Second quantization

Wim Klopper and David P. Tew

Lehrstuhl für Theoretische Chemie Institut für Physikalische Chemie Universität Karlsruhe (TH)

C⁴ Tutorial, Zürich, 2–4 October 2006

The inner product

• Inner product between two ON vectors $|\mathbf{k}\rangle$ and $|\mathbf{m}\rangle$:

$$\langle \mathbf{k} | \mathbf{m} \rangle = \delta_{\mathbf{k},\mathbf{m}} = \prod_{P=1}^{M} \delta_{k_P m_P}$$

- Applies also to the product between states with different electron numbers.
- Resolution of the identity: $1 = \sum_{\mathbf{k}} |\mathbf{k}\rangle \langle \mathbf{k}|$
- For two general vectors in Fock space:

$$|\mathbf{c}\rangle = \sum_{\mathbf{k}} c_{\mathbf{k}} |\mathbf{k}\rangle, \quad |\mathbf{d}\rangle = \sum_{\mathbf{k}} d_{\mathbf{k}} |\mathbf{k}\rangle, \quad \langle \mathbf{c} |\mathbf{d}\rangle = \sum_{\mathbf{k}} c_{\mathbf{k}}^* d_{\mathbf{k}}$$

The 2^M-dimensional Fock space

• The Fock space F(M) may be decomposed as a direct sum of subspaces F(M, N),

$$F(M) = F(M, \mathbf{0}) \oplus F(M, \mathbf{1}) \oplus \cdots \oplus F(M, M)$$

- F(M, N) contains all $\binom{M}{N}$ vectors for which the sum of the occupation numbers is N.
- The subspace F(M, 0) is the true vacuum state,

 $F(M, 0) \equiv |\mathsf{vac}\rangle = |0_1, 0_2, \dots, 0_M\rangle, \quad \langle \mathsf{vac}|\mathsf{vac}\rangle = 1$

Karlsruhe Institute of Technology

Creation operators

• The *M* elementary *creation operators* are defined by

$$a_P^{\dagger}|k_1, k_2, \dots, 0_P, \dots, k_M \rangle = \Gamma_P^{\mathbf{k}}|k_1, k_2, \dots, 1_P, \dots, k_M \rangle$$
$$a_P^{\dagger}|k_1, k_2, \dots, 1_P, \dots, k_M \rangle = 0$$
with the phase factor $\Gamma_P^{\mathbf{k}} = \prod_{Q=1}^{P-1} (-1)^{k_Q}$

- Anticommutation relations take care of the phase factor.
- An ON vector can be expressed as a string of creation operators (in canonical order) working on the vacuum,

$$|\mathbf{k}
angle = \left[\prod_{P=1}^{M} (a_{P}^{\dagger})^{k_{P}}
ight]| extsf{vac}
angle$$

Annihilation operators

• The *M* elementary annihilation operators are defined by

 $\begin{aligned} a_P |k_1, k_2, \dots, \mathbf{1}_P, \dots, k_M \rangle &= \mathsf{\Gamma}_p^{\mathbf{k}} |k_1, k_2, \dots, \mathbf{0}_P, \dots, k_M \rangle \\ a_P |k_1, k_2, \dots, \mathbf{0}_P, \dots, k_M \rangle &= \mathbf{0} \\ a_P |\mathbf{vac}\rangle &= \mathbf{0} \end{aligned}$

with the same phase factor as before.

- Again, anticommutation relations take care of the phase factor.
- a_P^{\dagger} is the Hermitian adjoint to a_P . These operators are distinct operators and are not self-adjoint (Hermitian).

SALE OF Technology

Anticommutation relations

• The *anticommutation relations* constitute the fundamental properties of the creation and annihilation operators:

 $[a_P, a_Q]_+ = a_P a_Q + a_Q a_P = \mathbf{0}$ $[a_P^{\dagger}, a_Q^{\dagger}]_+ = a_P^{\dagger} a_Q^{\dagger} + a_Q^{\dagger} a_P^{\dagger} = \mathbf{0}$ $[a_P^{\dagger}, a_Q]_+ = a_P^{\dagger} a_Q + a_Q a_P^{\dagger} = \delta_{PQ}$

- All other algebraic properties of the second quantization formalism follow from these simple equations.
- The anticommutation relations follow from the definitions of *a*_P and *a*[†]_P given on the previous slides.

Occupation-number operators

• The occupation-number (ON) operator is defined as

$$\hat{N}_P = a_P^{\dagger} a_P$$
$$\hat{N}_P |\mathbf{k}\rangle = a_P^{\dagger} a_P |\mathbf{k}\rangle = \delta_{k_p \mathbf{1}} |\mathbf{k}\rangle = k_P |\mathbf{k}\rangle$$

- ON operators are Hermitian (\$\hat{N}_P^{\dagger} = \hat{N}_P\$) and commute among themselves, [\$\hat{N}_P\$, \$\hat{N}_Q\$] = 0.
- The ON vectors are simultaneous eigenvectors of the commuting set of Hermitian operators \hat{N}_P .
- The ON operators are idempotent projection operators,

$$\hat{N}_{P}^{2} = a_{P}^{\dagger}a_{P}a_{P}^{\dagger}a_{P} = a_{P}^{\dagger}(1 - a_{P}^{\dagger}a_{P})a_{P} = a_{P}^{\dagger}a_{P} = \hat{N}_{P}$$

SKIT

The number operator

- The Hermitian number operator \hat{N} is obtained by adding together all ON operators,

$$\hat{N} = \sum_{P=1}^{M} \hat{N}_P = \sum_{P=1}^{M} a_P^{\dagger} a_P, \qquad \hat{N} |\mathbf{k}\rangle = \sum_{P=1}^{M} k_P |\mathbf{k}\rangle = N |\mathbf{k}\rangle$$

• Let \hat{X} be a string with creation and annihilation operators with more creation than annihilation operators (the excess being N^X , which can be negative). Then,

$$[\hat{N}, \hat{X}] = N^X \hat{X}$$

• \hat{N} commutes with a number-conserving string for which $N^X = 0$.

