(intel°

Energy-Efficient Platforms —
Considerations for Application
Software and Services

Whitepaper

March 2011

Revision 1.0

Document Number: 325085-001

lntel0 Introduction

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED
BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS OR RELATING TO THE USE OF THE
INFORMATION CONTAINED HERE INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. THIS INFORMATION IS PROVIDED TO YOU ON AN “AS IS” BASIS.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A
SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must
not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

All products, computer systems, dates, and figures specified are preliminary based on current expectations, and
are subject to change without notice.

This document contains information on products in the design phase of development.

Copyright © 2009 - 2011, Intel Corporation. All rights reserved.

2 White paper

Introduction

Contents

White Paper

Y Ao e (8Tt ¥ (o] o IR PR 7
1.1 L@ Y=Y VT PP 8
1.2 Structure of the Whitepaper ... 10
1.3 Mobile PIatform POWEN ... e 10
1.4 Typical POwer Profileo 11
1.5 Software Impact on Platform POWETooiiiiii e 11
1.6 Energy-Efficient SOftwareccooiiiii e 12
Software Impact to Platform Energy-Efficiencyccooiiiiiiiiii i 14
2.1 C-State TranSItIONSottt et et ee e aeeaas 14

2.1.1 Processor Power Management OVEIrVieWccceviiiiiiiiieniaeannnnnn. 14

2.1.2 Software C-state to Hardware C-state Mappingcccvvveevviaeannn.. 16

2.1.3 The energy cost of transition increases as deeper C-states are
entered. Frequent transitions to deep C-states will result in a net

energy loss. Application Software impact to C-state transition 16

2.1.4 Impact of excessive C-state transitions: A Case Study.................. 17

2.1.5 Software Recommendations.oueiieiiiiiiiii i 18

2.2 Multi-Core SChedUliNg. i e e aaaee 19
2.2.1 Impact of inefficient multi-core scheduling: A Case Study 20

2.2.2 Turbo Boost Impact of inefficient multi-core scheduling 22

2.2.3 Turbo Impact of inefficient multi-core scheduling: A Case Study22

2.2.4 Software RecommendationsS.oouviieiiiiii i 23

2.3 CPU UIHZATION ...t ettt ettt et ae e aeeas 23
2.3.1 Frequency and Duration of CPU Utilization..............cccooovviiiiia... 24

2.3.2 Software RecommendationsS.oueiiiiiiiiii i 25

2.4 LT g To o [Tol I 0 g 1= = T PP 25
24.1 TimMer RESOIULION.o 25

2.4.2 LI 1 00 = =Y o [T 26

2.4.3 Software RecommendationsS.ooueiiiiiiiii i 27

2.5 Disk and Registry ACTIVITY.....cooii e 27
251 Software RecommendationsS.ooueiiiiiiiii i 28

2.6 General guidelines for Applicationscoiiiiiii i 28
2.7 Device specific Applications Or SErVICEScoiiiiiii i 29
Debugging POWET ISSUESnniiiii ettt et et et e e e eaeeans 30
3.1 [T=Y 10 T RS 1= L (=T)Y/ 30
3.2 CPU / ChipSEt POWET ISSUESnnt ittt et e e e e e 30
3.2.1 CPU C-State RESIHENCY ...ttt e eaae e eeaes 30

3.2.2 CPU UtIliZAtioN ISSUESttt e ee e 32

3.2.3 Timer ReSOIULION ISSUE ... 34

3

nte|°> Introduction

3.2.4 CPU Activity FrequeNCY ISSUES.ouui it 36
3.3 I/O ISSURS ..ottt ettt e ettt et ettt ettt 48
3.3.1 DiSK 170 ISSUES. ... uee ettt e aaeas 48
3.3.2 NEWOIK 1/0 ISSUEBS ...ttt ettt e aeeas 49
3.3.3 GraphiCs 1/O ISSUES. ... n ettt e 50
3.3.4 (Y= T 7@ N K11 U 51
3.35 Frequent SNoop CycCle ISSUE......coiniiiii e 51
FiXing 1dle POWET ISSUEBSttt ettt e e ettt eaeeans 52
4.1 Minimize Unnecessary ACTIVITIES ... oo eaee e 52
4.1.1 TaASK SCNEAUIBT ... e eaens 52
4.1.2 Event Callback APIS. ... 54
4.2 Optimize Timer RESOIUTION. e e 55
4.2.1 Timer Resolution for Media Applicationccooiiiiiiiiiiiiiiian... 55
4.2.2 Timer Resolution for Other Application............ccoooiiiiiiiiiiiiii... 56
4.3 Reducing PeriodiC ACTIVITIES ... e eaee e 56
4.4 REAUCING TPl ... et e e 62
4.5 Reducing 1/0 AcCtiVity ImMpPactooiiii e 62
4.5.1 Reducing Disk 1/0 ACHIVILY . ..o 64
45.2 Reducing Graphics 170 ACHIVILYo.oiieiiiiiiii e 64
(070] o Tod [U 1] o o N PP 65
LS (=] =] Lot PP 66
6.1 T OO0 et 66
6.2 [0 T0 o1 B[g T=T g 1K 66

White paper

Introduction

Figures

White Paper

intel)
Figure 1: Platform ECOSYSEEIMttt ettt et e e e eaans 9
Figure 2: Typical Mobile Platform Power Profile in ACPI SO Statecccccvviinn... 11
Figure 3: Comparison of Clean Build (Idle) Vs. IT Build with Apps Open (ldle) 12
Figure 4: Flexible C-states to select Idle Power Level vs. Responsiveness 15
Figure 5: OS C-state Vs Actual Hardware C-state..........ccooiiiiiiiiiiiiiiiiiiiiiiaiaaenns 16
Figure 6: Frequent Inter-Processor Interrupt and C-state Transitions 17
Figure 7: Power Impact of Excessive C-state Transitions...........ccooiiiiiiiiiiiiinaiann... 18
Figure 8: Maximizing Multi-core Concurrency Reduces Power Consumption 20
Figure 9: Power Impact of Concurrent EXeCUutionccooiiiiiiiiiiiiiiiiiiiiiiaieenn, 21
Figure 10: Power Impact of Turbo Mode for Single-core and Multi-core................... 23
Figure 11: Power Impact of Varying Frequency and Duration of Execution............... 24
Figure 12: Power Impact of Increasing Periodic Timer Resolution........................... 26
Figure 13: Power Management Opportunities by Coalescing Timers........................ 27
Figure 14: C-State Residency Numbers from Clean Idle Systemoo.... 31
Figure 15: Typical CPU Activity Pattern of Background Process
and Sampling based CPU UtIlization........ ..o 32
Figure 16: Battery Life Analyzer CPU Utilization Metrics - Logical & Platform............ 33
Figure 17: Battery Life Analyzer - Active Analysiscoviiiiiiiii i, 34
Figure 18: Battery Life Analyzer — Timer Resolutiono, 35
Figure 19: PowerCfg - Timer Resolution Change Requestccooiiiiiiiiiiiiiniann.. 36
Figure 21: Battery Life Analyzer - Number of C-state Transition
Caused by Each COMPONENT....... ettt eaaas 37
Figure 22: Different CPU Activity Patterns with Same CPU Utilization...................... 37
Figure 23: Battery Life Analyzer — Periodic Activity Analysis with
Various CPU ACTIVITY Patternsciiii ittt eaeeens 38
Figure 24: Battery Life Analyzer - Periodic Activity Analysisc.cocoviiiiiiiiiiiin... 39
Figure 25: Windows Performance Analyzer — Thread List...............oooiiiiiiiiiiiiian... 41
Figure 26: Windows Performance Analyzer — Thread Activityccoiiiiviiiiiiin.... 42
Figure 27: Windows Performance Analyzer — Stack DUMPooiiiiiiiiiiiiiiiiiiiaeenn. 43
Figure 28: Xperf — Occasional High CPU C-state Transitionccooiiieviiiiiiiann... 44
Figure 29: Xperf — IPI Storm EXamPle ...t eaee e 45
Figure 30: Xperf — IPI Storm Detailoooiiii e 46
Figure 31: Xperf — IPI Storm Stack DUMIP ..o e e eaee e 47
Figure 32: ProcMon -- File System and Registry ACtiVity.........coooeiiiiiiiiiiiiiiiaiaa.. 49
Figure 33: ProcMon —- Network ACTIVITYeei e aee e 50
Figure 34: Battery Life Analyzer - Graphics Activity AnalysiS..........ccoiiiiiiiiiiian... 50
Figure 35: Task Scheduler GUI — Trigger.ot e e 53
Figure 36: Task Scheduler GUI — ConditioNSoieiiiiiiiii i eeaeen e 54
Figure 37 Code Sample for Timer Resolution Change...........c.ooiiiiiiiiiiiiiiiiii i, 55
Figure 38: Bad Example - Periodic Activity in Multi-threaded Application................. 58
Figure 39: Better Example - Periodic Activity in Single Thread.....................cooo.. 59
Figure 40: Timer Coalescing APl Definition 59
5

ntel)

Introduction
Figure 41: Timer Coalescing APl Usage EXample.........coooviiiiiiiiiii i, 61
Figure 42: Device Power Consumption with Scattered Activity.............coooviiiiiin.... 63
Figure 43: Device Power Consumption with Coalesced Activityccooeeviiiiiian.... 63

White paper

Introduction

Revision History

Document Revision Description Revision Date
Number Number
325085-001 1.0 e Initial Release March 2011

White Paper

inter) Introduction

Introduction

Overview

Adoption of Mobile platforms of all form factors — Notebooks, Netbooks, Mobile
Internet Devices, etc. have been steadily increasing and longer battery life is
consistently ranked as one of the top requirements by consumers. Continuous
network connectivity enhances the mobile usage model, but increases power
consumption, thereby requiring improved energy efficiency. Mobile platforms must
also meet the energy efficiency regulatory requirements such as the US Environmental
Protection Agency (EPA) Energy Star program. To make the vision of “All day Battery
Life” a reality, the average platform power consumption must go down.

Intel® Architecture (I1A) platforms such as depicted in Figure 1 are open systems
where operating systems, software applications and services and hardware devices
are created and sold by various vendors.

White paper

Introduction

White Paper

Figure 1: Platform Ecosystem?

Software
OS/Services/Applications

Display

Processor
Displayport Package

e
Graphics

InteP DMI Expresscard

Flexible Display
Interface(InteP
FDI)

Bluetooth

Display
TE— Platform

/LVDS Controller
Hub

LPC

g SATA Drive

Audio Codec

In spite of remarkable progress in processor power management and efforts to
address the power efficiency of other platform components, a single ill-behaving
device or software ingredient can impede all these benefits by preventing the platform
components from residing in low power states. Platform level energy efficiency
requires all components in the platform ecosystem to cooperate. Additionally, software
plays an important role in the platform power ecosystem and the way software
applications and services behave have a huge impact on battery life.

Both innovative performance and power management features are being added to
successive generations of Intel® Architecture (1A) platforms to provide performance

1 PEG: PCI Express* Graphics
DMI: Direct Media Interface
LPC: Low Pin Count bus
WLAN: Wireless Local Area Network
WWAN: Wireless Wide Network
LAN: Local Area Network
SATA: Serial ATA

intelj Introduction

1.2

1.3

10

on demand and save power at other times. Software needs to be written in a manner
such that the underlying hardware consumes the lowest power for a task and higher
power performance features are only turned on when the required performance
cannot be achieved at lower power.

Structure of the Whitepaper

The first two chapters (Chapter 1 and Chapter 2) outline the fundamentals of the
mobile platform power saving features in including how software behavior affects
platform energy-efficiency. Then Chapter 3 describes how to identify software issues
that negatively affects platform energy-efficiency. Finally, Chapter 4 discusses the
details of how to fix and optimize software energy-efficiency.

Mobile Platform Power

What is Mobile Platform Power? Power is typically the amount of energy consumed by
the platform over time. This involves understanding the workload of the platform and
the energy used over a given time for that workload.

Mobile Platform Power is typically broken into three categories:
e Thermal Design Power (TDP)
e Platform Average Power — Average platform power measured over some time
when a workload is executing
e Platform Idle Power — Average platform power measured over some time
when no workload is executing and the system is idle

The TDP power is defined as being the hardest workload the mobile platform should
ever see under normal operating conditions, and is what the mobile platform thermal
cooling system is designed to handle. TDP largely defines the power level that the
system should be designed to cool, and is in general, not directly related to normal
platform battery life.

Average power for mobile platforms is defined as the average power consumption of
the platform and is modeled by benchmarks such as Mobile Mark '07 (MMO7) that are
representative of real end user usage patterns where the machine is idle between
bursts of activity.

Idle power for mobile platforms is defined as being the power a platform would
consume when the system is running in the ACPI SO state, and software applications
and services may be running but are not actively executing workloads and there is
minimal background activity.

White paper

Introduction

1.4

1.5

White Paper

Typical Power Profile

Usage analysis has shown that a mobile platform in the ACPI SO working state is
typically idle for about 90-95% of the time as measured by the CPU C-state residency.
Figure 2 below shows an example power graph over a period of time with a typical
benchmark running.

