
Next Generation MPICH: What to
Expect – Lightweight communication

and much more!

Ken	Raffenetti
Software	Development	Specialist
Argonne	National	Laboratory
Email:	raffenet@mcs.anl.gov

Web:	http://www.mcs.anl.gov/~raffenet

Outline

§ Current	MPICH

§ MPICH-3.3	and	beyond
– Lightweight	communication	overhead

– Memory	scalability

– Multi-threading
• MPICH	+	User-level	threads

– ROMIO	data	logging

– MPI	derived	datatypes

§ Summary

2

MPICH Today

§ MPICH	is	a	high-performance	and	widely	portable	open-
source	implementation	of	MPI

§ It	provides	all	features	of	MPI	that	have	been	defined	so	far	
(up	to	and	include	MPI-3.1)

§ Active	development	lead	by	Argonne	National	Laboratory	and	
University	of	Illinois	at	Urbana-Champaign
– Several	close	collaborators	who	contribute	features,	bug	fixes,	testing	

for	quality	assurance,	etc.
• IBM,	Microsoft,	Cray,	Intel,	Ohio	State	University,	Queen’s	University,	
Mellanox,	RIKEN	AICS	and	others

§ Current	stable	release	is	MPICH-3.2

§ www.mpich.org
3

MPICH: Goals and Philosophy

§ MPICH	aims	to	be	the	preferred	MPI	implementation	on	the	
top	machines	in	the	world

§ Our	philosophy	is	to	create	an	“MPICH	Ecosystem”

MPICH

Intel	
MPIIBM	

MPI

Cray
MPI

Microsoft	
MPI

MVAPICH

Tianhe
MPI

MPE

PETSc

MathWorks

HPCToolkit

TAU

Totalview

DDT

ADLB

ANSYS

Mellanox
MPICH-MXM

Lenovo
MPI

GA-MPI

CAF-MPI

OpenShmem
-MPI

4

MPICH-3.2

§ MPICH-3.2	is	the	latest	major	release	series	of	MPICH
§ Primary	focus	areas	for	mpich-3.2

– Support	for	MPI-3.1	functionality	(nonblocking collective	I/O	and	
others)

– Fortran	2008	bindings
– Support	for	the	Mellanox MXM	interface		(thanks	to	Mellanox)
– Support	for	the	Mellanox HCOLL	interface		(thanks	to	Mellanox)
– Support	for	the	LLC	interface	for	IB	and	Tofu		(thanks	to	RIKEN)
– Support	for	the	OFI	interface	(thanks	to	Intel)
– Improvements	to	MPICH/Portals	4
– MPI-4	Fault	Tolerance	(ULFM – experimental)
– Major	improvements	to	the	RMA	infrastructure

MPICH-3.2

MPICH

CH3

Nemesis
(intranode shared	memory)

TCP MXM Portals	4 OFI

ADI

Channel	Interface

Netmod Interface

MPI

LLC

OFI - Libfabric

Introduction	to	MPI,	Argonne	(06/06/2014) 7

OFI Netmod in CH3

§ All	of	MPI	over	fi_tagged
– Hardware	Send/Recv

– MPI	RMA	emulation	using	MPICH	packet	headers

– MPICH	control	messages

§ Where	to	improve?
– MPI	RMA	with	fi_rma

– Collectives	with	fi_trigger

– Would	require	major	infrastructure	changes	to	CH3
• Step	back	and	look	at	CH3	as	a	whole…

Outline

§ Current	MPICH

§ Next	Generation	MPICH
– Lightweight	communication	overhead

– Memory	scalability

– Multi-threading
• MPICH	+	User-level	threads

– ROMIO	data	logging

– MPI	derived	datatypes

§ Summary

9

Singular	Shared	Memory	Support
§ Performant	shared	memory	communication	centrally	managed	by	

Nemesis

§ Network	library	shared	memory	implementations	are	not	well	supported

– Inhibits	collective	offload

CH3 Shortcomings

Non-scalable	“Virtual	Connections”
§ 480	bytes	*	1	million	procs	=	480MB(!)	of	VCs	per	process

§ Connection-less	networks	emerging

– VC	and	associated	fields	are	overkill

Active	Message	First	Design
§ All	communication	involves	a	

packet	header	+	message	
payload

– Requires	a	non-
contiguous	memory	
access	for	all	messages

§ Send/Recv override	exists,	but	
was	somewhat	clunky	add-in

Function	Pointers	Not	Optimized	By	Compiler

if (vc->comm_ops && vc->comm_ops->isend){
mpi_errno =

vc->comm_ops->isend(vc, buf, count, ...)
goto fn_exit;

}

Netmod API
• Passes	down	limited	information	

and	functionality	to	the	network	
layer

• SendContig
• SendNoncontig
• iSendContig
• iStartContigMsg
• ...