Excitation operators

• The simplest number-conserving operators are the elementary *excitation operators*

$$\hat{X}_Q^P = a_P^\dagger a_Q$$

•
$$\hat{X}_Q^P$$
 applied to $|\mathbf{k}\rangle$:

$$P < Q \qquad \hat{X}_Q^P |\mathbf{k}\rangle = \delta_{P0} \delta_{Q1} \Gamma_P^{\mathbf{k}} \Gamma_Q^{\mathbf{k}} | \dots, \mathbf{1}_P, \dots, \mathbf{0}_Q, \dots \rangle$$
$$P > Q \qquad \hat{X}_Q^P |\mathbf{k}\rangle = -\delta_{P0} \delta_{Q1} \Gamma_P^{\mathbf{k}} \Gamma_Q^{\mathbf{k}} | \dots, \mathbf{0}_Q, \dots, \mathbf{1}_P, \dots \rangle$$
$$P = Q \qquad \hat{X}_Q^P |\mathbf{k}\rangle = k_P |\mathbf{k}\rangle$$

Sector United Sectors

Wavefunctions represented by operators

- Let $\{\phi_P(\mathbf{x})\}\$ be a basis of M orthonormal spin orbitals.
- An arbitrary wavefunction (within the space spanned by all Slater determinants that can be formed using these M spin orbitals) can be written as

$$|\mathbf{c}\rangle = \sum_{\mathbf{k}} c_{\mathbf{k}} |\mathbf{k}\rangle = \sum_{\mathbf{k}} c_{\mathbf{k}} \left[\prod_{P=1}^{M} (a_{P}^{\dagger})^{k_{P}} \right] |\mathbf{vac}\rangle = \sum_{\mathbf{k}} c_{\mathbf{k}} \hat{X}_{\mathbf{k}} |\mathbf{vac}\rangle$$

• An excitation operator can be applied to the above wavefunction to yield another function,

$$\hat{X}_Q^P | \mathbf{c} \rangle = | \mathbf{c}' \rangle$$

One-electron operators

• In first quantization, one-electron operators are written as

$$f^c = \sum_{i=1}^N f^c(\mathbf{x}_i)$$

The second-quantization analogue has the structure

$$\hat{f} = \sum_{PQ} f_{PQ} a_P^{\dagger} a_Q, \qquad f_{PQ} = \int \phi_P^*(\mathbf{x}) f^c(\mathbf{x}) \phi_Q(\mathbf{x}) d\mathbf{x}$$

• The order of the creation and annihilation operators ensures that the one-electron operator \hat{f} produces zero when it works on the vacuum state.

Karlsruhe Institute of Technology

One-electron operators: Slater–Condon rules

$$\langle \mathbf{k} | \hat{f} | \mathbf{k} \rangle = \sum_{P} f_{PP} \langle \mathbf{k} | a_{P}^{\dagger} a_{P} | \mathbf{k} \rangle = \sum_{P} k_{P} f_{PP} \equiv \sum_{I}^{\text{occupied}} f_{II}$$

 $|\mathbf{k}_1\rangle$ and $|\mathbf{k}_2\rangle$ differ in one pair of occupation numbers: $|\mathbf{k}_1\rangle = |k_1, k_2, \dots, 0_I, \dots, 1_J, \dots, k_M\rangle$ $|\mathbf{k}_2\rangle = |k_1, k_2, \dots, 1_I, \dots, 0_J, \dots, k_M\rangle$

 $\langle \mathbf{k}_2 | \hat{f} | \mathbf{k}_1 \rangle = \mathsf{\Gamma}_I^{\mathbf{k}_2} \mathsf{\Gamma}_J^{\mathbf{k}_1} f_{IJ}$

 $|{\bf k}_1\rangle$ and $|{\bf k}_2\rangle$ differ in more than one pair of occupation numbers:

$$\langle \mathbf{k}_2 | \hat{f} | \mathbf{k}_1 \rangle = 0$$

Two-electron operators

• In first quantization, one-electron operators are written as

$$g^c = \frac{1}{2} \sum_{i \neq j}^{N} g^c(\mathbf{x}_i, \mathbf{x}_j)$$

• The second-quantization analogue has the structure

$$\hat{g} = \frac{1}{2} \sum_{PQRS} g_{PQRS} a_P^{\dagger} a_R^{\dagger} a_S a_Q$$

• The two-electron integral is

$$g_{PQRS} = \int \int \phi_P^*(\mathbf{x}_1) \phi_R^*(\mathbf{x}_2) g^c(\mathbf{x}_1, \mathbf{x}_2) \phi_Q(\mathbf{x}_1) \phi_S(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$$

Kertsruhe Institute of Technology

The molecular electronic Hamiltonian

$$\hat{H} = h_{\rm nuc} + \sum_{PQ} h_{PQ} a_P^{\dagger} a_Q + \frac{1}{2} \sum_{PQRS} g_{PQRS} a_P^{\dagger} a_R^{\dagger} a_S a_Q$$

with

$$h_{\text{nuc}} = \frac{1}{2} \sum_{\alpha \neq \beta} \frac{Z_{\alpha} Z_{\beta}}{r_{\alpha\beta}}$$
$$h_{PQ} = \int \phi_P^*(\mathbf{x}) \left(-\frac{1}{2} \Delta - \sum_{\alpha} \frac{Z_{\alpha}}{r_{\alpha}} \right) \phi_Q(\mathbf{x}) d\mathbf{x}$$
$$g_{PQRS} = \int \int \phi_P^*(\mathbf{x}_1) \phi_R^*(\mathbf{x}_2) \frac{1}{r_{12}} \phi_Q(\mathbf{x}_1) \phi_S(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2$$

First- and second-quantization operators compared

\rightarrow one-electron operator: \rightarrow one-electron operator: $\sum_i f^c(\mathbf{x}_i)$ $\sum_{PQ} f_{PQ} a_P^{\dagger} a_Q$ \rightarrow two-electron operator: \rightarrow two-electron operator: $\frac{1}{2} \sum_{i \neq j} g^c(\mathbf{x}_i, \mathbf{x}_j)$ \rightarrow two-electron operator: $\frac{1}{2} \sum_{i \neq j} g^c(\mathbf{x}_i, \mathbf{x}_j)$ $\frac{1}{2} \sum_{PQRS} g_{PQRS} a_P^{\dagger} a_R^{\dagger} a_S a_Q$ \rightarrow operator independent of \rightarrow operator depends on
$\sum_{i} f^{c}(\mathbf{x}_{i}) \qquad \qquad \sum_{PQ} f_{PQ} a_{P}^{\dagger} a_{Q}$ $\Rightarrow \text{ two-electron operator:} \qquad \rightarrow \text{ two-electron operator:} \\ \frac{1}{2} \sum_{i \neq j} g^{c}(\mathbf{x}_{i}, \mathbf{x}_{j}) \qquad \qquad \frac{1}{2} \sum_{PQRS} g_{PQRS} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}$ $\Rightarrow \text{ operator independent of} \qquad \rightarrow \text{ operator depends on}$
→ two-electron operator: $\frac{1}{2}\sum_{i\neq j} g^{c}(\mathbf{x}_{i}, \mathbf{x}_{j})$ → two-electron operator: $\frac{1}{2}\sum_{PQRS} g_{PQRS} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}^{\dagger}$ → operator independent of → operator depends on
$\frac{1}{2}\sum_{i\neq j}g^{c}(\mathbf{x}_{i},\mathbf{x}_{j}) \qquad \qquad \frac{1}{2}\sum_{PQRS}g_{PQRS}a_{P}^{\dagger}a_{R}^{\dagger}a_{S}a_{Q}$ $\rightarrow \text{ operator independent of } \rightarrow \text{ operator depends on}$
$\overline{2} \sum_{i \neq j} g^{\circ}(\mathbf{x}_{i}, \mathbf{x}_{j}) \qquad \overline{2} \sum_{PQRS} g_{PQRS} a_{P} a_{R} a_{S} a_{Q}$ $\rightarrow \text{ operator independent of } \rightarrow \text{ operator depends on}$
\rightarrow operator independent of \rightarrow operator depends on
spin-orbital basis spin-orbital basis
anavatav dananda an
\rightarrow operator depends on \rightarrow operator independent of
number of electrons number of electrons
\rightarrow exact operator \rightarrow projected operator

