
Mobile Platform Idle Power Optimization
─ Methodologies and Tools

Session ID: EBLS003

Matthew Robben
Program Manager, Microsoft Corporation
Susumu Arai
Mobile Platform Architect, Intel Corporation

Agenda

• Mobile platform energy efficiency goals
• Hardware considerations
• Software considerations
• Tools for idle power analysis

2

Mobile Platform Energy Efficiency Goals

Minimize power consumption while idle
• Mobile client systems are idle (low CPU utilization) most of

the time
Example: Office PC loaded with many IT applications

• Even with moderately
busy workloads, there
are a lot of low CPU
utilization sections

3

Source: Intel Corporation

Platform Power Saving Features

• Today’s mobile platform implements many power
saving features

• But, many systems are not taking full advantage
of them
– Not properly configured
– Bad component selection
– Bad software activities

• One bad component
can cause significant impact

4

CPU iM
C

DMI I/F

G
fxLCD DIMM

PCH

DMI I/F

D
M

I
B
u
s

A
H

C
I

E
H

C
I

HDD
SDD

CPU Core

PCIe

PCIe
Device

USB
Device

PCIe = PCI Express* Technology

Agenda

• Mobile platform energy efficiency goals
• Hardware considerations
• Software considerations
• Tools for idle power analysis

5

CPU Power Saving

• CPU is a well power managed component
– Dynamic power supply voltage

Lower voltage when CPU utilization is low

– Power gating
Turn off power when CPU is idle to minimize leakage

– CPU can adjust performance/power to the workload

• But, burns energy at each idle/active transition

6

CPU

Core Core

Cache

Active

Idle

Energy Loss

4

5

6

7

8

9

10

11

12

0% 2% 4% 6% 8% 10%

Pl
at

fo
rm

 P
ow

er

CPU Utilization

Solid Activity

Fragmented Activity

Software Impact to Platform Power

• Resource utilization (CPU cycle count) isn’t the
only factor

• Periodicity of the activity makes big impact

• Optimization needs to
address both

• Details will be discussed
in the software section

7

Reduce

C
o
n
so

lid
at

e

Recommendations

PCI Express* / SATA Power Saving

• Serial buses implement Link Power Management
– L0s and L1 (ASPM) states for PCI Express* links
– Partial and Slumber states for SATA links

• Maximize residency in the lower power states
• But, just setting enable bits isn’t enough

Actual residency determined by many factors
– Traffic on the bus
– Device and driver policy

8

Please see the following white papers for details :
• Designing Energy Efficient SATA Devices (SATA devices)
• Energy-efficient platform devices (PCI Express* devices)

– Select devices with adequate policy*

– Verify LPM state residency in the shipping configuration
– Configure driver policy if necessary

Intel ® Rapid Storage Technology (RST) has registry
settings for SATA policy*

USB Device Power Saving

• USB operates on periodic polling and keeps
large part of platform in active state

• USB device should
implement Selective
Suspend and stay in
that state as long as
possible

CPU iM
C

DMI I/F

G
fxLCD DIMM

PCH

DMI I/F

D
M

I
B
u
s

A
H

C
I

E
H

C
I

HDD
SDD

CPU Core

PCIe

PCIe
Device

USB
Device

9
PCIe = PCI Express* Technology

Please see the following white papers for details :
• Energy-efficient platform devices
• Making USB a more energy efficient interconnect

Recommendations
– Choose devices with

selective suspend
support

– Minimize access to
the devices

– Place the device
closer to host controller
if periodic access is
necessary

USB Device Power Saving (Cont.)

