Spatial and temporal distribution patterns of acoustic backscatter in the New Zealand sector of the Southern Ocean

Pablo Escobar-Flores*, Richard L. O'Driscoll, John C. Montgomery

*Corresponding author: pesc003@aucklanduni.ac.nz

Marine Ecology Progress Series 592: 19-35 (2018)

Fig. S1. Acoustic transects (n = 6) collected between 2010 and 2014 along the transit between New Zealand and the Southern Ocean by fishing vessel Janas.

Fig. S2. Acoustic transects (n = 11) collected between 2008 and 2014 along the transit between New Zealand and the Southern Ocean by fishing vessel San Aotea II.

Fig. S3. Acoustic transects (n = 5) collected between 2010 and 2013 along the transit between New Zealand and the Southern Ocean by fishing vessel San Aspiring.

Fig. S4. Acoustic transects (n = 6) collected between 2008 and 2013 along the transit between New Zealand and the Southern Ocean by research vessel Tangaroa.

Acoustic transects split into three latitudinal regions to assist descriptive analysis. Regions were split to remove bottom depth effects on acoustic backscatter east and southeast of New Zealand, and overcome data limitation in the southernmost end of the area of study.

Fig. S5. Transects split into three latitudinal regions for spatial and temporal analysis: Northern region (dark yellow); Central region (red); Southern region (green).

Acoustic transect exemplifying the north-south decrease in acoustic backscatter.

Fig. S6. Distribution of vertically summed acoustic backscatter (s_a) in m² km⁻² per bin, collected at 38 kHz along the transit between the Southern Ocean (right) and New Zealand (SO-NZ) (left). Transect JAN 2014 SO-NZ. Bubbles represent 1 km bins.

Fig. S7. Transect mean acoustic backscatter ($m^2 km^{-2}$) in the epi- (a) and mesopelagic (b) zones in the central region. Shown in chronological order (see transect collection dates in Table S1) by vessel: Janas (orange), San Aotea II (green), San Aspiring (blue) and Tangaroa (black). Whiskers represent two times the standard error of the mean, and the red line transects mean s_a (Epipelagic = 2.5 and mesopelagic = 10.1 m² km⁻²).

Bootstrapping statistical tests

Fig. S8. Distribution of mean acoustic backscatter (s_a in $m^2 \text{ km}^{-2}$) in the central region by day and night (a and d), spring and summer (b and e), and epi- and mesopelagic (c and f), generated by bootstrapping with 95% confidence intervals.

Fig. S9. Distribution of mean acoustic backscatter (s_a in $m^2 \text{ km}^{-2}$) in the central region during the day and night in the epipelagic zone (a and c respectively), and mesopelagic (b and d respectively), generated by bootstrapping with 95% confidence intervals.

Vertical distribution of volume backscattering strength

Fig. S10. Summary of vertical distribution (between the surface and 1200 metres) of volume backscattering strength (S_v in dB) in the Central region by vessel and chronological order. Red line indicates day (between sunrise and sunset), and blue line indicates night (between sunset and sunrise). Dotted grey lines indicate the 90th confidence intervals (t-student, 0.90). Panels correspond to individual transects.

Cubic smoothing spline fitted to vertical distribution of volume backscattering by day, night and season

Fig. S11. Cubic splines smoothers fitted (CSS) to spring day vertical distribution (at 10 m resolution) of mean volume backscattering strength (S_v in dB) along the 38 kHz transects in the Central region. The grouping of the transects followed a subjective assessment of the shape of the CSS fitted to the backscatter profile.

Fig. S12. Cubic splines smoothers fitted (CSS) to spring night vertical distribution of mean volume backscattering strength (S_v in dB) (at 10 m resolution) along the 38 kHz transects in the Central region. The grouping of the transects followed a subjective assessment of the shape of the CSS fitted to the backscatter profile.

Fig. S13. Cubic splines smoothers (CSS) fitted to summer day vertical distribution of mean volume backscattering strength (S_v in dB) (at 10 m resolution) along the 38 kHz transects in the Central region. The grouping of the transects followed a subjective assessment of the shape of the CSS fitted to the backscatter profile.

Fig. S14. Cubic splines smoothers (CSS) fitted to summer night vertical distribution of mean volume backscattering strength (S_v in dB) (at 10 m resolution) along the 38 kHz transects in the Central region. The grouping of the transects followed a subjective assessment of the shape of the CSS fitted to the backscatter profile.

Boosted regression trees

Fig. S15. Relationship between the cubic-transformed mean s_a and temperature (cars_t_meso, from regional hydrographic climatologies using the CSIRO Atlas of Regional Seas (CARS)) fitted by the boosted regression trees in the mesopelagic zone. Grey lines represent 95% confidence intervals. Focal_rac_vect_brt = residual autocorrelation covariate used in BRT for accounting for spatial autocorrelation.