Overheads

§ With	MPI	features	baked	into	next-generation	hardware,	we	anticipate	
network	library	overheads	will	dramatically	reduce.

§ Message	rate	will	come	to	be	dominated	by	MPICH	overheads
0 100 200 300 400 500 600 700 800 900

future

isend|ch3|dynamic

Application

MPICH

Libfabric

MPI on OFI

§ Point-to-point	data	movement
– Closely	maps	to	fi_tsend/trecv functionality

– How	can	MPICH	get	out	of	the	way?

MPI_Isend(buf, count, datatype, dest, tag, comm, &req)

fi_tsend(gl_data.endpoint, /* Local endpoint */

send_buffer, /* Packed or user */

data_sz, /* Size of the send */

gl_data.mr, /* Dynamic memory region */

to_addr(comm,dest), /* Destination fabric address */

match_bits(comm,tag), /* Match bits */

&req->ctx); /* Context */

More	configurable	shared	memory	in	
CH4

§ Involve	the	network	layer	in	the	
decision

– Support	SHM	aware	algorithms

§ One	or	more	SHM	transports	(POSIX,	
XPMEM,	CMA)

Addressing CH3’s shortcomings

High-Level	API
• Give	more	control	to	lower	layers

• netmod_send
• netmod_recv
• netmod_put
• netmod_get

• Fallback	to	Active	Message	based	
communication	when	necessary

• Operations	not	supported	by	the	
network

“Netmod Direct”
• Support	two	modes

• Multiple	netmods
• Retains	function	pointer	for	flexibility

• Single	netmod with	inlining into	device	layer
• No	function	pointer

MPI

CH4

Netmod

OFI UCX Portals	4

MPI

CH4/Netmod Direct

Network	Library

No	Virtual	Connection	data	structure
• Global	address	table	(still	O(p))

• Contains	all	process	addresses
• Index	into	global	table	by	translating	

(rank+comm)
• VCs	can	still	be	defined	at	the	lower	layers

MPI_Isend

ch3-netmod-
dynamic ch4-netmod-base ch4-netmod-inline ch4-static ch4-shm-disabled ch4-thread-single

application-pre 13 13 13 61 55 53

mpi-pre 202 133 110 0 0 0

mpi-post 32 34 24 0 0 0

application-post 3 3 3 22 19 17

0

50

100

150

200

250

300

To
ta
l	I
ns
tr
uc
tio

ns

MPI_Isend

Outline

§ Current	MPICH	Status

§ MPICH-3.3
– Lightweight	communication	overhead

– Memory	scalability

– Multi-threading
• MPICH	+	User-level	threads

– ROMIO	data	logging

– MPI	derived	datatypes

§ Summary

15

Overview of the New LPID/GPID Design
(Replacement for VC)

§ Compressing	VC	(480Bytes	->	12Bytes)
– Compressing	Multi-transport	Functionality

• Function	pointers	are	moved	to	a	separate	array

– Deprioritizing	Dynamic	Processes
• Process	group	information	moved	to	COMM

§ Regular/Irregular	Rank	Mapping	Models
– DIRECT/DIRECT_INTRA

– OFFSET/OFFSET_INTRA

– STRIDE/STRIDE_INTRA

– STRIDE_BLOCK/STRIDE_BLOCK_INTRA

– LUT/LUT_INTRA

– MLUT

§ Rank-Address	Translate
– (comm,	rank)	->	(avtid,	lpid)

All	*_INTRA	(avtid==0)	model	uses	
MPIDI_CH4I_av_table0	to	save	1	
memory	reference	during	translation

Memory Usage Reduction

2K

200M

400M

600M

800M

1000M

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 768K

M
em

or
y	
U
sa
ge
	(B

)