Karlsruhe Institute of Technology

Products of operators in 2nd quantization

 Recall: The (finite) matrix representation P of the operator product P^c(x) = A^c(x)B^c(x) is *not* equal to the product of the matrices A and B,

$$\mathbf{P} \neq \mathbf{AB}$$

• Similarly, the product of the operators \hat{A} and \hat{B} in second quantization requires special attention,

Products in 2nd quantization (continued)

$$P^{c} = A^{c}B^{c} = O^{c} + T^{c} = \sum_{i} A^{c}(\mathbf{x}_{i})B^{c}(\mathbf{x}_{i})$$
$$+ \frac{1}{2}\sum_{i\neq j} \left[A^{c}(\mathbf{x}_{i})B^{c}(\mathbf{x}_{j}) + A^{c}(\mathbf{x}_{j})B^{c}(\mathbf{x}_{i})\right]$$

$$\hat{P} = \hat{O} + \hat{T} = \sum_{PQ} O_{PQ} a_P^{\dagger} a_Q + \frac{1}{2} \sum_{PQRS} T_{PQRS} a_P^{\dagger} a_R^{\dagger} a_S a_Q$$
$$O_{PQ} = \int \phi_P^*(\mathbf{x}) A^c(\mathbf{x}) B^c(\mathbf{x}) \phi_Q(\mathbf{x}) d\mathbf{x}$$

 $T_{PQRS} = A_{PQ}B_{RS} + A_{RS}B_{PQ}$

<u> </u>

Using the anticommutation relations

$$\begin{aligned} \hat{T} &= \frac{1}{2} \sum_{PQRS} (A_{PQ}B_{RS} + A_{RS}B_{PQ}) a_P^{\dagger} a_R^{\dagger} a_S a_Q \\ &= \sum_{PQRS} A_{PQ}B_{RS} a_P^{\dagger} a_R^{\dagger} a_S a_Q \\ &= \sum_{PQRS} A_{PQ}B_{RS} (a_P^{\dagger} a_Q a_R^{\dagger} a_S - \delta_{RQ} a_P^{\dagger} a_S) \\ &= \left(\sum_{PQ} A_{PQ} a_P^{\dagger} a_Q\right) \left(\sum_{RS} B_{RS} a_R^{\dagger} a_S\right) - \sum_{PS} \left(\sum_{R} A_{PR} B_{RS}\right) a_P^{\dagger} a_S \\ &= \hat{A}\hat{B} - \sum_{PQ} \left(\sum_{R} A_{PR} B_{RQ}\right) a_P^{\dagger} a_Q \end{aligned}$$

Operators in 2nd quantization are projections

• The final result for the representation of P^c in second quantization is

$$\hat{P} = \hat{A}\hat{B} + \sum_{PQ} \left(O_{PQ} - \sum_{R} A_{PR}B_{RQ} \right) a_{P}^{\dagger}a_{Q}$$

- In a complete basis: $\sum_{R=1}^{\infty} A_{PR} B_{RQ} = O_{PQ}$.
- The second quantization operators are projections of the exact operators onto a basis of spin orbitals. For an incomplete basis, the second quantization representation depends on when the projection is made.

Heisenberg uncertainty principle

• Position and momentum do not commute: $[x^c, p_x^c] = iN$. Note that x^c and p_x^c contain sums over N electrons, and only the observables of the same electron do not commute.

• What happens with $[\hat{x}, \hat{p}_x]$ in second quantization?

It follows that

$$[\hat{x}, \hat{p}_x] = \sum_{PQ} \left(\sum_R \{ x_{PR}(p_x)_{RQ} - (p_x)_{PR} x_{RQ} \} \right) a_P^{\dagger} a_Q$$

• In a *complete basis*, we find: $[\hat{x}, \hat{p}_x] = i\hat{N}$.

SINT Karlsruhe Institute of Technology

Expectation values

 We are interested in the expectation value of a general one- and two-electron Hermitian operator Ω̂ with respect to a normalized reference state |0⟩.

$$\hat{\Omega} = \Omega_{0} + \sum_{PQ} \Omega_{PQ} a_{P}^{\dagger} a_{Q} + \frac{1}{2} \sum_{PQRS} \Omega_{PQRS} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}$$
$$|0\rangle = \sum_{\mathbf{k}} c_{\mathbf{k}} |\mathbf{k}\rangle, \qquad \langle 0|0\rangle = 1, \qquad \langle 0|\hat{\Omega}|0\rangle = ?$$

We write the expectation value as follows:

$$\langle 0|\hat{\Omega}|0\rangle = \Omega_0 + \sum_{PQ} \Omega_{PQ} \langle 0|a_P^{\dagger}a_Q|0\rangle + \frac{1}{2} \sum_{PQRS} \Omega_{PQRS} \langle 0|a_P^{\dagger}a_R^{\dagger}a_Sa_Q|0\rangle$$

SALE

Density matrices

$$\begin{aligned} \langle 0|\hat{\Omega}|0\rangle &= \Omega_{0} + \sum_{PQ} \Omega_{PQ} \langle 0|a_{P}^{\dagger}a_{Q}|0\rangle + \frac{1}{2} \sum_{PQRS} \Omega_{PQRS} \langle 0|a_{P}^{\dagger}a_{R}^{\dagger}a_{S}a_{Q}|0\rangle \\ &= \Omega_{0} + \sum_{PQ} \bar{D}_{PQ} \Omega_{PQ} + \frac{1}{2} \sum_{PQRS} \bar{d}_{PQRS} \Omega_{PQRS} \end{aligned}$$

• One-electron density-matrix elements:

$$ar{D}_{PQ} = \langle \mathbf{0} | a_P^\dagger a_Q | \mathbf{0}
angle$$

• Two-electron density-matrix elements:

$$\bar{d}_{PQRS} = \langle \mathbf{0} | a_P^{\dagger} a_R^{\dagger} a_S a_Q | \mathbf{0} \rangle$$

Karlsruhe Institute of Technology

Properties of the one-electron density matrix

- $\bar{\mathbf{D}}$ is an $M \times M$ positive semidefinite, Hermitian matrix.
- A diagonal element is referred to as the occupation number *ω*_P of the spin orbital φ_P(x) in the electronic state |0⟩,

$$\bar{\omega}_P = \bar{D}_{PP} = \langle \mathbf{0} | a_P^{\dagger} a_P | \mathbf{0} \rangle = \langle \mathbf{0} | \hat{N}_P | \mathbf{0} \rangle = \sum_{\mathbf{k}} k_P |c_{\mathbf{k}}|^2$$