• Periodic device polling diminishes the
benefit of selective suspend

10

Perio
d
ic A

ccess

Recommendations

Interrupt Sharing

• Interrupt sharing increases platform activity
– ISRs (Interrupt Service Routines) for multiple devices

are executed to determine the source of interrupt
– Each ISR accesses its hardware and wakes bus from low

power state

Device A

Device B

PCH
IOAPIC

CPU

ISR for Device A

ISR for Device B PCIe

PCIe

Interrupt

11
PCIe = PCI Express* Technology

– Make sure device and driver support MSI
– If not, assign dedicated line for devices with frequent

interrupts

Agenda

• Mobile platform energy efficiency goals
• Hardware considerations
• Software considerations
• Tools for idle power analysis

12

Optimize Application Behavior
• Two major factors that

determine platform
power
– Resource Utilization
§ (e.g. CPU utilization)

– Resource Usage Pattern
§ Fragmented activities

cause more power
impact

• Focus on idle

13

4

5

6

7

8

9

10

11

12

0% 2% 4% 6% 8% 10%
Pl

at
fo

rm
 P

ow
er

CPU Utilization

Solid Activity

Fragmented Activity

Notebook Platform Power
vs

CPU Utilization

Application Design Principles

14

Respect System Idle

0%

1%

2%

3%

4%

5%

6%

7%

8%

Clean
Install

IT Image

15

• Idle dominates usage
scenarios for client
systems
– Reducing idle power

is essential for
extending battery
life

– Windows* 7 made
vast improvements

Source: Microsoft Corporation

Optimize Resource Usage
• Performance improvement = power

improvement
• Architect event driven designs instead of

polling or spinning
– WaitForSingleObjectEx() or SleepEx()

void EatBatteryLife()
{

HANDLE sharedResource = NULL;

//your process waits for a file to be created via:
while (sharedResource == NULL)
{

waitTime++;
sleep(1);

}
}

16

WaitForSingleObjectEx() API Usage

//process 1's code
void UpdateSharedResource()
{

//set sharedResource
sharedResource = UpdateResource();

// Set sharedResourceIsReadyEvent to
// signaled
SetEvent(sharedResourceIsReadyEvent);

}

//process 2's code
void ConsumeSharedResource()
{

DWORD dwWaitResult;

dwWaitResult = WaitForSingleObjectEx(
sharedResourceIsReadyEvent,
INFINITE,
FALSE); // indefinite wait

switch (dwWaitResult)
{

case WAIT_OBJECT_0:
//
// TODO: use sharedResource
//
break;
default:
return 0;

}
}

17

Optimize Resource Usage (2)
• Repainting GUI cascades work to graphics

controller
– 1 pixel change causes 10 VBI
– Avoid animation icons in the system tray area

• Don’t use WMI where Win32 APIs or .NET classes
will suffice
– Example: Repeated Win32_Directory enumeration vs.

FileSystemWatcher class

• Choose event-driven APIs
– Example: EvtSubscribe() instead of EventLogQuery()

18

Optimize Resource Usage (3)
• Assume all devices have

power states
• Reduce device activity to

enable low power states
– Disk spin-down
– Periodic, low-priority disk

activity from applications
should be on order of
several hours

– Batch I/Os where possible
– Use volatile registry keys

for transient information

19

0
1
2
3
4
5

Example HDD Power

Source: Microsoft Corporation

Reduce Periodic Activity
• Avoid changing timer

resolution from the
default setting
– Avoid reducing by using

larger buffers
– If you want more granular

timestamps, use
QueryPerformanceCounter()

• Media playback should
use 10ms (or larger)
– Limit request to as little

codepath as possible

• Audio playback code
should use event-driven,
shared-mode WASAPI*

0
1
2
3
4
5
6
7
8
9

10
11
12
13

15.6 ms
(default)

1 ms

CPU Power System Power

20
* Please see Windows* 7 SDK sample code at
C:\Program Files\Microsoft SDKs\Windows\v7.0\Samples\multimedia\audio\

