Table S1. Mean and standard deviation (SD) of *Laminaria hyperborea* kelp canopy stipe length, ungrazed stipe surface area (SA) and lamina weight used to standardize epiphytic response variables, and the control variables used in the statistical analyses.

Group	Stipe length ¹ (cm)	Ungrazed SA ¹ (cm ²)	Lamina weight ¹ (g)	Kelp age ¹ (years)	Kelp density ¹ (ind m ⁻²)	Wave exposure ² (m ² s ⁻¹)	Mean current speed ² (m s ⁻¹)	Light exposure index ²
Ref-L	96 (30)	98 (97)	626 (385)	6 (3)	9 (8)	81 511 (69 732)	0,01 (0,02)	0,02 (0,04)
FF-L	76 (25)	98 (113)	756 (360)	5 (1)	3 (3)	150 964 (112 948)	0,04 (0,04)	-0,06 (0,06)
Ref-H	65 (21)	42 (43)	559 (259)	5 (2)	7 (7)	379 474 (277 787)	0,03 (0,03)	-0,04 (0,07)
FF-H	57 (13)	130 (119)	530 (254)	6 (1)	5 (2)	79 598 (53 607)	0,04 (0,01)	-0,07 (0,06)

1 denotes measured data, 2 denotes modelled data

Table S2. Variance inflation factors (VIF) for the control variables used in statistical models to assess the impact of fish farm effluents on the epiphytic community of *Laminaria hyperborea* kelp canopy plants.

Control variable	VIF		
Kelp age	1.30		
Kelp density	3.17		
Current speed	2.57		
Wave exposure	1.34		
Light exposure	1.60		

Table S3. Species list of macroalgae found growing epiphytically on stipes of *Laminaria hyperborea* canopy plants in the Frøya and Smøla archipelagos, Norway, August 2015. Morphological group is a rough grouping of the species to examine whether there were trends relating to fish farming.

Species	Authority	Morphological group	
Phaeophyceae			
Alaria esculenta	(Linnaeus) Greville	Other	
Chaetopteris plumosa	(Lyngbye) Kützing	Corticated	
Desmarestia aculeata	(Linnaeus) J.V.Lamouroux	Other	
Desmarestia viridis	(O.F.Müller) J.V.Lamouroux	Other	
Desmarestia sp.	J.V.Lamouroux	Other	
Dictyota dichotoma	(Hudson) J.V.Lamouroux	Foliose	
Ectocarpus sp.	Lyngbye	Uniseriate	
Hincksia sp.	J.E.Gray	Uniseriate	
Laminaria hyperborea	(Gunnerus) Foslie	Other	
Laminariales indet.		Other	
Litosiphon laminariae	(Lyngbye) Harvey	Other	
Mesogloia vermiculata	(Smith) S.F.Gray	Other	
Pogotrichium filiforme	Reinke	Uniseriate	
Pylaiella littoralis	(Linnaeus) Kjellman	Uniseriate	
Pylaiella sp.	Bory	Uniseriate	
Scytosiphon lomentaria	(Lyngbye) Link	Other	
Sphacelaria cirrosa	(Roth) C. Agardh	Corticated	
Sphacelaria plumula	Zanardini	Corticated	
Sphacelaria rigidula	Kützing	Corticated	
Sphacelaria spp.	Lyngbye	Corticated	
Chlorophyta			
Acrosiphonia arcta	(Dillwyn) Gain	Uniseriate	
Bryopsis plumosa	(Hudson) C.Agardh	Uniseriate	
Chaetomorpha ligustica	(Kützing) Kützing	Uniseriate	
Chaetomorpha melagonium	(F.Weber & D.Mohr) Kützing	Uniseriate	
Chaetomorpha spp.	Kützing	Uniseriate	
Cladophora rupestris	(Linnaeus) Kützing	Uniseriate	
Cladophora spp.	Kützing	Uniseriate	
Codium fragile	(Suringar) Hariot	Other	
Derbesia marina	(Lyngbye) Solier	Uniseriate	
Rhizoclonium spp.	Kützing	Uniseriate	
Spongomorpha aeruginosa	(Linnaeus) Hoek	Uniseriate	
Ulva lactuca	Linnaeus	Foliose	
Ulva prolifera	O.F. Müller	Foliose	
Ulva spp.	Linnaeus	Foliose	
Rhodophyta			
Aglaothamnion tenuissimum	(Bonnemaison) Feldmann-Mazoyer	Uniseriate	
Antithamnion nipponicum	Yamada & Inagaki	Uniseriate	
Apoglossum ruscifolium	(Turner) J.Agardh	Foliose	
Bonnemaisonia hamifera	Hariot	Uniseriate	
callithamnion corymbosum	(Smith) Lyngbye	Uniseriate	
	(Withoring) S. F. Crow	Unicoriato	