• Occup. numbers are real numbers between zero and one,

$$0\leq ar{\omega}_P\leq 1$$

The trace of the density matrix is equal to the number of electrons,

$$\mathrm{Tr}\bar{\mathbf{D}} = \sum_{P} \bar{\omega}_{P} = \sum_{P} \langle \mathbf{0} | \hat{N}_{P} | \mathbf{0} \rangle = \langle \mathbf{0} | \hat{N} | \mathbf{0} \rangle = N$$

Properties of the two-electron density matrix

• The elements of the two-electron density matrix $\bar{\mathbf{d}}$ are not all independent,

$$\bar{d}_{PQRS} = -\bar{d}_{RQPS} = -\bar{d}_{PSRQ} = \bar{d}_{RSPQ}$$

• We define the two-electron density matrix $ar{\mathbf{T}}$ with elements

$$\bar{T}_{PQ,RS} = \bar{d}_{PRQS}$$
 with $P > Q$, $R > S$

• The diagonal elements $\bar{\omega}_{PQ}$ are *pair-occupation numbers*,

$$\begin{split} \bar{\omega}_{PQ} &= \bar{T}_{PQ,PQ} = \langle \mathbf{0} | a_P^{\dagger} a_Q^{\dagger} a_Q a_P | \mathbf{0} \rangle = \langle \mathbf{0} | \hat{N}_P \hat{N}_Q | \mathbf{0} \rangle \\ &= \sum_{\mathbf{k}} k_P k_Q | c_{\mathbf{k}} |^2 \end{split}$$

Operator rank

• In the manipulation of operators and matrix elements in second quantization, we often encounter *commutators* and *anticommutators*,

 $\begin{aligned} & [\hat{A},\hat{B}] &= \hat{A}\hat{B} - \hat{B}\hat{A} \\ & [\hat{A},\hat{B}]_{+} &= \hat{A}\hat{B} + \hat{B}\hat{A} \end{aligned}$

- The anticommutation relations of creation and annihilation operators can be used to simplify commutators and anticommutators of strings of operators.
- The *particle rank* of a string is the number of elementary operators divided by two (*e.g.*, the rank of a creation operator is 1/2 and the rank of a ON operator is 1).

Salarian States of Technology

Rank reduction

 Rank reduction is said to occur when the rank of a commutator or anticommutator is lower than the combined rank of the operators involved,

$$a_P^{\dagger}a_P + a_P a_P^{\dagger} = 1$$

The rank of the operator products is 1, the rank of the anticommutator is 0.

• Simple rule:

Rank reduction follows upon anticommutation of two strings of half-integral rank and upon commutation of all other strings.

$$[a_{P}^{\dagger}, a_{R}a_{S}] = [a_{P}^{\dagger}, a_{R}]_{+}a_{S} - a_{R}[a_{P}^{\dagger}, a_{S}]_{+} = \delta_{PR}a_{S} - \delta_{PS}a_{R}$$

Useful operator identities

$$\begin{aligned} [\hat{A}, \hat{B}\hat{C}] &= [\hat{A}, \hat{B}]\hat{C} + \hat{B}[\hat{A}, \hat{C}] \\ [\hat{A}, \hat{B}\hat{C}] &= [\hat{A}, \hat{B}]_{+}\hat{C} - \hat{B}[\hat{A}, \hat{C}]_{+} \\ [\hat{A}, \hat{B}\hat{C}]_{+} &= [\hat{A}, \hat{B}]\hat{C} + \hat{B}[\hat{A}, \hat{C}]_{+} \\ &= [\hat{A}, \hat{B}]_{+}\hat{C} - \hat{B}[\hat{A}, \hat{C}] \end{aligned}$$

For example:

$$\begin{aligned} [a_P^{\dagger}, a_R a_S^{\dagger} a_T]_+ &= [a_P^{\dagger}, a_R]_+ a_S^{\dagger} a_T - a_R [a_P^{\dagger}, a_S^{\dagger} a_T] \\ &= \delta_{PR} a_S^{\dagger} a_T - a_R \left([a_P^{\dagger}, a_S^{\dagger}]_+ a_T - a_S^{\dagger} [a_P^{\dagger}, a_T]_+ \right) \\ &= \delta_{PR} a_S^{\dagger} a_T + \delta_{PT} a_R a_S^{\dagger} \end{aligned}$$

Karlsruhe Institute of Technology

Normal-ordered second-quantization operators

- A normal-ordered string of second-quantization operators is one in which we find *all annihilation operators standing* to the right of all creation operators.
- As an example, consider the string $a_P a_Q^{\dagger} a_R a_S^{\dagger}$,

$$a_{P}a_{Q}^{\dagger}a_{R}a_{S}^{\dagger} = \delta_{PQ}a_{R}a_{S}^{\dagger} - a_{Q}^{\dagger}a_{P}a_{R}a_{S}^{\dagger}$$
$$= \delta_{PQ}\delta_{RS} - \delta_{PQ}a_{S}^{\dagger}a_{R} - \delta_{RS}a_{Q}^{\dagger}a_{P} + a_{Q}^{\dagger}a_{P}a_{S}^{\dagger}a_{R}$$
$$= \delta_{PQ}\delta_{RS} - \delta_{PQ}a_{S}^{\dagger}a_{R} - \delta_{RS}a_{Q}^{\dagger}a_{P} + \delta_{PS}a_{Q}^{\dagger}a_{R} - a_{Q}^{\dagger}a_{S}^{\dagger}a_{P}a_{R}$$

- All of the strings in the rearrangement are in normal order.
- None of them contribute to the vacuum expectation value,

 $\langle \mathsf{vac} | a_P a_Q^{\dagger} a_R a_S^{\dagger} | \mathsf{vac} \rangle = \delta_{PQ} \delta_{RS}$

Normal-ordered operators (continued)

• Consider the two wavefunctions $|\mathbf{c}\rangle$ and $|\mathbf{d}\rangle$:

$$|\mathbf{c}\rangle = \sum_{\mathbf{k}} c_{\mathbf{k}} \hat{X}_{\mathbf{k}} |\text{vac}\rangle, \qquad |\mathbf{d}\rangle = \sum_{\mathbf{k}} d_{\mathbf{k}} \hat{X}_{\mathbf{k}} |\text{vac}\rangle$$

• The matrix element

$$\langle \mathbf{c}|a_P a_Q^{\dagger} a_R a_S^{\dagger}|\mathbf{d}\rangle = \sum_{\mathbf{k},\mathbf{k}'} c_{\mathbf{k}}^* d_{\mathbf{k}'} \langle \mathsf{vac}|\hat{X}_{\mathbf{k}}^{\dagger} a_P a_Q^{\dagger} a_R a_S^{\dagger} \hat{X}_{\mathbf{k}'}|\mathsf{vac}\rangle$$

can be evaluated by rearranging $\hat{X}^{\dagger}_{\mathbf{k}}a_{P}a^{\dagger}_{Q}a_{R}a^{\dagger}_{S}\hat{X}_{\mathbf{k}'}$ into normal order.