Source: Microsoft Corporation

Reduce Periodic Activity (2)
• Thread ping-pong

effects
– Avoid extremely short

duration ‘work & signal’
patterns
– Use of RPC/COM can

cause this
– Battery Life Analyzer

tool provides insight into
thread behavior

21

Coalesce Timers
• Kernel mode and user mode timers should coalesce

with other work on the system for minimum power
impact

– Need to engineer for timing tolerance
• New coalescing APIs in Windows* 7

Timer tick
15.6 ms

Periodic
timer
events

Windows 7

Windows Vista*

22

SetWaitableTimerEx() API
• Replace calls to SetWaitableTimer() with this

API
– More efficient than a purely periodic timer
– Tolerance parameter should scale with the timer

period

BOOL WINAPI SetWaitableTimerEx(
__in HANDLE hTimer,
__in const LARGE_INTEGER *lpDueTime,
__in LONG lPeriod,
__in_opt PTIMERAPCROUTINE pfnCompletionRoutine,
__in_opt LPVOID lpArgToCompletionRoutine,
__in_opt PREASON_CONTEXT WakeContext,
__in ULONG TolerableDelay
);

23

SetWaitableTimerEx() API Usage

void CreateAndSetPeriodicTimer()
{

myTimer = CreateWaitableTimerEx(NULL,
TimerName, //string with chosen timer name
NULL,
TIMER_MODIFY_STATE); //required security attribute to call

//SetWaitableTimerEx

bError = SetWaitableTimerEx(myTimer,
DueTime, //UTC due time
10000, //periodic timer duration is ten seconds
CompletionRoutinePointer, //APC completion routine
ArgsToCompletionRoutine, //completion routine arguments
WakeContext, //only if waking the machine
1000); //tolerable delay is one second

//DO WORK

bError = CancelWaitableTimer(myTimer); //be sure to cancel periodic timers!
}

24

0.00

5.00

10.00

15.00

20.00

25.00

DVD

P
o

w
e
r

C
o

n
su

m
p

ti
o

n
 (

W
a
tt

s)

DVD Playback Power
Consumption

(Windows Media Player)

High Perf

Balanced

Power Saver

Bonus: Optimize for System State

• System state holds
optimization potential
for applications
– Firewall application should

do very little when the PC is
not connected to network

• Register for power state
change notifications
– Use the callback to trigger

behavioral changes

25

Source: Microsoft Corporation

RegisterPowerSettingNotification() API

• Allows you to register for change notifications on
power settings

• Callback is a notification to change application
behavior
– Includes new power setting value

void MyApp::OnInit()
{

hACDCSource = RegisterPowerSettingNotification(m_hWnd,
&GUID_ACDC_POWER_SOURCE,
DEVICE_NOTIFY_WINDOW_HANDLE);

}
void MyApp::OnDestroy()
{

if (hACDCSource != 0)
UnregisterPowerSettingNotification(hACDCSource);

}

26

Agenda

• Mobile platform energy efficiency goals
• Hardware considerations
• Software considerations
• Tools for idle power analysis

27

Choose the Right Tool

• Microsoft* Windows* “PowerCfg /energy”
– OS Built-in command
– Easy to use, suitable for identifying some common issues

• Microsoft* Windows* Performance Toolkit (xperf)
– Built on ETW (Event Tracing for Windows) Technology
– Good tool for deep performance / power analysis

28

• Battery Life Analyzer
– New tool from Intel
– Easy to use, suitable for identifying bad components
– More detailed information on Intel mobile platforms
– Built on ETW Technology

Battery Life Analyzer - Outline

• High level tool to identify battery life
issues
– Simple GUI application
– In most cases, it takes only few mouse clicks

• Quantifies the impact of the issues
– Where possible, power impact is estimated

29

Battery Life Analyzer - Features

• Hardware Analysis
– CPU C-state residency
– PCI Express*, SATA Link Power Management
– USB selective suspend

• Software Analysis
– Fine-grained CPU utilization information
– Periodicity of the activity
– Concurrency of multi-core activity
– Graphics activity
– Identify process causing HDD spin-ups

30

Battery Life Analyzer – CPU C-State

CPU C-State Example:
• High residency in the deepest C-state
• All software behaving well