Migration of organisms into the mesopelagic zone from deeper waters

Fig. S16. Echogram of transects collected by vessels San Aspiring (SAS) in 2011 between New Zealand (NZ) and the Southern Ocean (SO) showing evidence of potential migration of organisms from deeper zones into and out of the mesopelagic zone. Each pixel represents mean volume backscattering strength (S_v) in decibels (dB) echo-integrated in 1 km long and 10 m depth bins. Echogram threshold -84 dB.

Table S1. Summary of the final set of transects analysed, including frequency used for its collection, the total number of bins (size = 1 km), date of start and end of data collection, mean acoustic backscatter (s_a), standard deviation (std. dev.), mean s_a in the epi and mesopelagic zones, and total s_a in m² km⁻² (as the sum of all the bins vertically summed s_a), per transect. Vessels name key: JAN – Janas, SAO – San Aotea II, SAS – San Aspiring, and TAN – Tangaroa. The start and end location of the acoustic transect is also indicated in the transect name: NZ – New Zealand, and SO – Southern Ocean.

							Mea	Mea	
	Frequen	# of 1	Start	Finish	Mean		n s _a	n Sa mes	Total
Transect name	cv	km	date	date	Sa	Std.	epi.	0.	Sa
	(kHz)	bins	(dd/mm/	(dd/mm/	(m^2)	dev.	(m²	(m ²	(m^2)
	`		уу)	yy)	кт ²)		km	km⁻	кт ⁻)
							-)	²)	
JAN 2010 NZ-SO	38	2185	27/11/20	04/12/20	14.9	9.1	3.2	11 7	32583. 6
IAN 2011 NZ-SO	38	1852	27/11/20	02/12/20	12.4	10.1	2.8	11.7	22962
5711 2011 112 50	50	1052	10	10	12.4	10.1	2.0	9.6	8
JAN 2011 SO-NZ	38	4276	31/01/20	12/02/20	12.9	15.6	2.4	10.5	55171. 3
JAN 2013 NZ-SO	38	2351	24/11/20	01/12/20	13.9	193	38	10.0	32604
			12	12				10.0	4
JAN 2014 NZ-SO	38	1869	22/11/20	28/11/20	14.0	14.6	3.7		26137.
			13	13				10.3	0
JAN 2014 SO-NZ	38	4474	27/01/20	09/02/20	16.6	20.9	3.5		74104.
			14	14				13.0	0
SAO 2008 SO-NZ	38	1874	23/02/20	29/02/20	14.8	14.2	3.2		27706.
	20	2211	08	08	12.0	10.1	2.0	11.6	9
SAO 2010 NZ-SO	38	2211	11/12/20	17/12/20	13.8	10.1	2.9	10.0	30430. 6
SAO 2010 SO-NZ	38	2733	09/02/20	16/02/20	14 7	14.7	2.8	10.9	40047
5NO 2010 50-112	50	2133	10	10/02/20	17.7	17.7	2.0	11.8	
SAO 2011 NZ-SO	38	2120	23/11/20	29/11/20	14.0	16.3	3.0	11.0	29594.
			10	10				11.0	2
SAO 2011 SO-NZ	38	2515	15/01/20	23/01/20	11.0	12.4	1.9		27566.
			11	11				9.1	4
SAO 2012 NZ-SO	38	1831	28/11/20	03/12/20	23.7	22.4	9.4		43377.
			11	11		10.1		14.3	0
SAO 2012 SO-NZ	38	3388	22/02/20	02/03/20	11.1	13.4	2.8	0.2	37513.
SAO 2012 NZ SO	20	2109	12	12	0.4	0.2	2.5	8.3	1 10950
SAU 2013 NZ-SU	38	2108	04/12/20	10/12/20	9.4	8.2	2.5	7.0	19859.
SAO 2013 SO-NZ	38	3103	15/02/20	21/02/20	13.8	17.1	3.1	7.0	42671
5AO 2015 50-112	50	5105	13/02/20	13	15.0	17.1	5.1	10.7	42071. 8
SAO 2014 NZ-SO	38	1841	05/12/20	10/12/20	167	11.7	5.8	10.7	30815
			13	13				10.9	4
SAO 2014 SO-NZ	38	3174	03/02/20	11/02/20	17.2	20.1	3.1		54564.
			14	14				14.1	5
SAS 2010 NZ-SO	38	2374	22/11/20	26/11/20	11.1	8.3	3.5		26329.
			09	09				7.6	8
SAS 2011 NZ-SO	38	1872	21/11/20	26/11/20	7.6	5.8	2.1		14292.
GAG 2011 GO N7	20	2017	10	10/02/20	12.2	10.7	2.0	5.6	8
5A5 2011 SU-NZ	38	391/	09/02/20	19/02/20	12.2	12.7	2.9	0.2	4//24. 0
SAS 2012 SO-NZ	38	1065	01/02/20	04/02/20	13.2	14.9	34	7.2	9 14006
5A5 2012 50-INZ	50	1005	12	12	13.2	17.9	J. T	9.7	4
SAS 2013 NZ-SO	38	1519	20/11/20	24/11/20					15537.
			12	12	10.2	8.8	3.7	6.5	7
TAN 2008 NZ-	38	3645	31/01/20	09/02/20		1			65261.
SO_38			08	08	17.9	23.2	4.6	13.3	2