Salarian States

Contractions

• A contraction between two arbitrary elementary operators, for example between a_P and and a_Q^{\dagger} is defined as

$$\stackrel{|}{a_P} \stackrel{|}{a_Q} = a_P a_Q^{\dagger} - \{a_P a_Q^{\dagger}\}$$

where the notation $\{a_P a_Q^{\dagger}\}$ indicates the normal-orderer string.

- Thus, the contraction between the operators is simply the original ordering of the pair minus the normal-ordered pair.
- The notation {...} introduces a sign (-1)^p, where p is the number of permutations required to bring the operators into normal order.

Wick's theorem

Wick's theorem provides a recipe by which an arbitrary string of annihilation and creation operators, ABC...XYZ, may be written as a linear combination of normal-ordered strings. Schematically, Wick's theorem is:

where "singles", "doubles", etc. refer to the number of pairwise contractions.

Wick's theorem (continued)

Applying Wick's theorem to $a_P a_Q^{\dagger} a_R a_S^{\dagger}$ yields:

$$a_{P}a_{Q}^{\dagger}a_{R}a_{S}^{\dagger} = \{a_{P}a_{Q}^{\dagger}a_{R}a_{S}^{\dagger}\} + \{a_{P}a_{Q}^{\dagger}a_{R}a_{S}^{\dagger}\}$$

$$+ \{a_{P}a_{Q}^{\dagger}a_{R}a_{S}^{\dagger}\} + \{a_{P}a_{Q}^{\dagger}a_{R}a_{S}^{\dagger}\}$$

$$+ \{a_{P}a_{Q}^{\dagger}a_{R}a_{S}^{\dagger}\}$$

$$= -a_{Q}^{\dagger}a_{S}^{\dagger}a_{P}a_{R} - \delta_{PQ}a_{S}^{\dagger}a_{R} + \delta_{PS}a_{Q}^{\dagger}a_{R}$$

$$- \delta_{RS}a_{Q}^{\dagger}a_{P} + \delta_{PQ}\delta_{RS}$$

This result is identical to that obtained using the anticommutation relations.

Wick's theorem (continued)

Another example:

$$a_P^{\dagger}a_Qa_Sa_R^{\dagger} = \{a_P^{\dagger}a_Qa_Sa_R^{\dagger}\} + \{a_P^{\dagger}a_Qa_Sa_R^{\dagger}\} + \{a_P^{\dagger}a_Qa_Sa_R^{\dagger}\} + \{a_P^{\dagger}a_Qa_Sa_R^{\dagger}\}$$
$$= a_P^{\dagger}a_R^{\dagger}a_Qa_S + \delta_{SR}a_P^{\dagger}a_Q - \delta_{QR}a_P^{\dagger}a_S$$

This result is also easily obtained using the anticommutation relations:

$$a_P^{\dagger} a_Q a_S a_R^{\dagger} = a_P^{\dagger} a_Q \delta_{SR} - a_P^{\dagger} a_Q a_R^{\dagger} a_S$$
$$= a_P^{\dagger} a_Q \delta_{SR} - a_P^{\dagger} \delta_{QR} a_S + a_P^{\dagger} a_R^{\dagger} a_Q a_S$$

Application of Wick's theorem

• Consider the two one-electron states $|T\rangle = a_T^{\dagger} |\text{vac}\rangle$ and $|U\rangle = a_U^{\dagger} |\text{vac}\rangle$. The matrix element $\langle T|a_P a_Q^{\dagger} a_R a_S^{\dagger}|U\rangle$ is evaluated by retaining only the *fully contracted* terms,

$$\langle T|a_{P}a_{Q}^{\dagger}a_{R}a_{S}^{\dagger}|U\rangle = \langle \mathbf{vac}|a_{T}a_{P}a_{Q}^{\dagger}a_{R}a_{S}^{\dagger}a_{U}^{\dagger}|\mathbf{vac}\rangle$$

$$= \langle \mathbf{vac}|\{a_{T}a_{P}a_{Q}^{\dagger}a_{R}a_{S}^{\dagger}a_{U}^{\dagger}\} + \{a_{T}a_{P}a_{Q}a_{R}a_{S}^{\dagger}a_{U}^{\dagger}\} + \{a_{T}a_{P}a_{Q}a_{R}a_{S}^{\dagger}a_{U}^{\dagger}\}$$

$$+ \{a_{T}a_{P}a_{Q}a_{R}a_{S}^{\dagger}a_{U}^{\dagger}\} + \{a_{T}a_{P}a_{Q}a_{R}a_{S}^{\dagger}a_{U}^{\dagger}\}|\mathbf{vac}\rangle$$

 $=\delta_{TU}\delta_{PQ}\delta_{RS}+\delta_{TQ}\delta_{PS}\delta_{RU}-\delta_{TQ}\delta_{PU}\delta_{RS}-\delta_{TS}\delta_{PQ}\delta_{RU}$

Generalized Wick's theorem

The generalized Wick's theorem provides a recipe by which we can evaluate a product of two normal-ordered strings,

 $\{ABC...\}\{XYZ...\} = \{ABC...XYZ...\}$ + $\sum_{\text{singles}} \{\overrightarrow{ABC...XYZ...}\}$ + $\sum_{\text{doubles}} \{\overrightarrow{ABC...XYZ...}\} + \dots$

Contractions need only be evaluated between normal-ordered strings and not within them.

SKIT

Application of the generalized Wick's theorem

Let us consider the product of the the strings $a_P^{\dagger}a_Q$ and $a_R^{\dagger}a_S$, which both are in normal order:

$$a_P^{\dagger}a_Q a_R^{\dagger}a_S = \{a_P^{\dagger}a_Q a_R^{\dagger}a_S\} + \{a_P^{\dagger}a_Q a_R^{\dagger}a_S\}$$

$$= -a_P^{\dagger}a_R^{\dagger}a_Q a_S + \delta_{QR}a_P^{\dagger}a_S$$

Of course, the same result is also obtained by inserting the anticommutation relation $a_Q a_R^{\dagger} = \delta_{QR} - a_R^{\dagger} a_Q$ into the product $a_P^{\dagger} a_Q a_R^{\dagger} a_S$.

Fermi vacuum

- In configuration-interaction or coupled-cluster theories, it is more convenient to deal with the N-electron reference determinant |HF> than with the true vacuum state |vac>.
- The evaluation of matrix elements using Wick's theorem were very tedious if one had to include the whole set of creation operators to generate |HF> from the true vacuum,

$$|\mathsf{HF}\rangle = a_{I}^{\dagger}a_{J}^{\dagger}a_{K}^{\dagger}a_{L}^{\dagger}...|\mathsf{vac}\rangle$$

 We alter the definition of normal ordering from one given relative to the true vacuum to one given relative to the reference state |HF> (*Fermi vacuum*).