Number	of	Processes

VC-VCRT-10COMM VC-VCRT-100COMM AV-Rankmap-10COMM AV-Rankmap-100COMM

MPI_Comm_split,	10	split	COMM	and	100	spilt	COMM

CH3	runs	out	of	memory	at	768K	procs,	100	COMMs

L1D Cache Misses

§ Compressing	VC	structure	
reduces	the	cache	misses	
during	communication

§ Deduction	in	L1D	cache	
misses	compensated	the	
overhead	of	additional	
instructions

1

10

100

1K

10K

100K

1M

DIRECT OFFSET STRIDE LUT

N
um

be
r	o

f	L
1D

	c
ac
he

	m
iss

es
	(p

er
	3
2M

	lo
ok
up

s)

Rank	Mapping	Model

VC-VCRT AV-Rankmap-switch AV-Rankmap-hybrid

Outline

§ Current	MPICH	Status

§ MPICH-3.3
– Lightweight	communication	overhead

– Memory	scalability

– Multi-threading
• MPICH	+	User-level	threads

– ROMIO	data	logging

– MPI	derived	datatypes

§ Summary

19

Multithreaded MPI Work-Queue Model
§ Context

– Existing	lock-based	MPI	implementations	
unconditionally acquire	locks

– Nonblocking operations	may	block for	a	lock	
acquisition
• Not truly	nonblocking!

§ Consequences
– Nonblocking operations	may	be	slowed	by	blocking	

ones	from	other	threads
– Pipeline	stalls:	higher	latencies,	lower	thoughput,	

and	less	communication-computation	overlapping
§ Work-Queue	Model

– One	or	multiple	work-queues	per	endpoint
– Decouple blocking	and	nonblocking operations
– Nonblocking operations	enqueue work	descriptors	

and	leave	if	critical	section	held
– Threads	issue	work	on	behalf	of	other	threads	when	

acquiring	a	critical	section
– Nonblocking operations	are	truly	nonblocking

MPI_Send(...)
{

CS_TRY_ENTER;
if(!success) {

CS_ENTER;
}

flush_workq();
Wait_Progress();

CS_EXIT;
}

enqueue

Dequeue

Hardware

T
x

T
x

0
50000
100000
150000
200000
250000
300000
350000

0 10 20 30 40

Is
su
in
g	
Ra

te
	(R

eq
ue

st
s/
s)

Number	of	Threads	Per	Rank

Nonblocking Irecv issuing	rate	between	
two	Haswell+Mellanox FDR	nodes

CLH
CLH-LPW

Nonblocking
Operation

Blocking
Operation

Work-Queue	per	
Communication	Context

Work-Queue Model Through 3 Steps
§ Step	1:	Single	Endpoint

– Current	MPICH
– Single	endpoint	per	MPI	process
– Worst	case	contention

§ Step	2:	Multiple	User-Transparent	
Endpoints
– Multiple	internal	endpoints	(BG/Q	

style)
– Transparent	to	the	user
– E.g.:	one	endpoint	per	comm,	per	

neighbor	process	(regular	apps)

§ Step	3:	Multiple	User-Visible	Endpoints
– MPI-4	Endpoints	proposal
– Multiple	endpoints	managed	by	

the	user

Hardware

Application

MPI

CTX	

User	Endpoint

Hardware

Application

MPI

CTX	

User	Endpoint

CTX	CTX	

Hardware

Application

MPI

CTX	

User	Endpoint

CTX	CTX	

User	EndpointUser	Endpoint

Current Work-Queue Model Implementation

MPI_Put(void* org_buf,...)
{

CS_TRYENTER(&success);

if(!success) {
/* Enqueue my work */
elem = {PUT, org_buf,…};
enqueue(&work_queue, elem);

}
else{

/* Flush the work queue */
while(!empty(work_queue)) {

elemt = dequeue(&work_queue);
switch (elem.op){

case PUT:
MPID_Put(elem.org_buf, …);
...
}

}
/* Issue my own op */
MPID_Put(elem.org_buf, …);

}
if(success)

CS_EXIT;
}

§ MPIR	Layer
– All	communication	devices	can	take	advantage
– Single	endpoint	(endpoints	have	not	been	exposed	yet)