Figure 2: Typical Mobile Platform Power Profile in ACPI SO State

0| Mverage pover scenseio on fmeing NMOT(Ofice Productivity site)
30 Idle worldoad
25 1
20
15

O 10 20 30 40 50 60 70 80 90 100 110
Time: in Minutes

Platform Power in Watts

Since a mobile platform predominantly resides in the idle state, it is crucial to lower
the platform idle power consumption for a significant increase in battery life. This also
benefits the average power scenarios, and helps all but the most demanding (TDP-
like) workloads. When actively executing workloads, improving computational and
data efficiency so that the job can get done quickly, thereby increasing idle state
residency improves platform energy-efficiency.

Software Impact on Platform Power

Software behavior can have a significant effect on platform power consumption and
battery life. When idle, power efficient applications should have minimal effect on
platform power consumption. Ideally, the platform idle power consumption when the
application is started, but doing nothing meaningful should be the same as when the
application is not running.

One way to evaluate the impact of application software and services on platform
power is to compare the average power consumption of a platform with a clean build
(just the OS and driver installation) and a platform with additional software and
services installed (e.g., An IT configured enterprise notebook) and running but idle.

11

inter) Introduction

1.6

12

Figure 3 below shows an example of such a comparison. There is an impact of ~1 W
even when the applications are idle. This type of application behavior can have a
significant impact on battery life.

Figure 3: Comparison of Clean Build (Idle) Vs. IT Build with Apps Open (1dle)

OCPU OMemory OPCH OO OPlatform

| Measured on Platform with Intel® Core™ i5 Processor and Microsoft Windows 7*

ml
N

0 .361

mh
=
1

d.742

Average Power (Watts)
-}

0 T l
Windows 7 Clean Build Windows 7 IT Build
{ille) with Apps Open (idle)

Energy-Efficient Software

Software plays an important role in the platform energy-efficiency paradigm. Platform
hardware components lay the foundation for power consumption and in every
successive generation of platform, the hardware components are being designed to
aggressively reduce power consumption when idle and provide performance on
demand. However, a single ill-behaving software application or service can eliminate
all the benefits designed into the hardware and can have an adverse impact on
platform power.

In newer and future platforms with deeper power management states, there is
significant power savings in these states, but the power cost of entering and exiting
these states is also high. Hence, any software or service that causes very frequent

White paper

Introduction

White Paper

intel,

entry/exit to these states will mitigate all the savings and may actually increase power
consumption.

Below are some of the high level requirements for energy-efficient software:

Idle workloads

For idle workloads where the processor and platform can reside in the deepest idle
state for long periods of time, software execution (for status polling, statistics,
background bookkeeping activities, etc.) should be avoided as much as possible.

Activity must be aligned, coalesced or batched whenever possible. Frequency of
execution, especially for background services should be minimized as much as
possible

Software must ensure that it does not hinder the platform hardware components
from going into the deepest low power states by generating unnecessary
interrupts. Processor and Operating system policies for setting P-state and C-state
are influenced by application behavior and keeping the CPU in certain P-states and
C-states will not allow the platform to go into deep low power states

Hard disks spin down to low power states when idle. Periodic registry or disk
accesses by software must be avoided for idle workloads.

Active Workload Execution

Improve computational efficiency and CPU utilization to enable longer idle periods
where the hardware components can be power managed

Reduce the number of processor C-state break events. Frequent C-state
transitions will result in net energy loss

In multi-core CPU architectures, maximize multi-core concurrent execution. This
will enable processor package level resources and platform resources to be more
efficiently power managed

Reduce frequency of execution. A job with a certain CPU utilization requirement,
is more energy-efficient when executed less frequently with longer periods of
execution

Applications increasing timer resolution have a huge impact on power. Use the
largest timer interval possible. If smaller intervals are required, then reset the
interval to a large value as soon as the task is done

13

n ®
lntel) Software Impact to Platform Energy-Efficiency

Software Impact to Platform
Energy-Efficiency

2.1

2.1.1

14

C-State Transitions

Software must be written with the objective of keeping the number of processor C-
state transitions as low as possible. Very frequent C-state transitions will result in net
energy loss.

Processor Power Management Overview

In order to save power when the processor is idle, the processor enters low power
states called C-states. Intel processors support several levels of core and package
(resources shared by all the cores) idle states (C-states), allowing for a flexible
selection between power consumption and responsiveness.

Figure 4 below shows the typical core and package C-states supported by Intel
processors. Cx states denote processor core C-states whereas PCx states denote
processor package C-states. Although software applications do not directly set these
C-states, their behavior greatly influences the processor residency in various C-states.

White paper

Software Impact to Platform Energy-Efficiency

Figure 4: Flexible C-states to select Idle Power Level vs. Responsiveness

Active state
co Ccl c C6/C7 PC7 Transition PC7
Core voltage* | | | |
el s el e el s
Core clock | | | off off off off off
PLL nu nuJ off off off off
E B B C
LLC/L3 cache F’Wm off
Wakeup time* Active @ @ @ @ @
Package Power Reduction
Idle power* Active . . d
s . 0 —
Transition energy* Active .
* Rough approximation —_ P W o o

Typical Core level C-states supported are:

CO — Active state executing code

C1 — Halted, snoops serviced

C3 - Core (L1/L2) caches flushed

C6 — Core state saved and Core voltage reduced to ~0

C7 — When last core enters C7, LLC is flushed progressively
Typical Package level states supported are:

PCO — Active state

PC1 — Low latency state

PC3/PC6 — LLC ways valid, retention voltage

PC7 (Deep Power down) — LLC fully shrunk, No snoops, aggressive package power
reduction

C2 Popup — For Bus Master Traffic

White Paper 15

n ®
lntel) Software Impact to Platform Energy-Efficiency

2.1.3

16

Software C-state to Hardware C-state Mapping

Operating Systems use the ACPI C-states C1, C2 and C3 and these are mapped to
various hardware C-states as shown in Figure 5 below. The Operating System sets C-
state per logical processor (processor thread). Underlying hardware coordinates
between the several logical processors and also determines the package C-states.

Figure 5: OS C-state Vs Actual Hardware C-state

‘OSCl (0Sc2 (0osc3 |

cce/CcC7
PC6

/'
\

A\ SN /)

The Energy Cost of Transition Increases as Deeper C-
states are Entered. Frequent Transitions to Deep C-states
Will Result in a Net Energy Loss. Application Software
Impact to C-state Transition

Although C-state transitions are controlled by the operating system and application
programs don’t have any direct control over it, the behavior of application programs
can have a big influence on how effectively C-states are used.

Application programs primarily impact the frequency of C-state transitions. When a
running thread terminates or blocks and no other thread is scheduled for the
particular logical CPU, that CPU enters a lower power C-state and stays in that state
until a ready thread is scheduled to execute on that CPU. There are many reasons why
a running thread blocks; a common reason being waiting for external events (1/0
completion, signal from other thread, etc.). Reducing the frequency of waiting for
these events will help reduce C-state transitions.

It is important to be aware that some OS APIs use RPCs (Remote Procedure Calls)
which block the thread and causes C-State transitions.

White paper

Software Impact to Platform Energy-Efficiency _/ t lo)

2.1.4 Impact of Excessive C-state Transitions: A Case Study

Software must aim to keep the number of C-state transitions as low as possible.
Frequent C-state transitions from idle to active are not energy efficient. Activity must
be coalesced or batched whenever possible to allow for higher C-state residencies and
reduced C-state transitions.

Figure 6: Frequent Inter-Processor Interrupt and C-state Transitions

I CPU Core0
I CPU Corel

TNMNn A W\

Lotat]
|
1

o
=]

[N
o

"~
o
I I I |

CPU % Usage by Core

1] L

| | |
| L I \ 1 I ‘ L | | | 1 | I 1 | 1 | | | | L | I 1 I | I | 1
19,2716 19.2719 19,272 19,2721 19,2722 19,2723 19.2724 19,2725 19.2726 19.272?; 19,2728 19,2729 1
Time in Secs

=]

Figure 6 above shows a single-threaded application that has two processes which
communicate frequently with each other while one process waits on the other process
completion. Each process runs for a very small duration (—50usec). In a multi-core
system, when these two processes are scheduled on two different cores, the
communication between these two processes generates an Inter-Processor Interrupt
(IP1). While one process is waiting for the other to complete, the core goes into a
lower power C-state.

Figure 7 below shows the power impact of such behavior.

White Paper 17

™ e
lntel Software Impact to Platform Energy-Efficiency

Figure 7: Power Impact of Excessive C-state Transitions

Oldle Platform Power

OPlatform Power with App (No excessive C-state transitions)
OIlmpact of excessive C-state transitions

Olmpact of HW policies due to excessive C-state transitions

Power impact of excessive
C-state transitions

2 =
N N

[
o

Average Power (Watts)
o4}

Idle App (Idle)

Measured on Platform with Intel® Core™ i5 processor and Windows 7

This sort of frequent C-state transition impacts power consumption in two ways:

e Energy requirements to enter/exit C-state are not trivial. When the CO (active)
duration is very small, the latency to transition in and out of the C-states in
comparison is appreciable and may result in net energy loss.

e Hardware policy may demote a C-state request from OS to a shallower C-state
based on heuristics. Even if the frequent C-state transition behavior occurs only
for 2-3 msec in a 15.6 msec window, hardware polices may either demote core C-

state or re-open package level cache and this will impact power for the remaining
~12-13 msec of idle period.

2.1.5 Software Recommmendations

High level recommendations for applications and services to reduce C-state transitions
are:

e Do not split a task between processes/threads unless parallel execution can occur

e If it is necessary that a task be split between processes, then coalesce work so
that the number of C-state transitions can be reduced

e Coalesce activity whenever possible to increase idle period residency

18 White paper

Software Impact to Platform Energy-Efficiency

2.2

White Paper

intel,

e Minimize synchronization between threads. This includes, not only explicit use of
synchronization APIs, but also APIs that implicitly block the execution of the
thread.

e When it is required to use APIs that block, it is recommended to coalesce and
finish the use of such APIs in a short amount of time rather than spreading them
over a long duration. This will help to reduce the duration of C-state demotion.

Multi-Core Scheduling

In multi-core architectures, performance increase can be achieved by parallel
execution on the cores. This can also lead to power savings as the job will be finished
faster and system resources and processor package level resources typically shared
by the cores can be put into low power mode.

Figure 8 below shows that platform power consumption for a specific task will be
highest when it is executed on multiple cores with no parallelism. There will be an
increase in power consumption both due to frequent core C-state switching and due to
processor package and system level resources being on for a long duration. When the
task is executed on a single core, there is some reduction in power consumption as
the frequency of C-state switching reduces. Platform power consumption is optimal
when the task executes on both cores concurrently as this will reduce C-state
transitions and significantly reduce the power consumption of processor package level
resources and other platform level resources shared by the processor cores.
Concurrent execution on multiple cores also results in better performance. This is a
good example where better performance and better battery life can coexist.

19

intel)

2.2.1

20

Software Impact to Platform Energy-Efficiency

Figure 8: Maximizing Multi-core Concurrency Reduces Power Consumption

=]
7]
g - Package Active Duration >
2
= - - __ -
o
E
3 Core0
[
3
et Core1
2
3 ---fFF-F - == = —— — — = -+-
o
Core0
Coret Package Idle ——
] I
QL |
m

Impact of Inefficient Multi-core Scheduling: A Case Study

Figure 9 below shows the power impact of running a media application on a single
processor core in comparison with when the application is run on two cores. For this
case study, the total CPU execution requirement as defined by the CPU core CO
residency is about 79%. In the first test case, the media application runs completely
on CPU Core0 taking the Core0 CO residency to ~64%. The Corel CO residency is
~15% which is caused by the OS and other software components.

In the second test case, the application is allowed to run on CPU CoreO and CPU Corel
concurrently taking the Core0O CO residency to ~43% and the Corel CO residency to
~35%. This means more activity overlaps between Core0 and Corel and helps to
reduce package CO duration. In the first run, processor package CO residency is ~67%
and it drops to ~58% in the second run. The concurrent execution of the application
on the two processor cores causes a ~10% increase in processor package C6
residency which leads to ~500 mW power savings in processor package power
consumption.

White paper

Software Impact to Platform Energy-Efficiency

White Paper

intel,

Figure 9: Power Impact of Concurrent Execution

Platform ™ Processor ®m Memory

Measured on Platform with Intel® Core™ i5 processor and Windows 7

27.629 27.052

w
o
I

N
(6]
1

N
o
1

9.041

Average Power in Watts
= -
o (0]

uv
1

1321

o

App running on single core App running on two cores

This application is not very CPU bound. In CPU bound applications, where the
percentage increase in concurrency is much larger, the power savings will be much
higher.

In media type applications, like the example shown above, a certain amount of code
has to be executed during a fixed time interval. It is important to note that for such
applications though there is no overall increase in performance due to activity overlap
between the threads, there is significant power savings as code execution within each
timer interval completes faster.

Energy-efficiency not only improves when concurrency between the CPU cores is
increased, but it also improves when concurrency between the CPU cores and the
Graphics processing cores increases as the package level and other platform resources
are also shared between the CPU cores and the graphics processing cores. When work

21

n ®
ln tel) Software Impact to Platform Energy-Efficiency

2.2.2

2.2.3

22

is being offloaded to the graphics processing cores, concurrently executing on the CPU
cores instead of serializing execution will improve overall platform energy-efficiency.