Fermi vacuum and particle-hole formalism

- When working on the Fermi vacuum, a hole is created by the operator a_I while a particle is created by a[†]_A.
- We refer to operators that create or destroy holes and particles as *quasiparticle operators* (q-operators). That is, q-annihilation operators are those that annihilate holes and particles (*e.g.*, a[†]_I and a_A), and q-creation operators are those that create holes and particles (*e.g.*, a_I and a[†]_A).
- A string of second-quantization operators is normal ordered relative to the Fermi vaccuum if all q-annihilation operators are standing to the right of all q-creation operators.

Contractions in the particle-hole formalism

 The definition of normal ordering relative to the Fermi vacuum (denoted as ":...:") changes the application of Wick's theorem only slightly. The only nonzero contractions take place between q-annihilation operators that stand to the left of q-creation operators,

$$\begin{vmatrix} a_I^{\dagger} a_J &= a_I^{\dagger} a_J &- :a_I^{\dagger} a_J := a_I^{\dagger} a_J + a_J a_I^{\dagger} = \delta_{IJ} \\ \hline a_A a_B^{\dagger} &= a_A a_B^{\dagger} &- :a_A a_B^{\dagger} := a_A a_B^{\dagger} + a_B^{\dagger} a_A = \delta_{AB} \\ \hline a_A^{\dagger} a_B &= a_I a_J^{\dagger} = \mathbf{0} \end{vmatrix}$$

• All other combinations involve mixed hole and particle indices for which the Kronecker delta functions give zero.

SALE A

Wick's theorem in the particle-hole formalism

Consider the overlap between two doubly-substituted determinants:

$$\left\langle \begin{array}{c} CD \\ KL \end{array} \middle| \begin{array}{c} AB \\ IJ \end{array} \right\rangle = \langle \mathsf{HF} | a_{K}^{\dagger} a_{L}^{\dagger} a_{D} a_{C} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I} | \mathsf{HF} \rangle$$

$$= \langle \mathsf{HF} | a_{K}^{\dagger} a_{L}^{\dagger} a_{D} a_{C} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I} + a_{K}^{\dagger} a_{L}^{\dagger} a_{D} a_{C} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I} \right.$$

$$\left. + a_{K}^{\dagger} a_{L}^{\dagger} a_{D} a_{C} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I} + a_{K}^{\dagger} a_{L}^{\dagger} a_{D} a_{C} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I} \right.$$

$$\left. + a_{K}^{\dagger} a_{L}^{\dagger} a_{D} a_{C} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I} + a_{K}^{\dagger} a_{L}^{\dagger} a_{D} a_{C} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I} \right. | \mathsf{HF} \rangle$$

$$= \left(\delta_{IK} \delta_{JL} - \delta_{IL} \delta_{JK} \right) \left(\delta_{AC} \delta_{BD} - \delta_{AD} \delta_{BC} \right)$$

Normal-ordered one-electron operator

• The molecular electronic Hamiltonian reads:

$$\hat{H} = h_{\rm nuc} + \sum_{PQ} h_{PQ} a_P^{\dagger} a_Q + \frac{1}{2} \sum_{PQRS} g_{PQRS} a_P^{\dagger} a_R^{\dagger} a_S a_Q$$

• Applying Wick's theorem to its one-electron term yields:

$$\sum_{PQ} h_{PQ} a_P^{\dagger} a_Q = \sum_{PQ} h_{PQ} a_P^{\dagger} a_Q + \sum_{PQ} h_{PQ} a_P^{\dagger} a_Q = \sum_{PQ} h_{PQ} a_P^{\dagger} a_Q + \sum_{PQ} h_{PQ} a_P^{\dagger} a_Q = \sum_{PQ} h_{PQ} a_P^{\dagger} a_Q + \sum_{I} h_{II}$$

KIT Karlsruhe Institute of Technology

Normal-ordered two-electron operator

• We rewrite $a_P^{\dagger}a_R^{\dagger}a_Sa_Q$ as:

$$\begin{aligned} a_{P}^{\dagger}a_{R}^{\dagger}a_{S}a_{Q} &= :a_{P}^{\dagger}a_{R}^{\dagger}a_{S}a_{Q}: \\ &+ :a_{P}^{\dagger}a_{R}^{\dagger}a_{S}a_{Q}: + :a_{P}^{\dagger}a_{R}^{\dagger}a_{S}a_{Q}: + :a_{P}^{\dagger}a_{R}^{\dagger}a_{S}a_{Q}: \\ &+ :a_{P}^{\dagger}a_{R}^{\dagger}a_{S}a_{Q}: + :a_{P}^{\dagger}a_{R}^{\dagger}a_{S}a_{Q}: + :a_{P}^{\dagger}a_{R}^{\dagger}a_{S}a_{Q}: \end{aligned}$$

• Hence,

$$\frac{1}{2} \sum_{PQRS} g_{PQRS} a_P^{\dagger} a_R^{\dagger} a_S a_Q = \frac{1}{2} \sum_{PQRS} g_{PQRS} :a_P^{\dagger} a_R^{\dagger} a_S a_Q :$$
$$+ \sum_{IPQ} \left(g_{IIPQ} - g_{IPQI} \right) :a_P^{\dagger} a_Q : + \frac{1}{2} \sum_{IJ} \left(g_{IIJJ} - g_{IJJI} \right)$$

The normal-ordered electronic Hamiltonian

• We note that:

$$\sum_{I} h_{II} + \frac{1}{2} \sum_{IJ} (g_{IIJJ} - g_{IJJI}) = E_{\mathsf{HF}} \quad (\mathsf{Hartree-Fock energy})$$
$$h_{PQ} + \sum_{I} (g_{IIPQ} - g_{IPQI}) = f_{PQ} \quad (\mathsf{Fock-matrix element})$$

• We obtain:

$$\hat{H} = \sum_{PQ} f_{PQ} : a_P^{\dagger} a_Q : + \frac{1}{2} \sum_{PQRS} g_{PQRS} : a_P^{\dagger} a_R^{\dagger} a_S a_Q : + E_{\mathsf{HF}}$$
$$\hat{H} = \hat{F}_N + \hat{V}_N + E_{\mathsf{HF}}$$
$$\hat{H}_N = \hat{F}_N + \hat{V}_N = \hat{H} - E_{\mathsf{HF}}$$

Brillouin's theorem

• Let $| {}^{A}_{I} \rangle = a^{\dagger}_{A}a_{I}|\text{HF}\rangle$ be a singly-substituted determinant. The matrix element $\langle \text{HF}|\hat{H}| {}^{A}_{I} \rangle$ can be computed using Wick's theorem,

$$\langle \mathsf{HF}|\hat{H}|_{I}^{A}\rangle = \langle \mathsf{HF}|\hat{H}a_{A}^{\dagger}a_{I}|\mathsf{HF}\rangle = \langle \mathsf{HF}|\hat{F}_{N}a_{A}^{\dagger}a_{I}|\mathsf{HF}\rangle$$

$$= \sum_{PQ} f_{PQ}\langle \mathsf{HF}|:a_{P}^{\dagger}a_{Q}:a_{A}^{\dagger}a_{I}|\mathsf{HF}\rangle$$

$$= \sum_{PQ} f_{PQ}\langle \mathsf{HF}|a_{P}^{\dagger}a_{Q}a_{A}^{\dagger}a_{I}|\mathsf{HF}\rangle$$

$$= f_{IA} = 0 \qquad \text{(if Brillouin condition fulfilled)}$$

First-order interacting space (First-interacting space) (First-interacting space

Spin in second quantization

• So far, we have used the upper-case index *P* to count spin orbitals of the form

$$\phi_P(\mathbf{x}) = \phi_{p\sigma}(\mathbf{r}, m_s) = \phi_p(\mathbf{r})\sigma(m_s)$$