§ Progress	semantics:
– Nonblocking calls:	flush	queue	if	lock	acquired
– Blocking	calls:

• Flush	work-queue	at	entry
• Flush		work-queue	within	the	progress	engine

§ Unlimited	work-queue
§ Locked	queue	implementation

§ Pthread mutex used	for	the	global	MPICH	lock
§ Work-queue:	multiple	implementations

– Mutex locked	queue
– Michal	Scott’s	lock-free	queue
– New	Multi-Producer-Single-Consumer	lock-free	

queues

Data Transfer Rate with Threaded MPI RMA

§ Transfer	data	domain	between	two	
processes

§ Stencil-like	halo	exchange	(actual	
domain	exchange,	not	like	OSU	
benchmarks)

§ Each	thread	gets	a	subdomain

§ Transfer	unit	is	a	chunk
§ Passive	target	synchronization

– Master	thread	does	Lock
– All	threads Put chunks
– All	threads	do	Flush every	

window_size
– Master	threads	does	Unlock

Chunk Window Thread	subdomain

Data	domain

P0

P1

Put	+	Lock	[+	Flush]

Put + Lock with a Mutex Work-queue (CH3+MXM)
No Concurrent Waiting Threads

4096

32768

262144

2097152

1 16 256 4096 65536

Tr
an

sf
er
	R
at
e	
(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

Core	0	(Single	Threaded)	

original
work-queue

4096

32768

262144

2097152

1 16 256 4096 65536

Tr
an

sf
er
	R
at
e	
(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

NUMA	Node	0	(9	cores)

original
work-queue

4096

32768

262144

2097152

1 16 256 4096 65536

Tr
an

sf
er
	R
at
e	
(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

Socket	0	(18	cores)

original

work-queue

4096

32768

262144

2097152

1 16 256 4096 65536

Tr
an

sf
er
	R
at
e	
(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

All	cores	(36)

original

work-queue

Put + Flush (w=64) + Lock with a Mutex Work-Queue
Concurrent Waiting Threads

4096

32768

262144

2097152

1 16 256 4096 65536

Tr
an

sf
er
	R
at
e	
(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

Core	0	(Single	Threaded)

original

work-queue

4096

32768

262144

2097152

1 16 256 4096 65536

Tr
an

sf
er
	R
at
e	
(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

NUMA	Node	0	(9	cores)

original

work-queue

4096

32768

262144

2097152

1 16 256 4096 65536

Tr
an

sf
er
	R
at
e	
(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

Socket	0	(18	cores)

original

work-queue

4096

32768

262144

2097152

1 16 256 4096 65536

Tr
an

sf
er
	R
at
e	
(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

All	cores	(36)

original

work-queue

Breakdown Analysis

0%

0%

1%

10%

100%

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number	of	Threads

WQ_enq WQ_deq Other

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number	of	Threads

WQ_enq WQ_deq Other

§ Put	+	Lock
– Queuing	work	is	the	major	

bottleneck!

– Currently	debugging	a	using	
faster	lock-free	queue

– Goal	~	0	overhead

§ Put	+	Flush	+	Lock
– Queuing/Dequeuing work	is	

negligible
– Bottleneck	somewhere	else
– Hypothesis:	all	threads	waiting	

for	completion	without	issuing	
(next	slide)

Watch	out!
Log	scale

Point-to-Point Message Rate with a Mutex Work-Queue

4096

65536

1048576

1 32 1024 32768Tr
an

sf
er
	S
ize

(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

Core	0

original
work-queue

4096

65536

1048576

1 32 1024 32768Tr
an

sf
er
	S
ize

(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

NUMA	Node	0	(9	cores)

original
work-queue

4096

65536

1048576

1 32 1024 32768Tr
an

sf
er
	S
ize

(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

Socket	0	(18	cores)

original
work-queue 4096

65536

1048576

1 32 1024 32768Tr
an

sf
er
	S
ize

(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

All	cores	(36)

original
work-queue

Results with a Lock-Free Work-Queue

§ Put	+	Lock
– Michael	Scott’s	lock-free	queue	(MS-WorkQ)