Transect name	Frequen cy (kHz)	# of 1 km bins	Start date (dd/mm/ yy)	Finish date (dd/mm/ yy)	Mean sa (m ² km ⁻²)	Std. dev.	Mea n s _a epi. (m ² km ⁻	Mea n sa mes o. (m ² km ⁻	Total sa (m ² km ⁻²)
TAN 2008 NZ-	70	3645	31/01/20	09/02/20			²)	²)	48039
SO_70	/0	5045	08	09/02/20	13.2	17.3	3.2	10.0	2
TAN 2008 SO- NZ_38	38	2428	14/03/20 08	19/03/20 08	20.0	13.6	3.7	16.2	48439. 8
TAN 2008 SO- NZ 70	70	2428	14/03/20 08	19/03/20 08	10.7	10.3	1.8	8.9	25992. 7
TAN 2010 NZ- SO 18	18	3952	02/02/20	10/02/20 10	15.6	29.9	64	91	9055 3
TAN 2010 NZ-	38	3952	02/02/20	10/02/20	12.9	22.4	3.5	9.4	61565. 7
TAN 2010 NZ-	70	3952	02/02/20	10/02/20	6.0	12.1	2.2	3.8	5811.7
TAN 2010 NZ-	120	3952	02/02/20	10/02/20	2.3	67	1.7	0.6	51111. 9
TAN 2010 NZ-	200	3952	02/02/20	10/02/20	1.5	2.9	1.7	>	23576.
TAN 2010 SO-	18	3299	07/03/20	10	1.5	2.8	1.5	0.1	0120.2
TAN 2010 SO-	38	3299	07/03/20	10	10.6	16.2	7.5	9.5	55999.
TAN 2010 SO-	70	3299	07/03/20	10	10.6	16.2	3.4	1.2	4
NZ_70 TAN 2010 SO-	120	3299	10 07/03/20	10 14/03/20	4.3	8.4	2.3	1.9	5306.3 34843.
NZ_120 TAN 2010 SO-	200	3299	10 07/03/20	10 14/03/20	2.5	5.5	1.9	0.6 >	6 14088.
NZ_200 TAN 2013 NZ-	18	2915	10 04/02/20	10 15/02/20	1.6	5.4	1.6	0.1	8 13166.
SO_18 TAN 2013 NZ-	38	2915	13 04/02/20	13 15/02/20	25.2	99.0	10.4	14.8	4 73325.
SO_38 TAN 2013 NZ-	70	2915	13 04/02/20	13	12.4	20.4	4.0	8.4	0
SO_70 TAN 2013 NZ-	120	2915	13 04/02/20	13 $15/02/20$	5.5	17.5	3.8	1.8	5255.7
SO_120 TAN 2012 NZ	200	2015	13	13/02/20	4.5	13.5	3.4	1.1	9
SO_200	200	2915	13	13/02/20	1.8	5.9	1.7	0.1	4
TAN 2013 SO- NZ_18	18	2419	04/03/20 13	10/03/20 13	19.8	37.7	6.5	13.4	7239.7
TAN 2013 SO- NZ_38	38	2419	04/03/20 13	10/03/20 13	12.6	17.9	2.7	9.9	47966. 4
TAN 2013 SO- NZ_70	70	2419	04/03/20 13	10/03/20 13	3.9	9.1	2.6	1.3	2713.6
TAN 2013 SO- NZ 120	120	2419	04/03/20 13	10/03/20 13	3.0	7.1	2.4	0.6	30499. 7
TAN 2013 SO- NZ_200	200	2419	04/03/20 13	10/03/20 13	1.1	2.8	1.1	> 0.1	9448.1

Table S2. Summary of 38 kHz transects by region and season of data collection available, number of transects, mean acoustic backscatter (s_a in m^2 km⁻²) and its standard deviation, and average number of bins (~ 1 km) as guide for transects' average section lengths within each latitudinal region.