Turbo Boost Impact of Inefficient Multi-core Scheduling

Performance States (P-states) allow the processor to switch between several discrete
voltage and frequency combinations. A lower performance state is used when the
processor activity is low. ACPI PO state is the highest performance state. The turbo
boost feature is hardware controlled where the processor runs faster than its base
operating frequency while remaining within the power, current and temperature
component specification limits in the presence of a performance demanding (PO)
workload.

The turbo feature gives a performance boost when performance is required while also
increasing power consumption. A single threaded CPU intensive application can keep a
core in CO/PO state for a long time enabling the turbo feature. The power impact can
be much larger compared to when the same application is run on multiple cores.
Applications must be written to efficiently use all the cores for power savings such that
the turbo feature is only engaged when additional performance is needed, and will be
done so by a combination of OSPM policy, OEM preference, and dynamic system
conditions. Turbo is not under direct control of the application.

Turbo Impact of Inefficient Multi-core Scheduling: A Case
Study

Figure 10 below shows the power impact of running a CPU intensive application on a
single thread and on a hyper thread enabled dual core processor with and without
turbo boost. The average power is measured over a window of 240 secs.

For the single thread case, in this specific example of a virus scan application, the
average power is higher when the turbo boost kicks in, but there is also increased
performance as the task gets executed faster and finishes in 182 secs instead of

239 secs. Since the task finishes faster, the CPU package power consumption is lower.
There can be other usage models where the power consumption with turbo is lower
for single threaded applications, if the performance gain and faster execution
sufficiently reduces the time the processor actively executes allowing the processor
package and other platform components to enter low power modes sooner.

As can be seen from the graph below, using multiple cores concurrently will give both
a performance advantage and a power advantage. When the task is executed
concurrently on all four logical CPUs with turbo enabled, it completes in 92 secs (with
average platform power consumption of 21.519 W) compared to 182 secs when it is
executed on a single thread with turbo enabled (with average platform power
consumption of 24.356 W). This is a win-win situation for performance and power
saving.

White paper

Software Impact to Platform Energy-Efficiency _/ t lo)

2.2.4

2.3

White Paper

Figure 10: Power Impact of Turbo Mode for Single-core and Multi-core

Platform m CPU_Package m CPU_Core
Active=239sec Active=182sec
ldle=1sec Idlezjiggec Active=104sec Active=92sec
25 - 23.646 i Idle=126sec Idle=148sec
21.334 21.519
2
g 20 -
£
[15 T
(]
3
&
> 10 -
o0
©
S
S 5 -
<
0 I I I \/
1-Thread 1-Thread 4-Threads 4-Threads
(NoTurbo) (Turbo) (NoTurbo) (Turbo)
Measured on Platform with Intel® Core™ i5 dual-core processor and Windows 7 (over 240secs)

Software Recommmendations

e Maximize concurrent execution between the CPU cores so that the power
consumption of shared package level and platform level resources can be
minimized

e Maximize concurrent execution between CPU cores and Graphics processing cores
when relevant

¢ Maximizing concurrent execution on multiple CPU cores will not only increase
performance by faster completion of tasks, it will also provide a power advantage

CPU Utilization

A general recommendation for all software components is to improve computational
efficiency (performance) and reduce CPU utilization to enable longer idle periods
where the hardware components can be power managed. Platforms that are highly
optimized for power will be more impacted by any increase in CPU utilization. Also,
package-level CPU utilization can be higher than core-level CPU utilization in multi-
core systems.

23

24

lntel Software Impact to Platform Energy-Efficiency

Frequency and Duration of CPU Utilization

Total CPU utilization alone does not always accurately reflect platform level energy-
efficiency. Two metrics that need to be considered are:

e Frequency of code execution

e Duration of code execution

For the same CPU Utilization, a task with higher frequency of execution and lower
duration during each execution will burn much more power. This is especially relevant
for idle and semi-idle workloads where the platform goes into deep low power states
during the idle period.

Figure 11 below shows a graph depicting the platform power increase (%) from
baseline idle power (no applications or services running) when varying frequency and
duration of execution.

Figure 11: Power Impact of Varying Frequency and Duration of Execution

Platform power increase (%) based on Utilization

10000

g T
@
o
@
Ty 1000 =
3 &
3] ®
S
c
s ™ 2
-51 QD
g 3
£ 100 .
L 1 >
o) e
c >
e o
-a -
5 —12% 3
(=] o
10 =)
] =
@
3_
—I0%
1 e . .
i 8 10 %0 100 1000

Frequency of Execution (Hz)

White paper

Software Impact to Platform Energy-Efficiency ./ t lo)

2.3.2

2.4

2.4.1

White Paper

It can be seen from the graph above that when a task executes every 10 msec
(Frequency of execution = 100 Hz) and runs for 10 usec, there is ~20% increase in
platform power compared to platform idle power. When the same task executes every
100 msec (Frequency of execution = 10 Hz) for 100 psec, there is ~3% increase in
platform power.

Energy-efficient software applications or services running on a predominantly idle
platform, should keep the increase in platform power consumption compared to
platform idle power to ~2% or less (Green zone). Applications and services that
increase platform power by more than ~12% when idle are not power friendly (Red
zone) and can have a significant impact on battery life.

Software Recommmendations

e Focus on CPU Utilization for idle workloads. If background activity is absolutely
required, reduce the frequency of execution to avoid frequently bringing the
platform out of deep power down states.

e Drive down CPU Utilization for active workloads

e Besides monitoring CPU utilization, also monitor frequency of execution. The CPU
utilization may be very low, but if the frequency of execution is high then platform
power consumption will be adversely impacted.

Periodic Timers

Timer Resolution

The Microsoft Windows Operating System scheduler* is driven by a periodic platform
timer with a typical duration of 15.6 msec. Several multimedia applications increase
the timer resolution and this has a significant impact on platform power consumption.
Frequent timer interrupts results in more C-state transitions burning more power and
when the timer resolution is very high (e.g., 1msec), several of the deep power
management features in the platform get disabled.

Some non-multimedia applications also increase the timer resolution to get better
performance from disabling deeper C-states. This is not good practice as successive
generations of processors are optimized for both more power savings and for
improved C-state exit latencies. Such applications, often developed and tuned on
older platforms may consume more power with no performance benefits on newer
platforms.

Figure 12 below shows the impact of increasing periodic timer resolution on platform
power

25

intel,

2.4.2

26

Software Impact to Platform Energy-Efficiency

Figure 12: Power Impact of Increasing Periodic Timer Resolution

11.6

114

11.2

11.0

10.8

10.6

104

10.2

10.0

Avaerage Platform Power (Watts)

Measured on Platform with Intel® Core™ i5 dual-core processor and Windows 7

I I I l I o
o
1

1msec 2.5msec 5msec 10msec 15.6msec

Timer Resolution

For performance reasons, media and gaming applications use high resolution timers.
But it is important that application developers understand the power impact of using
these high resolution timers and set it to the lowest resolution that meets the
performance requirements of the application for the specific platform.

Timer Coalescing

The new Timer Coalescing API in Microsoft Windows 7* enables callers to specify a
tolerance for due time. This enables the OS Kernel to expire multiple timers at the

same time thereby reducing the frequency of timer interrupts. Since the application
specifies the tolerance, there is no adverse impact to performance.

As seen in Figure 13 below, coalescing timer expiry increases the idle period duration
providing opportunities for more efficient power management. As future platforms
introduce more enhanced power management features, the power benefits realized by
coalescing timer expiry will also increase.

White paper

Software Impact to Platform Energy-Efficiency

Figure 13: Power Management Opportunities by Coalescing Timers

Current Platforms

NI AN .

Power Management Opportunity

ith Timer Coalescing

>
A
Timer tick Periodic
15.6 ms Timer Events
2.4.3 Software Recommendations

e Minimize the use of APIs that shorten timer period.

e If the application needs to change timer period, use the lowest timer resolution
possible that meets the performance requirements of the application

e If the application requires a high-resolution periodic timer, increase the timer
resolution only when the application is active

e Software applications should use the new timer coalescing APl supported by the
OS to align its activities to other application programs’ activities.

2.5 Disk and Registry Activity

Software components can increase the power consumption of disk devices by
frequently writing or reading file or registry data. Frequent intermittent accesses not
only preclude the drive from going to standby (spin-down), it also precludes it from
going to low power idle state shown in the table below.

White Paper 27

intel)

Table 1: HDD Power Saving Modes

251

2.6

28

Software Impact to Platform Energy-Efficiency

State Power Entry Note
Standby ~0.1 W OS Control Spin down
Low Power Idle ~0.6 W Automatic after ~10sec Head unloaded
Active Idle ~0.9W Automatic after <lsec Servo, R/W circuit off
Performance Idle ~1.8 W After command No power saving

completion

Software Recommmendations

General Guidelines for Applications

Applications and services must avoid generating frequent intermittent disk and
registry activity especially when the system is predominantly idle

Reduce file and registry accesses, which bypass file system cache. Frequent calls
to file open/close functions for write, file flush operations, etc. should be avoided.

This section provides a brief list of some important power friendly recommendations
for software applications and services that have not been covered in this document
but are required for platform energy-efficiency. Some of the references in Chapter 4

cover these items more in detail.

Avoid polling and spinning in tight loops as this precludes the processor from
effectively using C-states and P-states and all other platform resources are kept in
the highest powered state

Improve computational efficiency. The improvement in performance will increase
idle periods when the platform resources can be power managed

Adjust performance according to the Operating System supported power policy set

by the user

Reduce platform resource usage and background activity especially when on

battery power

Applications should register for and respond to common power management
events from the Operating System

If the system display is off for power savings, application must not perform
unnecessary graphics rendering

White paper

Software Impact to Platform Energy-Efficiency

e Applications must avoid doing periodic disk and registry accesses during idle
workloads. Disks must be allowed to spin down to save power

2.7 Device Specific Applications or Services

Many drivers come with user-mode services or applications. These device drivers can
significantly impact platform power consumption if they are not energy-efficient in
their behavior. Some general guidelines for device drivers:

e Avoid polling and spinning in tight loops

e Reduce frequency of communication with device. This will generate frequent
interrupts. Coalesce activity as much as possible to reduce frequency of interrupts

e Improve computational efficiency
e Reduce background activity. Especially if the device is in low power/suspend state.

e Adjust to user power policy by reducing resource usage or increasing performance
accordingly

e If timers are required, use the Timer Coalescing API

White Paper 29

intela Debugging Power Issues

3

Debugging Power Issues

3.1

3.2

3.2.1

30

This chapter will go through the debugging process of power issues on Intel®
Architecture mobile platforms using the following tools:

e Intel Battery Life Analyzer
e PowerCfg.exe Microsoft Windows 7* built-in command
e Microsoft Windows Performance Toolkit* (aka. xperf)

e Sysinternals Process Monitor

To make the description as specific as possible, examples shown in this chapter are
captured on Intel® Core™ i3/5/7 mobile processor based platforms with the Microsoft
Windows 7 operating system unless otherwise noted. Results may be slightly different
with other environment.

Please see the References section for the description and availability of these tools.

Debug Strategy

It is very difficult to debug multiple issues at one time and separate the impact of one
from the others. So, to debug particular software power issue, it is highly
recommended to install the software to a clean setup (vanilla OS and minimum
drivers, without value-add software for the add-on devices) and compare the system
behavior before and after installing the software.

CPU / Chipset Power Issues

CPU C-State Residency

It is recommended to start debugging by measuring CPU C-state (package and core)
residency. From CPU C-sate residency numbers, the following information can be
determined:

e Are the CPU and chipset being optimally power managed?

e What issue is increasing platform power consumption?
Use the CPU C-State Analysis of the Battery Life Analyzer tool to measure CPU C-state
residency. An optimally power managed system should show high (=98% for core C-

state, >95% for package C-state) residency in the deepest C-state supported by the
platform. Figure 14 below provides an example.

White paper

Debugging Power Issues

Figure 14: C-State Residency Numbers from Clean ldle System

Battery Life Analyzer

-

File Settings Help

¢ i Manual | % Automatic | () Capture Cancel
Module Explorer 1 'JJCF‘U CState ¥
2] Analysis Summary -

Eli.__'F Modules Loaded —| | C-5tate Counters Affinity Mask = Average (%) Power Impact (W)
..... J_"l Packagel CO - C1 00000000 163 MN/A (See SW Analysis)
----- J_—l Disk Activity Packagel C3 (0:0000000F 015 0.002
----- _,_-| Graphics Activity E Packagel C6 (0:0000000F 08.22 0.000
----- J_-| HDD Spin-Down Corel C0 - C1 0x00000003 101 MN/A (See SW Analysis)
----- _,_—l Leng Duration Software Activ Cored C3 000000003 0.23 0.001
----- {H] Memory Activity | CoreD C6 000000003 98.76 0.000
----- {4 PCleLPM Corel CO-C1 0:0000000¢ 094 M/A (See SW Analysis)
----- {H SATALPM Corel C3 0x0000000c 0.07 0.000

EHi Software Activity Analysis | Core1 6 0x0000000c 98.99 0.000
4 | [T | »

If high C-state residency is not seen in the deepest C-states, following is the common
cause for the issue:

1. If Core CO state residency is high (>1.5%)

0 Process or driver’s activity is consuming CPU cycles
Proceed to Section 3.2.2: “CPU Utilization Issues” to determine which
software component is consuming CPU cycles.

o Timer resolution increased by application
Proceed to Section 3.2.3 “Timer Resolution Issue” to determine which
software component changed timer resolution.