– Linked	to	TCMalloc

– Still	significantly	below	single-threaded

– Working	on	faster	lock-free	queues

65536

131072

262144

524288

1048576

2097152

4194304

1 4 16 64 256 1024 4096

Tr
an

sf
er
	S
ize

(C
hu

nk
s/
s)

Chunk	Size	(Bytes)

NUMA	Node	0	(9	cores)

Single-threaded
Mutex-WorkQ
MS-WorkQ
Original

Outline

§ Current	MPICH

§ MPICH-3.3	and	beyond
– Lightweight	communication	overhead

– Memory	scalability

– Multi-threading
• MPICH	+	User-level	threads

– ROMIO	data	logging

– MPI	derived	datatypes

§ Summary

29

Supporting User-level Threads in MPICH
(Argobots)
§ Motivation

– Traditional	MPI	implementations	are	only	aware	
of	kernel	threads

– Thread-synchronization	is	costly	to	ensure	
thread-safety	and	progress	requirement	from	
MPI

– Wasted	resources	if	a	kernel	thread	blocks	for	
MPI	communication

§ Argobots-aware	MPICH
– Supports	Argobots as	another	threading	model
– Lightweight	context	switching	to	overlap	costly	

blocking	operations
• Communication,	locks,	etc.

– Reduced	thread-synchronization	opportunities
• Guaranteed	consistency	within	an	ES	without	

locks	or	memory	barriers MPI+Argobots Execution Model

ULT

ES

ULT

ES

MPI

ULT

ES

ULT

ES

MPI
tim

eline

ULT1: do computation,
start a MPI send

Context switch to ULT2
ULT1: communication in
background

Context switch back to ULT1
ULT2: communication in
background

ULT1

ULT2

Outline

§ Current	MPICH	Status

§ MPICH-3.3
– Lightweight	communication	overhead

– Memory	scalability

– Multi-threading
• MPICH	+	User-level	threads

– ROMIO	data	logging

– MPI	derived	datatypes

§ Summary

31

Wesley Bland
Senior Software Developer, Intel Corporation
Intel HPC Developers Conference
November 12, 2016

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

MPICH-OFI*

Open-source implementation based on MPICH

• Uses the new CH4 infrastructure

• Co-designed with MPICH community

• Targets existing and new fabrics via next-gen Open Fabrics Interface (OFI)

• Ethernet/sockets, Intel® Omni-Path, Cray Aries*, IBM BG/Q*, InfiniBand*

• Will be the default implementation available on the Aurora Supercomputer
at Argonne National Laboratory

33

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

MPICH-OFI* Developments in 2016

Multiple hackathons with Argonne and internal development work to expand
CH4 feature set:

• Capability sets

• Improved RMA support

• Reduce instruction overhead

• Support for improved internal concurrency

34

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Capability Sets

Allows the user to compile-time select a set of OFI features to optimize lookups
later in the execution.

Optimized for the best performance for each OFI provider.

Can enable runtime configuration to make things more flexible, if desired.

35

PSM2 Capability Set (subset)
ENABLE_DATA ON
ENABLE_AV_TABLE ON
ENABLE_SCALABLE_ENDPOINTS OFF

Sockets Capability Set (subset)
ENABLE_DATA ON
ENABLE_AV_TABLE ON
ENABLE_SCALABLE_ENDPOINTS ON

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Improved RMA Support

Map MPI functionality directly to OFI features as much as possible

• OFI has direct support for Put, Get, Accumulate, etc.

• This may reduce software overhead and utilize underlying communication
fabric better.

36

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

As low as 43 instructions from
application to OFI with all
optimizations on

Reduce branching as much as possible

Reduce memory footprint

Reduced Instruction Overhead

37

0

50

100

150

200

250

All Dynamic Ticket Locks Inline CH4 Inline OFI No Locks All Static

In
st

ru
ct

io
n

Co
un

t

MPI_Send (OFI/CH4) Software Overhead

App-post

MPI-post

CH4-post

OFI-post

OFI-pre

CH4-pre

MPI-pre

App-pre

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Support for improved internal concurrency

Parallel packing and unpacking using derived datatypes

§ The approach shares threads between MPI and OpenMP*

– MPI can steal application threads that are idle

– MPI creates tasks that application threads can execute when idle

§ MPI doesn’t create additional threads.

– No oversubscription.