Region	Season	# of	Transects	Mean s _a	Std.	Ave.
		transects			Dev	number
						of bins
Northern	Spring	12	JAN 2010 NZ-SO, JAN 2011	16.7	6.5	688
			NZ-SO, JAN 2013 NZ-SO,			
			JAN 2014 NZ-SO, SAO 2010			
			NZ-SO, SAO 2011 NZ-SO,			
			SAO 2012 NZ-SO, SAO			
			2013 NZ-SO, SAO 2014 NZ-			
			SO, SAS 2010 NZ-SO, SAS			
			2011 NZ-SO, SAS 2013 NZ-			
			SO			
	Summer	15	JAN 2011 SO-NZ, JAN 2014	25.8	7.4	804
			SO-NZ, SAO 2008 SO-NZ,			
			SAO 2010 SO-NZ, SAO			
			2011 SO-NZ, SAO 2012 SO-			
			NZ, SAO 2013 SO-NZ, SAO			
			2014 SO-NZ, SAS 2011 SO-			
			NZ, TAN 2008 NZ-SO, TAN			
			2008 SO-NZ, TAN 2010 NZ-			
			SO, TAN 2010 SO-NZ, TAN			
			2013 NZ-SO, TAN 2013 SO-			
			NZ			
Central	Spring	12	Idem to Northern region.	11.6	2.5	1275
	Summer	16	Idem to Northern region plus	13.4	3.8	1676
			transect SAS 2012 SO-NZ.			
Southern	Summer	11	JAN 2011 SO-NZ, JAN 2014	0.8	0.3	695
			SO-NZ, SAO 2010 SO-NZ,			
			SAO 2011 SO-NZ, SAO			
			2012 SO-NZ, SAO 2013 SO-			
			NZ, SAO 2014 SO-NZ, SAS			
			2011 SO-NZ, TAN 2008 NZ-			
			SO, TAN 2010 NZ-SO, TAN			
			2010 SO-NZ			

Table S3. Summary of mean acoustic backscatter (s_a) in m² km⁻² by transect sections within the Central region, detailed by pelagic zone, epi- and mesopelagic zones, and time of day (day/night). Epipelagic zone (< 200 m), mesopelagic zone (> 200 m); and day and night defined according to the civil twilight (day commences before the sunrise and finishes after the sunset, when the solar depression angle = 6°).

	Maan	Mean	Mean sa	Mean	Mean sa	Day	Day mean	Night	Night
Transect	Niean	s _a day	night	s _a epi	meso	mean s _a	s _a meso	mean s _a	mean s _a
	5 a	time	time	zone	zone	epi zone	zone	epi zone	meso zone
JAN 2010 NZ-SO	13.5	12.8	15.4	1.8	11.7	1.1	11.7	3.5	11.8
JAN 2011 NZ-SO	10.5	10.3	11.2	1.4	9.1	1.0	9.3	2.7	8.5
JAN 2011 SO-NZ	11.8	10.5	14.4	1.9	9.9	1.3	9.2	3.0	11.3
JAN 2013 NZ-SO	9.9	9.3	11.7	1.6	8.3	1.2	8.1	2.9	8.7
JAN 2014 NZ-SO	10.3	9.6	12.2	1.7	8.6	1.3	8.3	2.8	9.4
JAN 2014 SO-NZ	11.5	11.4	11.6	2.0	9.5	1.5	10.0	3.1	8.5
SAO 2008 SO-NZ	15.0	11.7	19.1	3.4	11.7	2.3	9.4	4.7	14.4
SAO 2010 NZ-SO	12.8	12.4	13.9	1.9	10.9	1.2	11.3	4.1	9.8
SAO 2010 SO-NZ	17.2	15.2	20.7	3.0	14.2	1.8	13.3	4.9	15.8
SAO 2011 NZ-SO	12.2	11.4	15.2	1.5	10.8	0.8	10.6	3.8	11.4
SAO 2011 SO-NZ	11.3	10.7	12.8	1.5	9.9	1.1	9.6	2.2	10.6
SAO 2012 NZ-SO	15.4	15.2	15.7	3.0	12.4	1.9	13.3	5.4	10.3
SAO 2012 SO-NZ	13.5	11.5	16.5	3.0	10.5	2.1	9.5	4.5	12.0
SAO 2013 NZ-SO	10.6	9.8	13.5	1.9	8.6	1.3	8.5	4.4	9.1
SAO 2013 SO-NZ	14.8	12.3	19.7	3.1	11.8	1.3	11.0	6.5	13.2
SAO 2014 NZ-SO	16.0	15.0	19.2	3.4	12.6	2.9	12.1	5.0	14.2
SAO 2014 SO-NZ	22.6	21.2	25.6	3.6	19.0	2.2	18.9	6.5	19.1
SAS 2010 NZ-SO	9.1	8.5	11.2	1.4	7.7	0.8	7.7	3.3	7.9
SAS 2011 NZ-SO	7.8	7.1	10.3	1.4	6.4	0.6	6.4	4.0	6.2
SAS 2011 SO-NZ	16.6	16.2	17.5	4.0	12.6	2.9	13.3	6.1	11.4
SAS 2012 SO-NZ	13.2	12.8	14.1	3.4	9.7	2.9	9.9	4.6	9.5
SAS 2013 NZ-SO	10.6	8.5	14.8	3.4	7.2	1.5	7.1	7.3	7.5
TAN 2008 NZ-SO 38	12.8	11.2	16.4	3.8	9.0	2.7	8.5	6.2	10.2
TAN 2008 SO-NZ 38	15.1	14.0	16.6	2.8	12.3	2.1	12.0	3.8	12.7
TAN 2010 NZ-SO 38	7.1	6.9	7.3	2.1	5.0	1.7	5.2	2.9	4.5
TAN 2010 SO-NZ 38	7.6	8.5	6.6	1.9	5.7	1.8	6.7	2.0	4.6
TAN 2013 NZ-SO 38	9.7	8.9	11.1	2.8	6.9	2.0	6.9	4.2	7.0
TAN 2013 SO-NZ 38	13.9	13.0	15.1	3.2	10.7	1.1	12.0	6.1	9.0