- m_s is the spin coordinate and the spin function $\sigma(m_s)$ is either $\alpha(m_s)$ or $\beta(m_s)$.
- The theory of second quantization can also be formulated using the composite index $p\sigma$. For example, the anticommutator between creation and annihilation operators can be written as

$$\left[a_{p\sigma}^{\dagger}, a_{q\tau}\right]_{+} = \delta_{p\sigma,q\tau} = \delta_{pq}\delta_{\sigma\tau}$$

• With lower-case indices p, we count spatial orbitals $\phi_p(\mathbf{r})$.

Karlsruhe Institute of Technology

Spinfree one-electron operators

• Consider the following spinfree (or spinless) operator:

$$\begin{aligned} f^{c} &= \sum_{i=1}^{N} f^{c}(\mathbf{r}_{i}), \qquad \hat{f} = \sum_{p\sigma q\tau} f_{p\sigma,q\tau} a_{p\sigma}^{\dagger} a_{q\tau} \\ f_{p\sigma,q\tau} &= \int \int \phi_{p}^{*}(\mathbf{r}) \sigma^{*}(m_{s}) f^{c}(\mathbf{r}) \phi_{q}(\mathbf{r}) \tau(m_{s}) d\mathbf{r} dm_{s} \\ &= \delta_{\sigma\tau} \int \phi_{p}^{*}(\mathbf{r}) f^{c}(\mathbf{r}) \phi_{q}(\mathbf{r}) d\mathbf{r} = \delta_{\sigma\tau} f_{pq} \end{aligned}$$

• The sum over spin functions in the second quantization operator \hat{f} can be accounted for in the *singlet excitation operator*

$$E_{pq} = a^{\dagger}_{p\alpha}a_{q\alpha} + a^{\dagger}_{p\beta}a_{q\beta}, \qquad \hat{f} = \sum_{pq} f_{pq}E_{pq}$$

Spinfree two-electron operators

The spinfree two-electron operator

$$g^c = rac{1}{2} \sum_{i
eq j} g^c(\mathbf{r}_i, \mathbf{r}_j)$$

gives

$$\hat{g} = \frac{1}{2} \sum_{pqrs} \sum_{\sigma\tau\mu\nu} g_{p\sigma,q\tau,r\mu,s\nu} a^{\dagger}_{p\sigma} a^{\dagger}_{r\mu} a_{s\nu} a_{q\tau}$$

$$= \frac{1}{2} \sum_{pqrs} \sum_{\sigma\tau} g_{pqrs} a^{\dagger}_{p\sigma} a^{\dagger}_{r\tau} a_{s\tau} a_{q\sigma}$$

$$= \frac{1}{2} \sum_{pqrs} g_{pqrs} e_{pqrs}, \quad \text{with} \quad e_{pqrs} = E_{pq} E_{rs} - \delta_{qr} E_{ps}$$

<u> </u>

Pure spin operators

The representation of first-quantization operators f^c that work in spin space only may be written in the general form

$$\hat{f} = \sum_{p\sigma q\tau} \int \phi_p^*(\mathbf{r}) \sigma^*(m_s) f^c(m_s) \phi_q(\mathbf{r}) \tau(m_s) d\mathbf{r} dm_s a_{p\sigma}^{\dagger} a_{q\tau}$$
$$= \sum_{\sigma\tau} \int \sigma^*(m_s) f^c(m_s) \tau(m_s) dm_s \sum_p a_{p\sigma}^{\dagger} a_{p\tau}$$

Consider the operators S_z^c , S_+^c and S_-^c (the latter are known as *step-up and step-down operators* or ladder operators).

$$S_z^c(m_s)\alpha(m_s) = \frac{1}{2}\alpha(m_s), \qquad S_z^c(m_s)\beta(m_s) = -\frac{1}{2}\beta(m_s)$$
$$S_-^c(m_s)\alpha(m_s) = \beta(m_s), \qquad S_-^c(m_s)\beta(m_s) = 0$$
$$S_+^c(m_s)\alpha(m_s) = 0, \qquad S_+^c(m_s)\beta(m_s) = \alpha(m_s)$$

<u> </u>

Pure spin operators (continued)

$$\hat{S}_z = \frac{1}{2} \sum_p \left(a_{p\alpha}^{\dagger} a_{p\alpha} - a_{p\beta}^{\dagger} a_{p\beta} \right), \quad \hat{S}_+ = \sum_p a_{p\alpha}^{\dagger} a_{p\beta}, \quad \hat{S}_- = \sum_p a_{p\beta}^{\dagger} a_{p\alpha}$$

From these operators, it follows:

$$\begin{aligned} \hat{S}_{+}^{\dagger} &= \hat{S}_{-}, \quad \hat{S}_{-}^{\dagger} &= \hat{S}_{+} \\ \hat{S}_{x} &= \frac{1}{2} \left(\hat{S}_{+} + \hat{S}_{-} \right) = \frac{1}{2} \sum_{p} \left(a_{p\alpha}^{\dagger} a_{p\beta} + a_{p\beta}^{\dagger} a_{p\alpha} \right) \\ \hat{S}_{y} &= \frac{1}{2i} \left(\hat{S}_{+} - \hat{S}_{-} \right) = \frac{1}{2i} \sum_{p} \left(a_{p\alpha}^{\dagger} a_{p\beta} - a_{p\beta}^{\dagger} a_{p\alpha} \right) \\ \hat{S}^{2} &= \hat{S}_{x}^{2} + \hat{S}_{y}^{2} + \hat{S}_{z}^{2} = \hat{S}_{+} \hat{S}_{-} + \hat{S}_{z} \left(\hat{S}_{z} - 1 \right) = \hat{S}_{-} \hat{S}_{+} + \hat{S}_{z} \left(\hat{S}_{z} + 1 \right) \\ [\hat{S}_{+}, \hat{S}_{-}] &= 2\hat{S}_{z} \end{aligned}$$

ROHF expectation value of \hat{S}^2

The expectation value of \hat{S}^2 with respect to a restricted open-shell Hartree–Fock (ROHF) reference state can easily be evaluated using Wick's theorem in the particle–hole formalism.