0 Excessive driver activity
Proceed to Section 3.3 “1/0 Issues” to determine which driver is
consuming CPU cycles

2. If Core C3 state residency is high (>1.5%)

o0 Frequent C-state transition caused by device interrupt
Proceed to Section 3.3 “1/0 Issues” to determine which device driver
is causing frequent activities

0 Frequent C-state transition caused by software activity
Proceed to Section 3.2.4 “CPU Activity Frequency Issues” to determine
which software component is causing frequent activities.

3. If Package CO—~1 state residency (for Huron River platform, package C2 state
residency) is significantly higher than all core’s CO residency

White Paper 31

intela Debugging Power Issues

3.2.2

o0 CPU package C state pops up to C1 (or C2, in case of Huron River
platform) state to respond to snoop cycles generated by bus master
devices

0 Proceed to Section 3.3.5 “Frequent Snoop Cycle Issue” to determine
which device is causing the issue.

CPU Utilization Issues

There are many tools for CPU utilization measurement, but most of them don’t reflect
the real impact of software activity because of the following reasons:

e Most tools measure CPU utilization with “sampling based” method
They are built on OS accounting APIs, which is sampling based information. Here,
“sampling based” means CPU utilization is observed at every timer tick interrupt,
which usually happens every 15.6 msec. As illustrated below, software activities
starts at timer tick interrupt and ends before the next timer tick are not observed
by these tools at all. This type of software behavior is common among many
background applications and media (isochronous) applications.

Figure 15: Typical CPU Activity Pattern of Background Process and Sampling based CPU

32

Utilization

Timer Tick Timer Tick Timer Tick

| nteiunt Inteiumt Inteiumt

Active .

\ \ \

¥
Sampling based Idle Idle Idle
CPL utilization

e As discussed in Section 2.2 “Multi-Core Scheduling” , multi-core CPU’s power
consumption is determined by the total of 1) the duration each Core is active, and
2) the duration Package is active (the duration at least one Core in the Package is
active). Arithmetic average of all logical CPU utilization, which is measured by
most tools, only reflects the first part of the power.

To address these issues, Battery Life Analyzer uses fine grain process information (u
sec resolution time stamp for activity start and stop) and shows the total active
duration of both package and logical CPU. It is highly recommended to use Battery
Life Analyzer instead of traditional CPU utilization tools to get the better picture of the
software impact to the platform power.

White paper

Debugging Power Issues - ®
intel)

In addition, Battery Life Analyzer shows CPU utilization with two numbers. One
(Logical) is the total each logical CPU’s utilization. This is a good representation of the
power consumed by CPU core. The other one (Platform) is the duration at least one
logical CPU is active. This is a good representation of the power consumed by the
package (except for cores). As illustrated below, Platform CPU utilization can vary for
the same Logical CPU utilization (for the same amount of instruction execution)
depending on how much overlap is happening between logical CPUs. It is, especially
for the workloads with higher CPU utilization, recommended to lower the Platform CPU
utilization for the same Logical CPU utilization.

Figure 16: Battery Life Analyzer CPU Utilization Metrics - Logical & Platform

3.2.2.1

White Paper

CPU%
(Logical) (Platform)

CPUO / 30% \
0 0
cpUL _/T\— 60% 30%

CPUO ’ 30% \
o o
cpUL _/7_ 60% 45%

CPUO / 30% \
60% 60%
cPUl / 30% \

Identify Software Components with High CPU Utilization

The following screen shot shows an example of the background process activity on the
system in which a user is not explicitly running any application programs, but
background tasks are consuming CPU cycles. Battery Life Analyzer highlights software
components causing high CPU utilization. In this example, two components are
showing very high CPU utilization (for idle).

33

intel0 Debugging Power Issues

Figure 17: Battery Life Analyzer - Active Analysis

3.2.2.2

3.2.3

34

i File Settings Help

¥ Manual | .#% Automatic | i (¥) Capture Cancel
Module Explorer ® | Hactive Analysis X
2] Analysis Summary
55 Modules Loaded Image Name CPU % (Platform) | CPU % (Logical) CSwitches from Idle | Power Impact (W) |
7 CPU C-State Platform Activity 736 922 316.58 011 -
J_-| Disk Activity e g 1.59 159 0.20 0.068
J_-| Graphics Activity [C SR B | 1.50 152 1141 0.064
J_-| HDD Spin-Down System 0.67 0.72 11893 0.029
,'l Leng Duration Software Act o I 067 0.70 17.04 0029
- PCle LPM explorer.exe 0.62 065 20,28 0027
- SATALPM DPC - ndis.sys->NdisGetSession... 0.49 0.49 0.00 0021
L Software Activity Analysis | pattery| ifeAnalyzer.exe 046 046 520 0019
-~ Active Analysis " 0.35 0.37 2815 0015
E”‘_‘E'd{“‘):“‘_ty_ rundli32.exe 0.29 0.29 567 0012
= ﬂjsa o ctivity . 01 021 253 0.009
nalysts System::ntoskrnlexe->wesstr() 0.21 0.21 047 0.009
=l Modules Mot Loaded
- it i n1s n1e naa nnn?

To measure the impact of particular software, just reading the numbers for that
component is not enough because one component can affect the behavior of other
components. For example, if the process of the interest is communicating with a
server process through the COM interface, the activity increase is also seen in the
server process. The best practice of measuring the impact of particular software is, as
described in Section 3.1 “Debug Strategy”, to compare a clean setup with and without
the particular software and see the difference in the “Platform Activity” row.

Understand Why CPU Utilization is High

Once the component with high CPU utilization is identified, the next step is to
understand why CPU cycles are consumed by the component. For the owner of the
software, it may not be difficult to determine the problem(s). Otherwise, the following
methods will help explain the behavior of the processes:

e Hotspot analysis (with Intel® VTune™ Amplifier XE, Microsoft Windows
Performance Analyzer*) will show where the most CPU cycles are spent.

e File, registry, and network 1/0 analysis (with Sysinternals ProcMon tool) will give
some understanding about what kind of activity is happening. See Section 3.3
“1/0 Issues” for more details.

Based on the nature of the activity, it can be determined if those activities are really
necessary or not.
Timer Resolution Issue

Battery Life Analyzer captures timer resolution change requests from application
programs. Figure 18 shows an example where svchost.exe (PID 888) and
BadProgram.exe (PID 164) requested timer tick period to 10 msec and 1msec

White paper

Debugging Power Issues

intel,

respectively and as a result the entire platform’s timer tick period is set to 1 msec
(the shorter of the two requests)..

Figure 18: Battery Life Analyzer — Timer Resolution

Image Mame

Platform Activity
svchost.exe
BadProgram.exe
System

SIMss.EXE
svchost.exe
5155, EXE

wininit, exe

FID

888
164
4

304
352
432
484

CPU %% [Platform)
949
0.28
0.00
0.20
0.00
0.01
0.01

0.00

CPU % [Logical)
10.56
0.29
0.00
0.33
0.00
0.01
0.01
0.00

[Active Analysis . [Driver Activity © 5 Periodic Activity © 3 P-State Analysis

CSwitches from Idle § Timer Tick Period (ms)
751.60 1.00
102.27 10.00
0.00 1.00
60.74
0.00
209
15.45
0.00

To determine which part of each process is requesting the timer resolution change,
run the “PowerCfg” command with the “/energy” option. (“PowerCfg” is a Microsoft
Windows 7 built-in command, and has to be executed with Administrator privilege.)
This program observes software activity for about a minute and dumps the result in
the “energy-report.html” file. The process that requested the timer tick period change
can be found in the Information section near the end. Figure 19 below shows the
example with the svchost.exe process (PID: 888) in Figure 18.

White Paper

35

intelO Debugging Power Issues

Figure 19: PowerCfg - Timer Resolution Change Request

3.2.4

3.24.1

36

-

Platform Timer Resolution-Timer Request Stack
The stack of modules responsible for the lowest platform timer setting in this process.

Requested Period 10000

Requesting Process ID 888

Requesting Process Path \Device\HarddiskVolume2\Windows\System32

Calling Module Stack \Device\HarddiskVolume2\Windows\ System32\ ntdll.dll
\Device\Harddisk\mlumeZ\Windows\System:ﬂ
\Device\HarddiskvVolume2\Windows\System32\ntdll_dll

m

\Device\HarddiskVolume2\Windows\ System32\mmcss.dll
\Device\Harddiskvolume2\Windows\System32\svchost.exe
\Device\HarddiskVolume2\Windows\ System32\sechost.dll
\Device\HarddiskVolume2\Windows\System32\kernel32.dll
\Device\HarddiskVolume2\Windows\ System32\ ntdll.dll

4 1 2

Done M Computer | Protected Mode: Off g v m100% ~

"_,é D:\Templenergy-report.html - Windows Internet Explorer S

AR |§, D:\Temp'energy-report.html - | 4 | X '-.l Google Fe -

: : _ o3
. Favorites | @& D\Temp\energy-report.html f ~ B - [@ v Pagev Safety~ Tool~ @~

This example shows svchost.exe is requesting timer resolution change through the
code in mmcss.dll (DLL for one of the system provided service — MMCSS: Multimedia
Class Scheduler Service). This is a part of the OS audio sub-system behavior when
multimedia application is running and can be safely ignored.

CPU Activity Frequency lIssues

Identify Software Components Causing Frequent Transition

As explained in Section 2.1 “C-State Transitions”, frequent CPU state transition
between active state and idle state consumes more energy. Battery Life Analyzer
provides two methods to identify the process that is causing frequent transition. First
method is to count the context switch from idle thread to the active thread.
“CSwitches from Idle” column in the Active Analysis shows how many C-state
transitions were caused by each component, including processes and drivers. After
running Software Activity Analysis, the data is sorted by CPU utilization by default.
Click column header for “CSwitches from Idle” to find out which component caused
most C state transitions.

White paper

Debugging Power Issues

intel,

Figure 20: Battery Life Analyzer - Number of C-state Transition Caused by Each

Component

e Analyzer eSS~

I File Settings Help

' |]ff Manual |@*Automatic @ Capture Stop | Mo Screen Update T
|| Module Explorer ® | [Hadive Analysis X
2] Analysis Summary -
Elt.’a’ Modules Loaded || Image Mame CPU % (Platform) | CPU % (Logical) | CSwitches from Idle Power Impact (W) | *
J_'l CPU C-State Platform Activity 1486 1812 50294 0.825 B
£ Disk Activity System L7 L5 16353 0.073
__,_—l Graphics Activity taskmgr.exe 217 217 9612 0.051
{1 HDD Spin-Down explorer.exe 095 095 8830 0.040
-{ill Long Duration Softy| = | | System:: e sys+0x00002920 0.03 0.03 59.89 0.001
J_-I PCle LPM CSI55.EXE 0.21 0.21 5015 0.009
i SATALPM = EXE 0.89 0.92 3060 0.038
(=0 Sof‘twareActl\rlt)r.Ar iexplore.exe 0.77 0.79 3051 0.033
{4 Active Analysis Systemzntoskml.exe+ (00074850 017 017 2850 0.007
E”‘_‘e'd{“‘z“‘_ty_ | dwm.exe 0.41 0.41 2428 0.017
e ‘:rlo‘ ic ctivity [~ —— 1.85 1.85 1239 0.078
- - - ”al)’s's . T | systemuiaStor.sys+0:0004fLcd 0.03 0.03 1098 0001 T

In the example shown above, System, csrss (Win32 subsystem), and dwm (Desktop
Window Manager) are OS components and high activities made by these components
are usually caused other processes’ activity.

Figure 21: Different CPU Activity Patterns with Same CPU Utilization

White Paper

Timer Tick JL J‘ 4‘ 4‘ 4‘ 4‘ 4‘
g A Pattern #1
= hid hid hid hid hid hid

Pattern #2

2ms active 2ms active 2ms active
Patt #3
a3 ___ MMM
o 6ms active
E V Pattern#4
‘“—>
6ms

Although “CSwitches from Idle” numbers can tell the difference between Pattern 4 and
Pattern 1~3, it cannot tell the difference between Pattern 1~3. To distinguish the
difference between these patterns, use Periodic Activity Analysis of the Battery Life
Analyzer.

Periodic Activity Analysis summarizes software component’s activity by timer tick
period and displays the histogram by the amount of activity happened during each
period. For the activity patterns shown above, the following histogram values will be
shown as the result of analysis.

37

38

inter Debugging Power Issues

Figure 22: Battery Life Analyzer — Periodic Activity Analysis with Various CPU Activity

Patterns
Ous <lms <2ms <5ms >5ms
Pattern #1 0% 100%
(=0/6) (=6/6)
Pattern #2 50% 50%
(=3/6) (=3/6)
Pattern #3 83.3% 16.7%
(=5/6) (=1/6)
Pattern #4 83.3% 16.7%
(=5/6) (=1/6)

Following screen shot shows example from idle system with many background
processes making small activities.

With Periodic Activity Analysis, the following can be determined:

1. How frequent each component is making activity

Opsec column shows the % of the timer tick period without any activity by
each component. So, 100% in this column means that the software
component didn't make any activity during data collection (desired behavior
for idle scenario). On the other hand, 0% means this component made some
activity at every timer tick period. Such components tend to have more
impact to the platform power consumption for the same total CPU utilization.