Table S4. Trawls information by research voyage and region to where assigned. Trawl type: ID – Mark identification, OB – Oblique. N/A: not available.

Cruise	Region	Trawl	Lat (°S)	Lon (E or W)	Mean depth (m)	Bottom depth (m)	Date (D/M/Y)	Time start (hh: mm)	Time end (hh: mm)	Trawl duration (hh:mm)	Total catch weight (kg)	Total catch (#)	Trawl type	Speed (knots)	Surface temp. (°C)
	Souther n	47	69.2	178	52	N/A	14/02/15	13:05	13:24	0:19	2.4	291	ID	4.2	-1.2
	Souther n	67	72.2	173.6	451	540	23/02/15	7:41	8:18	0:37	131.3	2622	ID	3.7	-1.4
	Souther n	68	69.5	-175.3	61	4112	26/02/15	17:54	18:02	0:08	72.6	81100	ID	4.2	-1.7
TAN15	Souther n	69	69.5	-175.3	265	4104	26/02/15	23:44	23:53	0:09	35.6	112	ID	2.8	-1.6
02	Souther n	72	69.5	-175.2	240	3752	28/02/15	23:13	23:45	0:32	44.4	236	ID	3.1	-1.7
	Souther n	74	69.4	-175.1	221	4103	1/03/15	22:20	22:40	0:20	30.6	161	ID	3.1	-1.7
	Central	82	65.3	-179.1	164	3275	3/03/15	20:26	20:36	0:10	5.7	346	ID	3	-
	Central	86	64.4	-179.3	618	3240	4/03/15	6:39	7:09	0:30	1.6	245	ID	3.4	1.4
	Central	8/	64.4	-179.3	397	2629	4/03/15	8:14	8:44	0:30	34.2	356	ID	3	1.3
	Norther n	2	43.1	174.8	324	430	3/11/11	8:58	10:18	1:20	36.1	15514	ID	3.7	12.5
	n Norther	5	43.8	174.8	0-422	471	3/11/11	22:47	23:26	0:39	19.3	7475	OB	3.3	12.6
	n Norther	7	43.6	174.4	500	555	4/11/11	4:55	5:27	0:32	6.6	3265	OB	3.3	-
	n Norther	14	43.6	174.6	197	485	4/11/11	15:56	16:16	0:20	1.3	1018	ID	3.7	12.5
	n Norther	15	43.5	174.6	50-450	466	5/11/11	0:17	0:42	0:25	8.3	4352	OB	3.2	-
	n Norther	22	43.4	174.2	109	567	5/11/11	18:16	18:31	0:15	87.3	49031	ID	3	11.4
	Norther n	27	43.4	174.2	50-520	570	6/11/11	0:43	1:12	0:29	16.6	9974	OB	3	11
	Norther n	28	43.4	174.9	50-550	523	6/11/11	2:53	3:19	0:26	20.9	7799	OB	3.1	8.3
	Norther n	37	43.6	174.2	70-448	502	6/11/11	20:16	20:43	0:27	14.6	2387	OB	3	12.5
	Norther n	38	44	174.2	50-485	538	7/11/11	0:02	0:28	0:26	19.1	5362	OB	3	12.8
	Norther n	39	44.2	173.9	50-510	574	7/11/11	2:47	319	21:13	117.6	298	OB	3.1	10.8
	Norther n	42	44.8	173.7	445	966	7/11/11	15:29	15:44	0:15	4.1	702	ID	3.2	9.6
TAN11 16	Norther n	47	44.8	173.7	50-982	1092	7/11/11	2:05	3:07	1:02	114.4	1009	OB	3	-
	Norther n	53	44.7	173.3	270	912	8/11/11	18:11	18:47	0:36	2.8	860	ID	3.3	9.7
	Norther n	54	44.7	173.4	100- 810	888	8/11/11	20:08	21:02	0:54	6.0	765	OB	3	9.8
	Norther n	55	44.8	174.1	50-825	825	9/11/11	0:22	1:06	0:44	11.0	826	OB	3.1	10.4
	Norther n	56	44.9	174.3	50-965	1003	9/11/11	2:45	3:47	1:02	16.9	5655	OB	3.5	9.8
	Norther n	60	44.7	173.7	400	890	9/11/11	13:44	14:20	0:36	32.0	20793	ID	3.5	9.7
	Norther n	61	44.1	177.2	600	990	10/11/11	8:00	8:20	0:20	5.8	799	ID	3.4	10.2
	Norther n	65	44.2	178.9	495	1033	11/11/11	1:15	2:16	1:01	7.8	1846	OB	3.1	-
	Norther n	71	44.2	178.9	280	1014	11/11/11	12:59	13:20	0:21	5.3	2865	ID	3.5	11.3
	Norther n	73	44.2	179.2	117	969	11/11/11	18:29	18:47	0:18	0.7	249	ID	4	11.5
	Norther n	74	44.2	179.2	50-900	1138	11/11/11	20:10	21:19	1:09	6.7	627	OB	3	11.4
	Norther n	75	44.1	178.7	50-850	931	12/11/11	0:22	1:22	1:00	2.5	422	OB	3.1	10.9
	Norther n	76	44.1	178.3	50-901	942	12/11/11	3:40	4:43	1:03	9.3	1752	OB	3	10.7
TAN08	Souther n	19	73.2	174.2	185	N/A	10/02/08	1:44	2:14	0:30	217.8	14706	ID	3.3	-0.5
02	Souther n	33	74.6	169	75	445	12/02/08	2:41	3:07	0:26	4.2	2313	ID	4.3	-1.4

Cruise	Region	Trawl	Lat (°S)	Lon (E or W)	Mean depth (m)	Bottom depth (m)	Date (D/M/Y)	Time start (hh: mm)	Time end (hh: mm)	Trawl duration (hh:mm)	Total catch weight (kg)	Total catch (#)	Trawl type	Speed (knots)	Surface temp. (°C)
	Souther n	103	74.5	177.6	220	287	18/02/08	13:09	13:42	0:33	222.8	9120	ID	4.2	-1.3
	Souther n	119	72.4	175.5	50-875	726	21/02/08	5:17	6:05	0:48	37.5	111	OB	2.8	-1.8
	Souther n	131	72.1	175.7	50- 1026	1676	22/02/08	3:37	4:30	0:53	49.3	86	OB	2.9	-1.8
	Souther n	142	72	173.4	50- 1012	N/A	23/02/08	7:45	8:36	0:51	30.4	229	OB	3	-1.6
	Souther n	149	72	173.3	50-820	867	23/02/08	22:22	23:27	1:05	71.9	21	OB	2.2	-1.4
	Souther n	174	71.3	174.8	50- 1010	2271	26/02/08	9:22	10:13	0:51	80.8	675	OB	3	-1.7
	Souther n	185	68.6	-178.4	50-901	3161	1/03/08	5:47	6:35	0:48	21.8	84	OB	3.1	-1.8
	Souther n	193	68.3	-178.9	174	3203	2/03/08	8:10	8:35	0:25	5.3	144	ID	3.5	-1.8
	Souther n	195	68.1	-179.3	50-800	1721	2/03/08	15:08	15:52	0:44	13.2	195	OB	4.1	-1.7
	Souther n	227	67.6	-178.8	10- 1000	3642	5/03/08	11:51	12:47	0:56	8.3	149	OB	3.5	-1.5
	Souther n	240	67.4	-179.9	50-770	705	7/03/08	10:04	10:34	0:30	17.3	545	OB	2.9	-1.3
	Central	262	67	170.9	100- 400	450	9/03/08	20:50	21:10	0:20	5.4	18	OB	3.5	-1.5
	Central	284	66.9	171.3	50- 1023	3309	11/03/08	22:30	0:15	1:45	47.7	351	OB	3	-1.3
	Central	293	66.9	171.1	50- 1032	1229	12/03/08	21:44	23:30	1:46	22.2	295	OB	3.1	-1.4
	Central	312	67	170.7	100- 1087	1213	14/03/08	10:29	11:53	1:24	50.7	288	OB	3	-1.5

Table S5. Species sampled biologically from trawls used to characterise the species composition of the Northern region. Average weight across trawls estimated excluding tunicates (e.g., salps) and gelatinous (e.g., jellyfish).