$$\langle \mathsf{HF}|\hat{S}_{+}\hat{S}_{-}|\mathsf{HF}\rangle = \sum_{pq} \langle \mathsf{HF}| a_{p\alpha}^{\dagger} a_{p\beta} a_{q\beta}^{\dagger} a_{q\alpha} |\mathsf{HF}\rangle = N_{\alpha} - N_{\beta}$$

$$\langle \mathsf{HF}|\hat{S}_{-}\hat{S}_{+}|\mathsf{HF}\rangle = \sum_{pq} \langle \mathsf{HF}| a_{p\beta}^{\dagger} a_{p\alpha} a_{q\alpha}^{\dagger} a_{q\beta} |\mathsf{HF}\rangle = 0$$

$$\langle \mathsf{HF}|\hat{S}_{z}|\mathsf{HF}\rangle = \frac{1}{2} \sum_{p} \langle \mathsf{HF}| a_{p\alpha}^{\dagger} a_{p\alpha} - a_{p\beta}^{\dagger} a_{p\beta} |\mathsf{HF}\rangle = \frac{1}{2} (N_{\alpha} - N_{\beta})$$

$$\langle \mathsf{HF}|\hat{S}_{z}^{2}|\mathsf{HF}\rangle = \frac{1}{4} \sum_{pq} \langle \mathsf{HF}| a_{p\alpha}^{\dagger} a_{p\alpha} a_{q\alpha}^{\dagger} a_{q\alpha} + \dots |\mathsf{HF}\rangle = \frac{1}{4} (N_{\alpha} - N_{\beta})^{2}$$

$$\langle \mathsf{HF}|\hat{S}^{2}|\mathsf{HF}\rangle = \frac{1}{2} (N_{\alpha} - N_{\beta}) \left\{ \frac{1}{2} (N_{\alpha} - N_{\beta}) + 1 \right\}$$

Mixed operators

Consider the (atomic) first-quantization spin-orbit operator,

$$V_{\mathsf{SO}}^c = \sum_{i=1}^N V_{\mathsf{SO}}^c(\mathbf{r}_i, m_{\mathsf{s}i}) = \sum_{i=1}^N \xi(r_i) \,\boldsymbol{\ell}^c(\mathbf{r}_i) \cdot \mathbf{S}^c(m_{\mathsf{s}i})$$

which in second quantization takes the form:

$$\hat{V}_{\mathsf{SO}} = \sum_{pq} \left(V_{pq}^x \hat{T}_{pq}^x + V_{pq}^y \hat{T}_{pq}^y + V_{pq}^z \hat{T}_{pq}^z \right)$$

with

$$V_{pq}^{\mu} = \int \phi_p^*(\mathbf{r})\xi(r)\,\ell_{\mu}^c(\mathbf{r})\,\phi_q(\mathbf{r})\,\mathrm{d}\mathbf{r},\qquad (\mu=x,y,z)$$

and the triplet excitation operators

$$T_{pq}^{x} = \frac{1}{2} (a_{p\alpha}^{\dagger} a_{q\beta} + a_{p\beta}^{\dagger} a_{q\alpha}), \qquad T_{pq}^{y} = \frac{1}{2i} (a_{p\alpha}^{\dagger} a_{q\beta} - a_{p\beta}^{\dagger} a_{q\alpha})$$
$$T_{pq}^{z} = \frac{1}{2} (a_{p\alpha}^{\dagger} a_{q\alpha} - a_{p\beta}^{\dagger} a_{q\beta})$$

One-electron density matrix

$$\begin{aligned} \langle 0|\hat{\Omega}|0\rangle &= & \Omega_{0} + \sum_{pq} \Omega_{pq} \langle 0|E_{pq}|0\rangle + \frac{1}{2} \sum_{pqrs} \Omega_{pqrs} \langle 0|e_{pqrs}|0\rangle \\ &= & \Omega_{0} + \sum_{pq} D_{pq} \Omega_{PQ} + \frac{1}{2} \sum_{pqrs} d_{pqrs} \Omega_{pqrs} \end{aligned}$$

• One-electron density matrix,

$$D_{pq} = \langle \mathbf{0} | E_{pq} | \mathbf{0} \rangle = \bar{D}_{p\alpha,q\alpha} + \bar{D}_{p\beta,q\beta}, \qquad D_{pq} = D_{qp}^*$$

• Orbital occupation numbers,

$$D_{pp} = \omega_p = \bar{\omega}_{p\alpha} + \bar{\omega}_{p\beta}, \qquad 0 \le \omega_p \le 2$$

• Natural occupation numbers,

$$\mathbf{D} = \mathbf{U} oldsymbol{\eta} \mathbf{U}^{\dagger}, \qquad \mathsf{0} \leq \eta_p \leq \mathsf{2}$$

Two-electron density matrix

$$\begin{aligned} \langle 0|\hat{\Omega}|0\rangle &= \Omega_{0} + \sum_{pq} \Omega_{pq} \langle 0|E_{pq}|0\rangle + \frac{1}{2} \sum_{pqrs} \Omega_{pqrs} \langle 0|e_{pqrs}|0\rangle \\ &= \Omega_{0} + \sum_{pq} D_{pq} \Omega_{PQ} + \frac{1}{2} \sum_{pqrs} d_{pqrs} \Omega_{pqrs} \end{aligned}$$

• Two-electron density matrix,

$$d_{pqrs} = \langle \mathbf{0} | e_{pqrs} | \mathbf{0} \rangle = \sum_{\sigma\tau} \langle \mathbf{0} | a_{p\sigma}^{\dagger} a_{r\tau}^{\dagger} a_{s\tau} a_{q\sigma} | \mathbf{0} \rangle = \sum_{\sigma\tau} \bar{d}_{p\sigma,q\sigma,r\tau,s\tau}$$

• Pair occupation numbers,

$$d_{ppqq} = \omega_{pq} = \sum_{\sigma au} ar{\omega}_{p\sigma,q au}, \qquad \mathsf{0} \le \omega_{pq} \le 2(2 - \delta_{pq})$$

The spin-density matrix

• The spin-density matrix is defined as

$$D_{pq}^T = rac{1}{2} \langle \mathbf{0} | a_{plpha}^{\dagger} a_{qlpha} - a_{peta}^{\dagger} a_{qeta} | \mathbf{0}
angle = rac{1}{2} (ar{D}_{plpha,qlpha} - ar{D}_{peta,qeta})$$

- The spin-density matrix measures the excess of the density of alpha electrons over beta electrons.
- Similarly, the spin occupation number

$$\omega_p^T = rac{1}{2} (ar \omega_{plpha} - ar \omega_{peta})$$

measures the excess of alpha over beta electrons in ϕ_p .

• The trace of \mathbf{D}^T yields the total spin projection,

$$\mathsf{Tr}\mathbf{D}^{T} = \frac{1}{2} \sum_{p} \langle \mathbf{0} | a_{p\alpha}^{\dagger} a_{p\alpha} - a_{p\beta}^{\dagger} a_{p\beta} | \mathbf{0} \rangle = \langle \mathbf{0} | \hat{S}_{z} | \mathbf{0} \rangle$$