31

Battery Life Analyzer – SATA LPM

SATA Link Power Management
• Bad Example

– DVD drive not entering Slumber state

• Good Example
– Same drive enters Slumber state after

enabling host initiated Slumber in the registry

32

Fdfdsfdfjlkfkdlfd;fdjsfdfd

Fdfdsfdfjlkfkdlfd;fdjsfdfd

Fdfdsfdfjlkfkdlfd;fdjsfdfd

Fdfdsfdfjlkfkdlfd;fdjsfdfd

Battery Life Analyzer – HDD Spin-up

Disk Activity Analysis
Identify which process/routine is causing HDD
spin-up

33

34

Summary

• Your product has a direct impact to the
battery life of mobile platforms

• One bad product can ruin the customer
experience

• Start looking at the impact to idle power
• Tools and more information are available

from Intel and Microsoft

35

Call to Action

• Get tools
– “PowerCfg /energy”

Windows* 7 built in command

– Microsoft* Windows* Performance Toolkit (xperf)
Now included in Windows 7 SDK

– Battery Life Analyzer
Send e-mail to: BatteryLifeAnalyzer@intel.com

• Analyze your product and identify the issue
• Improve power efficiency of your product

36

Additional sources of
information on this topic:
• Other Sessions

– EBLS001: Interconnect Bus Extensions for Energy-Efficient Platforms

– EBLS002: Impact of “Idle” Software on Battery Life

• White papers
http://www.intel.com/technology/mobility/notebooks.htm

– Designing Energy Efficient SATA Devices

– Making USB a More Energy-Efficient Interconnect

– Energy-Efficient Platforms – Designing Devices Using the New Power
management Extensions for Interconnects

– Energy-Efficient Platforms – Considerations for Application Software and
Service

http://www.microsoft.com/whdc/system/pnppwr/default.mspx

– Mobile Battery Life Solutions Guide for Windows 7

– Developing Efficient Background Processes for Windows

– Using PowerCfg to Evaluate System Energy Efficiency

– Windows Timer Coalescing

http://www.intel.com/technology/mobility/notebooks.htm�
http://www.microsoft.com/whdc/system/pnppwr/default.mspx�

Legal Disclaimer
• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS.

NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPETY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

• Intel may make changes to specifications and product descriptions at any time, without notice.
• All products, dates, and figures specified are preliminary based on current expectations, and are

subject to change without notice.
• Intel, processors, chipsets, and desktop boards may contain design defects or errors known as

errata, which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

• Performance tests and ratings are measured using specific computer systems and/or
components and reflect the approximate performance of Intel products as measured by those
tests. Any difference in system hardware or software design or configuration may affect actual
performance.

• Intel, Intel Sponsors of Tomorrow. and Intel Sponsors of Tomorrow. Logo and the Intel logo are
trademarks of Intel Corporation in the United States and other countries.

• *Other names and brands may be claimed as the property of others.
• Copyright ©2010 Intel Corporation.