§ This model maps well to other runtimes,
such as Intel® TBB or Cilk™ Plus

38

MPI
Call

MPI

App

Collective Selection

Improved Shared Memory Support

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Collective Selection

Current MPICH

• Static selection of algorithms based on message size and communicator size
at initialization

Proposal

• Introduce intelligent selection to determine optimal collective algorithm

• Could be picked from a static configuration, runtime selection, etc.

• Can use default algorithms or device/netmod/etc. specific algorithms

40

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Improved Shared Memory Support

- Support multiple shmmods (pronounced shmem-mods)

- Might implement a subset of the API and fall back to active messages for
default support

- Similar architecture to current netmod design

41

CH4

AM NM 2NM 1SHM 2SHM 1 Fallback

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

42

ROMIO data logging

§ WHO:	Rob	Latham	(ANL)
§ PROBLEM:	How	to	make	use	of	new	

layers	in	storage	hierarchy?
§ SOLUTION:	“ad_logfs”	maintains	a	log-

structured	record	of	all	write	activities
– Sits	below	MPI-IO	routines:	transparent	

save	for	‘logfs:’	prefix
– Maintains	one	set	of	files	per	MPI	process

• Metadata,	data,	and	global	state

– Can	replay	on	close,	explicit	sync,	or	upon	
first	read

§ Intent:	log	all	I/O	to	NVRAM	or	SSD,	defer	
replay	to	parallel	file	system	

Outline

§ Current	MPICH	Status

§ MPICH-3.3
– Lightweight	communication	overhead

– Memory	scalability

– Multi-threading
• MPICH	+	User-level	threads

– ROMIO	data	logging

– MPI	derived	datatypes

§ Summary

45

DAME: a new engine for derived datatypes

§ Who: Tarun Prabu,	Bill	Gropp (UIUC)
§ Why:	DAME	is	an	improved	engine	for	derived-datatypes

– The	Dataloop code	(type	processing	today)	effective,	but	requires	many	function	calls	(the	“piece	
functions”)	for	each	“leaf	type”

– Piece	Functions	(function	pointers)	are	difficult	for	most	(all?)	compilers	to	inline,	even	with	things	
like	link-time	optimizations

§ What:	DAME	implements	a	new	description	of	the	MPI	datatype,	then	transforms	that	
description	into	efficient	memory	operations

§ Design	Principles:
– Low	processing	overhead
– Maximize	ability	of	compiler	to	optimize	code
– Simplify	partial	packing
– Enable	memory	access	optimizations

§ Optimizations:
– Memory	access	optimizations	can	be	done	by	shuffling	primitives	as	desired.	This	is	done	at	

“commit”	time.
– Other	optimizations	such	as	normalization	(e.g.	an	indexed	with	identical	stride	between	elements),	

displacement	sorting	and	merging	can	also	easily	be	performed	at	commit-time.

§ More	information	at:	https://wiki.mpich.org/mpich/index.php/DAME

Outline

§ Current	MPICH

§ MPICH-3.3	and	beyond
– Lightweight	communication	overhead

– Memory	scalability

– Multi-threading
• MPICH	+	User-level	threads

– ROMIO	data	logging

– MPI	derived	datatypes

§ Summary

47

MPICH-3.3 Next Major Release

§ The	CH4	device
– Replacement	for	CH3

• CH3	still	supported	and	maintained	for	the	time-being

– Primary	objectives
• Lightweight	communication	overhead

– Ability	to	support	high-level	network	APIs	(OFI,	UCX,	Portals	4)

– E.g.,	tag-matching	in	hardware,	direct	PUT/GET	communication

– Low	memory	footprint

• Support	for	very	high	thread	concurrency

– Improvements	to	message	rates	in	highly	threaded	environments	
(MPI_THREAD_MULTIPLE)

– Support	for	multiple	network	endpoints	(THREAD_MULTIPLE	or	not)

MPICH-3.3 Timeline

§ CH4	code	in	main	MPICH	repo	(recently	moved	to	GitHub)	
http://github.com/pmodels/mpich
– Some	work-in-progress	features	in	Pull	Request	branches

§ MPICH-3.3a2	release	out	this	week
– Subsequent	pre-releases	as	the	code	is	stabilized,	features	added

§ GA	Release	mid-2017

Thank you

§ Questions?