Species	Common name	Grou p	Average contributio n by number (%) across trawls when present	Average contributio n by weight (%) across trawls when present	Trawls Occurrenc e
Apristurus spp.	Catshark	Fish	0.1	0.5	1
Agrostichthys parkeri	Ribbonfish	Fish	0.1	0.2	1
Argyropelecus hemigymnus	Common hatchetfish	Fish	0.1	0.01	2
Mesobius antipodum	Black javelinfish	Fish	0.2	0.01	1
Allocyttus niger	Black oreo	Fish	0.1	8.5	1
Coelorinchus oliverianus	Olivers rattail	Fish	0.3	0.02	1
Coryphaenoides subserrulatus	Four-rayed rattail	Fish	0.3	0.1	1
Trachipterus trachypterus	Dealfish	Fish	0.02	2	2
Diaphus spp.	Diaphus spp.	Fish	0.9	0.5	19
Electrona carlsbergi	Lanternfish	Fish	1.7	4.8	15
Etmopterus baxteri	Baxters lantern dogfish	Fish	0.2	0.03	6
Etmopterus lucifer	Lucifer dogfish	Fish	0.03	0.1	1
Gymnoscopelus microlampas	Lanternfish	Fish	0.3	0.6	3
Gymnoscopelus spp.	Lanternfish	Fish	0.4	0.1	3
Gymnoscopelus piabilis	Lanternfish	Fish	2.7	58.1	10
Macruronus novaezelandiae	Hoki	Fish	0.1	1.9	4
Lampanyctodes hectoris	Lampanyctodes hectoris	Fish	67.2	0.02	22
Lampanyctus spp.	Lampanyctus spp.	Fish	2.6	2.9	16
Lampichthys procerus	Lampichthys procerus	Fish	0.3	2	3
Maurolicus australis	Pearlside	Fish	10.7	0.1	24
Persparsia kopua	Persparsia kopua	Fish	1.2	0.5	11
Photichthys argenteus	Lighthouse fish	Fish	0.3	0.5	16
Protomyctophum spp.	Lanternfish	Fish	3	0.5	20
Squalus acanthias	Spiny dogfish	Fish	0.03	0.5	2
Brama australis	Southern rays bream	Fish	0.2	0.9	7
Seriolella punctata	Silver warehou	Fish	0.01	5.5	1
Symbolophorus boops	Lanternfish	Fish	1.5	3.6	14
Vinciguerria spp.	Bristlemouth	Fish	0.2	0.04	10

Table S6. Species sampled biologically from trawls used to characterise the species composition of the Central region. Average contribution in weight across trawls estimated excluding tunicates (e.g., salps) and gelatinous (e.g., jellyfish).

Species	Common name	Group	Average contributio n by number (%) across trawls when present	Average contributio n by weight (%) across trawls when present	Trawls Occurrenc e
Bathylagus antarcticus	Deep-sea smelt	Fish	12.5	13.8	3
Bathyteuthis abyssicola	Crown squid	Squid	0.9	1.6	3
Cynomacrunus piriei	Dogtooth granadier	Fish	0.8	2.1	2
Electrona carlsbergi	Lanternfish	Fish	9.7	5.9	4
Electrona antarctica	Lanternfish	Fish	34.3	14.4	6
Euphausia superba	Antarctic krill	Crustacea n	30.8	1.6	3
Seleniolycus laevifasciatus	Eelpout	Fish	0.7	0.5	1
Galiteuthis glacialis	Glacial cranch squid	Squid	2.1	3.2	3
Gonatus antarcticus	Antarctic gonate squid	Squid	0.7	1.1	1
Gymnoscopelus bolini	Bolin's lanternfish	Fish	1	1.6	1
Gymnoscopelus hintonoides	False-midas lanternfish	Fish	0.8	1.1	2
Gymnoscopelus nicholsi	Nichol's lanternfish	Fish	4.4	14.4	6
Gymnoscopelus opisthopterus	Short-tail lanternfish	Fish	2	3.2	3
Gymnoscopelus piabilis	Lanternfish	Fish	1	1.6	1
Gymnoscopelus braueri	Lanternfish	Fish	9.1	5.9	4
Krefftichthys anderssoni	Lanternfish	Fish	5.6	0.5	1
Kali spp.	Swallower	Fish	0.3	0.5	1
Nannobrachium achirus	Cripplefin lanternfish	Fish	0.9	1.1	2
Mesonychoteuthis hamiltoni	Collossal squid	Squid	0.6	0.5	1
Mastigoteuthis psychropila	Squid	Squid	1.9	4.3	2
Notolepis coatsi	Antarctic jonasfish	Fish	3.5	3.7	5
Paradiplospinus gracilis	False frostfish	Fish	0.6	1.1	5
Protomyctophum spp.	Lanternfish	Fish	5.1	2.7	2
Pseudoicichthys australis	Ragfish	Fish	0.3	1.7	1
Serrivomer spp.	Sawtooth eel	Fish	0.3	1.6	1
Slosarczykovia					
circumantarctica	Squid	Squid	2.9	0.5	3
Undetermined spp.	Squid	Squid	1.4	2.1	1
Cyclothone microdon	Bristlemouth	Fish	8.4	2.1	4

