 
in order to monitor and protect them (Curd et al. 
2019). Here, we added new structural metrics to 
describe the phases (Fig. 8) of the S. wilsoni reef 
cycle and linked these physical metrics to the pop-
ulational structure of the tube-building worms. In 
future studies, we recommend characterizing and 
monitoring changes in biogenic structures at multi-
ple scales (cm to km) over time, as well as the 
physiological re sponses of these worms to environ-
mental stressors (hydrodynamic energy and low 
salinity). 
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Fig. 8. Summary of phase characteristics in the structural cycle of Sabellaria wilsoni reef on Brazilian Amazon Coast: preserved,  
eroded, and recuperation
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5.  CONCLUSIONS 

Empirical data are still required on many specific 
aspects of the life history of Sabellaria wilsoni, in -
cluding the duration of the larval phase, life ex -
pectancy of adults, connectivity between local sub -
popu lations, and oceanographic processes involved 
in reef development. However, our results do provide 
important insights into the hydrodynamic energy 
and salinity levels that can be tolerated by the spe-
cies. This study offers a systematic baseline for future 
ecological research and monitoring of this important 
marine habitat. Our findings are especially important 
in the context of the impact of climate change on 
coastal regions, particularly considering likely future 
scenarios with increased intensity and frequency of 
sea surges, marine storms, and extreme events. 
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