2. How many activities are happening at each tick period

If there’s more than few 100s of psec (exact threshold is CPU architecture
dependent) activities per timer tick period, CPU will start demote C-state to a
shallower one. By looking at the top row (“Platform Activity” - total activity of
all components), how often long (> 200 psec) activity is happening, and which
component is contributing most for that can be determined.

White paper

Debugging Power Issues

Figure 23: Battery Life Analyzer - Periodic Activity Analysis

3.2.4.2

White Paper

"%, Battery Life Analyzer
i File Settings Help S by 0 |
5 —_—— ort column
¢ i Manual [g% Automatic| : () Capture (£) Cancel [pls]
e | [Hreriodic Activity x
7] Analysis Summary
) 7% Modules Loaded Image Name CPU... Ous 0-50us 51-100us | 101-200us 201-500us | 501-1000us 1-5ms >5ms| =
53 CPU C-State Platform Activity 1052 000 021 1084 2336 3431 991 1512 626
(5 Disk Activity @ system 200 000 7351 1272 386 532 115 219 125
Graphics Activi b System::iguuiis sys+ 000002920 0.05 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
P ty y: : s
+1 HDD Spin-Down @) 158 - hal.dil- 000002808 005 000 100.00 0.00 0.00 0.00 000 000 000
{# Long Duration Sof L DPC-Timer - platformmondrv.sys+.. 005 000 10000 0.00 0.00 0.00 000 000 000
A Long Duration S: sy
{4 PCle LPM .—-- SR A alexe 0.57 0 2732 68.51 375 010 000 000 010
1 SATALPM ,—p DPC-Timer - Busililg sys+0x00003.. 001 2190 7810 0.00 0.00 0.00 000 000 000
- Software Activity An !5.—-» DPC-Timer - ntoskml.exe+0x001598... 005 4797 5203 0.00 0.00 0.00 000 000 000
1 Active Analysis @ — gl 5y stem:i gt sys+ 000007 d3c 020 2995 4434 108 0.00 348 063 010 000
£ Driver Activity .—-- B miexe 028 5318 1199 1157 2273 0.52 000 000 0.00
{4 Periodic Activi
v @ > DPC - ntoskenl.exe+0:00125230 003 5443 4557 0.00 0.00 0.00 000 000 000
A naly=s @ > 0PC - ntoskni.exe+ 000190420 003 5443 4546 010 0.00 0.00 000 000 000
) &% Modules Not Loaded
. .—.‘ csrss.exe 016 5495 26.59 17.73 042 0.1 0.00 0.10 0.00
D Memory Activity
@ =.exe 108 6496 1752 1283 031 031 094 219 094 -
Messages o
Type Module Time Message
D) Information Software Activity Analysis 10/22/2010 15:38:02 Module initialized.
i) Information Software Activity Analysis 10/22/2010 15:38:09 Data capture started L
i) Information Software Activity Analysis 10/22/2010 15:39:02 Collection completed.
) Information Software Activity Analysis 10/22/2010 15:39:02 Average timer tick period is 15.605 ms
) Information Software Activity Analysis 10/22/2010 1543553 Data capture started .
Ready g

In the screen shot shown above, notice the following:

e #3 (ISR — hal.dll) is OS timer tick itself, and it’s normal for this component to
make activity every timer tick. This can safely be ignored.

e #4 (DPC — Timer — platformmondrv.sys) is the activity of Battery Life Analyzer.
This can safely be ignored, too.

o #2 (System::**** sys) is the activity of 3™ party driver (kernel mode thread).
Although, the duration of activity is always very short (less than 50 psec), it is
making activity every timer tick (Ousec column is 0) and it is not desired behavior.

o #5, #6, #8, #9 are all 3" party components making frequent activity. Especially,
#9 is making relatively long activity frequently (22.73% in 100~200 usec range)
and potentially causing C-state demotion.

Understand Why Frequent C-State Transition is Happening

Once the software that is causing frequent C-state transition is identified, the next
step is to determine why and which part of the code is causing the issue. The exact
procedure varies from case to case, but this section explains about two common cases
— one is the case where excessive use of short duration timer, and the other case
where multiple threads are becoming alternatively active (IPI Storm Issue).

As the main focus of Battery Life Analyzer is to identify the bad behaving component
in the platform and not meant to do the deep analysis, the Microsoft Windows
Performance Analyzer (aka. xperf) can be used as a primary tool for the detailed
analysis. Please see the Chapter 6 “References” for the availability of this tool.

39

intel)

The following sections demonstrate how to identify and debug two common cause of
the frequent C-state transition.

3.24.2.1

40

Debugging Power Issues

Debugging Excessive Use of Short Duration Timer Issue

1.
2.

o gk w

10.
11.

12.

Install Microsoft Windows Performance Analyzer (aka. xperf) to the target system.

(Optional) If the target system is x64 platform, it is recommended to create
DWORD registry key DisablePagingExecutive with value 1 under
HKLM\System\CurrentControlSet\Control\Session Manager\Memory Management,
and reboot the system. This registry setting ensures complete kernel stack dump.

Open command prompt as Administrator
Start data collection: xperf —on DiagEasy —stackwalk CSwitch
Leave the system idle for few minutes

Stop data collection: xperf —d output.etl
This will create the log file (output.etl) in the current directory.

Open the log file with viewer: xperfview output.etl

Enable symbol decoding with “Trace” menu > “Load Symbols”
If necessary, set appropriate symbol path at “Trace” menu > “Configure Symbol
Paths”

Scroll down to “CPU Scheduling” graph.
Right click on the graph and select “Summary Table” in the popup menu.

Arrange the columns in the following order (left to right) by dragging column
headers,

NewProcess
NewThreadld
NewThreadStack
Separation (orange) bar
Count

0 Sum:TimeSincelLast (us)

O O O O O

Look for the process which was identified as a cause of the frequent C-state
transition by Battery Life Analyzer. In this example, notice the process #5 in

Figure 23.

White paper

Debugging Power Issues

Figure 24: Windows Performance Analyzer — Thread List

CPU Scheduling Summary Table - C:\Windows\System32\output.et] - [0 s - 12.526822 5] - 12.526822 5 - W. S|

File Columns Trace Window Help

Line MewProcess MNewThreadld 1 MewThreadStack Count Surm:TimeSincelast (us)
18 = ol r& & 108,633,544 621
2,864 849 12,396,798.071
2,856 846 12,397,370.664 =
2,872 841 12,396,818.331
2,848 836 12,397 357.287
2,860 818 12,396,756.350
2,852 810 12,397 361.322
2,868 806 12,397,422.927
2,624 29 11,837,832.963
2412 3 10,016,126.706
2,828 [Root] 1 0.000
i m | 3

Total Number of Context Switches - 25754

—

Notice the list of the threads in Figure 24. In this example, seven threads (thread
id:2864, 2856, 2872, 2848, 2860, 2852, and 2868) are showing high context switch
numbers in “Count” column.

By expanding one of the threads, note each context switch per line as shown in Figure
25. “Sum: TimeSinceLast (us)” column, shows these context switches are happening
approximately 15~16 msec apart. This means each thread is making activity every
timer tick period (15.6 msec).

White Paper 41

intelO Debugging Power Issues

Figure 25: Windows Performance Analyzer — Thread Activity

CPU Scheduling Summary Table - C:\Windows\System32\output.et] - [0

File Columns Trace Window Help

Line MewProcess NewThreadIdl MewThreadStack Count Surm:TimeSincelast (us)

19 3 " e 5,839 108,633,544 621
849 12,396,798.071

846 12,397,370.664

0.000
18,479,378
12,201.803
17,369.902
14,648.080
14,840151
15,433,385
15,890.871
15,396.510
15,573,589
15,463,776
16,069,166
15,167 969
16,202 480
15,114,076
< | M 3

Total Number of Context Switches - 25754

[+

B B EEEE

HEBEEBBE
R e e R e e = R i T R o R = R

[+

Furthermore, by examining the stack dump at each context switch, it can be seen that
this is caused by the repeated call of Sleep() API.

White paper

Debugging Power Issues

intel,

Figure 26: Windows Performance Analyzer — Stack Dump

1“ CPU Scheduling Summary Table - C:\Windows\5 utetl - [0s- 12526822 <] - 12.526822 = - W.., Q@u
File Columns Trace Window Help
l Line MewProcess MNewThreadld 1 MewThreadStack Count Surm:TimeSincelast (us] = '
19 B S i 5,839 108,633,844.621 ||
20 2,864 349 12,396,798.071
at E 2,856 846 12,397,370.664
22 = [Root] 1 0.000
3 | KernelBase.dll!Sleep | | 1 0.000
24 KernelBase.dll!SleepEx 1 0.000
25 ntdll.dllliZwDelayExecution 1 0,000
26 ntdll.dll!LdrInitialize Thunk 1 0.000
27 ntdlldll! 77 :FNODOBFM:: 'string' 1 0,000
28 wowid. dll'Wowbd Ldrplnitialize 1 0.000
29 wowbd, dlllRunCpuSimulation 1 0.000
} 30 wowidcpu.dil!Thunk2ArgNSpNS... 1 0.000
Eil wowbdcpu.dilCpupSyscallstub 1 0.000
32 ntkrnlmp.exe!KiSystemServiceCo... 1 0.000
EE ntkrnlmp.exelMtDelayExecution 1 0.000
34 ntkrnlmp.exe!KeDelayExecutionT... 1 0.000
35 ntkrnlmp.exelKiCemmitThreadW... 1 0.000
36 ntkrnlmp.exe!KiSwapContext 1 0.000
37 ntkrnlmp.exelSwapContext_Patc... 1 0.000
38 1 0.000
29 =l [Root] 1 18,479.278
40 ﬁemelBase.dll!Sleep I 1 18,479,378
41 KernelBase.dIEIeepEx 1 184789378 =
1| i | 3
Total Number of Context Switches - 25754

From this information shown in Figure 26, it is evident that this process creates
multiple threads and each thread is looping with Sleep() API.

3.2.4.2.2 Debugging Occasional High C-State Transition Issue

In the previous example, problem is happening all the time. But, some type of
program causes frequent C-state transition for limited time (but, repeats it). For such
type of program, the period where high C-state transition is happening needs to be
identified first. This section uses process #13 in Figure 23 as an example.

Follow step 1 to 8 of the previous section.

9. Display “Stack Counts by Type” and “CPU Usage by CPU” graphs (the first two
graphs)

10. Select 0.5 to 1.0 sec range in one of these graphs, right click on that, and select
“Zoom to Selection”

11. Scroll horizontally through the entire data and look for the section with high
number in the “Stack Counts by Type” graph (means high context switch), and
high (20~80%, but not 100%) CPU utilization on multiple CPUs like the example
shown below.

White Paper 43

intelo) Debugging Power Issues

Figure 27: Xperf — Occasional High CPU C-state Transition

File Graphs Trace Window Help

Stack Counts by Type
High CSwitch rate & Events

High utilization on multiple CPU
g P Stack Counts by Type
=-W]Al

Counts

[TT T TT1T17]
6.6

CPU Usage by CPU [fhread Pricrity >=1]

% Usage CPU#
100 CPU Usage by CPLU

MJ\ A

AEERREEERE NEERRRE R
6.5 5.6 6.7

12. Zoom in “CPU Usage by CPU” graph until each C-state transition can be seen
separately (in other words, until CPU utilization of each CPU toggles between 0%
and 1009%0) like shown in the example below.

44 White paper

Debugging Power Issues

Figure 28: Xperf — IPIl Storm Example

White Paper

1‘ Ch\Windows\system32'output5.etl - Windows Performance Analyzer EE
File gr;phs Trace Window Help
CPU Usage by CPU [Thread Priority »= 1] -
% Usage CPU# =
100 CPU Usage by CPLU E
=M A i
0 L L L I L IO B B
6.607 6.6072 6.6074 6.6076 6.6078 6.608 6.6082 6.6084 6.6086 6.6088 6.609
Time
CPU Usage by Thread [Thread Priority >= 0]
% Usage |Threads |

50

& V1]

[Series: "services.exe (628) : 6504"]

0 T LI L L L L L L

5.6082 5.6084 6.6086

6.607 6.6072 6.6074 6.6076 6.6078 6.608
Time

LI L L
6.6088 6.60%9

By comparing “CPU Usage by CPU” graph and “CPU Usage by Thread” graph, you can
find each CPU’s activity is completely synchronized with thread’s activity. Which
process is causing this problem can easily be determined by hovering mouse cursor on
each thread’s line. In this case, one of the threads belongs to services.exe (shown by
brown line), and the other thread belongs to 3™ party application which was shown as
process #13 in Figure 23 (shown by purple line).

13. Next step is to determine what kind of code sequence is causing the C-state
transition. To do so, scroll down to the “CPU Scheduling” graph, and select several
cycles of the transitions, right click on the graph, and select “Summary table”.
Arrange the columns in the following order (left to right)

a. SwitchInTime (s)

b. CPU

c. NewProcess

d. NewThreadld

e. NewThreadStack

Click “SwitchInTimes (s)” column and sort the entries in ascending order.

14.

15.