Ceramium virgatum	Roth	Corticated
Ceramium spp.	Roth	Corticated
Corallina officinalis	Linnaeus	Other
Cryptopleura ramosa	(Hudson) L.Newton	Foliose
Dasysiphonia japonica	Yendo	Corticated
Delesseria sanguinea	(Hudson) J.V.Lamouroux	Foliose
Delesseriaceae spp.	Bory	Foliose
Euthora cristata	(C.Agardh) J.Agardh	Foliose
Haraldiophyllum bonnemaisonii	(Kylin) A.D.Zinova	Foliose
Lomentaria clavellosa	(Lightfoot ex Turner) Gaillon	Other
Membranoptera alata	(Hudson) Stackhouse	Foliose
Metacallophyllis laciniata	(Hudson) A.Vergés & L.Le Gall	Foliose
Nitophyllum punctatum	(Stackhouse) Greville	Foliose
Palmaria palmata	(Linnaeus) F.Weber & D.Mohr	Foliose
Phycodrys rubens	(Linnaeus) Batters	Foliose
Polysiphonia brodiei	(Dillwyn) Sprengel	Corticated
Polysiphonia elongata	(Hudson) Sprengel	Corticated
Polysiphonia fibrillosa	(Dillwyn) Sprengel	Corticated
Polysiphonia stricta	(Mertens ex Dillwyn) Greville	Corticated
Symphyocladiella parasitica	(Hudson) D.Bustamante, B.Y.Won, S.C.Lindstrom & T.O. Cho	Corticated
Ptilota gunneri	P.C.Silva, Maggs & L.M.Irvine	Corticated
Rhodochorton purpureum	(Lightfood) Rosenvinge	Uniseriate
Rhodomela lycopodioides	(Linnaeus) C.Agardh	Corticated
Rhodomela sp.	C.Agardh	Corticated
Scagelia pylaisaei	(Montagne) M.J.Wynne	Uniseriate
Spermothamnion repens	(Dillwyn) Magnus	Uniseriate
Spermothamnion sp.	Areschoug	Uniseriate

Table S4. Results of vector fitting to community data of epiphytic biomass on *Laminaria hyperborea* kelp canopy stipes collected from 12 sites in the Frøya and Smøla archipelagos, Norway. Significance (p) and explained variation (r^2) are shown for control variables and the *a-priori* factor *Group* fitted to the 2-dimensional ordination space (Fig. 6). Italics show the results when excluding the high wave-exposure site (in Ref-H); bold indicates significance (= 0.05).

	Control variable					
Model info	Group	Kelp age	Kelp density	Current speed	Wave exposure	Light exposure
n = 95	r ² = 0.11,	r ² = 0.14,	r ² = 0.27,	r ² = 0.12,	r ² = 0.15,	r ² = 0.17,
	p = 0.005	p = 0.003	p = 0.001	p = 0.007	p = 0.001	p = 0.001
n = 86 (-site 7)	r ² = 0.08,	r² = 0.13,	r² = 0.13,	r ² = 0.02,	r² < 0.01,	r ² = 0.10,
	p = 0.043	p = 0.002	p = 0.003	p = 0.356	p = 0.945	p = 0.016

Table S5. Results of PERMDISP on the epiphyte community of *Laminaria hyperborea* kelp canopy stipes collected from 5 m depth at fish farm sites (low effluent levels: FF-L, high effluent levels: FF-H) and reference sites (Ref-L, Ref-H) in the Frøya (Ref-L, FF-L) and Smøla (Ref-H, FF-H) archipelagos, Norway. The degree of dispersion is shown for each level within *Group* for the epiphytic macroalgae community, and for the epiphyte community including bryozoans.

	Group				
Community	Ref-L	Ref-H	FF-L	FF-H	
Macroalgae	1.370	1.326	1.219	0.931	
Macroalgae + bryozoans	1.230	1.336	1.407	0.652	

Figure S1. Model predictions (lines) for kelp age (left) and wave exposure (right) over collected data (points) of algal epiphytes on stipes of *Laminaria hyperborea* kelp canopy plants at fish farm sites (low levels: FF-L, high levels: FF-H) and reference sites (Ref-L, Ref-H) in the Frøya (Ref-L, FF-L) and Smøla (Ref-H, FF-H) archipelagos, Norway. The points have been jittered to reduce overplotting.

Figure S2. Model predictions (lines) for wave exposure (left) and light (right) over collected data (points) of the biomass of bryozoan epiphytes present on stipes of *Laminaria hyperborea* kelp canopy plants at fish farm sites (low levels: FF-L, high levels: FF-H) and reference sites (Ref-L, Ref-H) in the Frøya (Ref-L, FF-L) and Smøla (Ref-H, FF-H) archipelagos, Norway. The points have been jittered to reduce overplotting.

Figure S3. Biomass of epiphytes present on stipes of *Laminaria hyperborea* kelp canopy plants at fish farm sites (low levels: FF-L, high levels: FF-H) and reference sites (Ref-L, Ref-H) in the Frøya (Ref-L, FF-L) and Smøla (Ref-H, FF-H) archipelagos, Norway. The two areas are separated by a vertical dashed line (left-hand side = FF-L and Ref-L, right = FF-H and Ref-H). Note that the y-axis is on a square root scale. For plot explanation see Figure 4.

Figure S4. Urchin grazing on stipes of *Laminaria hyperborea* kelp canopy plants at fish farm sites (low levels: FF-L, high levels: FF-H) and reference sites (Ref-L, Ref-H) in the Frøya (Ref-L, FF-L) and Smøla (Ref-H, FF-H) archipelagos, Norway. Different colors represent the 12 sampling sites. The points have been jittered to reduce overplotting.

Figure S5. Model predictions (lines) for kelp density (left), wave exposure (middle) and light (right) over collected data (points) of algal epiphytes on laminas of *Laminaria hyperborea* kelp canopy plants at fish farm sites (low levels: FF-L, high levels: FF-H) and reference sites (Ref-L, Ref-H) in the Frøya (Ref-L, FF-L) and Smøla (Ref-H, FF-H) archipelagos, Norway. The points have been jittered to reduce overplotting.

Figure S6. Model predictions for kelp density (lines) over collected data (points) of encrusting bryozoan cover on laminas of *Laminaria hyperborea* kelp canopy plants at fish farm sites (low levels: FF-L, high levels: FF-H) and reference sites (Ref-L, Ref-H) in the Frøya (Ref-L, FF-L) and Smøla (Ref-H, FF-H) archipelagos, Norway. The points have been jittered to reduce overplotting.