Table S7. Species sampled biologically from trawls used to characterise the species composition of the Southern region. Average contribution in weight across trawls estimated excluding tunicates (e.g., salps) and gelatinous (e.g., jellyfish).

			Average	Average	
			contributio	contributio	
			n	n	Trawls
Species	Common name	Group	by number	by weight	Occurrenc
•		•	(%) across	(%) across	e
			trawis	trawis	
			wnen	wnen	
1	Descerte eth	Eiste	present	present	1
Anotopierus pharao	Anteretia gilverfich	FISH	0.2	0.1	1
Pieuragramma antarctica	Doop goo smolt	FISH	31.4 15.7	82	/
Bathytauthis abyssicola	Crown squid	Squid	13.7	0.01	9
Banthalballa alongata	Pearleve	Fish	0.4	0.01	1
Bathydraco scotiaa	Antarctic dragonfish	Fish	0.4	0.01	1
Borostomias antarcticus	Stareater	Fish	1.2	0.01	1
Cryodraco atkinsoni	Crocodile icefish	Fish	0.04	0.01	1
Cryodraco myersi	Crocodile icefish	Fish	0.04	0.04	1
Cynomacrunus piriei	Dogtooth granadier	Fish	12	0.01	1
Electrona carlsbergi	Lanternfish	Fish	35.1	0.01	6
Electrona antarctica	Lanternfish	Fish	21.5	03	12
Euphausia crystallorophias	Crystall krill	Crustacea	53.1	0.0	2
		n		0.4	
Euphausia superba	Antarctic krill	Crustacea	60.4		3
1 1		n		10.9	
Galiteuthis glacialis	Glacial cranch squid	Squid	1.4	0.1	5
Gymnoscopelus bolini	Bolin's lanternfish	Fish	8.8	0.1	8
Gymnoscopelus fraseri	Fraser's lanternfish	Fish	1.2	0.01	1
Gymnoscopelus hintonoides	False-midas	Fish	1.7		6
	lanternfish			0.1	
Gymnoscopelus	Lanternfish	Fish	1.2		1
microlampas				0.01	
<i>Gymnoscopelus</i> spp.	Lanternfish	Fish	1.2	0.2	1
Gymnoscopelus nicholsi	Nichol's lanternfish	Fish	4.1	0.3	10
Gymnoscopelus	Short-tail lanternfish	Fish	5.7		5
opisthopterus	D 11 (C1	D' 1		0.4	0
Gymnoscopelus braueri	Brauer's lanternfish	Fish	8.8	0.2	8
Neopagetopsis ionah	Crocodile icefish	Fish	12.9	1.7	5
Kondakovia longimana	Longarm octopus	Squid	0.7	0.5	1
Name a bara a birrar a a birrar	Squid Crimplafin lantamfish	Eiste	0.5	0.5	4
Nannobrachium achirus	Collogeol aguid	FISH	0.5	0.1	4
Mesonycholeulnis hamilioni	Antenetic icrosfich	Squid	0.9	0.01	1
Nototepis coalst	Stringd avad realroad	FISH	8	0.2	10
Notothonjidaa	Anteratio rock cod	Fish	10.4	0.2	1
	Octopod	Octopus	0.4	0.01	2
- Paradiplospinus gracilis	False frostfish	Fish	0.2	0.03	1
Psychroteuthis alacialis	Glacial squid	Squid	1.5	0.01	2
Cryodraco hamatus	Crocodile icefish	Fish	0.2	0.2	1
Cyclothone microdon	Bristlemouth	Fish	12.9	0.1	5
Cyclomone microuon	Enstremouth	1 1011	14.7	U.1	5