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1.  INTRODUCTION 

Polychaetes are common organisms in the deep sea, 
where they are highly abundant and play important 
ecological roles in deep-sea chemosynthetic ecosys-
tems (Desbruyeres & Toulmond 1998, Blake 2000, Sel-
lanes et al. 2004, Reuscher et al. 2012). Some vesti -
mentiferan polychaetes are regarded as ecosystem 
engineers of newly opened vents, as they promote 
habitat complexity and stimulate colonization by 

other species (Shank et al. 1998, Hunt et al. 2004, 
Hilário 2005, Cordes et al. 2009). A series of studies 
has investigated the morphological characteristics 
(Reuscher et al. 2012, Han et al. 2021, Alalykina 2022) 
and species diversity (Guggolz et al. 2019, 2020) of 
deep-sea polychaetes. However, limited information 
is available about the origin, phylogenetic status, and 
evolutionary adaptations of these ecologically impor-
tant groups to date (Fontanillas et al. 2017, Sun et al. 
2021). 
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Deep-sea chemosynthetic ecosystems are usually 
characterized by low oxygen availability due to high 
leakage of methane-rich fluids (Boetius & Wenzhöfer 
2013). Mitochondria are important organelles for 
aerobic respiration, and the mitochondrial respiratory 
chain complex produces up to 95% of the energy in 
eukaryotic cells. Therefore, extreme deep-sea envi-
ronments are likely to affect the mitochondrial ge -
nome and its encoded metabolic processes. It is likely 
that mitogenomes are subject to evolutionary selec-
tion to meet metabolic demands in extremely harsh 
environments (Nakajima et al. 2016). The first exam-
ple of genetic rearrangement was observed in the 
transfer RNA (tRNA) genes of a deep-sea fish, Gono-
stoma gracile (Miya & Nishida 1999). The mitochon-
drial gene orders of deep-sea bathymodioline mussels 
are significantly different from those of shallow-water 
mussels, and 16 residues of atp6, nad4, nad2, cytb, 
nad5, and cox2 have undergone positive selection, 
indicating possible adaptation to the deep-sea envi-
ronment (Zhang et al. 2021). 

In addition to mitochondrial evolution, deep-sea 
organisms also exhibit morphological, physiological, 
and metabolic adaption to extreme environments. 
The presence of sulfides, toxic hydrocarbons, and 
heavy metals can disrupt essential biological pro-
cesses. The giant tubeworm genus Riftia possesses 
metallothionein-like proteins and hosts symbiotic 
bacteria that are involved in the detoxification of high 
levels of sulfide and heavy metals in the worms’ tubes 
(Hourdez & Jollivet 2020, Lo Giudice & Rizzo 2022). 
Regarding hypoxia and the universal deep-sea stress, 
polychaetes have an enlarged respiratory organ to 
increase oxygen extraction capacity (Storch & Alberti 
1978, Hourdez et al. 2001), modified respiratory pig-
ments to improve oxygen transport efficiency (Hour-
dez et al. 2002, Hourdez & Lallier 2007), and en -
hanced respiratory enzyme activity to improve 
oxygen utilization (Quiroga et al. 2007, Rinke & Lee 
2009). Several sense appendages of polychaetes also 
undergo adaptive evolution under selection pressure 
due to the persistent darkness. Most polychaetes col-
lected near the deep-sea hydrothermal vents in the 
Eastern Pacific all possessed well-developed peristo-
mial rings and enormous palps that served as sensory 
replacements for sightless animals in the deep sea 
(Blake 1985). 

The family Spionidae is one of the largest and most 
common polychaete families in marine benthic inver-
tebrate communities, and comprises approximately 
590 species belonging to 38 genera (Radashevsky 
2012). Spionids are regarded as opportunistic species 
with a low reproductive age, high fecundity, and short 

life span (David & Williams 2012, Bennett & Rako-
cinski 2020). The strong dispersal ability of the larvae 
and the r-selected life-history pattern have allowed 
spionids to rapidly invade new habitats and emerge as 
dominant species in several benthic communities 
(Conlan & Kvitek 2005, Birch et al. 2018). For in -
stance, a previous study reported the successful inva-
sion by Marenzelleria spp. in the species-poor ecosys-
tem of the Baltic Sea and their subsequent spread 
throughout the entire Baltic Sea (Kauppi et al. 2015). 
An increasing number of highly abundant spionid 
taxa have been recently discovered in deep-sea che-
mosynthetic ecosystems (Hourdez et al. 2006, Graff et 
al. 2008, Blake & Ramey-Balci 2020). The genus Lin-
daspio is an especially interesting taxon of the family 
Spionidae, and all Lindaspio species have been 
reported to dwell in chemosynthetic environments, 
including hydrothermal vents, hydrocarbon seeps, 
and whale falls (Blake & Maciolek 1992, Bellan et al. 
2003, Sumida et al. 2016, Sui et al. 2023). However, 
studies on spionids dwelling in deep-sea chemosyn-
thetic ecosystems are limited to species diversity and 
distribution (Blake & Maciolek 1992, Sigvaldadóttir & 
Desbruyeres 2003, Bogantes 2020, Guggolz et al. 
2020), and little is known about the evolutionary his-
tory and environmental adaptability of this group. 

A novel methane vent area named Lingshui was dis-
covered in May 2021 on the northern passive conti-
nental margin of the South China Sea (SCS). The con-
centration of methane in the surface sediments of the 
biological zones ranged from 0.79 to 5.09 mmol l−1 
(L. Cao unpubl. data), and massive methane bubbles 
could be seen gushing from the seafloor at this site. 
The in situ dissolved oxygen of the water–sediment 
interface was approximately 2.96 mg l−1 (L. Cao un-
publ. data). Around the active vent, we discovered 
dense aggregations of L. polybranchiata (Sui et al. 
2023). As almost no other animals have been found in 
this area besides this species, we speculated that L. 
polybranchiata may be a pioneer species of this na-
scent methane vent. In this study, we investigated 
mtDNA variation patterns, tried to reconstruct the 
evolutionary pathways of the deep-sea Lindaspio, and 
investigated how Lindaspio adapted to the deep-sea 
environment from the perspective of the mitogenome. 
Lindaspio was recovered as a sister taxon to Rhynchos-
pio by com bined analyses of whole-genome sequen-
cing (WGS) data and transcriptome data of 29 species 
covering 17 spionid genera (Bogantes 2020). Thus, we 
compared L. polybranchiata with an intertidal spionid, 
Rhynchospio aff. asiatica, to explore how deep-sea 
polychaetes survive in extreme environments, espe-
cially in dark and oxygen-limited environments. The 
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results may provide primary insights into the mito-
chondrial and morphological adaptations of the family 
Spionidae to extreme deep-sea environments. 