45

intelO Debugging Power Issues

Figure 29: Xperf — IP1 Storm Detail

J CPU Scheduling Summary Table - C:A\Windaows\system32\s

File Columns Trace Window Help

Line SwitchI;Time (s} Cpu MNewProcess MNewThreadld MewThreadStack
6,632 856 288 services.exe (528) 6,504 [Root]
6,632 842105 Idle (0) 0 7
6,632 800774 e e exe (1832) 1,856 [Root]
6632789 428 Idle (0) 0 7
6.632731 482 services.exe (H28) 6,504 [Root]
6,632 717 300 Idle (0) 0 7
6,632 678 804 B exe (1832) 1,856 [Root]
6,632 667 053 Idle (0) 0 7
6632625721 services.exe (B28) 6,504 [Root]
6632611133 Idle (0} 0 7
6632573 854 e exe (1832) 1,856 [Root]
6,632 562 508 Idle (0) 0 7

1
2
3
4
5
6
7
8
9

=
[==

< |

Total Mumber of Context Switches - 240

In this example, services.exe (Process ID: 628, Thread ID: 6504) and the other
thread (Process ID: 1832, Thread ID: 1856) are running alternately running on
CPUO and CPU1 respectively.

16. Expand “NewThreadStack” at each context switch to the active thread and find out
which API call caused the thread to enter wait state.

46 White paper

Debugging Power Issues

intel,

Figure 30: Xperf — IP1l Storm Stack Dump

White Paper

S —_|
il CPU Scheduling Summary Table - CA\Windows\system32\outputS.etl - [6.622276981 s - 6632956335 <] - 0.010679354 s -... [P
————————————————————————————————————

|Ei|e Columns Trace Window Help
Line SwitchI;Time(s) Cpu NewProcess MewThreadld MNewThreadStack

1 6.622 332 881 0 Idle (0} 0 ?

2 6.622 344 227 1 B exe (1832) 1,856 E [Root] e
3 I sechost.dmgueESenriceConfisA
4 sechost.dlllRQueryServiceConfigh
5 rpcrtd diliNdrpSendReceive
6
7
8
9

»

rpcrtd. diliNdrSendReceive

rpcrtd. dillL RpcSendReceive

rpcrtd dIILRPC_CCALL:SendReceive
rpcrtd dIILRPC_BASE_CCALL:SendReceive

10 rpcrtd dIIILRPC_BASE CCALL:DoSendReceive

n rpcrtd dIIILRPC_CASSOCIATIOM: AlpcsendWaitReceivePort
12 ntdll.dll'ZwhAlpcSendWaitReceivePort

13 ntdll.dil!LdrInitialize Thunk

14 ntdll.dll! ¥ :FNODOBFM:: string’

15 wowbd. dll!WowbdLdrplnitialize

16 wowdd.dillRunCpuSimulation

17 wowbdcpu.diliServiceMoTurbo

18 wowbd. dlllWowdd SystemServicekx

19 wowdd. dlllwhMNtAlpcSendWaitReceivePort

} 20 ntdll.dllZwAlpcsendWaitReceivePort

21 ntkrnlmp.exe!KiSystemServiceCopyEnd

22 ntkrnlmp.exe!NtAlpcSendWaitReceivePort

23 ntkrnimp.exelAlpcpProcessSynchronousRequest

24 ntkrnlmp.exe!AlpcpReceiveSynchronousReply

25 ntkrnlmp.exelAlpcpSignal AndWait

26 ntkrnlmp.exe!KeWaitForSingleObject

27 ntkrnlmp.exe!lKiCommitThreadWait

28 ntkrnlmp.exe!KiSwapContext

29 ntkrnlmp.exe!SwapContext_PatchXRstor

30

31 6.622 382 317 1 Idle (0) 0 ?

32 5,622 396 905 0 services.exe (628) 6,504 [Root]

33 6,622 439 047 0 Tdle (0) 0 7

34 6,622 450 798 1 Bt exe (1832) 1,856 = [Root]

35 1 sechost.dll!CloseServiceHandle ||

E—

36 sechost.dIllRCloseberviceHandle

37 rpcrtd. dillNdrpSendReceive

38 rpcrtd diliNdriendReceive Al
= - e oo -

Total Mumber of Context Switches - 240

In the example shown above in Figure 30, Thread ID 1856 was blocked when the
application called QueryServiceConfig() and CloseServiceHandle(). When these Win32
APIs are called from the application, they internally communicate with services.exe
through RPC (Remote Procedure Call), and while it’s waiting for the response from
services.exe, CPU1 enters C state. When services.exe is ready with the result, it sends
IPI (Inter Processor Interrupt) back to CPUO and brings the thread back to active
state. In return, services.exe finished with the RPC call and enters C state until next
RPC call comes in.

Apparently, this application program enumerates all services in the system and
repeats OpenServiceHandle() (not shown in the screen shot), QueryServiceConfig(),

47

intela Debugging Power Issues

3.3

3.3.1

48

and CloseServiceHandle() API calls for each service. This causes thousands of C state
transitions on CPUO and CPUL.

1/0 Issues

Even if the software consumes very small CPU cycles and few C-state transitions,
software still can make large impact to the battery life of the entire system by
increasing 1/0 subsystem power consumption. This section discusses how to identify
1/0 activities for each device class.

Disk 1/0 Issues

Tools useful for disk 1/0 analysis is Process Monitor (aka. ProcMon) from Sysinternals.
Please see Chapter 6 “References” for the availability of this tool.

When analyzing file/registry access, the following aspects of the file system activity
and registry activity need to be checked:

1. Activity type

Most disk 1/0 activities are caused by application program’s file access or registry
access. Generally speaking, repeated read access to the same file or registry entry
doesn’t cause much impact because they’re cached. But, if different files or
registry entries are accessed (like scanning all files in the file system) or write
access happens, they will increase the activity of disk drive and the link to the disk
drive.

2. Activity timing

As shown in Table 1, a HDD has multiple power saving states, but they take
certain duration of inactivity before those states are enabled. So, the same rule
illustrated in Figure 21 applies to disk access. Time stamps of file/registry
accesses that potentially causes disk accesses (as described above) have to be
checked. For example, if read access to different files is happening every 1 sec, it
will most likely keep the drive in the active idle or performance idle state and
loose the opportunity for the HDD to enter the Low Power Idle or Standby (spin-
down) state.

White paper

Debugging Power Issues

Figure 31:

ProcMon -- File System and Registry Activity

=¥ Process Monitor - Sysinternals:

File Edit Event Filter Tools Options Help
[EE | *BE | A | AKX |
Time of Day Process Na... PID Operstion

12:43:03.4341212 PM B sl exe 6384 [ShCloseFile rC:\\l’\dindob\'s S
12:43:03 4343032 PM exe 6884 B.Createﬁle C:A\Windows\System32 SUC S
12:43.03 4343623 FM exe 6884 BAQuenyDiectofl C\Windows\System32'drivers SUCQESS
12:43:03 4343552 PM exe G834 BclcseFile C:A\Windows'System32 SUC S
12:43:03 4345836 PM & exe 6884 BCreateFlle C:AWindows\System 32 drivers SUC 5
12:43:03.4346411 PM 57 exe 6824 BhQuenyDiectofl C:\Windows\System32\drivers'fitMgr.sys SUCEESS
12:43:03 4346760 PM exe 6834 Bclcsel-‘lle C:A\Windows'System 32 drivers SUC S
12:43:03 4348583 PM exe 6884 BhQueryOpen C:\Windows'\System32\drivers'fit Mar sys FAS i}
12:43:03 4349940 PM ® exe 6324 A Createfile C\Windows\System 32 drivers'fitMar.sys SUCQESS
12:43:03 4352416 PM exe 6884 B.GueryBaslcln ... CAWindowsSystem 32 drivers'fit Mar sys SUC S
12:43:03 4352655 PM exe 6884 BhCloseFile C:\Windows'\System32\drivers'fit Mar sys SUCQESS
12:43:03 4677278 FM exe 6334 BhQuenOpen CAWindows\System 32 drivers'filsinfo.sys FAS D.
12:43.03 4678668 PM exe 6884 B.Createﬁle C:AWindows\System 32 drivers'filsinfo.sys SUC S
12:43:03 4680333 FM exe 6884 ShReadFile CA\Windows"System 32 scesrv dll SUCQESS
12:43.03 4681225 PM =& exe 6834 BOuewBaﬁlcln ...CAWindows System 32 drivers'filsinfo.sys SUC 5
12:43:03 4681484 PM exe 6884 BhCloseFile C:AWindows\System 32 drivers'fileinfo sys SUCT S
12:43:03.4682205 PM exe 6884 BhCreatefile CcA SUCESS
12:43:03 4682502 PM exe 6834 BOuelerecto C:A\Windows SUC S
12:43:03.4683299 PM exe 6884 [BACloseFile CcA SUCHESS
12:43:03 4685095 PM exe 6324 A Createfile C:A\Windows SUCHESS
12:43:03 4685710 PM exe 6884 B.GueryDlrecto C:AWindows\System32 SUC S
12:43:03.4686039 PM exe 6884 [BACloseFile C\Windows SUCHESS
12:43:03 4687931 FM exe 6324 A Createfile CAWindows\System32 SUCHEESS
12:43:03 4688543 PM exe 6884 B.QueryDirecto C:AWindows\System 32 drivers SUC S
12:43.03 4688532 FM exe 6324 BhCloseFile CA\Windows"System32 SUCQESS
12:43:03 4690788 PM exe 6834 B&eatel—‘lle C:A\Windows'System 32 drivers SUC S
12:43:03 4691375 PM exe 6884 BQuewDirecto C:AWindows\System 32 drivers'fileinfo sys SUCT S
12:43.03 4651760 FM exe 6324 BhCloseFile CA\Windows"System 32 drivers SUCQESS
12:43:03 4693583 PM exe 6884 B.GueryOpen C:AWindows\System 32 driversfilsinfo.sys FAS D.
12:43:03 4654545 PM exe G884 %Createﬁle C:A\Windows'\System32\drivers'fileinfo sys SUCQESS

One process scanning the
entire. file system

Desired Access: Read Data/List Directory, Synchronize, T
Filter: fltMgr.sys, 1: fltMgr.sys

Diesired Access: Read Attributes, Disposition: Open, Optio
CreationTime: 7/13/2009 3:20:01 PM, LastAccessTime: 7

Desired Access: Read Attibutes, Disposition: Open, Optio

Cffset: 37 888, Length: 20,480, 110 Flags: Non-cached, P
CreationTime: 7/13/2009 3:34:25 PM, LastAccessTime: 7

Deesired Access: Read DatasList Directory, Synchronize, T
Fiter: Windows, 1: Windows

Diesired Access: Read DatasList Directory, Synchronize, T
Fitter: System32, 1: System32

Diesired Access: Read DatasList Directory, Synchronize, T
Filter: drivers, 1: drivers

Desired Access: Read Data/List Directory, Synchronize, T
Fitter: fileirfo sys. 1: fileinfo.sys

.Desired Access: Read Attributes, Disposition: Open, Optio =

<

Showing 21,253 of 78,642 events (27%)

Backed by page file

| »

3.3.2

Network 1/0 Issues

Network 1/0 activities can also be monitored with Process Monitor. Which process is
sending/receiving packets and the destination/source of those packets can be
determined from the output of the program. Using this information can help to

determine whether these activities are necessary or not.

White Paper

49

intelO Debugging Power Issues

Figure 32: ProcMon -- Network Activity

3.3.3

File Edit Event Filter Tools Options Help Show / hide network activity
[ZH | ABE | TASG | A8 | B[4 M

Time of Day Process Na. PID Operstion Path Result Detail i

12:24:40 7772549 PM ® 'svchostexe 1944 4% TCP Recsive g 2.intel com:60460 -> 49152 SUCCESS Length: 4048, segnum: 0, connid: 0
12:24:40. 7773432 PM & . 1944 &TCP Receive AR smewm intel.com 60460 FR249152 SUCCESS Length: 332, segnum: 0. connid: 0
12:24:40.7780065 P 1944 AL TCP Receive Mf MUML" s s intel com 60460 49152 SUCCESS Length: 2639, seqnum: 0, connid: 0
12:24:40. 7794421 P 1944 g}TCP Disconnect Srmas= . @ 1.intel.com:60460 > 49152 SUCCESS Length: 0, segnum: 0, connid: 0
12:24:40. 7896127 PM 8-'svchostexe 1944 &TCP Connect ——_ 2.intel.com 60461 -> RS 49152 SUCCESS Length: 0. mss: 1460, sackopt: 1.ts
12:24:40 7918344 PM W 'svchostexe 1944 4 TCP Send S SN S smmsm intel.com 60461 -> MR FRE49152 SUCCESS Length: 265, startime: 42845946, end
1224:40 7934548 PM W svchostexe 1944 AR TCP Receive Bl MOMLS as e intel com 60461 > M 49152 SUCCESS Length: 207, seqnum: 0, connid: 0
12:24:40 7948638 PM W'svchostexe 1944 4% TCP Disconnect s . & 1intel com 60461 -> = 49152 SUCCESS Length: 0. seqnum: 0, connid: 0
12:24:47688551 PM @iexplore axe 7184 i TCP Recsive g 2.imtel. com:60434 -> I = Wneth...SUCCESS Length: 104, segnum: 0, connid: 0
12:24:47 6896163 PM @imlore.axe 7184 &UDP Send S TS e inte] com:52897 > [T " smemeem | SUCCESS Length: 1. seqgnum: 0. connid: 0
12:24:47 6897144 PM [@iexplore exe 7184 ARUDP Receive Ml MRS s i intel com:52891 - MR MVBL" i e SUCCESS Length: 1. segnum: 0, connid: 0
12:25:13.6341520 PM @imlore.axe 7184 éUDP Send A L 1intel.com:52891 > LErm o L ..SUCCESS Length: 1, segnum: 0, connid: O
12:25:13.6342043 PM @iexulore.axe 714 &UDF‘ Receive ——_ .intel.com:52897 -> (e ..SUCCESS Length: 1. segnum: 0. connid: 0
1225141242254 PM (Eiexploreexe 7184 A TCP Send Sl BN " cmmsm initel.com 60441 > Inethit. . SUCCESS Length: 1716, startime: 4285274, en
12:25:14.1382445 PM @lmlore.axe 7184 &TCP Send N intel com 60441 > bnethtt. .SUCCESS Length: 101, stattime: 4285274, end
12:25:14.3345069 PM (Eiexplore exe 7184 sy TCP Receive e e 1irtel com:60441 - bnethtt. SUCCESS Length: 378, segnum: 0. connid: 0
12:25:15.3734468 PM [@iexplore axe 7184 s TCP Receive g pirtel.com:60434 > = Mneth..SUCCESS Length: 104, segnum: 0, connid: 0 —
12:25:15.3744136 PM @lmlore.axe 7184 &UDP Send SRS SN smeosmn intel com 52891 > S Bess e SUCCESS Length: 1. seqnum: 0. connid: 0 (o
12:25:15 3745189 PM [@iexplore exe 7184 4RUDP Receive I MW" s i intel com:52891 - 0808 MM 0 i i SUCCESS Length: 1. segnum: 0, connid: 0 -
| [| »
Showing 2,539 of 727,178 events (0.34%) Backed by page file

