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Introduction

• In the first quantization formulation of quantum mechanics,
observables are represented by operators and states by
functions.

• In the second quantization formulation, the wavefunctions
are also expressed in terms of operators — the creation
and annihilation operators working on the vacuum state.

• Operators (e.g., the Hamiltonian) and wavefunctions are
described by a single set of elementary creation and
annihilation operators.

• The antisymmetry of the electronic wavefunction follows
from the algebra of the creation and annihilation operators.



The Fock space

• Let {φP (x)} be a basis of M orthonormal spin orbitals,
where x represents the electron’s spatial (r) and spin (ms)
coordinates.

• A Slater determinant is a normalized, antisymmetrized
product of spin orbitals,
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• In Fock space (a linear vector space), a determinant is
represented by an occupation-number (ON) vector |k〉,

|k〉 = |k1, k2, . . . , kM 〉, kP =

{
1 φP (x) occupied
0 φP (x) unoccupied

The inner product

• Inner product between two ON vectors |k〉 and |m〉:

〈k|m〉 = δk,m =
M∏

P=1

δkP mP

• Applies also to the product between states with different
electron numbers.

• Resolution of the identity: 1 =
∑

k |k〉〈k|
• For two general vectors in Fock space:

|c〉 =
∑
k

ck|k〉, |d〉 =
∑
k

dk|k〉, 〈c|d〉 =
∑
k

c∗kdk



The 2M -dimensional Fock space

• The Fock space F (M) may be decomposed as a direct
sum of subspaces F (M,N),

F (M) = F (M, 0)⊕ F (M, 1)⊕ · · ·⊕ F (M,M)

• F (M,N) contains all
(M

N

)
vectors for which the sum of the

occupation numbers is N .

• The subspace F (M, 0) is the true vacuum state,

F (M, 0) ≡ |vac〉 = |01, 02, . . . , 0M 〉, 〈vac|vac〉 = 1

Creation operators

• The M elementary creation operators are defined by

a†P |k1, k2, . . . , 0P , . . . , kM 〉 = Γk
p |k1, k2, . . . , 1P , . . . , kM 〉

a†P |k1, k2, . . . , 1P , . . . , kM 〉 = 0

with the phase factor Γk
p =

P−1∏
Q=1

(−1)kQ

• Anticommutation relations take care of the phase factor.
• An ON vector can be expressed as a string of creation

operators (in canonical order) working on the vacuum,

|k〉 =

[
M∏

P=1

(a†P )kP

]
|vac〉



Annihilation operators

• The M elementary annihilation operators are defined by

aP |k1, k2, . . . , 1P , . . . , kM 〉 = Γk
p |k1, k2, . . . , 0P , . . . , kM 〉

aP |k1, k2, . . . , 0P , . . . , kM 〉 = 0

aP |vac〉 = 0

with the same phase factor as before.

• Again, anticommutation relations take care of the
phase factor.

• a†
P is the Hermitian adjoint to aP . These operators are

distinct operators and are not self-adjoint (Hermitian).

Anticommutation relations

• The anticommutation relations constitute the fundamental
properties of the creation and annihilation operators:

[aP , aQ]+ = aP aQ + aQaP = 0

[a†
P , a†

Q]+ = a†
P a†

Q + a†
Qa†

P = 0

[a†
P , aQ]+ = a†

P aQ + aQa†
P = δPQ

• All other algebraic properties of the second quantization
formalism follow from these simple equations.

• The anticommutation relations follow from the definitions of
aP and a†

P given on the previous slides.



Occupation-number operators

• The occupation-number (ON) operator is defined as

N̂P = a†
P aP

N̂P |k〉 = a†
P aP |k〉 = δkp1|k〉 = kP |k〉

• ON operators are Hermitian (N̂ †
P = N̂P ) and commute

among themselves, [N̂P , N̂Q] = 0.
• The ON vectors are simultaneous eigenvectors of the

commuting set of Hermitian operators N̂P .
• The ON operators are idempotent projection operators,

N̂2
P = a†

P aP a†
P aP = a†

P (1− a†
P aP )aP = a†

P aP = N̂P

The number operator

• The Hermitian number operator N̂ is obtained by adding
together all ON operators,

N̂ =
M∑

P=1

N̂P =
M∑

P=1

a†P aP , N̂ |k〉 =
M∑

P=1

kP |k〉 = N |k〉

• Let X̂ be a string with creation and annihilation operators
with more creation than annihilation operators (the excess
being NX , which can be negative). Then,

[N̂ , X̂] = NXX̂

• N̂ commutes with a number-conserving string for which
NX = 0.