2.  MATERIALS AND METHODS 

2.1.  Sample collection and preservation 

Lindaspio polybranchiata was sampled in May 2021 
by the ROV ‘Faxian’ from the sediment around the 
seepage (1800 m) in the SCS (Fig. 1A). Specimens 
were collected by TV-guided grab sampler and push-
core sampler to estimate the population density at the 
sampling sites depicted in Fig. 1B. The animals were 
rinsed several times with Milli-Q water to remove the 
attached  sediments. Some specimens were then snap-
frozen in liquid nitrogen and preserved in a –80°C 
freezer for subsequent molecular analyses, and others 
were fixed in 2.5% glutaraldehyde for morphological 
observations. 

Rhynchospio aff. asiatica was collected from inter -
tidal sediments at Qingdao Bay (36.060° N, 120.320° E) 
in November 2021 (Fig. 1A). After rinsing off the sed-
iments with seawater, the samples were transferred to 
plastic bottles containing seawater. Specimens of 

R.  aff. asiatica were selected under a stereoscopic 
microscope (SteREO Discovery V20, Zeiss) and pre-
served with the same methods as L. polybranchiata. 

2.2.  DNA extraction, sequencing, assembly, 
and annotation 

The total genomic DNA of L. polybranchiata (n = 8) 
and R. aff. asiatica (n = 1) was extracted using the 
E.Z.N.A.® Mollusc DNA kit (OMEGA Bio-Tek) and 
sequenced on an Illumina Hiseq 2500 system 
(2×150 bp pair-end reads). The mitogenomes were de 
novo assembled by the MitoZ toolkit (Meng et al. 
2019) with default parameters. Gene annotation was 
performed using the MITOS2 web server (Bernt et al. 
2013) and the manual refinement method based on 
the Open Reading Frame Finder prediction combined 
with the results of the Basic Local Alignment Search 
Tool against the NCBI nr database. Finally, the mito-
chondrial genome map was obtained in the CGview 
server (https://proksee.ca/). In addition to the mito -
genomes obtained, the WGS data of Lindaspio sp. 
 collected at 1130 m at New England Seep 2 (NES) 
(SRR13436066) were retrieved and analyzed following 
the aforementioned pipeline. All sequences have 
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Fig. 1. Characteristics of the sampling stations. (A) Locations of the sampling stations. QD (Qingdao Bay): sampling station for 
Rhynchospio aff. asiatica; LS (Lingshui): sampling station for Lindaspio polybranchiata. (B) Sampling sites in Lingshui, where a 
TV-grab (site GR) and a push-core sampler (sites P1–P6, CR) were used. The methane vents are indicated by red stars. (C) In situ 
photograph showing an aggregation of L. polybranchiata (white arrow) with massive overflowing methane bubbles. (D) Surface  

sediment at site P1, indicating the habitat of L. polybranchiata. (E) Surface sediment at site CR, with L. polybranchiata absent
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been deposited in GenBank under accession numbers 
OK032597 (L. polybranchiata), BK062759 (Lindaspio 
sp. [NES]), and OP288981 (R. aff. asiatica). 

2.3.  Phylogenetic analysis 

To determine the phylogenetic position of L. poly-
branchiata with respect to other polychaetes, the com-
plete mitochondrial genomes of 29 polychaetes in-
cluding 5 orders and Magelona mirabilis and Owenia 
fusiformis (serving as the outgroup) (Chen et al. 2020) 
were used to conduct a phylogenetic analysis (Table S1 
in Supplement 1 at www.int-res.com/articles/suppl/
m730 p043_supp1.xlsx). The maximum likeli hood 
(ML) tree with the GTR model was constructed using 
RaxML (Stamatakis 2014). Node confidence was as-
sessed using 1000 bootstraps. Codon usage analysis, 
base constitutions, and the genetic divergence (Ki-
mura 2-parameter [K2P] distance) be tween 2 species 
were analyzed in MEGA11 (Tamura et al. 2021). 

2.4.  Estimation of divergence time 

The ML tree and the GTR nucleotide substitution 
matrix were used to construct the divergence tree 
using MCMCTree (Yang & Rannala 2006) to estimate 
the divergence time between the deep-sea Lindaspio 
and other shallow-water spionids. Three nodes were 
calibrated with the following fossil times: Mageloni-
dae–Oweniidae appeared around 514 million yr ago 
(Ma) (Chen et al. 2020); Errantia and Sedentaria di-
verged between 120 and 493 Ma (Peterson 2005); and 
Sclerolinum appeared around 8.19 Ma (www.timetree.
org/). For Markov chain Monte Carlo (MCMC) analy-
sis, 2 runs were performed with nburn-in = 200 000, 
nsamfreq = 10, and nsample = 500 000. The conver-
gence of sampled parameters and possible autocorre-
lation (effective sampling size for all parameters >200) 
were calculated using Tracer 1.6 (http://tree.bio.ed.ac.
uk/software/tracer/). The branch lengths were highly 
consistent between the 2 runs, and the total percentage 
of bias in the branch lengths was <0.1%. 