Graphics 1/0 Issues

By default, Windows (after Vista SP1) suppresses VBI (vertical blank interrupt)
generation of the graphics adapter after 10 VBI cycles with no graphics activity. To
take advantage of this power saving feature, the number of frames updated — even
the number of pixels updated in each frame is very small — should be minimized.
Battery Life Analyzer shows the number of frames updated as illustrated in Figure 33
below.

Figure 33: Battery Life Analyzer - Graphics Activity Analysis

50

"__ Life Analyzer [——

i File Settings Help

E%Mﬂnm;l{é*ﬁtutomatic E@Capture @StDIJ | Mo Screen Update

Madule Explarer | [Acraphics Activity X
2] Analysis Summary -
EH.j Modules Loaded E Avg App Frame Update / Seg¥ Avg Mouse Frame Update / Sec . Avg Total Frame Update / Sec

{1 CPU C-State 35 18.50
3 Disk Activity

Caused by slider update by media

playback application

{2 Graphics Activity
H == | "~

Messages

Type Module Time Message

(i) Information Graphics Activity 11/21/201018:32:50 Module initialized.
(i) Information Graphics Activity 11/21/2010 18:36:57 Data capture started

(i) Information Graphics Activity 11,/21/2010 18:37:34 Collection completed.
I

Please note that graphics activity happens every time the application program tries to
overwrite the screen with same image. In the screen shot above, the media playback
program is calling an API to update the slider (which shows the current playback

White paper

Debugging Power Issues - ®
intel)

3.3.4

3.3.5

White Paper

position) very frequently. But, only few of the API calls make the image change. Other
calls only overwrite the same slider image.

USB I/0 Issues

USB (up to USB 2.0) is a polling based interface and even when there is no
meaningful data transfer to/from a device, the host controller has to constantly poll
the devices and that activity keeps a large portion of the platform active. To minimize
the power impact of the USB subsystem, good behaving devices implement Selective
Suspend state. A device enters the selective suspend state when it is not used or it is
in a long idle state. Once all downstream devices are in the selective suspend state,
USB hub can enter selective suspend. Similarly, the host controller can enter selective
suspend after all downstream devices enter selective suspend and the USB subsystem
become quiescent. For more details about the Selective Suspend state
implementation, please refer to the Microsoft whitepaper on the topic. Link to the
white paper can be found in Chapter 6 “References”.

If software accesses USB devices frequently (once in a minutes or more), it will
significantly reduce the opportunity for the USB host controller to enter selective
suspend state.

Battery Life Analyzer’'s USB analysis feature measures the duration of selective
suspend for each host controller, hub, and devices. To verify USB devices are in the
selective suspend state, please start looking at host controller. If the host controller’s
selective suspend duration is high enough (>90%0), there is no problem with the
devices under that host controller. Otherwise, find the device showing low selective
suspend duration under that host controller.

Once the device that is causing the problem is identified, check the software
associated with that device.

Frequent Snoop Cycle Issue

Modern devices, including all devices discussed above, transfer data to memory using
bus master transfer. This can happen at any time and if the CPU is in a sleep state,
but the cache memory is still active (i.e., CPU package C-state is in C3 or C6), it
causes the CPU package to wake up (to CPU package C1 or C2 state) to snoop the
cache memory and can cause significant platform power increase if this situation
happens frequently. As discussed in Section 3.2.1 “CPU C-State Residency”, this can
be observed as high CPU package C1 or C2 state residency.

If high CPU package C1 or C2 state residency is seen, the next step is to determine
which device is causing the problem. The easiest way is to remove potential device

one by one and see if it affects the package C state residency. If it is not possible to
remove device physically, the next best thing is to disable it in the device manager.

51

lntelO Fixing Idle Power Issues

Fixing ldle Power Issues

4.1

4.1.1

52

Minimize Unnecessary Activities

Once the nature of the activities is understood, it is relatively easy to determine if
those activities are really necessary or not. For example, if a media playback
application is scanning the entire file system repeatedly, it’s probably looking for new
media files. This is not a desired activity while the system is operating on battery
power. The discussion about what kind of activities are appropriate (or not
appropriate) is beyond the scope of this document, but this section will introduce
Windows features that help to minimize the unnecessary activities.

Task Scheduler

Using the Task Scheduler, tasks with various triggers and conditions can be started
automatically. This will help to minimize the need to poll in certain situations.

A new task can be created through the GUI, command line program, or APl. Some of
the useful triggers and conditions that can be used to minimize unnecessary activities
during battery option are:

[Triggers]

e Specific time (On a schedule)

e System idleness (On Idle)

e Windows Event Log (On an event)

White paper

Fixing Idle Power Issues

Figure 34: Task Scheduler GUI — Trigger

Begin the task: ‘On a schedule - '
Settings

At log on
@ Onetime Atstartup Synchronize across time zones
n idle
() Daily On an event

- At task creation/medification
) Weekly 0 connection to user session
©) Menthly On disconngct from user session
COn workstation lock
On workstation unlock

Advanced settings

& Delay task for up to (random delay): |1 hour

[Conditions]

e System idleness (start the task only if the computer is idle for certain duration,
and stop the task when the computer ceases to be idle)

e Power source (start the task only when the system is AC powered, stop the task
when the system is battery powered)

e Network connection (start the task only when the computer is attached to the
specific network)

White Paper 53

4.

54

intel,

Figure 35: Task Scheduler GUI — Conditions

Fixing Idle Power Issues

| Settings|

| General I Triggers | Actions |C0ﬂdltlﬂ

Idle

Power
Start the task only if the computer is on AC power

[T] Start the task only if the computer is idle for:

Stop if the computer ceases to be idle

Restart if the idle state resumes

Stop if the computer switches to battery power
[Wake the computer to run this task
MNetwork
[T] Start only if the following network connection is available:

Any connection

Specify the conditions that, along with the trigger, determine whether the task should run. The task will not
run if any condition specified here is not true,

10 minutes

1 hour

The Task scheduler is the feature to use when a specific task needs to be started at
the event. Please see Chapter 6 “References” for the links to the detailed information.

1.2

Event Callback APIs

When a program keeps running (as a GUI program or service) and need to optimize
its behavior based on a condition, the APIs listed in the following table will be useful.
By making the program event driven, polling can avoided and unnecessary CPU

utilization and CPU C state transitions can be reduced.

Table 2: Useful Event Callback APIs

t API to setup notification Event notification OS Support
File FindFirstChangeNotification() Change notification handle Microsoft
Change Windows
2000*
Registry RegNotifyChangeKeyValue() Blocks until the change is Microsoft
Change detected Windows
Change notification handle 2000
Power RegisterPowerSettingNotificat [GUI Application] Microsoft
Status ion() Window message Windows
Change Note: Some messages to (WM_POWERBROADCAST, 2000
GUI application are enabled PBT_POWERSTATUSCHANG
by default B
[Service]
Callback
White paper

Fixing Idle Power Issues

4.2

4.2.1

intel,

t API to setup notification Event notification OS Support
Power RegisterPowerSettingNotificat [GUI Application] Microsoft
Profile ion() Window message Vista*
Change (WM_POWERBROADCAST
PBT_POWERSETTINGCHAN
GE)
[Service]
Callback
Windows EvtSubscribe() Callback Microsoft
Event Log Vista
Network NotifylpInterfaceChange() Callback Microsoft
Vista
PnP Events RegisterDeviceNotification() [GUI Application] Microsoft
Note: Some events to GUI Window message Windows
application are enabled by (WM_DEVICECHANGE 2000
default DBT_DEVICExXxX)
[Service]
Callback

Optimize Timer Resolution

Timer Resolution for Media Application

Media application programs often change the timer resolution to avoid glitches during
media playback. This was necessary in earlier version of Windows, but in Windows 7,
the Audio Engine (OS built in component) changes the timer resolution based on the
capability of the endpoint device and other factors. So, unless the application itself
has a requirement for a specific timer resolution, media playback programs don’t have
to change the timer resolution.

Figure 36 Code Sample for Timer Resolution Change

White Paper

DWORD dwVersion = GetVersion();

/* Check 0OS version.

* Windows 7 returns major version = 6, minor version = 1

*/

if ((dwersion & OxF) << 4 | (dwVersion >> 4) & OxF < 0x61) {
timeBeginPeriod(l);

}

For older versions of Windows, application programs may need to change the timer
resolution, but they should do so only when it is necessary. For example, media
playback applications should change the timer resolution when media playback starts
not at application startup. Timer resolution should be restored when playback stops or
pauses rather than when the application terminates.

55

intela Fixing Idle Power Issues

As mentioned above, the Windows 7 Audio Engine changes the timer resolution
automatically, but it is done when the audio session is established and it keeps that
timer resolution until the session is closed. So, to minimize the duration of timer
resolution changes, an application program needs to establish an audio session only
when audio devices are being used. An application should close the session explicitly
when no audio activity is happening. The following table shows the APIs that cause
timer resolution changes and restores for major audio API sets.

Table 3 APIs for Audio Session Control

4.2.2

4.3

56

API changes API restores
API timer resolution timer resolution
Core Audio IAudioClient:: Initialize() IAudioClient::Release()
Windows Multimedia waveOutOpen() waveOutClose()
Direct Sound [multiple APIs triggers IDirectSound::Release()
change] IDirectSound8::Release()

Timer Resolution for Other Application

Other than media applications, there are very few reasons for application programs to
change the timer resolution. But, application programs often change the timer
resolution nonetheless to get fine grain time stamping with timer tick based timer
APlIs including GetSystemTime(), GetTickCount(), GetSystemTimeAsFileTime(),
timeGetTime(), and timeGetSystemTime(). This method causes too much impact to
the platform as shown in Figure 12 and only provides up to a 1 msec resolution. It is
highly recommended to use a high resolution timer API such as
QueryPerformanceCounter() instead. This method provides much better resolution
without any power impact.

Some other application programs change the timer resolution hoping that will increase
their performance. This method might have benefited older platforms, but it doesn’t
have any positive impact to modern platforms. Instead, excessively frequent timer
tick interrupts might cause a negative impact to performance.

Reducing Periodic Activities

As explained in Section 2.3.1 “Frequency and Duration of CPU Utilization”, frequent
application program activity causes a significant increase in the platform power
consumption. In many cases, frequent activities are caused by the excessive use of

White paper

Fixing Idle Power Issues - ®
intel)

the periodic timer? by application programs. To reduce periodic timer activity, please
consider:

e If an activity is always necessary
— If an activity is only required at certain times, for example when network
connection is available, avoid causing the activity all other times.

e If polling-based code can be replaced by event-driven code
— Please consider using the event callback APIs explained in Section 4.1.2
“Event Callback APIs”.

e Minimizing the frequency of periodic activity
— Avoid periodic activities with 100msec or shorter periods unless they are
absolutely necessary.

e Coalescing activity within the process
— The following diagram illustrates a bad example of a multi-threaded
application. In this example, each thread executes an activity every timer tick.
These threads are most likely assigned to different CPU and cause multiple
CPU to wake ups per timer tick.

2 please note that periodic timer event is different from timer tick, which was
discussed in the previous section.

White Paper 57

58

intelO Fixing Idle Power Issues

Figure 37: Bad Example - Periodic Activity in Multi-threaded Application

Child Thread #1
for (:-1 §
if (check cond
Sleepil):

Child Thread #2

for [(:21 §

Main Thread

Child Thread #4

Jfor (2r)1
if |
Sleep(l):

The impact of this program can be reduced with small change illustrated in the
example below. In this code, until specific condition happens, Main Thread is the
only activity this program makes and it wakes only one CPU at every timer event.