Excitation operators

• The simplest number-conserving operators are the
elementary excitation operators

X̂P
Q = a†

P aQ

• X̂P
Q applied to |k〉:

P < Q X̂P
Q |k〉 = δP0δQ1Γ

k
P Γk

Q| . . . , 1P , . . . , 0Q, . . . 〉
P > Q X̂P

Q |k〉 = −δP0δQ1Γ
k
P Γk

Q| . . . , 0Q, . . . , 1P , . . . 〉
P = Q X̂P

Q |k〉 = kP |k〉

Wavefunctions represented by operators

• Let {φP (x)} be a basis of M orthonormal spin orbitals.
• An arbitrary wavefunction (within the space spanned by all

Slater determinants that can be formed using these M
spin orbitals) can be written as

|c〉 =
∑
k

ck|k〉 =
∑
k

ck

[
M∏

P=1

(a†
P )kP

]
|vac〉 =

∑
k

ckX̂k|vac〉

• An excitation operator can be applied to the above
wavefunction to yield another function,

X̂P
Q |c〉 = |c′〉



One-electron operators

• In first quantization, one-electron operators are written as

f c =
N∑

i=1

f c(xi)

• The second-quantization analogue has the structure

f̂ =
∑
PQ

fPQa†
P aQ, fPQ =

∫
φ∗P (x)f c(x)φQ(x)dx

• The order of the creation and annihilation operators
ensures that the one-electron operator f̂ produces zero
when it works on the vacuum state.

One-electron operators: Slater–Condon rules

〈k|f̂ |k〉 =
∑
P

fPP 〈k|a†P aP |k〉 =
∑
P

kP fPP ≡
occupied∑

I

fII

|k1〉 and |k2〉 differ in one pair of occupation numbers:
|k1〉 = |k1, k2, . . . , 0I , . . . , 1J , . . . , kM 〉
|k2〉 = |k1, k2, . . . , 1I , . . . , 0J , . . . , kM 〉

〈k2|f̂ |k1〉 = Γk2
I Γk1

J fIJ

|k1〉 and |k2〉 differ in more than one pair of occupation numbers:

〈k2|f̂ |k1〉 = 0



Two-electron operators

• In first quantization, one-electron operators are written as

gc = 1
2

N∑
i#=j

gc(xi,xj)

• The second-quantization analogue has the structure

ĝ = 1
2

∑
PQRS

gPQRSa†
P a†

RaSaQ

• The two-electron integral is

gPQRS =

∫ ∫
φ∗P (x1)φ

∗
R(x2)g

c(x1,x2)φQ(x1)φS(x2)dx1dx2

The molecular electronic Hamiltonian

Ĥ = hnuc +
∑
PQ

hPQa†
P aQ + 1

2

∑
PQRS

gPQRSa†
P a†

RaSaQ

with

hnuc = 1
2

∑
α#=β

ZαZβ

rαβ

hPQ =

∫
φ∗P (x)

(
− 1

2∆−
∑
α

Zα

rα

)
φQ(x)dx

gPQRS =

∫ ∫
φ∗P (x1)φ

∗
R(x2)

1

r12
φQ(x1)φS(x2)dx1dx2



First- and second-quantization operators compared

First quantization Second quantization
→ one-electron operator: → one-electron operator:∑

i fc(xi)
∑

PQ fPQa†P aQ

→ two-electron operator: → two-electron operator:
1
2

∑
i #=j gc(xi,xj)

1
2

∑
PQRS gPQRSa†P a†RaSaQ

→ operator independent of → operator depends on
spin-orbital basis spin-orbital basis

→ operator depends on → operator independent of
number of electrons number of electrons

→ exact operator → projected operator

Matrix elements in 2nd quantization

• Let
|c〉 =

∑
k

ck|k〉 =
∑
k

ckX̂k|vac〉

|d〉 =
∑
k

dk|k〉 =
∑
k

dkX̂k|vac〉

• Then,
〈c|Ô|d〉 =

∑
k

∑
k′

c∗kdk′〈vac|X̂†
kÔX̂k′ |vac〉

• Matrix elements become linear combinations of vacuum
expectation values. Note that X̂k and Ô consist of strings
of the same elementary creation and annihilation
operators.