2.5.  Population genetic analysis 

The mitogenomes of 8 individuals were used for 
population genetic analysis. These specimens were 
sampled from sampling sites GR, P3, and P5 (Fig. 1B) 
that covered the distribution zones of L. polybranchi-
ata. To gain insights into the population genetic vari-

ability and structure of L. polybranchiata, several 
descriptive indices, including nucleotide diversity 
(Pi), haplotype diversity (Hd), and polymorphic sites, 
were calculated for the 13 concatenated protein-
 coding genes (PCGs; 11 105 bp) of the 8 individuals 
using DnaSP v6 (Rozas et al. 2017). Furthermore, 
Tajima’s D, Fu and Li’s D*, and Fu’s FS test statistics 
were determined using DnaSP to test the hypothesis 
of random deviation from neutral evolution and 
potential population expansion. A pairwise mismatch 
distribution analysis was performed in Arlequin v3.1 
(Excoffier et al. 2006) to determine the population dy -
namics and infer the demographic history of L. poly-
branchiata. 

2.6.  Positive selection analysis 

A phylogenetic tree with only 6 spionids and 2 tere-
bellids was subsequently constructed for analyzing 
positive selection. The genes and sites under positive 
selection were identified using the CodeML program 
in the pamlX package (Yang 2007). The clades con-
sisting of Lindaspio species were marked as the fore-
ground branch with other spionids serving as the 
background. The branch model was implemented to 
identify whether the foreground branch evolved sig-
nificantly faster than the background branch. Branch-
site model analyses were performed to determine the 
sites under positive selection in the mitochondrial 
genes of the Lindaspio lineage. Chi-squared tests 
were performed, and p < 0.05 indicated rejection of 
the null hypothesis of neutrality. 

To explore the effect of these putative sites, Predict-
Protein was used to identify the structures and 
 functions of the positively selected genes (Yachdav et 
al. 2014). TMHMM 2.0 (https://services.healthtech.
dtu.dk/service.php?TMHMM-2.0) was also used to 
determine whether these sites were situated in the 
transmembrane region. The 3D structure of these 
 positively selected PCGs was constructed by SWISS-
MODEL (https://swissmodel.expasy.org), and the 
positively selected residues were mapped to the cor-
responding genes (see Fig. S4). 

2.7.  Morphological observations 

The specimens of L. polybranchiata and R. aff. asiat-
ica were mounted and observed under a stereoscope 
(SteREO Discovery V20, Zeiss) to record the key mor-
phological features and obtain some quantitative 
data, including body width (width of the fifth body 
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segment) and body length (number of body seg-
ments) (Table S2). About 20% of the right parapodia 
of the polychaetes were randomly dissected along the 
body axis to calculate the total area of the gills (see 
Fig. 5A,B). The projection area of the gill plane was 
measured based on the picture scale, and its mean 
value was calculated. As the bodies of spionids are 
symmetrical, and their gills are approximately cylin-
drical, the total surface area of gills was calculated 
using the following formula: total gill area = average 
projection area of gill plane × the number of gills × 
3.14 (Hourdez et al. 2001). 

The morphological details were obtained by scan-
ning electron microscopy. The fixed samples were 
washed 3 times with 1× phosphate-buffered saline 
(PBS, Thermo Fisher) and subsequently dehydrated 
in different concentrations of ethanol (30, 50, 70, 80, 
90, and 100%), for 15 min at each concentration. The 
samples were placed in isoamyl acetate and dried with 
a CO2 critical point dryer (EM CPD 300, Leica) and 
sputter-coated with gold (Sputter/Carbon Thread, 
EM ACE200, Leica). The prepared samples were fi-
nally observed under a scanning electron microscope 
(S-3400N, Hitachi). 

3.  RESULTS 

3.1.  Characteristics of the benthic community 
around the active vent in Lingshui 

Lindaspio polybranchiata was found at a newly dis-
covered active methane seep in the SCS. In the survey 
area, we observed many bubbles gushing from the 
seafloor by ROV, and there were no visible epifauna 
on the surface of sediments around the seepage 
(Fig.  1C). A detailed investigation was launched in 
this area. TV-grab sampling revealed that the macro-
fauna were dominated by polychaetes. Among sev-
eral polychaetes, a large worm, L. polybranchiata, 
numerically dominated the sample with an abun-
dance of 8010 ind. m−2. The other polychaetes could 
not be identified, as they were small and became frag-
mented after flushing, and their abundance was more 
than an order magnitude less than that of L. polybran-
chiata. The distribution was also determined in detail 

by random push-core sampling at several sites around 
the seepage (Fig. 1B). Only L. polybranchiata was 
found in the push-core samplers around the seepage, 
and their abundance was estimated to be 3977–
34 465 ind. m–2 (Table 1). L. polybranchiata burrowed 
in the sediments, secreted mucus for gathering the 
sediment particles, and formed loose tubes (Fig. 1D), 
and their depth distribution in the sediments could 
reach more than 30 cm. However, no L. polybranchi-
ata were found in locations more than 50 m away from 
the area of the vent (Fig. 1E). 

3.2.  Mitochondrial adaptations of  
Lindaspio polybranchiata 

3.2.1.  Features of the mitochondrial genome 

The mitochondrial genomes of L. polybranchiata 
and Rhynchospio aff. asiatica were sequenced and as-
sembled. The length of mitogenomes of L. polybran-
chiata ranged from 15 248 to 15 416 bp. The 15 248 bp 
long sequence was used for downstream analyses. 
The mitogenome contains 13 PCGs, 21 tRNAs (tRNA 
Gln absent), 2 ribosomal RNAs (rRNAs), and 1 control 
region (CR) (Table S3). The characteristics of the mi-
togenome of L. polybranchiata are presented in Fig. 2. 
The overall base composition was 28.4% A, 23.6% C, 
13.0% G, and 34.9% T, revealing a high A+T content 
(63.3%). The AT-skew and GC-skew were both neg-
ative, being –0.10 and –0.29 respectively. 

The total length of 13 PCGs was 11 105 bp, with 
A+T content of 61.8%. The gene order of 13 PCGs 
is cox3-nad6-cytb-atp6-nad5-nad4l-nad4-nad1-nad3-
nad2-cox1-cox2-atp8. The genes cox3 and atp6 use 
ATA as the start codon, and all other PCGs use ATG 
as the start codon. Most of the PCGs terminate with 
the stop codon TAA, whereas cytb terminates with 
TAG, and nad4, nad1, and cox1 terminate with 
an  incomplete stop codon T-. The 3 most common 
codon usages were Ile (codons per thousand codons 
[CDspT]: 125.53), Leu2 (CDspT: 117.44), and Phe 
(CDspT: 91.42) (Fig. S1 in Supplement 2 at www.
int-res.com/articles/suppl/m730 p043_supp2.pdf). 
Relative synonymous codon usage analysis revealed 
that the third codon position tends to be A and T 
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                                                                                                                                      Sampling site 
                                                             PC1                PC2               PC3                PC4                 PC5               PC6                   GR               CR 
 
Abundance (ind. m–2)                   7291              20547            17895            25186               3977             34465                8010                0

Table 1. Abundance of Lindaspio polybranchiata at the sampling sites at Lingshui (see Fig. 1) 
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(Fig. S1). The pairwise divergence among the mitoge-
nomes of Spionidae was calculated based on the 13 
concatenated PCGs. The results showed that L. poly-
branchiata had the lowest nucleotide divergence of 
0.26% (K2P distance) with Lindaspio sp. (NES). The 
pairwise divergence between L.  polybranchiata and 
Polydora hoplura was the highest, with a K2P distance 
of 69.85% (Table S4). 

3.2.2.  Phylogenetic analysis 

We constructed phylogenetic trees using amino 
acid sequences of 12 concatenated PCGs and nucleo-
tide sequences of 12 PCGs and 2 rRNAs to provide 
evolutionary relationships. The topologies of the 2 
phylogenetic trees were consistent, and the phyloge-
netic tree constructed with nucleotide sequences 
(Fig. 3) has higher support at each node compared to 
that with amino acid sequences (Fig. S2). Phyloge-
netic analysis confirmed the monophyly of Errantia 
and Sedentaria. The ML tree also strongly supported 
the monophyly of Spionidae, Siboglinidae, and Tere-
belliformia in Sedentaria. In the phylogenetic tree 

with nucleotide sequences, the Spioni-
dae were closely related to Siboglini-
dae with good support (bootstrap 
value: 100). The phylogenetic analysis 
revealed that L. polybranchiata from 
Lingshui was recovered as a sister to 
Lindaspio sp. from New England seep 
2, with good support (bootstrap value: 
100). Together, these 2 species of Lin-
daspio formed a well-supported clade 
that was a sister to the clade formed by 
Marenzelleria neglecta and R. aff. asi-
atica (bootstrap value: 100) (Fig. 3). 

Estimation of divergence time showed 
that Spionidae diverged at approx-
imately 364.37 Ma (95% confidence in-
terval: 258.25–490.45 Ma) from Sibogli-
nidae (Fig. 3). Within Spionidae, the 
deep-sea genus Lindaspio diverged 
from other shallow-water spionids at 
around 208.09 Ma (95% confidence in-
terval: 116.33–297.89 Ma). L. polybran-
chiata at the Lingshui cold seep and 
Lindaspio sp. at New England seep 2 
 diverged at 2.03 Ma (95% confidence 
interval: 0.36–4.32 Ma). 

The mitochondrial gene orders of 
Spionidae were found to be relatively 
conservative (Fig. S3). In clade 1, P. ho -

plura and Boccardiella hamata be longed to the Poly-
dora-complex with consistent gene orders, and both 
lacked the atp8 gene. In clade 2, the gene orders 
between R. aff. asiatica and M. neglecta differed by a 
transposition in the trnG-cox3-trnY-trnQ-trnW-nad4-
cytb-atp6-trnS2-trnH-trnR block. The gene order of 
Lindaspio sp. (NES) was found to be identical to 
M.  neglecta with 13  PCGs, 22 tRNAs, and 2 rRNAs. 
Tandem-duplication-random-losses were observed 
in  the mitogenome of L. polybranchiata. The gene 
arrangement of L. polybranchiata was identical to Lin-
daspio sp. (NES) and M. neglecta, with the exception 
of the lack of tRNA Gln. 

3.2.3.  Genetic diversity and past demographic changes 

The genetic diversity and population dynamics of 
the L. polybranchiata population were evaluated 
using the mitogenomes of 8 individuals. Analysis of 
the 13 PCGs revealed a low level of genetic diversity, 
with a nucleotide diversity (Pi) of 0.00111 ± 0.00039. 
The value of Fu’s Fs statistic was slightly negative but 
insignificant (–1.82951, p = 0.095). However, Taji -
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ma’s D test and Fu & Li’s D* were significantly less 
than 0, rejecting the null hypothesis of neutrality 
theory (Table S5). The negative values indicated a 
possible population expansion. The mismatch distri-
bution analysis revealed that the estimated effective 
population size after population growth was signifi-
cantly larger than that before growth. The sum of 
squared deviation was 0.022 with a p-value of 0.801, 
suggesting no significant differences between the 
observed and simulated values. Harpending’s rag-
gedness index (r) was 0.033 with a p-value of 0.898, 

which also suggested a very good fit of the empirical 
data to the growth model. These findings supported a 
close correspondence between the population dyna -
mics and the expected recent expansion model. 

3.2.4.  Positive selection analysis 

The rates of synonymous (dS) and nonsynonymous 
(dN) substitutions were estimated using the CodeML 
program to determine adaptive evolution in the 
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Ridgeia piscesae 

Tevnia jerichonana 

Decemunciger sp.

Paralvinella palmiformis 

Melinna cristata 

Neoamphitrite affinis 

Pista cristata

Pelagomacellicephala iliffei 

Branchipolynoe onnuriensis

Halosydna sp.

Hediste diadroma

Hediste japonica 

Paraleonnates uschakovi 

Platynereis massiliensis 

Glycera tridactyla

Glycera dibranchiata 

Glycera tesselata 

Glycinde armigera

Magelona mirabilis

Owenia fusiformis

Eyes Sites

100/53.12

100/334.85

100/2.03

100/2.3946

100/93.26

100/211.07

100/16.67

100/1.9155

44/391.37

91/376.16

98/2.5246

100/196.75

60/364.37

470.36

87/319.48

100/410.56

100/79.72

100/138.95

100/69.12

100/17.61

100/6.45

100/3.2029

100/203.73

100/346.58

100/1.347

99/41.61

100/97.18

100/208.09

Fig. 3. Maximum likelihood phylogenetic tree inferred from the concatenated sequences of 12 mitochondrial protein-coding 
genes (PCGs) and 2 ribosomal RNA genes with the GTR substitution model. The first value on each node indicates the percent-
age bootstrap value with 1000 replications, and the second number indicates the posterior mean divergence time, with 95% 
highest posterior density labeled with grey lines. The grey and black circles indicate the absence and presence of eyespots,  

respectively. The grey and black rectangles indicate polychaetes in shallow water and in the deep sea, respectively
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mitogenome of the deep-sea polychaete L. polybran-
chiata. Since atp8 is missing in the mitogenomes of 
B. hamata and P. hoplura, the other 12 mitochondrial 
PCGs were subjected to positive selection analysis 
using the ML tree constructed with sequences of 6 
spionids and 2 terebellids (Fig. S3). 

In the Phylogenetic Analysis by Maximum Likeli-
hood (PAML) branch model, the ‘1-ratio’, ‘free-ratio’, 
and ‘2-ratio’ models for 12 concatenated PCGs passed 
the likelihood ratio test (Table 2). The ‘1-ratio’ model 
means a single ω0 ratio for all branches in the phy-
logenetic tree; ‘free ratio’ means one ω ratio for each 
branch; and ‘2 ratios’ means a ω2 ratio for the Lindas-
pio branch and a ω1 ratio for all other branches as 
background lineages. There were significant differ-
ences between the ‘1-ratio’ and ‘free-ratio’ models 
(p < 0.0001), indicating that the ‘free-ratio’ model fits 
the data significantly better than the ‘1-ratio’ model. 
Furthermore, the likelihood ratio tests between 
‘1-ratio’ and ‘2-ratio’ models showed that the evolu-
tionary rates of the deep-sea L. polybranchiata branch 
were significantly different from those of other shal-
low-water species, with p = 0.011 and ω2 (0.05349) 
nearly twice as large as ω1 (0.02880). 
These tests supported that the mito-
chondria of deep-sea spionids may 
have undergone positive selection. The 
positively selected sites in the mito -
genome of the deep-sea L. polybran-
chiata branch were identified in the 
branch-site model. Twelve residues 
were identified as positive selection 
sites with Bayes empirical Bayes values 
>95% located in cox1 (98 A, 292 T, 
404 S, and 461 S), cox3 (19 S and 76 S), 
cytb (349 I), and nad5 (45 I, 168 C, 
291 A, 404 S, and 541 S) in the deep-sea 
L. polybranchiata branch (Table 3). 

The functional domains of these 4 
positively selec ted PCGs were ex -
plored to identify the significance of 
these positively selected sites. All 12 
positively selected sites were located 

within the functional domains of these proteins, and 4 
of 12 sites were in the transmembrane domain while 
the remaining sites were in other domains. The 3D 
structures of these PCGs are presented in Fig. S4, 
with positive selection sites mapped onto these PCGs. 

3.3.  Morphological adaptations of  
L. polybranchiata 

3.3.1.  Morphological comparison of sensory organs 

The sensory structures of L. polybranchiata are rel-
atively simple. L. polybranchiata has no nuchal organ 
and eyespots, but has a well-developed caruncle, a 
mid-dorsal extension of the prostomium, to perceive 
external stimuli (Fig. 4B). We compared L. polybran-
chiata with the intertidal spionid R. aff. asiatica and 
found great differences in external morphology, es pe -
cially the sensory organs (Table 4). In terms of photo -
receptors, eyespots are absent in L. polybranchiata 
(Fig. 4A); however, R. aff. asiatica has 2 pairs of brown-
ish eyespots arranged in a trapezoid pattern. The ante-
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Model                                     lnL                            Parameter estimates               Models compared                      2ΔL                       p 
 
1-ratio                         –72012.965120                       ω0 = 0.02762                       2-ratio vs. 1-ratio                      6.455296           0.011 
2-ratio                         –72009.737472                       ω1 = 0.02880                    Free-ratio vs. 1-ratio              187.9795            <0.0001 
                                                                                    ω2 = 0.05349                                                                                 
Free-ratio                  –71918.975380

Table 2. Analyses of selective pressure of the 12 mitochondrial protein-encoding genes of spionids. See Section 3.2.4 for more  
details

Gene      Positive        Amino      BEB               Domain                 Description 
              selection         acid        value 
                   sites 
 
cox1            98                  A          0.983*     Transmembrane             Helical 
                    292                  T          0.968*               Other                        COX1 
                    404                  S          0.977*               Other                        COX1 
                    461                  S          0.981*     Transmembrane             Helical 
cox3            19                   S          0.962*     Transmembrane             Helical 
                     76                   S          0.988*               Other                        COX3 
cytb            349                  I           0.993**             Other                 CYTB_CTER 
nad5            45                   I           0.953*     Transmembrane             Helical 
                    168                 C          0.982*               Other            Proton_antipo_M 
                    291                 A          0.955*               Other            Proton_antipo_M 
                    404                  S          0.966*               Other            Proton_antipo_M 
                    541                  S          0.972*               Other                   NADH5_C

Table 3. Analyses of the selective pressure of the 12 mitochondrial protein-
encoding genes of spionids with branch-site model. The 12 positive selection 
sites were identified in the deep-sea Lindaspio. BEB: Bayes Empirical Bayes; 
*: 0.95 < BEB value < 0.99; **: BEB value < 0.99. See Section 3.2.4 for more details
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rior pair is larger, the posterior is punctate and smaller, 
and the distance between the anterior eyespots is much 
greater than that between posterior eyespots (Fig. 4E). 
Similar to L. southwardorum, L.  polybranchiata pos-
sesses a narrow caruncle with a smooth surface and ex-
tending to the anterior edge of chaetiger 2 (Fig. 4C). 
However, the caruncle of R. aff. asiatica is indistinct 
and not elevated above the prostomium (Fig. 4F). 

3.3.2.  Morphological comparison of 
respiratory structures 

Lindaspio is an exclusive genus in the family Spi -
onidae with dorsal branchiae and ventral branchiae 

(Fig. 5A1–A4). The surfaces of all branchiae of L. po -
lybranchiata are smooth and lack cilia (Fig. 4D). Simi-
lar to most common polychaetes, R. aff. asiatica bears 
only dorsal branchiae that are slender and distally 
tapered (Fig. 5B1–B4), and the surfaces of the bran-
chiae are densely tomentose (Fig. 4G). 

The surface areas of the branchiae on the anterior, 
middle, and posterior segments of the body exhibit 
certain differences. We calculated the mean and 
standard deviation of surface area of single dorsal and 
ventral branchiata in every specimen, and further 
analyzed the relationship between surface area and 
body size. In L. polybranchiata, the surface areas of 
the single dorsal branchia vary from 0.522 ± 0.108 to 
1.504 ± 0.358 mm2, whereas those of ventral branchia 
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Species                               Sensory organs                                                                Respiratory structures 
                                                    Eyespots                                Caruncle                                              Dorsal          Ventral          Gill surface area 
                                                                                                                                                                  branchiae     branchiae    (cm2 g–1 wet weight) 
 
Lindaspio polybranchiata     Absent       Elevated above prostomium, reaching                 Present          Present                      31.41 
                                                                               to anterior margin of chaetiger 2 
Rhynchospio aff. asiatica       2 pairs            Not elevated above prostomium,                      Present          Absent                      24.49 
                                                                                        reaching to chaetiger 1

Table 4. Comparison of the morphological characteristics of Lindaspio polybranchiata and Rhynchospio aff. asiatica

A B C D

E F G

ca

ep bc

ms

Fig. 4. Morphological features of Lindaspio polybranchiata and Rhynchospio aff. asiatica. (A) Modified notopodial spines of 
L. polybranchiata. (B) Anterior region of L. polybranchiata. (C) Detail of the prostomium in L. polybranchiata, dorsal view. (D) 
Dorsal branchia of L. polybranchiata in anterior chaetiger. (E,F) Anterior end of R. aff. asiatica, dorsal view; white rectangle 
in panel F indicates transverse ciliary row. (G) Dorsal branchia of R. aff. asiatica. ms: dorsal modified spines; ca: caruncle;  

ep: eyespots; bc: branchial cilia. Scale bars: A,C,E: 500 μm; B,D,F: 100 μm; G: 5 μm
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vary from 0.311 ± 0.053 to 1.070 ± 0.121 mm2, and are 
positively correlated with the size of the specimens 
(dorsal branchia: r = 0.954, p < 0.001; ventral bran-
chia: r = 0.939, p < 0.001; Fig. 5D). The specific bran-
chial surface areas of L. polybranchiata and R. aff. asi-
atica were calculated by dividing the total branchial 
area by the wet weight. The total branchial surface 
areas of L. polybranchiata and R. aff. asiatica are 31.41 
and 24.49 cm2 per g wet weight, respectively. The 
branchial surface areas of these 2 species were com-
pared using t-tests, and the results indicated that the 
respiratory surface area of L. polybranchiata is signif-
icantly larger than that of R. aff. asiatica (p = 0.021; 
Fig. 5C). 

4.  DISCUSSION 

This study is the first to report the discovery of a 
dense population of Lindaspio polybranchiata in the 
western Pacific Ocean. In the present study, we 

assembled the mitochondrial genome of L. polybran-
chiata, established its phylogenetic position, revealed 
its possible evolutionary origin, analyzed population 
genetic diversity, and provided evidence for molecu-
lar and morphological adaptation to the deep-sea 
extreme environment. 

Phylogenetic analysis supported that deep-sea Lin-
daspio may have originated from the invasion of shal-
low-sea spionids. The divergence time between the 
deep-sea Lindaspio and shallow-water spionids was 
estimated to be approximately 208.09 Ma, with a 95% 
confidence interval of 116.33–297.89 Ma (Fig. 3), 
which is comparable to the divergence time between 
deep-sea and shallow-water polynoid scale worms 
(ca. 120 Ma) (He et al. 2023). The divergence between 
the deep-sea and shallow-water spionids approx-
imately coincided with the Triassic–Jurassic tran-
sition, which was marked by a mass extinction event 
that contributed to the rapid divergence of both deep-
sea and shallow-water taxa (Hesselbo et al. 2002). Cli-
mate change, ocean acidification, and extensive hyp-
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Fig. 5. Comparison of gill characteristics of Lindaspio polybranchiata and Rhynchospio aff. asiatica. (A) Ventral view of L. polybran-
chiata. The parapodia are indicated by the white rectangle. (B) Lateral view of R. aff. asiatica. The parapodia are indicated by the 
white rectangle. (A1–A4) Right back view of the parapodia in chaetiger 4, 20, 35, and 47, respectively, of L. polybranchiata; (B1–B4) 
Right back view of parapodia in chaetiger 2, 5, 25, and 45, respectively, of R. aff. asiatica. Scale bars: A,B: 1000 μm; A1–A4: 400 μm; 
B1–B4: 100 μm. Db: dorsal branchiae; Vb: ventral branchiae; no: notopodium; ne: neuropodium. (C) Mean gill surface in L. poly-
branchiata (from the South China Sea, SCS) and R. aff. asiatica. The asterisk indicates a significant difference (p < 0.05) between 
the 2 species. Boxplot: upper hinge: 75th percentile; lower hinge: 25th percentile; mid-line: median; whiskers: points within 1.5×  

interquartile range. (D) Average surface of single dorsal branchiae (Db) and ventral branchiae (Vb) in L. polybranchiata (SCS)
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oxia led to the massive extinction of deep-sea faunas, 
creating new opportunities for the spatial divergence 
of shallow-water species (Greene et al. 2012). Analysis 
of the evolutionary origins suggested that deep-sea 
echinoderms, mollusks, and crustaceans were prob-
ably re-established via the invasion from adjacent 
shallow-water regions following extinction events 
(Lorion et al. 2013, Woolley et al. 2016). 

The results further revealed that the L. polybranchi-
ata population in the Lingshui cold seep has a low 
nucleotide diversity. Fu’s Fs test statistic is based on 
Ewens’ sampling distribution, which has low values 
with the excess of singleton mutations resulting from 
the expansion event (Ramos-Onsins & Rozas 2002). 
The successful colonization of the new habitat by 
L. polybranchiata might have been driven by an accu-
mulation of new rare mutations. This could explain 
the slightly negative but insignificant value of Fu’s Fs 
statistic for this L. polybranchiata population. The 
negative values of the neutrality test statistics and the 
results of mismatch analysis suggested that L. poly-
branchiata possibly underwent a recent population 
expansion following a bottleneck or founder event 
(Teixeira et al. 2011). We propose that this L. poly-
branchiata population was more likely shaped by the 
founder effect, and the recent population expansion 
was possibly associated with methane seepage. 

Mitochondria are the centers of aerobic metabo-
lism, and several studies have elucidated the unique 
evolutionary adaptations of the mitogenomes of orga -
nisms thriving in extreme environments such as hyp-
oxia and energy starvation (Ruiz-Pesini et al. 2004, 
Meiklejohn et al. 2007, Tomasco & Lessa 2011). In the 
present study, several residues in the mitogenome 
were found to be potentially under positive selection 
in the foreground branch of the deep-sea Lindaspio 
(Table 3). The mutations were identified in key com-
ponents of the electron transport chain, which could 
have potential physiological effects (Luo et al. 2008). 
Five positively selected residues were detected in 
nad5, and these residues mapped to functional do -
mains. The NADH dehydrogenase complex functions 
as a proton pump in the respiratory chain and is an 
important site for the production of superoxide; 
therefore, mutations may affect the efficiency of the 
proton pump (da Fonseca et al. 2008, Yu et al. 2011). A 
previous study demonstrated that nad1–5 of the fa -
mily Alvinocarididae dwelling in hydrothermal vents 
were under positive selection in response to the 
highly toxic chemicals and hypoxic environment 
(Sun et al. 2018). One residue was identified as posi-
tively selected in the cytb gene. Cytochrome b, a key 
component of bc1, participates in oxidative phos-

phorylation in the mitochondrial membrane and cata-
lyzes reversible electron transfer from ubiquinol to 
cytochrome c coupled to proton translocation (Trum-
power 1990). Cytochrome c oxidase is the terminal 
oxidase of the mitochondrial electron transport chain 
and catalyzes electron transfer from cytochrome c to 
molecular oxygen (Michel et al. 1998). Cytochrome c 
oxidases also reduce NO2 to NO, which induces the 
expression of nuclear hypoxic genes (Castello et al. 
2006). Therefore, cytochrome c oxidase is an impor-
tant target of positive selection in the adaptation to 
hypoxia. Several positive selection sites have been 
found in the cytochrome c oxidase genes of numerous 
deep-sea organisms (Shen et al. 2019, Li et al. 2021, 
Zhang et al. 2021). In the deep-sea L. polybranchiata 
branch, 6 positive selection residues were detected in 
the functional domains of cox1 and cox3, consistent 
with existing research (Dhar & Dey 2021, Yang et al. 
2021). We speculate that the selection sites in the 
components of the electron transport chain could 
be  involved in the adaptive evolution of deep-sea 
spionids. 

In addition to mitogenome evolution, some key 
characteristics could have undergone evolution to 
adapt to the extremely harsh conditions in the deep 
sea. According to ultrastructural results, the bran-
chiae of polychaetes function as respiratory organs 
that play an important role in gas exchange (Storch & 
Alberti 1978). To ensure normal physiological activ-
ities in a hypoxic environment, many polychaetes 
may increase the surface area of the gills and develop 
dorsal branchiae of various shapes for the efficient 
uptake of oxygen (Lucey et al. 2020). The genus Lin-
daspio has elaborate development of both dorsal and 
ventral branchiae (Fig. 5A4), which is unique among 
spionids and polychaetes (Sigvaldadóttir et al. 1997). 
The respiratory surface area of L. polybranchiata in 
1800 m was 31.41 cm2 g−1 wet weight, which was sig-
nificantly larger than that of its close relative R. aff. 
asiatica in shallow water. It has been reported that the 
surface area of gills increases in several polychaetes 
dwelling in hydrothermal vents and cold seeps. In 
Polynoidae, littoral species usually lack gills; how -
ever, the majority of species in hydrothermal vents 
and cold seeps have well-developed gills (Hourdez & 
Jouin-Toulmond 1998). The gill surface area of Purul-
vinellu grasslei in white and black smokers at 2600 m 
depth is 47 cm2 g−1 wet weight, the largest known in 
polychaetes (Jouin & Gaill 1990). This increase in the 
respiratory surface area has also been reported in 
benthic invertebrates for facilitating gas exchange in 
oxygen minimum zones around the world (Lamont & 
Gage 2000). 
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Owing to the permanent darkness, the reduction of 
eyes is a common phenomenon in the deep sea and is 
especially common among polychaetes. Nearly all 
polychaetes dwelling in caves (genus Branchipoly-
noe) and deep-sea environments (genera Branchi -
notogluma, Lepidonotopodium, and Levensteiniella) 
have lost their eyes (Gonzalez et al. 2021). Based on 
our phylogenetic analysis, the presence of eyespots 
was an ancestral character in the last common ances-
tor of the examined taxa (Fig. 3). The loss of eyespots 
may be a result of independent evolution in the deep 
sea due to permanent darkness (Sigvaldadóttir & Des-
bruyeres 2003, Hourdez et al. 2006, Blake & Ramey-
Balci 2020). Meanwhile, deep-sea taxa have en -
hanced sensory organs that resulted from convergent 
evolution (Gonzalez et al. 2021). These key adaptive 
traits are exemplified in L. polybranchiata, which has 
lost its eyespots but possesses a highly developed 
caruncle. The caruncle is a bulging dorsal sensory 
area arising from the prostomium, and is filled with 
epidermal and nervous tissue (Schlötzer-Schrehardt 
1987, Buhre & Purschke 2021). The caruncle is an im -
portant chemoreceptor (Schlötzer-Schrehardt 1986) 
that may contribute to the high population density of 
L. polybranchiata in methane seepages. 

These adaptive features enable L. polybranchiata to 
detect chemical clues within chemosynthetic ecosys-
tems, tolerate extreme conditions, and rapidly col-
onize this new cold seep. Considering the overwhel-
ming abundance compared with other metazoans in 
the local ecosystem, we propose that L. polybranchi-
ata might be a potential pioneer species in this nas -
cent active cold seep. Pioneer species are distin-
guished by high dispersal ability, rapid recruitment, 
short life cycles, fast growth rate, low reproductive 
age, and high fecundity, and these characteristics 
apply to varying degrees to the members of the family 
Spionidae (Poorter et al. 2023). The Lingshui cold 
seep is in its infant stage, and all species, including 
L.  polybranchiata, are concentrated in small spots 
around the seepage. All Lindaspio discovered so far 
are distributed in chemosynthetic ecosystems. L. po -
lybranchiata was therefore considered as a pioneer 
species in the Lingshui cold seep. Megafauna have 
received more attention in previous studies than sed-
iment-dwelling infauna, and vestimentiferan tube-
worms and mollusk gastropods were inferred to be 
candidate pioneer species in deep-sea chemosyn-
thetic ecosystems (Fisher et al. 1997, Mullineaux et al. 
2010, Van Dover 2014). The Congo deep-sea fan is 
located on the Congo–Angola margin in the South 
Atlantic Ocean, and it hosts multiple chemosynthe-
sis-based communities (Pruski et al. 2017). By analyz-

ing the spatial variability of the cold-seep-like macro-
faunal communities in the Congo deep-sea fan, Olu et 
al. (2017) proposed a possible succession model for 
cold-seep communities, in which the first colony con-
sists of opportunistic, motile, and sulfide-tolerant 
polychaetes, namely, dorvilleids and hesionids. Our 
report of the infauna polychaete L. polybranchiata as 
a candidate pioneer species is consistent with the 
community succession model in the Congo deep-sea 
fan. 

L. polybranchiata worms burrow deep into bottom 
sediments and form large numbers of loose tubes. A 
previous study indicated that the burrowing behavior 
of Marenzelleria worms caused bioturbation and bio-
irrigation of the bottom sediments (Golubkov et al. 
2021). It can be suggested that these burrows intro-
duce oxygen-rich and sulfate-rich waters deep into 
the sediments, promoting high microbial metabolic 
rates in sediments and accelerating the process of 
community succession (Gibson et al. 2005). Ad di -
tionally, bioirrigation can modify the physical, chem-
ical, and biological characteristics of the bottom 
 sediments, and create a positive environment for colo -
nization by other organisms (Braeckman et al. 2010, 
Daunys et al. 2019). In the Congo lobe complex, 
located on the Congo–Angola margin, the first col-
onizers, dorvilleids and hesionids, burrowed to 5–
10 cm depth. Bioirrigation enhances the consumption 
of sulfides by sulfur-oxidizing bacteria, decreases the 
sulfide concentration in the upper sediment layers, 
and creates favorable conditions for the settlement of 
vesicomyid juveniles (Olu et al. 2017). The large bio-
mass of L. polybranchiata guarantees an adequate 
supply of food to subsequent organisms. Therefore, 
L. polybranchiata is an ecologically important taxon 
that may lay the foundation layer for the establish-
ment and succession of cold seep communities in the 
early stage. Therefore, further studies are necessary 
to enhance our understanding of the ecological func-
tion of such pioneer species and the interaction 
between L. polybranchiata and other organisms. 

5.  CONCLUSIONS 

In this study, we have reported a dense population of 
Lindaspio polybranchiata in a newly established cold 
seep with vigorous methane bubbling. We outlined 
the mitochondrial genome, established the phyloge-
netic position, and analyzed the population genetic di-
versity. Our findings provide a genomic baseline for 
subsequent studies. The mitogenome of L. polybran-
chiata is 15 248 bp long and contains 13  PCGs, 21 

54



Yan et al.: Adaptations of deep-sea Lindaspio polybranchiata 55

tRNAs, 2 rRNAs, and 1 CR. Phylogenetic analysis re-
vealed that the ancestor of the deep-sea Lindaspio 
originated from shallow-water spionids, and the diver-
gence time corresponded to the Triassic–Jurassic 
mass extinction. The potential adaptive responses of 
Lindaspio to the harsh deep-sea conditions were also 
determined by comparative analyses of the mitoge-
nome and morphology of offshore and deep-sea 
spionids. In the deep-sea Lindaspio branch, 12 residues 
in cox1, cox3, cytb, and nad5 were found to be poten-
tially under positive selection. It could be speculated 
that these positively selected sites may play an impor-
tant role in the adaptation of L. polybranchiata. Com-
pared with the inshore species, the ventral branchiae 
and specific respiratory surface areas of L. polybran-
chiata are significantly enlarged in response to hyp-
oxia for facilitating oxy gen acquisition. Additionally, 
the eyespots of L. polybranchiata have undergone de-
generation, whereas the caruncle is well developed, 
which may aid in perceiving chemical clues in the sur-
rounding environment. This study is the first to inves-
tigate the adaptation of the deep-sea genus Lindaspio 
that is endemic to chemosynthetic ecosystems, and 
provides morphological and molecular insights for 
further comparative studies. 
 
 
Data availability. The mitogenome sequence data that sup-
port the findings of this study are openly available in NCBI 
GenBank at https://www.ncbi.nlm.nih.gov/ under acces-
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