White paper

Fixing Idle Power Issues

Figure 38: Better Example - Periodic Activity in Single Thread

ngleEvent (hEvtl, ...
10):

Child Thread #2

for [:: !

Mai

WaitForai
do actio

e Coalescing activity between processes

Total system C-state transitions can be reduced by coalescing the application’s
activity with other software activities using the Coalescing timer API —
SetWaitableTimerEx(). The TolerableDelay parameter instructs the operating
system how much delay the application can tolerate. The operating system
coalesces multiple timer events within the tolerable delay. Value of 100 msec or
greater are recommended to achieve the best power saving.

Figure 39: Timer Coalescing API Definition

BOOL SetWaitableTimerEx(

__1in HANDLE hTimer,
_in const LARGE_INTEGER *IpDueTime,
_in LONG IPeriod,

__in_opt PTIMERAPCROUTINE pfnCompletionRoutine,
__in_opt LPVOID IpArgToCompletionRoutine,
__in_opt PREASON_CONTEXT WakeContext,

_in ULONG TolerableDelay // in msec
)

White Paper 59

60

intelo) Fixing Idle Power Issues

Following code sample illustrates how to use this timer coalescing API to replace
simple Sleep() API.

Note: Error checking is omitted to simplify the code

White paper

Fixing Idle Power Issues

Figure 40: Timer Coalescing APl Usage Example

typedef BOOL (*PFNSETWAITABLETIMEREX)(
__1in HANDLE hTimer,
__1in const LARGE_INTEGER *IpDueTime,
__1in LONG IPeriod,
__in_opt PTIMERAPCROUTINE pfnCompletionRoutine,
__in_opt LPVOID IpArgToCompletionRoutine,
__in_opt PREASON_CONTEXT WakeContext,
__1in ULONG TolerableDelay

);

VOID SleepWithDelayTolerance(
__in DWORD dwMilliseconds,
__in ULONG TolerableDelay)

HMODULE hMod;

static PFNSETWAITABLETIMEREX pfnSWTEX;
HANDLE hTimer;

LARGE_INTEGER liDueTime;

hMod = LoadLibrary(“kernel32.d11™");
pFNSWTEX = GetProcAddress(hMod, “SetWaitableTimerEx”);

it (pfnSWTEX == NULL) { // 1T the 0S doesn’t support new API
Sleep(dwMilliseconds);
return;
}
liDueTime.QuadPart = dwMilliseconds * -10000;
hTimer = CrateWaitableTimerEx(NULL, NULL, O, TIMER_MODIFY_STATE);
CpFnSWTEX) (hTimer,
&l iDueTime,
0, // LONG IPeriod
NULL, // PTIMERAPCROUTINE pfnCompletionRoutine
NULL, // LPVOID IpArgToCompletionRoutine
NULL, // PREASON_CONTEXT WakeContext
TolerableDelay);
WaitForSingleObject(hTimer, INFINITE);
CloseHandle(hTimer);

White Paper 61

intela Fixing Idle Power Issues

4.4

4.5

62

For more details about the timer coalescing API, including the DDI for kernel mode
code, please refer to “Windows Timer Coalescing” white papers listed in Chapter 6
“References”.

Reducing IPI

An IPI (inter-processor interrupt) is used to implement inter-process communication.
As explained in Section 3.2.4.2.2 “Debugging Occasional High C-State transition
Issue”, some Win32 APIs internally use RPCs (remote procedure calls) and the
requests are processed by the server process and cause extra C-state transitions. The
following is a list of some of the Win32 APIs that cause IPIs:

e Service Control Manager (SCM) APIs
— OpenSCManager()
— OpenService()
— QueryServiceXXX()
— CloseService()
— .. etc.

e Windows Events, Windows Event Log APIs
— EVEXXX()
— OpenEventLog()
— ReadEventLog()
— CloseEventLog()
— .. etc.

e COM based APIs, when the server is implemented as an EXE
— WMI
— ... etc.

Alternative APIs can be used instead of the above APIs to reduce CPU utilization and
IPI generation. For example, many WMI queries can be replaced with simpler Win32
APIls, and the Windows Event Log APIs in polling-based code can replaced with
callbacks implemented using the EvtSubscribe() API.

If the above APIs are used, it is recommended to make those calls in short durations
rather than spreading them over time. By doing so, excessive C-state transitions
occur in a short time period followed by a relatively long idle period. This will allow the
platform to do a better job of power management.

Reducing 170 Activity Impact

Many 1/0 devices and the interface links to the devices implement idle timer based
power saving mechanisms and power saving states are entered only after certain
durations of idleness.

White paper

Fixing Idle Power Issues - ®
intel)

The following chart shows how the power states change over time with scattered 1/0
activities.

Figure 41: Device Power Consumption with Scattered Activity

Fx S _ _
=
3
>
A
5 B L
2
(@]
[a
S
>
()]
(o)
>

On the other hand, if the activity happens at once and it is followed by an
uninterrupted long idle duration, the device can stay in a lower power state for longer
duration as shown below.

Figure 42: Device Power Consumption with Coalesced Activity

3A
>
g

)
A
5 L
2
o
a
S
g '

)

White Paper 63

intela Fixing Idle Power Issues

4.5.1

4.5.2

64

It is often seen that background processes intentionally throttle their performance
(and spread their activity over a long duration) hoping that will minimize the
performance impact to other applications. But, such behavior has a negative impact to
the system’s battery life. The recommended solution is to use Task Scheduler and use
system idleness as a trigger or condition.

This recommendation applies to most device classes, including the CPU. The following
sections discuss device class specific recommendations.

Reducing Disk 1/0 Activity

Windows will flush the write data to disks soon after an application program calls the
Win32 API for write access, such as WriteFile(). It holds dirty data in memory for few
seconds to consolidate with other write operations, but doesn’t keep it in memory for
more than 10 seconds. If the application program doesn’t have a strict requirement
about when disk writes must happen, please try to buffer write data in the program.
For example, if the C library standard 1/0 functions such as fwrite(), fputs(), etc. are
used, write data is automatically buffered until the fflush() function is called explicitly
or the 1/0 stream is closed by the fclose() function.

Reducing Graphics 1/0 Activity

As explained in Section 3.3.3 “Graphics 1/0 Issues”, frequent graphics activity causes
a platform level power increase even if there is no visible graphics change. It is
recommended to:

¢ Minimize the use of animation
— If animation is necessary to catch a user’s attention, animating for a limited
duration may be enough.

e Minimize the frequency of graphics updates
— For example, if a media playback application adjusts its slider position to
match the current playback position, only update the slider position a few
times per second.

e Consolidate graphics updates within program
— If the program needs to make multiple periodic graphics updates, they should
be aligned with each other to reduce the number of frames updated.

White paper

Conclusion

intel)

Conclusion

White Paper

The world is moving toward ‘Green technologies’ and consumer demand for ‘Extended
Battery Life’ is always increasing. The need for higher performance and new usage
models will also keep increasing as they have done in the past couple of decades.
Energy-Efficiency will be crucial for the computing industry in the future both to
increase battery life for mobile platforms and to reduce energy expenses for desktop
and server platforms. Software behavior can have a significant effect on platform
power consumption and battery life.

In typical usage models, the mobile platform is idle (as measured by CPU CO
residency) for about 90-95% of the time. It is important to reduce power consumption
for idle and semi-idle workloads. Energy-efficient applications when idle should have a
minimal impact on platform power consumption. Frequent background activity should
be avoided.

During active workload execution, applications and services should improve
computation efficiency, maximize multi-threaded execution and coalesce activity to
increase idle residency. This will allow the platform to go into deeper low power
states, reduce C-state transitions, and thereby amortizing the power cost of
transitioning the platform into and out of low power states.

65

intel)

References

References

6.1

6.2

66

Tools

Intel Battery Life Analyzer requests, questions and feedbacks
mailto:BatterylLifeAnalyzer@intel.com

Intel® VTune™ Amplifier XE
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/

Microsoft Windows Performance Toolkit (included in Windows SDK)
http://msdn.microsoft.com/en-us/windows/bb980924

Sysinternals Process Monitor
http://technet.microsoft.com/en-us/sysinternals

Documents

“Energy-Efficient Platforms: Designing Devices Using the New Power Management
Extensions for Interconnects”
http://www.intel.com/technology/mobility/notebooks.htm

“Creating Energy-Efficient Software”
http://software.intel.com/en-us/articles/creating-energy-efficient-software-part-1/

“Maximizing Power Savings on Mobile Platforms”
http://software.intel.com/en-us/articles/maximizing-power-savings-on-mobile-

platforms/

“Mobile Battery Life Solutions for Windows 7”
http://download.microsoft.com/download/7/E/7/7E7662CF-CBEA-470B-A97E-
CE7CEOD98DC2/mobile_bat_Win7.docx

Task Scheduler
http://msdn.microsoft.com/en-us/library/aa383614(VS.85).aspx

Windows Timer Coalescing
http ://www.microsoft.com/whdc/system/pnppwr/powermgmt/TimerCoal.mspx

Selective Suspend in USB Drivers
http://www.microsoft.com/whdc/driver/wdf/USB_select-susp.mspx

Microsoft Windows Performance Toolkit
http://msdn.microsoft.com/en-us/performance/cc825801.aspx

White paper

mailto:BatteryLifeAnalyzer@intel.com�
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/�
http://msdn.microsoft.com/en-us/windows/bb980924�
http://technet.microsoft.com/en-us/sysinternals�
http://www.intel.com/technology/mobility/notebooks.htm�
http://software.intel.com/en-us/articles/creating-energy-efficient-software-part-1/�
http://software.intel.com/en-us/articles/maximizing-power-savings-on-mobile-platforms/�
http://software.intel.com/en-us/articles/maximizing-power-savings-on-mobile-platforms/�
http://download.microsoft.com/download/7/E/7/7E7662CF-CBEA-470B-A97E-CE7CE0D98DC2/mobile_bat_Win7.docx�
http://download.microsoft.com/download/7/E/7/7E7662CF-CBEA-470B-A97E-CE7CE0D98DC2/mobile_bat_Win7.docx�
http://msdn.microsoft.com/en-us/library/aa383614(VS.85).aspx�
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/TimerCoal.mspx�
http://www.microsoft.com/whdc/driver/wdf/USB_select-susp.mspx�
http://msdn.microsoft.com/en-us/performance/cc825801.aspx�

	1 Introduction
	1.1 Overview
	1.2 Structure of the Whitepaper
	1.3 Mobile Platform Power
	1.4 Typical Power Profile
	1.5 Software Impact on Platform Power
	1.6 Energy-Efficient Software

	2 Software Impact to Platform Energy-Efficiency
	2.1 C-State Transitions
	2.1.1 Processor Power Management Overview
	2.1.2 Software C-state to Hardware C-state Mapping
	2.1.3 The Energy Cost of Transition Increases as Deeper C-states are Entered. Frequent Transitions to Deep C-states Will Result in a Net Energy Loss. Application Software Impact to C-state Transition
	2.1.4 Impact of Excessive C-state Transitions: A Case Study

	2.2 Multi-Core Scheduling
	2.2.1 Impact of Inefficient Multi-core Scheduling: A Case Study
	2.2.2 Turbo Boost Impact of Inefficient Multi-core Scheduling
	2.2.3 Turbo Impact of Inefficient Multi-core Scheduling: A Case Study
	2.2.4 Software Recommendations

	2.3 CPU Utilization
	2.3.1 Frequency and Duration of CPU Utilization
	2.3.2 Software Recommendations

	2.4 Periodic Timers
	2.4.1 Timer Resolution
	2.4.2 Timer Coalescing
	2.4.3 Software Recommendations

	2.5 Disk and Registry Activity
	2.5.1 Software Recommendations

	2.6 General Guidelines for Applications
	2.7 Device Specific Applications or Services

	3 Debugging Power Issues
	3.1 Debug Strategy
	3.2 CPU / Chipset Power Issues
	3.2.1 CPU C-State Residency
	3.2.2 CPU Utilization Issues
	3.2.2.1 Identify Software Components with High CPU Utilization
	3.2.2.2 Understand Why CPU Utilization is High

	3.2.3 Timer Resolution Issue
	3.2.4 CPU Activity Frequency Issues
	3.2.4.1 Identify Software Components Causing Frequent Transition
	3.2.4.2 Understand Why Frequent C-State Transition is Happening
	3.2.4.2.1 Debugging Excessive Use of Short Duration Timer Issue
	3.2.4.2.2 Debugging Occasional High C-State Transition Issue

	3.3 I/O Issues
	3.3.1 Disk I/O Issues
	3.3.2 Network I/O Issues
	3.3.3 Graphics I/O Issues
	3.3.4 USB I/O Issues
	3.3.5 Frequent Snoop Cycle Issue

	4 Fixing Idle Power Issues
	4.1 Minimize Unnecessary Activities
	4.1.1 Task Scheduler
	4.1.2 Event Callback APIs

	4.2 Optimize Timer Resolution
	4.2.1 Timer Resolution for Media Application
	4.2.2 Timer Resolution for Other Application

	4.3 Reducing Periodic Activities
	4.4 Reducing IPI
	4.5 Reducing I/O Activity Impact
	4.5.1 Reducing Disk I/O Activity
	4.5.2 Reducing Graphics I/O Activity

	5 Conclusion
	6 References
	6.1 Tools
	6.2 Documents