Products of operators in 2nd quantization

• Recall: The (finite) matrix representation P of the operator
product P c(x) = Ac(x)Bc(x) is not equal to the product of
the matrices A and B,

P '= AB

• Similarly, the product of the operators Â and B̂ in second
quantization requires special attention,

Ac =
∑

i

Ac(xi), Â =
∑
PQ

APQa†
P aQ

Bc =
∑

i

Bc(xi), B̂ =
∑
PQ

APQa†
P aQ

P c = AcBc, P̂ = ?

Products in 2nd quantization (continued)

P c = AcBc = Oc + T c =
∑

i

Ac(xi)B
c(xi)

+ 1
2

∑
i#=j

[Ac(xi)B
c(xj) + Ac(xj)B

c(xi)]

P̂ = Ô + T̂ =
∑
PQ

OPQa†
P aQ + 1

2

∑
PQRS

TPQRSa†
P a†

RaSaQ

OPQ =

∫
φ∗P (x)Ac(x)Bc(x)φQ(x)dx

TPQRS = APQBRS + ARSBPQ



Using the anticommutation relations

T̂ = 1
2

∑
PQRS

(APQBRS + ARSBPQ)a†P a†RaSaQ

=
∑

PQRS

APQBRSa†P a†RaSaQ

=
∑

PQRS

APQBRS(a†P aQa†RaS − δRQa†P aS)

=

∑
PQ

APQa†P aQ

 (∑
RS

BRSa†RaS

)
−

∑
PS

(∑
R

APRBRS

)
a†P aS

= ÂB̂ −
∑
PQ

(∑
R

APRBRQ

)
a†P aQ

Operators in 2nd quantization are projections

• The final result for the representation of P c in second
quantization is

P̂ = ÂB̂ +
∑
PQ

(
OPQ −

∑
R

APRBRQ

)
a†

P aQ

• In a complete basis:
∑∞

R=1 APRBRQ = OPQ.

• The second quantization operators are projections of the
exact operators onto a basis of spin orbitals. For an
incomplete basis, the second quantization representation
depends on when the projection is made.



Heisenberg uncertainty principle

• Position and momentum do not commute: [xc, pc
x] = iN .

Note that xc and pc
x contain sums over N electrons, and

only the observables of the same electron do not
commute.

• What happens with [x̂, p̂x] in second quantization?

• It follows that

[x̂, p̂x] =
∑
PQ

(∑
R

{xPR(px)RQ − (px)PRxRQ}
)

a†
P aQ

• In a complete basis, we find: [x̂, p̂x] = iN̂ .

Expectation values

• We are interested in the expectation value of a general
one- and two-electron Hermitian operator Ω̂ with respect to
a normalized reference state |0〉.

Ω̂ = Ω0 +
∑
PQ

ΩPQa†
P aQ + 1

2

∑
PQRS

ΩPQRSa†
P a†

RaSaQ

|0〉 =
∑
k

ck|k〉, 〈0|0〉 = 1, 〈0|Ω̂|0〉 = ?

• We write the expectation value as follows:

〈0|Ω̂|0〉 = Ω0+
∑
PQ

ΩPQ〈0|a†
P aQ|0〉+1

2

∑
PQRS

ΩPQRS〈0|a†
P a†

RaSaQ|0〉



Density matrices

〈0|Ω̂|0〉 = Ω0 +
∑
PQ

ΩPQ〈0|a†P aQ|0〉+ 1
2

∑
PQRS

ΩPQRS〈0|a†P a†RaSaQ|0〉

= Ω0 +
∑
PQ

D̄PQΩPQ + 1
2

∑
PQRS

d̄PQRSΩPQRS

• One-electron density-matrix elements:

D̄PQ = 〈0|a†
P aQ|0〉

• Two-electron density-matrix elements:

d̄PQRS = 〈0|a†
P a†

RaSaQ|0〉

Properties of the one-electron density matrix

• D̄ is an M ×M positive semidefinite, Hermitian matrix.
• A diagonal element is referred to as the occupation number

ω̄P of the spin orbital φP (x) in the electronic state |0〉,

ω̄P = D̄PP = 〈0|a†
P aP |0〉 = 〈0|N̂P |0〉 =

∑
k

kP |ck|2

• Occup. numbers are real numbers between zero and one,

0 ≤ ω̄P ≤ 1

• The trace of the density matrix is equal to the number of
electrons,

TrD̄ =
∑
P

ω̄P =
∑
P

〈0|N̂P |0〉 = 〈0|N̂ |0〉 = N



Natural spin orbitals

• Since D̄ is a Hermitian matrix, we may diagonalize it with a
unitary matrix U,

D̄ = Uη̄U†

• The eigenvalues are real numbers 0 ≤ η̄P ≤ 1, known as
natural-orbital occupation numbers. The sum of the these
numbers is again equal to the number of electrons.

• The eigenvectors U constitute the natural spin orbitals.

Properties of the two-electron density matrix

• The elements of the two-electron density matrix d̄ are not
all independent,

d̄PQRS = −d̄RQPS = −d̄PSRQ = d̄RSPQ

• We define the two-electron density matrix T̄ with elements

T̄PQ,RS = d̄PRQS with P > Q, R > S

• The diagonal elements ω̄PQ are pair-occupation numbers,

ω̄PQ = T̄PQ,PQ = 〈0|a†
P a†

QaQaP |0〉 = 〈0|N̂P N̂Q|0〉
=

∑
k

kP kQ|ck|2



Operator rank

• In the manipulation of operators and matrix elements in
second quantization, we often encounter commutators and
anticommutators,

[Â, B̂] = ÂB̂ − B̂Â

[Â, B̂]+ = ÂB̂ + B̂Â

• The anticommutation relations of creation and annihilation
operators can be used to simplify commutators and
anticommutators of strings of operators.

• The particle rank of a string is the number of elementary
operators divided by two (e.g., the rank of a creation
operator is 1/2 and the rank of a ON operator is 1).

Rank reduction

• Rank reduction is said to occur when the rank of a
commutator or anticommutator is lower than the combined
rank of the operators involved,

a†
P aP + aP a†

P = 1

The rank of the operator products is 1, the rank of the
anticommutator is 0.

• Simple rule:
Rank reduction follows upon anticommutation of two
strings of half-integral rank and upon commutation of all
other strings.

[a†
P , aRaS] = [a†

P , aR]+aS − aR[a†
P , aS]+ = δPRaS − δPSaR



Useful operator identities

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ]

[Â, B̂Ĉ] = [Â, B̂]+Ĉ − B̂[Â, Ĉ]+

[Â, B̂Ĉ]+ = [Â, B̂]Ĉ + B̂[Â, Ĉ]+ = [Â, B̂]+Ĉ − B̂[Â, Ĉ]

For example:

[a†P , aRa†SaT ]+ = [a†P , aR]+a†SaT − aR[a†P , a†SaT ]

= δPRa†SaT − aR

(
[a†P , a†S ]+aT − a†S [a†P , aT ]+

)
= δPRa†SaT + δPT aRa†S

Normal-ordered second-quantization operators

• A normal-ordered string of second-quantization operators
is one in which we find all annihilation operators standing
to the right of all creation operators.

• As an example, consider the string aP a†
QaRa†

S ,

aP a†QaRa†S = δPQaRa†S − a†QaP aRa†S
= δPQδRS − δPQa†SaR − δRSa†QaP + a†QaP a†SaR

= δPQδRS − δPQa†SaR − δRSa†QaP + δPSa†QaR − a†Qa†SaP aR

• All of the strings in the rearrangement are in normal order.
• None of them contribute to the vacuum expectation value,

〈vac|aP a†QaRa†S |vac〉 = δPQδRS



Normal-ordered operators (continued)

• Consider the two wavefunctions |c〉 and |d〉:

|c〉 =
∑
k

ckX̂k|vac〉, |d〉 =
∑
k

dkX̂k|vac〉

• The matrix element

〈c|aP a†
QaRa†

S |d〉 =
∑
k,k′

c∗kdk′〈vac|X̂†
kaP a†

QaRa†
SX̂k′ |vac〉

can be evaluated by rearranging X̂†
kaP a†

QaRa†
SX̂k′ into

normal order.

Contractions

• A contraction between two arbitrary elementary operators,
for example between aP and and a†

Q is defined as

aP a†
Q = aP a†

Q − {aP a†
Q}

where the notation {aP a†
Q} indicates the normal-orderer

string.
• Thus, the contraction between the operators is simply the

original ordering of the pair minus the normal-ordered pair.
• The notation {. . . } introduces a sign (−1)p, where p is the

number of permutations required to bring the operators
into normal order.



Contractions (continued)

• Examples with two elementary operators:

aP aQ = 0, a†
P a†

Q = 0, a†
P aQ = 0,

aP a†
Q = aP a†

Q − {aP a†
Q} = aP a†

Q + a†
QaP = δPQ

• An example with more than two elementary operators:

aP aRa†
Qa†

S = −δPQaRa†
S

• A sign change occurs for every permutation that is required
until the contracted operators are adjacent to one another.

Full contractions

• A string of operators is fully contracted , if all operators are
pairwise contracted. Only full contractions contribute to the
vacuum expectation value.

• An example with two contractions:

aP aRa†
Qa†

S = − aP aRa†
Sa†

Q = − aP a†
Q δRS = −δPQδRS

• Rule of thumb: the sign of a full contraction is negative if
the number of crossings is odd, else positive.



Wick’s theorem

Wick’s theorem provides a recipe by which an arbitrary string of
annihilation and creation operators, ABC...XY Z, may be
written as a linear combination of normal-ordered strings.
Schematically, Wick’s theorem is:

ABC...XY Z = {ABC...XY Z}

+
∑
singles

{ABC...XY Z}

+
∑

doubles

{ABC...XY Z} + ...

where “singles”, “doubles”, etc. refer to the number of pairwise
contractions.

Wick’s theorem (continued)

Applying Wick’s theorem to aP a†
QaRa†

S yields:

aP a†QaRa†S = {aP a†QaRa†S} + {aP a†QaRa†S}

+ {aP a†QaRa†S} + {aP a†QaRa†S}

+ {aP a†QaRa†S}

= −a†Qa†SaP aR − δPQa†SaR + δPSa†QaR

− δRSa†QaP + δPQδRS

This result is identical to that obtained using the
anticommutation relations.



Wick’s theorem (continued)

Another example:

a†P aQaSa†R = {a†P aQaSa†R} + {a†P aQaSa†R} + {a†P aQaSa†R}
= a†P a†RaQaS + δSRa†P aQ − δQRa†P aS

This result is also easily obtained using the anticommutation
relations:

a†P aQaSa†R = a†P aQδSR − a†P aQa†RaS

= a†P aQδSR − a†P δQRaS + a†P a†RaQaS

Application of Wick’s theorem

• Consider the two one-electron states |T 〉 = a†
T |vac〉 and

|U〉 = a†
U |vac〉. The matrix element 〈T |aP a†

QaRa†
S |U〉 is

evaluated by retaining only the fully contracted terms,

〈T |aP a†QaRa†S |U〉 = 〈vac|aT aP a†QaRa†Sa†U |vac〉

= 〈vac|{aT aP a†QaRa†Sa†U} + {aT aP a†QaRa†Sa†U}

+ {aT aP a†QaRa†Sa†U} + {aT aP a†QaRa†Sa†U}|vac〉

= δTUδPQδRS + δTQδPSδRU − δTQδPUδRS − δTSδPQδRU



Generalized Wick’s theorem

The generalized Wick’s theorem provides a recipe by which we
can evaluate a product of two normal-ordered strings,

{ABC...}{XY Z...} = {ABC...XY Z...}

+
∑
singles

{ABC...XY Z...}

+
∑

doubles

{ABC...XY Z...} + ...

Contractions need only be evaluated between normal-ordered
strings and not within them.

Application of the generalized Wick’s theorem

Let us consider the product of the the strings a†
P aQ and a†

RaS ,
which both are in normal order:

a†
P aQa†

RaS = {a†
P aQa†

RaS} + {a†
P aQa†

RaS}
= − a†

P a†
RaQaS + δQRa†

P aS

Of course, the same result is also obtained by inserting the
anticommutation relation aQa†

R = δQR − a†
RaQ into the product

a†
P aQa†

RaS .



Fermi vacuum

• In configuration-interaction or coupled-cluster theories, it is
more convenient to deal with the N -electron reference
determinant |HF〉 than with the true vacuum state |vac〉.

• The evaluation of matrix elements using Wick’s theorem
were very tedious if one had to include the whole set of
creation operators to generate |HF〉 from the true vacuum,

|HF〉 = a†
Ia

†
Ja†

Ka†
L...|vac〉

• We alter the definition of normal ordering from one given
relative to the true vacuum to one given relative to the
reference state |HF〉 (Fermi vacuum).

Fermi vacuum and particle–hole formalism

• When working on the Fermi vacuum, a hole is created by
the operator aI while a particle is created by a†

A.

• We refer to operators that create or destroy holes and
particles as quasiparticle operators (q-operators). That is,
q-annihilation operators are those that annihilate holes and
particles (e.g., a†

I and aA), and q-creation operators are
those that create holes and particles (e.g., aI and a†

A).

• A string of second-quantization operators is normal
ordered relative to the Fermi vaccuum if all q-annihilation
operators are standing to the right of all q-creation
operators.



Contractions in the particle–hole formalism

• The definition of normal ordering relative to the Fermi
vacuum (denoted as “:...:”) changes the application of
Wick’s theorem only slightly. The only nonzero contractions
take place between q-annihilation operators that stand to
the left of q-creation operators,

a†
IaJ = a†

IaJ − :a†
IaJ : = a†

IaJ + aJa†
I = δIJ

aAa†
B = aAa†

B − :aAa†
B: = aAa†

B + a†
BaA = δAB

a†
AaB = aIa

†
J = 0

• All other combinations involve mixed hole and particle
indices for which the Kronecker delta functions give zero.

Wick’s theorem in the particle–hole formalism

Consider the overlap between two doubly-substituted
determinants:〈

CD
KL

∣∣∣ AB
IJ

〉
= 〈HF|a†Ka†LaDaCa†Aa†BaJaI |HF〉

= 〈HF| a†Ka†LaDaCa†Aa†BaJaI + a†Ka†LaDaCa†Aa†BaJaI

+ a†Ka†LaDaCa†Aa†BaJaI + a†Ka†LaDaCa†Aa†BaJaI |HF〉

= (δIKδJL − δILδJK) (δACδBD − δADδBC)



Normal-ordered one-electron operator

• The molecular electronic Hamiltonian reads:

Ĥ = hnuc +
∑
PQ

hPQa†
P aQ + 1

2

∑
PQRS

gPQRSa†
P a†

RaSaQ

• Applying Wick’s theorem to its one-electron term yields:

∑
PQ

hPQa†P aQ =
∑
PQ

hPQ:a†P aQ: +
∑
PQ

hPQ: a†P aQ :

=
∑
PQ

hPQ:a†P aQ: +
∑

I

hII

Normal-ordered two-electron operator

• We rewrite a†
P a†

RaSaQ as:

a†P a†RaSaQ = :a†P a†RaSaQ:

+ : a†P a†RaSaQ : + : a†P a†RaSaQ : + : a†P a†RaSaQ :

+ : a†P a†RaSaQ : + : a†P a†RaSaQ : + : a†P a†RaSaQ :

• Hence,

1
2

∑
PQRS

gPQRSa†P a†RaSaQ = 1
2

∑
PQRS

gPQRS :a†P a†RaSaQ:

+
∑
IPQ

(gIIPQ − gIPQI) :a†P aQ: + 1
2

∑
IJ

(gIIJJ − gIJJI)



The normal-ordered electronic Hamiltonian

• We note that:∑
I

hII + 1
2

∑
IJ

(gIIJJ − gIJJI) = EHF (Hartree–Fock energy)

hPQ +
∑

I

(gIIPQ − gIPQI) = fPQ (Fock-matrix element)

• We obtain:

Ĥ =
∑
PQ

fPQ:a†P aQ: + 1
2

∑
PQRS

gPQRS :a†P a†RaSaQ: + EHF

Ĥ = F̂N + V̂N + EHF

ĤN = F̂N + V̂N = Ĥ − EHF

Brillouin’s theorem

• Let
∣∣ A

I

〉
= a†

AaI |HF〉 be a singly-substituted determinant.
The matrix element 〈HF|Ĥ| A

I

〉
can be computed using

Wick’s theorem,

〈HF|Ĥ| A
I

〉
= 〈HF|Ĥa†

AaI |HF〉 = 〈HF|F̂Na†
AaI |HF〉

=
∑
PQ

fPQ〈HF| :a†
P aQ: a†

AaI |HF〉

=
∑
PQ

fPQ〈HF| a†
P aQa†

AaI |HF〉

= fIA = 0 (if Brillouin condition fulfilled)



First-order interacting space

• Similarly, for
∣∣ AB

IJ

〉
= a†

AaI |HF〉 we obtain:

〈HF|Ĥ| AB
IJ 〉 = 〈HF|V̂Na†Aa†BaJaI |HF〉

= 1
2

∑
PQRS

gPQRS〈HF| :a†P a†RaSaQ: a†Aa†BaJaI |HF〉

= 1
2

∑
PQRS

gPQRS〈HF| a†P a†RaSaQa†Aa†BaJaI

+ a†P a†RaSaQa†Aa†BaJaI + a†P a†RaSaQa†Aa†BaJaI

+ a†P a†RaSaQa†Aa†BaJaI |HF〉 = gIAJB − gIBJA

Spin in second quantization

• So far, we have used the upper-case index P to count spin
orbitals of the form

φP (x) = φpσ(r,ms) = φp(r)σ(ms)

• ms is the spin coordinate and the spin function σ(ms) is
either α(ms) or β(ms).

• The theory of second quantization can also be formulated
using the composite index pσ. For example, the anti-
commutator between creation and annihilation operators
can be written as

[a†pσ, aqτ ]
+

= δpσ,qτ = δpqδστ

• With lower-case indices p, we count spatial orbitals φp(r).



Spinfree one-electron operators

• Consider the following spinfree (or spinless) operator:

fc =
N∑

i=1

fc(ri), f̂ =
∑
pσqτ

fpσ,qτa†pσaqτ

fpσ,qτ =

∫ ∫
φ∗p(r)σ

∗(ms)f
c(r)φq(r)τ(ms)dr dms

= δστ

∫
φ∗p(r)f

c(r)φq(r)dr = δστfpq

• The sum over spin functions in the second quantization
operator f̂ can be accounted for in the singlet excitation
operator

Epq = a†pαaqα + a†pβaqβ , f̂ =
∑
pq

fpqEpq

Spinfree two-electron operators

The spinfree two-electron operator

gc = 1
2

∑
i #=j

gc(ri, rj)

gives

ĝ = 1
2

∑
pqrs

∑
στµν

gpσ,qτ,rµ,sν a†
pσa†

rµasνaqτ

= 1
2

∑
pqrs

∑
στ

gpqrs a†
pσa†

rτasτaqσ

= 1
2

∑
pqrs

gpqrs epqrs, with epqrs = EpqErs − δqrEps



Pure spin operators
The representation of first-quantization operators f c that work
in spin space only may be written in the general form

f̂ =
∑
pσqτ

∫
φ∗p(r)σ

∗(ms)f
c(ms)φq(r)τ(ms)dr dms a†pσaqτ

=
∑
στ

∫
σ∗(ms)f

c(ms)τ(ms)dms

∑
p

a†pσapτ

Consider the operators Sc
z, Sc

+ and Sc− (the latter are known as
step-up and step-down operators or ladder operators).

Sc
z(ms)α(ms) = 1

2α(ms), Sc
z(ms)β(ms) = − 1

2β(ms)

Sc−(ms)α(ms) = β(ms), Sc−(ms)β(ms) = 0

Sc
+(ms)α(ms) = 0, Sc

+(ms)β(ms) = α(ms)

Pure spin operators (continued)

Ŝz = 1
2

∑
p

(
a†pαapα − a†pβapβ

)
, Ŝ+ =

∑
p

a†pαapβ , Ŝ− =
∑

p

a†pβapα

From these operators, it follows:

Ŝ†
+ = Ŝ−, Ŝ†

− = Ŝ+

Ŝx = 1
2

(
Ŝ+ + Ŝ−

)
= 1

2

∑
p

(
a†pαapβ + a†pβapα

)
Ŝy = 1

2i

(
Ŝ+ − Ŝ−

)
= 1

2i

∑
p

(
a†pαapβ − a†pβapα

)
Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z = Ŝ+Ŝ− + Ŝz

(
Ŝz − 1

)
= Ŝ−Ŝ+ + Ŝz

(
Ŝz + 1

)
[Ŝ+, Ŝ−] = 2Ŝz



ROHF expectation value of Ŝ2

The expectation value of Ŝ2 with respect to a restricted
open-shell Hartree–Fock (ROHF) reference state can easily be
evaluated using Wick’s theorem in the particle–hole formalism.

〈HF|Ŝ+Ŝ−|HF〉 =
∑
pq

〈HF| a†pαapβa†qβaqα |HF〉 = Nα −Nβ

〈HF|Ŝ−Ŝ+|HF〉 =
∑
pq

〈HF| a†pβapαa†qαaqβ |HF〉 = 0

〈HF|Ŝz|HF〉 = 1
2

∑
p

〈HF| a†pαapα− a†pβapβ |HF〉 = 1
2 (Nα −Nβ)

〈HF|Ŝ2
z |HF〉 = 1

4

∑
pq

〈HF| a†pαapαa†qαaqα + . . . |HF〉 = 1
4 (Nα −Nβ)2

〈HF|Ŝ2|HF〉 = 1
2 (Nα −Nβ)

{
1
2 (Nα −Nβ) + 1

}

Mixed operators

Consider the (atomic) first-quantization spin–orbit operator,

V c
SO =

N∑
i=1

V c
SO(ri,msi) =

N∑
i=1

ξ(ri) "c(ri) · Sc(msi)

which in second quantization takes the form:

V̂SO =
∑
pq

(
V x

pqT̂
x
pq + V y

pqT̂
y
pq + V z

pqT̂
z
pq

)
with

V µ
pq =

∫
φ∗p(r)ξ(r) *c

µ(r) φq(r) dr, (µ = x, y, z)

and the triplet excitation operators

T x
pq = 1

2 (a†pαaqβ + a†pβaqα), T y
pq = 1

2i (a
†
pαaqβ − a†pβaqα)

T z
pq = 1

2 (a†pαaqα − a†pβaqβ)



One-electron density matrix

〈0|Ω̂|0〉 = Ω0 +
∑
pq

Ωpq〈0|Epq|0〉+ 1
2

∑
pqrs

Ωpqrs〈0|epqrs|0〉

= Ω0 +
∑
pq

DpqΩPQ + 1
2

∑
pqrs

dpqrsΩpqrs

• One-electron density matrix,

Dpq = 〈0|Epq|0〉 = D̄pα,qα + D̄pβ,qβ, Dpq = D∗
qp

• Orbital occupation numbers,

Dpp = ωp = ω̄pα + ω̄pβ, 0 ≤ ωp ≤ 2

• Natural occupation numbers,

D = UηU†, 0 ≤ ηp ≤ 2

Two-electron density matrix

〈0|Ω̂|0〉 = Ω0 +
∑
pq

Ωpq〈0|Epq|0〉+ 1
2

∑
pqrs

Ωpqrs〈0|epqrs|0〉

= Ω0 +
∑
pq

DpqΩPQ + 1
2

∑
pqrs

dpqrsΩpqrs

• Two-electron density matrix,

dpqrs = 〈0|epqrs|0〉 =
∑
στ

〈0|a†
pσa†

rτasτaqσ|0〉 =
∑
στ

d̄pσ,qσ,rτ,sτ

• Pair occupation numbers,

dppqq = ωpq =
∑
στ

ω̄pσ,qτ , 0 ≤ ωpq ≤ 2(2− δpq)



The spin-density matrix

• The spin-density matrix is defined as

DT
pq = 1

2〈0|a†
pαaqα − a†

pβaqβ |0〉 = 1
2(D̄pα,qα − D̄pβ,qβ)

• The spin-density matrix measures the excess of the
density of alpha electrons over beta electrons.

• Similarly, the spin occupation number

ωT
p = 1

2(ω̄pα − ω̄pβ)

measures the excess of alpha over beta electrons in φp.

• The trace of DT yields the total spin projection,

TrDT = 1
2

∑
p

〈0|a†
pαapα − a†

pβapβ|0〉 = 〈0|Ŝz|0〉