37

Risk Factors

38

The above statements and any others in this document that refer to plans and expectations for the second quarter, the year and the
future are forward-looking statements that involve a number of risks and uncertainties. Many factors could affect Intel’s actual
results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from
those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could
cause actual results to differ materially from the corporation’s expectations. Demand could be different from Intel's expectations due
to factors including changes in business and economic conditions; customer acceptance of Intel’s and competitors’ products; changes
in customer order patterns including order cancellations; and changes in the level of inventory at customers. Intel operates in
intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short
term and product demand that is highly variable and difficult to forecast. Additionally, Intel is in the process of transitioning to its
next generation of products on 32nm process technology, and there could be execution issues associated with these changes,
including product defects and errata along with lower than anticipated manufacturing yields. Revenue and the gross margin
percentage are affected by the timing of new Intel product introductions and the demand for and market acceptance of Intel's
products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing
pressures and Intel’s response to such actions; defects or disruptions in the supply of materials or resources; and Intel’s ability to
respond quickly to technological developments and to incorporate new features into its products. The gross margin percentage could
vary significantly from expectations based on changes in revenue levels; product mix and pricing; start-up costs, including costs
associated with the new 32nm process technology; variations in inventory valuation, including variations related to the timing of
qualifying products for sale; excess or obsolete inventory; manufacturing yields; changes in unit costs; impairments of long-lived
assets, including manufacturing, assembly/test and intangible assets; the timing and execution of the manufacturing ramp and
associated costs; and capacity utilization. Expenses, particularly certain marketing and compensation expenses, as well as
restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and
profits. The majority of our non-marketable equity investment portfolio balance is concentrated in the flash memory market segment,
and declines in this market segment or changes in management’s plans with respect to our investment in this market segment could
result in significant impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest
and other. Intel's results could be impacted by adverse economic, social, political and physical/infrastructure conditions in countries
where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure
disruptions, health concerns and fluctuations in currency exchange rates. Intel’s results could be affected by the timing of closing of
acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata
(deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder,
consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel's SEC reports. An unfavorable
ruling could include monetary damages or an injunction prohibiting us from manufacturing or selling one or more products,
precluding particular business practices, impacting our ability to design our products, or requiring other remedies such as compulsory
licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s
SEC filings, including the report on Form 10-Q for the quarter ended March 27, 2010.

Rev. 5/7/10

39

Backup Slides

PowerSetRequest() API

• Replaces setthreadexecutionstate()
• Allows you to issue availability requests for monitor &

system
• Allows you to create a custom, localized reason string
• Does not prevent user-initiated sleep transitions

40

PowerSetRequest() API Usage

void KeepSystemAwake()
{

// This example uses a simple, non-localized availablity request diagnostic
string
POWER_REQUEST_CONTEXT SimpleRqContext;
SimpleRqContext.Version = POWER_REQUEST_CONTEXT_VERSION;
SimpleRqContext.Flags = POWER_REQUEST_CONTEXT_SIMPLE_STRING;
SimpleRqContext.Reason.SimpleReasonString = L“System needed to burn a CD.";

HANDLE SimplePowerRequest = PowerCreateRequest(&SimpleRqContext);

// Set a system request to prevent automatic sleep
PowerSetRequest(SimplePowerRequest,PowerRequestSystemRequired);

//
// Do work here...
//

// Clear the request
PowerClearRequest(SimplePowerRequest,PowerRequestSystemRequired);

}

41

	Mobile Platform Idle Power Optimization ─ Methodologies and Tools
	Agenda
	Mobile Platform Energy Efficiency Goals
	Platform Power Saving Features
	Agenda
	CPU Power Saving
	Software Impact to Platform Power
	PCI Express* / SATA Power Saving
	USB Device Power Saving
	USB Device Power Saving (Cont.)
	Interrupt Sharing
	Agenda
	Optimize Application Behavior
	Application Design Principles
	Respect System Idle
	Optimize Resource Usage
	WaitForSingleObjectEx() API Usage
	Optimize Resource Usage (2)
	Optimize Resource Usage (3)
	Reduce Periodic Activity
	Reduce Periodic Activity (2)
	Coalesce Timers
	SetWaitableTimerEx() API
	SetWaitableTimerEx() API Usage
	Bonus: Optimize for System State
	RegisterPowerSettingNotification() API
	Agenda
	Choose the Right Tool
	Battery Life Analyzer - Outline
	Battery Life Analyzer - Features
	Battery Life Analyzer – CPU C-State
	Battery Life Analyzer – SATA LPM
	Battery Life Analyzer – HDD Spin-up
	Summary
	Call to Action
	Additional sources of information on this topic:
	Legal Disclaimer
	Risk Factors
	Backup Slides
	PowerSetRequest() API
	PowerSetRequest() API Usage�

