Second quantization

Wim Klopper and David P. Tew

Lehrstuhl für Theoretische Chemie Institut für Physikalische Chemie Universität Karlsruhe (TH)

C ${ }^{4}$ Tutorial, Zürich, 2-4 October 2006

Introduction

- In the first quantization formulation of quantum mechanics, observables are represented by operators and states by functions.
- In the second quantization formulation, the wavefunctions are also expressed in terms of operators - the creation and annihilation operators working on the vacuum state.
- Operators (e.g., the Hamiltonian) and wavefunctions are described by a single set of elementary creation and annihilation operators.
- The antisymmetry of the electronic wavefunction follows from the algebra of the creation and annihilation operators.

The Fock space

- Let $\left\{\phi_{P}(\mathbf{x})\right\}$ be a basis of M orthonormal spin orbitals, where \mathbf{x} represents the electron's spatial (\mathbf{r}) and spin (m_{s}) coordinates.
- A Slater determinant is a normalized, antisymmetrized product of spin orbitals,

$$
\left|\phi_{P_{1}} \phi_{P_{2}} \ldots \phi_{P_{N}}\right|=\frac{1}{\sqrt{N!}}\left|\begin{array}{cccc}
\phi_{P_{1}}\left(\mathbf{x}_{1}\right) & \phi_{P_{2}}\left(\mathbf{x}_{1}\right) & \cdots & \phi_{P_{N}}\left(\mathbf{x}_{1}\right) \\
\phi_{P_{1}}\left(\mathbf{x}_{2}\right) & \phi_{P_{2}}\left(\mathbf{x}_{2}\right) & \cdots & \phi_{P_{N}}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{P_{1}}\left(\mathbf{x}_{N}\right) & \phi_{P_{2}}\left(\mathbf{x}_{N}\right) & \cdots & \phi_{P_{N}}\left(\mathbf{x}_{N}\right)
\end{array}\right|
$$

- In Fock space (a linear vector space), a determinant is represented by an occupation-number (ON) vector $|\mathbf{k}\rangle$,

$$
|\mathbf{k}\rangle=\left|k_{1}, k_{2}, \ldots, k_{M}\right\rangle, \quad k_{P}= \begin{cases}1 & \phi_{P}(\mathrm{x}) \text { occupied } \\ 0 & \phi_{P}(\mathrm{x}) \text { unoccupied }\end{cases}
$$

The inner product

- Inner product between two ON vectors $|\mathbf{k}\rangle$ and $|\mathbf{m}\rangle$:

$$
\langle\mathbf{k} \mid \mathbf{m}\rangle=\delta_{\mathbf{k}, \mathbf{m}}=\prod_{P=1}^{M} \delta_{k_{P} m_{P}}
$$

- Applies also to the product between states with different electron numbers.
- Resolution of the identity: $1=\sum_{\mathbf{k}}|\mathbf{k}\rangle\langle\mathbf{k}|$
- For two general vectors in Fock space:

$$
|\mathbf{c}\rangle=\sum_{\mathbf{k}} c_{\mathbf{k}}|\mathbf{k}\rangle, \quad|\mathbf{d}\rangle=\sum_{\mathbf{k}} d_{\mathbf{k}}|\mathbf{k}\rangle, \quad\langle\mathbf{c} \mid \mathbf{d}\rangle=\sum_{\mathbf{k}} c_{\mathbf{k}}^{*} d_{\mathbf{k}}
$$

The 2^{M}-dimensional Fock space

- The Fock space $F(M)$ may be decomposed as a direct sum of subspaces $F(M, N)$,

$$
F(M)=F(M, 0) \oplus F(M, 1) \oplus \cdots \oplus F(M, M)
$$

- $F(M, N)$ contains all $\binom{M}{N}$ vectors for which the sum of the occupation numbers is N.
- The subspace $F(M, 0)$ is the true vacuum state,

$$
\left.F(M, 0) \equiv|\mathrm{vac}\rangle=\left|0_{1}, 0_{2}, \ldots, 0_{M}\right\rangle, \quad\langle\text { vac }| \text { vac }\right\rangle=1
$$

Creation operators

- The M elementary creation operators are defined by

$$
\begin{aligned}
& a_{P}^{\dagger}\left|k_{1}, k_{2}, \ldots, 0_{P}, \ldots, k_{M}\right\rangle=\Gamma_{p}^{\mathbf{k}}\left|k_{1}, k_{2}, \ldots, 1_{P}, \ldots, k_{M}\right\rangle \\
& a_{P}^{\dagger}\left|k_{1}, k_{2}, \ldots, 1_{P}, \ldots, k_{M}\right\rangle=0 \\
& \text { with the phase factor } \Gamma_{p}^{\mathbf{k}}=\prod_{Q=1}^{P-1}(-1)^{k_{Q}}
\end{aligned}
$$

- Anticommutation relations take care of the phase factor.
- An ON vector can be expressed as a string of creation operators (in canonical order) working on the vacuum,

$$
|\mathbf{k}\rangle=\left[\prod_{P=1}^{M}\left(a_{P}^{\dagger}\right)^{k_{P}}\right]|\mathrm{vac}\rangle
$$

Annihilation operators

- The M elementary annihilation operators are defined by

$$
\begin{aligned}
& a_{P}\left|k_{1}, k_{2}, \ldots, 1_{P}, \ldots, k_{M}\right\rangle=\Gamma_{p}^{\mathbf{k}}\left|k_{1}, k_{2}, \ldots, 0_{P}, \ldots, k_{M}\right\rangle \\
& a_{P}\left|k_{1}, k_{2}, \ldots, 0_{P}, \ldots, k_{M}\right\rangle=0 \\
& a_{P}|\mathrm{vac}\rangle=0
\end{aligned}
$$

with the same phase factor as before.

- Again, anticommutation relations take care of the phase factor.
- a_{P}^{\dagger} is the Hermitian adjoint to a_{P}. These operators are distinct operators and are not self-adjoint (Hermitian).

Anticommutation relations

- The anticommutation relations constitute the fundamental properties of the creation and annihilation operators:

$$
\begin{aligned}
& {\left[a_{P}, a_{Q}\right]_{+}=a_{P} a_{Q}+a_{Q} a_{P}=0} \\
& {\left[a_{P}^{\dagger}, a_{Q}^{\dagger}\right]_{+}=a_{P}^{\dagger} a_{Q}^{\dagger}+a_{Q}^{\dagger} a_{P}^{\dagger}=0} \\
& {\left[a_{P}^{\dagger}, a_{Q}\right]_{+}=a_{P}^{\dagger} a_{Q}+a_{Q} a_{P}^{\dagger}=\delta_{P Q}}
\end{aligned}
$$

- All other algebraic properties of the second quantization formalism follow from these simple equations.
- The anticommutation relations follow from the definitions of a_{P} and a_{P}^{\dagger} given on the previous slides.

Occupation-number operators

- The occupation-number (ON) operator is defined as

$$
\begin{aligned}
& \hat{N}_{P}=a_{P}^{\dagger} a_{P} \\
& \hat{N}_{P}|\mathbf{k}\rangle=a_{P}^{\dagger} a_{P}|\mathbf{k}\rangle=\delta_{k_{p} 1}|\mathbf{k}\rangle=k_{P}|\mathbf{k}\rangle
\end{aligned}
$$

- ON operators are Hermitian $\left(\hat{N}_{P}^{\dagger}=\hat{N}_{P}\right)$ and commute among themselves, $\left[\hat{N}_{P}, \hat{N}_{Q}\right]=0$.
- The ON vectors are simultaneous eigenvectors of the commuting set of Hermitian operators \hat{N}_{P}.
- The ON operators are idempotent projection operators,

$$
\hat{N}_{P}^{2}=a_{P}^{\dagger} a_{P} a_{P}^{\dagger} a_{P}=a_{P}^{\dagger}\left(1-a_{P}^{\dagger} a_{P}\right) a_{P}=a_{P}^{\dagger} a_{P}=\hat{N}_{P}
$$

The number operator

- The Hermitian number operator \hat{N} is obtained by adding together all ON operators,

$$
\hat{N}=\sum_{P=1}^{M} \hat{N}_{P}=\sum_{P=1}^{M} a_{P}^{\dagger} a_{P}, \quad \hat{N}|\mathbf{k}\rangle=\sum_{P=1}^{M} k_{P}|\mathbf{k}\rangle=N|\mathbf{k}\rangle
$$

- Let \hat{X} be a string with creation and annihilation operators with more creation than annihilation operators (the excess being N^{X}, which can be negative). Then,

$$
[\hat{N}, \hat{X}]=N^{X} \hat{X}
$$

- \hat{N} commutes with a number-conserving string for which $N^{X}=0$.

Excitation operators

- The simplest number-conserving operators are the elementary excitation operators

$$
\hat{X}_{Q}^{P}=a_{P}^{\dagger} a_{Q}
$$

- \hat{X}_{Q}^{P} applied to $|\mathbf{k}\rangle$:

$$
\begin{array}{ll}
P<Q & \hat{X}_{Q}^{P}|\mathbf{k}\rangle=\delta_{P 0} \delta_{Q 1} \Gamma_{P}^{\mathrm{k}} \Gamma_{Q}^{\mathrm{k}}\left|\ldots, 1_{P}, \ldots, 0_{Q}, \ldots\right\rangle \\
P>Q & \hat{X}_{Q}^{P}|\mathbf{k}\rangle=-\delta_{P 0} \delta_{Q 1} \Gamma_{P}^{\mathrm{k}} \Gamma_{Q}^{\mathrm{k}}\left|\ldots, 0_{Q}, \ldots, 1_{P}, \ldots\right\rangle \\
P=Q & \hat{X}_{Q}^{P}|\mathbf{k}\rangle=k_{P}|\mathbf{k}\rangle
\end{array}
$$

Wavefunctions represented by operators

- Let $\left\{\phi_{P}(\mathbf{x})\right\}$ be a basis of M orthonormal spin orbitals.
- An arbitrary wavefunction (within the space spanned by all Slater determinants that can be formed using these M spin orbitals) can be written as

$$
|\mathbf{c}\rangle=\sum_{\mathbf{k}} c_{\mathbf{k}}|\mathbf{k}\rangle=\sum_{\mathbf{k}} c_{\mathbf{k}}\left[\prod_{P=1}^{M}\left(a_{P}^{\dagger}\right)^{k_{P}}\right]|\mathrm{vac}\rangle=\sum_{\mathbf{k}} c_{\mathbf{k}} \hat{X}_{\mathbf{k}}|\mathrm{vac}\rangle
$$

- An excitation operator can be applied to the above wavefunction to yield another function,

$$
\hat{X}_{Q}^{P}|\mathbf{c}\rangle=\left|\mathbf{c}^{\prime}\right\rangle
$$

One-electron operators

- In first quantization, one-electron operators are written as

$$
f^{c}=\sum_{i=1}^{N} f^{c}\left(\mathbf{x}_{i}\right)
$$

- The second-quantization analogue has the structure

$$
\hat{f}=\sum_{P Q} f_{P Q} a_{P}^{\dagger} a_{Q}, \quad f_{P Q}=\int \phi_{P}^{*}(\mathbf{x}) f^{c}(\mathrm{x}) \phi_{Q}(\mathrm{x}) \mathrm{d} \mathbf{x}
$$

- The order of the creation and annihilation operators ensures that the one-electron operator \hat{f} produces zero when it works on the vacuum state.

One-electron operators: Slater-Condon rules

$$
\langle\mathbf{k}| \hat{f}|\mathbf{k}\rangle=\sum_{P} f_{P P}\langle\mathbf{k}| a_{P}^{\dagger} a_{P}|\mathbf{k}\rangle=\sum_{P} k_{P} f_{P P} \equiv \sum_{I}^{\text {occupied }} f_{I I}
$$

$\left|\mathbf{k}_{1}\right\rangle$ and $\left|\mathbf{k}_{2}\right\rangle$ differ in one pair of occupation numbers:
$\left|\mathbf{k}_{1}\right\rangle=\left|k_{1}, k_{2}, \ldots, 0_{I}, \ldots, 1_{J}, \ldots, k_{M}\right\rangle$
$\left|\mathbf{k}_{2}\right\rangle=\left|k_{1}, k_{2}, \ldots, 1_{I}, \ldots, 0_{J}, \ldots, k_{M}\right\rangle$
$\left\langle\mathbf{k}_{2}\right| \hat{f}\left|\mathbf{k}_{1}\right\rangle=\Gamma_{I}^{\mathbf{k}_{2}} \Gamma_{J}^{\mathbf{k}_{1}} f_{I J}$
$\left|\mathbf{k}_{1}\right\rangle$ and $\left|\mathbf{k}_{2}\right\rangle$ differ in more than one pair of occupation numbers:
$\left\langle\mathbf{k}_{2}\right| \hat{f}\left|\mathbf{k}_{1}\right\rangle=0$

Two-electron operators

- In first quantization, one-electron operators are written as

$$
g^{c}=\frac{1}{2} \sum_{i \neq j}^{N} g^{c}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

- The second-quantization analogue has the structure

$$
\hat{g}=\frac{1}{2} \sum_{P Q R S} g_{P Q R S} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}
$$

- The two-electron integral is

$$
g_{P Q R S}=\iint \phi_{P}^{*}\left(\mathbf{x}_{1}\right) \phi_{R}^{*}\left(\mathbf{x}_{2}\right) g^{c}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \phi_{Q}\left(\mathbf{x}_{1}\right) \phi_{S}\left(\mathbf{x}_{2}\right) \mathrm{d}_{1} \mathrm{dx}_{2}
$$

The molecular electronic Hamiltonian

$$
\hat{H}=h_{\mathrm{nuc}}+\sum_{P Q} h_{P Q} a_{P}^{\dagger} a_{Q}+\frac{1}{2} \sum_{P Q R S} g_{P Q R S} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}
$$

with

$$
\begin{aligned}
& h_{\text {nuc }}=\frac{1}{2} \sum_{\alpha \neq \beta} \frac{Z_{\alpha} Z_{\beta}}{r_{\alpha \beta}} \\
& h_{P Q}=\int \phi_{P}^{*}(\mathbf{x})\left(-\frac{1}{2} \Delta-\sum_{\alpha} \frac{Z_{\alpha}}{r_{\alpha}}\right) \phi_{Q}(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& g_{P Q R S}=\iint \phi_{P}^{*}\left(\mathbf{x}_{1}\right) \phi_{R}^{*}\left(\mathbf{x}_{2}\right) \frac{1}{r_{12}} \phi_{Q}\left(\mathbf{x}_{1}\right) \phi_{S}\left(\mathbf{x}_{2}\right) \mathrm{d}_{1} \mathrm{~d}_{2}
\end{aligned}
$$

First- and second-quantization operators compared

First quantization	Second quantization
\rightarrow one-electron operator: $\sum_{i} f^{c}\left(\mathbf{x}_{i}\right)$	\rightarrow one-electron operator: $\sum_{P Q} f_{P Q} a_{P}^{\dagger} a_{Q}$
\rightarrow two-electron operator: $\frac{1}{2} \sum_{i \neq j} g^{c}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$	\rightarrow two-electron operator: $\frac{1}{2} \sum_{P Q R S} g_{P Q R S} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}$
\rightarrow operator independent o spin-orbital basis	\rightarrow operator depends on spin-orbital basis
\rightarrow operator depends on number of electrons	\rightarrow operator independent of number of electrons
\rightarrow exact operator	\rightarrow projected operator

Matrix elements in $2^{\text {nd }}$ quantization

- Let

$$
\left.\begin{array}{rl}
|\mathbf{c}\rangle & =\sum_{\mathbf{k}} c_{\mathbf{k}}|\mathbf{k}\rangle
\end{array}=\sum_{\mathbf{k}} c_{\mathbf{k}} \hat{X}_{\mathbf{k}}|\mathrm{vac}\rangle, \hat{\mathbf{k}} d_{\mathbf{k}}|\mathbf{k}\rangle=\sum_{\mathbf{k}} \hat{X}_{\mathbf{k}}|\mathrm{vac}\rangle\right)
$$

- Then,

$$
\langle\mathbf{c}| \hat{O}|\mathbf{d}\rangle=\sum_{\mathbf{k}} \sum_{\mathbf{k}^{\prime}} c_{\mathbf{k}}^{*} d_{\mathbf{k}^{\prime}}\langle\operatorname{vac}| \hat{X}_{\mathbf{k}}^{\dagger} \hat{O} \hat{X}_{\mathbf{k}^{\prime}}|\mathrm{vac}\rangle
$$

- Matrix elements become linear combinations of vacuum expectation values. Note that \hat{X}_{k} and \hat{O} consist of strings of the same elementary creation and annihilation operators.

Products of operators in $2^{\text {nd }}$ quantization

- Recall: The (finite) matrix representation \mathbf{P} of the operator product $P^{c}(\mathbf{x})=A^{c}(\mathbf{x}) B^{c}(\mathbf{x})$ is not equal to the product of the matrices \mathbf{A} and \mathbf{B},

$$
\mathbf{P} \neq \mathbf{A B}
$$

- Similarly, the product of the operators \hat{A} and \hat{B} in second quantization requires special attention,

$$
\begin{aligned}
A^{c}=\sum_{i} A^{c}\left(\mathbf{x}_{i}\right), & \hat{A}=\sum_{P Q} A_{P Q} a_{P}^{\dagger} a_{Q} \\
B^{c}=\sum_{i} B^{c}\left(\mathbf{x}_{i}\right), & \hat{B}=\sum_{P Q} A_{P Q} a_{P}^{\dagger} a_{Q} \\
P^{c}=A^{c} B^{c}, & \hat{P}=?
\end{aligned}
$$

Products in $2^{\text {nd }}$ quantization (continued)

$$
\begin{aligned}
P^{c} & =A^{c} B^{c}=O^{c}+T^{c}=\sum_{i} A^{c}\left(\mathbf{x}_{i}\right) B^{c}\left(\mathbf{x}_{i}\right) \\
& +\frac{1}{2} \sum_{i \neq j}\left[A^{c}\left(\mathbf{x}_{i}\right) B^{c}\left(\mathbf{x}_{j}\right)+A^{c}\left(\mathbf{x}_{j}\right) B^{c}\left(\mathbf{x}_{i}\right)\right] \\
\hat{P} & =\hat{O}+\hat{T}=\sum_{P Q} O_{P Q} a_{P}^{\dagger} a_{Q}+\frac{1}{2} \sum_{P Q R S} T_{P Q R S} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}
\end{aligned}
$$

$$
O_{P Q}=\int \phi_{P}^{*}(\mathrm{x}) A^{c}(\mathrm{x}) B^{c}(\mathrm{x}) \phi_{Q}(\mathrm{x}) \mathrm{d} \mathrm{x}
$$

$$
T_{P Q R S}=A_{P Q} B_{R S}+A_{R S} B_{P Q}
$$

Using the anticommutation relations

$$
\begin{aligned}
\hat{T} & =\frac{1}{2} \sum_{P Q R S}\left(A_{P Q} B_{R S}+A_{R S} B_{P Q}\right) a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q} \\
& =\sum_{P Q R S} A_{P Q} B_{R S} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q} \\
& =\sum_{P Q R S} A_{P Q} B_{R S}\left(a_{P}^{\dagger} a_{Q} a_{R}^{\dagger} a_{S}-\delta_{R Q} a_{P}^{\dagger} a_{S}\right) \\
& =\left(\sum_{P Q} A_{P Q} a_{P}^{\dagger} a_{Q}\right)\left(\sum_{R S} B_{R S} a_{R}^{\dagger} a_{S}\right)-\sum_{P S}\left(\sum_{R} A_{P R} B_{R S}\right) a_{P}^{\dagger} a_{S} \\
& =\hat{A} \hat{B}-\sum_{P Q}\left(\sum_{R} A_{P R} B_{R Q}\right) a_{P}^{\dagger} a_{Q}
\end{aligned}
$$

Operators in $2^{\text {nd }}$ quantization are projections

- The final result for the representation of P^{c} in second quantization is

$$
\hat{P}=\hat{A} \hat{B}+\sum_{P Q}\left(O_{P Q}-\sum_{R} A_{P R} B_{R Q}\right) a_{P}^{\dagger} a_{Q}
$$

- In a complete basis: $\sum_{R=1}^{\infty} A_{P R} B_{R Q}=O_{P Q}$.
- The second quantization operators are projections of the exact operators onto a basis of spin orbitals. For an incomplete basis, the second quantization representation depends on when the projection is made.

Heisenberg uncertainty principle

- Position and momentum do not commute: $\left[x^{c}, p_{x}^{c}\right]=i N$. Note that x^{c} and p_{x}^{c} contain sums over N electrons, and only the observables of the same electron do not commute.
- What happens with $\left[\hat{x}, \hat{p}_{x}\right]$ in second quantization?
- It follows that

$$
\left[\hat{x}, \hat{p}_{x}\right]=\sum_{P Q}\left(\sum_{R}\left\{x_{P R}\left(p_{x}\right)_{R Q}-\left(p_{x}\right)_{P R} x_{R Q}\right\}\right) a_{P}^{\dagger} a_{Q}
$$

- In a complete basis, we find: $\left[\hat{x}, \hat{p}_{x}\right]=i \hat{N}$.

Expectation values

- We are interested in the expectation value of a general one- and two-electron Hermitian operator $\hat{\Omega}$ with respect to a normalized reference state $|0\rangle$.

$$
\begin{aligned}
& \hat{\Omega}=\Omega_{0}+\sum_{P Q} \Omega_{P Q} a_{P}^{\dagger} a_{Q}+\frac{1}{2} \sum_{P Q R S} \Omega_{P Q R S} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q} \\
& |0\rangle=\sum_{\mathbf{k}} c_{\mathbf{k}}|\mathbf{k}\rangle, \quad\langle 0 \mid 0\rangle=1, \quad\langle 0| \hat{\Omega}|0\rangle=?
\end{aligned}
$$

- We write the expectation value as follows:

$$
\langle 0| \hat{\Omega}|0\rangle=\Omega_{0}+\sum_{P Q} \Omega_{P Q}\langle 0| a_{P}^{\dagger} a_{Q}|0\rangle+\frac{1}{2} \sum_{P Q R S} \Omega_{P Q R S}\langle 0| a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}|0\rangle
$$

Density matrices

$$
\begin{aligned}
\langle 0| \hat{\Omega}|0\rangle & =\Omega_{0}+\sum_{P Q} \Omega_{P Q}\langle 0| a_{P}^{\dagger} a_{Q}|0\rangle+\frac{1}{2} \sum_{P Q R S} \Omega_{P Q R S}\langle 0| a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}|0\rangle \\
& =\Omega_{0}+\sum_{P Q} \bar{D}_{P Q} \Omega_{P Q}+\frac{1}{2} \sum_{P Q R S} \bar{d}_{P Q R S} \Omega_{P Q R S}
\end{aligned}
$$

- One-electron density-matrix elements:

$$
\bar{D}_{P Q}=\langle 0| a_{P}^{\dagger} a_{Q}|0\rangle
$$

- Two-electron density-matrix elements:

$$
\bar{d}_{P Q R S}=\langle 0| a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}|0\rangle
$$

Properties of the one-electron density matrix

- $\overline{\mathbf{D}}$ is an $M \times M$ positive semidefinite, Hermitian matrix.
- A diagonal element is referred to as the occupation number $\bar{\omega}_{P}$ of the spin orbital $\phi_{P}(\mathbf{x})$ in the electronic state $|0\rangle$,

$$
\bar{\omega}_{P}=\bar{D}_{P P}=\langle 0| a_{P}^{\dagger} a_{P}|0\rangle=\langle 0| \hat{N}_{P}|0\rangle=\sum_{\mathbf{k}} k_{P}\left|c_{\mathbf{k}}\right|^{2}
$$

- Occup. numbers are real numbers between zero and one,

$$
0 \leq \bar{\omega}_{P} \leq 1
$$

- The trace of the density matrix is equal to the number of electrons,

$$
\operatorname{Tr} \overline{\mathbf{D}}=\sum_{P} \bar{\omega}_{P}=\sum_{P}\langle 0| \hat{N}_{P}|0\rangle=\langle 0| \hat{N}|0\rangle=N
$$

Natural spin orbitals

- Since $\overline{\mathbf{D}}$ is a Hermitian matrix, we may diagonalize it with a unitary matrix \mathbf{U},

$$
\overline{\mathbf{D}}=\mathbf{U} \overline{\boldsymbol{\eta}} \mathbf{U}^{\dagger}
$$

- The eigenvalues are real numbers $0 \leq \bar{\eta}_{P} \leq 1$, known as natural-orbital occupation numbers. The sum of the these numbers is again equal to the number of electrons.
- The eigenvectors U constitute the natural spin orbitals.

Properties of the two-electron density matrix

- The elements of the two-electron density matrix $\overline{\mathbf{d}}$ are not all independent,

$$
\bar{d}_{P Q R S}=-\bar{d}_{R Q P S}=-\bar{d}_{P S R Q}=\bar{d}_{R S P Q}
$$

- We define the two-electron density matrix $\overline{\mathbf{T}}$ with elements

$$
\bar{T}_{P Q, R S}=\bar{d}_{P R Q S} \quad \text { with } \quad P>Q, \quad R>S
$$

- The diagonal elements $\bar{\omega}_{P Q}$ are pair-occupation numbers,

$$
\begin{aligned}
\bar{\omega}_{P Q} & =\bar{T}_{P Q, P Q}=\langle 0| a_{P}^{\dagger} a_{Q}^{\dagger} a_{Q} a_{P}|0\rangle=\langle 0| \hat{N}_{P} \hat{N}_{Q}|0\rangle \\
& =\sum_{\mathbf{k}} k_{P} k_{Q}\left|c_{\mathbf{k}}\right|^{2}
\end{aligned}
$$

Operator rank

- In the manipulation of operators and matrix elements in second quantization, we often encounter commutators and anticommutators,

$$
\begin{aligned}
{[\hat{A}, \hat{B}] } & =\hat{A} \hat{B}-\hat{B} \hat{A} \\
{[\hat{A}, \hat{B}]_{+} } & =\hat{A} \hat{B}+\hat{B} \hat{A}
\end{aligned}
$$

- The anticommutation relations of creation and annihilation operators can be used to simplify commutators and anticommutators of strings of operators.
- The particle rank of a string is the number of elementary operators divided by two (e.g., the rank of a creation operator is $1 / 2$ and the rank of a ON operator is 1).

Rank reduction

- Rank reduction is said to occur when the rank of a commutator or anticommutator is lower than the combined rank of the operators involved,

$$
a_{P}^{\dagger} a_{P}+a_{P} a_{P}^{\dagger}=1
$$

The rank of the operator products is 1 , the rank of the anticommutator is 0 .

- Simple rule:

Rank reduction follows upon anticommutation of two strings of half-integral rank and upon commutation of all other strings.

$$
\left[a_{P}^{\dagger}, a_{R} a_{S}\right]=\left[a_{P}^{\dagger}, a_{R}\right]_{+} a_{S}-a_{R}\left[a_{P}^{\dagger}, a_{S}\right]_{+}=\delta_{P R} a_{S}-\delta_{P S} a_{R}
$$

Useful operator identities

$$
\begin{aligned}
& {[\hat{A}, \hat{B} \hat{C}]=[\hat{A}, \hat{B}] \hat{C}+\hat{B}[\hat{A}, \hat{C}]} \\
& {[\hat{A}, \hat{B} \hat{C}]=[\hat{A}, \hat{B}]_{+} \hat{C}-\hat{B}[\hat{A}, \hat{C}]_{+}} \\
& {[\hat{A}, \hat{B} \hat{C}]_{+}=[\hat{A}, \hat{B}] \hat{C}+\hat{B}[\hat{A}, \hat{C}]_{+}=[\hat{A}, \hat{B}]_{+} \hat{C}-\hat{B}[\hat{A}, \hat{C}]}
\end{aligned}
$$

For example:

$$
\begin{aligned}
{\left[a_{P}^{\dagger}, a_{R} a_{S}^{\dagger} a_{T}\right]_{+} } & =\left[a_{P}^{\dagger}, a_{R}\right]_{+} a_{S}^{\dagger} a_{T}-a_{R}\left[a_{P}^{\dagger}, a_{S}^{\dagger} a_{T}\right] \\
& =\delta_{P R} a_{S}^{\dagger} a_{T}-a_{R}\left(\left[a_{P}^{\dagger}, a_{S}^{\dagger}\right]_{+} a_{T}-a_{S}^{\dagger}\left[a_{P}^{\dagger}, a_{T}\right]_{+}\right) \\
& =\delta_{P R} a_{S}^{\dagger} a_{T}+\delta_{P T} a_{R} a_{S}^{\dagger}
\end{aligned}
$$

Normal-ordered second-quantization operators

- A normal-ordered string of second-quantization operators is one in which we find all annihilation operators standing to the right of all creation operators.
- As an example, consider the string $a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger}$,

$$
\begin{aligned}
& a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger}=\delta_{P Q} a_{R} a_{S}^{\dagger}-a_{Q}^{\dagger} a_{P} a_{R} a_{S}^{\dagger} \\
& =\delta_{P Q} \delta_{R S}-\delta_{P Q} a_{S}^{\dagger} a_{R}-\delta_{R S} a_{Q}^{\dagger} a_{P}+a_{Q}^{\dagger} a_{P} a_{S}^{\dagger} a_{R} \\
& =\delta_{P Q} \delta_{R S}-\delta_{P Q} a_{S}^{\dagger} a_{R}-\delta_{R S} a_{Q}^{\dagger} a_{P}+\delta_{P S} a_{Q}^{\dagger} a_{R}-a_{Q}^{\dagger} a_{S}^{\dagger} a_{P} a_{R}
\end{aligned}
$$

- All of the strings in the rearrangement are in normal order.
- None of them contribute to the vacuum expectation value,

$$
\langle\operatorname{vac}| a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger}|\mathrm{vac}\rangle=\delta_{P Q} \delta_{R S}
$$

Normal-ordered operators (continued)

- Consider the two wavefunctions $|\mathbf{c}\rangle$ and $|\mathbf{d}\rangle$:

$$
|\mathbf{c}\rangle=\sum_{\mathbf{k}} c_{\mathbf{k}} \hat{X}_{\mathbf{k}}|\mathrm{vac}\rangle, \quad|\mathbf{d}\rangle=\sum_{\mathbf{k}} d_{\mathbf{k}} \hat{X}_{\mathbf{k}}|\mathrm{vac}\rangle
$$

- The matrix element

$$
\langle\mathbf{c}| a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger}|\mathbf{d}\rangle=\sum_{\mathbf{k}, \mathbf{k}^{\prime}} c_{\mathbf{k}}^{*} d_{\mathbf{k}^{\prime}}\langle\operatorname{vac}| \hat{X}_{\mathbf{k}}^{\dagger} a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger} \hat{X}_{\mathbf{k}^{\prime}}|\mathrm{vac}\rangle
$$

can be evaluated by rearranging $\hat{X}_{\mathbf{k}}^{\dagger} a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger} \hat{X}_{\mathbf{k}^{\prime}}$ into normal order.

Contractions

- A contraction between two arbitrary elementary operators, for example between a_{P} and and a_{Q}^{\dagger} is defined as

$$
a_{P} a_{Q}^{\dagger}=a_{P} a_{Q}^{\dagger}-\left\{a_{P} a_{Q}^{\dagger}\right\}
$$

where the notation $\left\{a_{P} a_{Q}^{\dagger}\right\}$ indicates the normal-orderer string.

- Thus, the contraction between the operators is simply the original ordering of the pair minus the normal-ordered pair.
- The notation $\{\ldots\}$ introduces a sign $(-1)^{p}$, where p is the number of permutations required to bring the operators into normal order.

Contractions (continued)

- Examples with two elementary operators:

$$
\begin{aligned}
& a_{P} a_{Q}=0, \quad a_{P}^{\dagger} a_{Q}^{\dagger}=0, \quad{ }^{\dagger} a_{P} a_{Q}=0 \\
& \square \square a_{P}^{\dagger} a_{Q}^{\dagger}=a_{P} a_{Q}^{\dagger}-\left\{a_{P} a_{Q}^{\dagger}\right\}=a_{P} a_{Q}^{\dagger}+a_{Q}^{\dagger} a_{P}=\delta_{P Q}
\end{aligned}
$$

- An example with more than two elementary operators:

$$
a_{P} a_{R} a_{Q}^{\dagger} a_{S}^{\dagger}=-\delta_{P Q} a_{R} a_{S}^{\dagger}
$$

- A sign change occurs for every permutation that is required until the contracted operators are adjacent to one another.

Full contractions

- A string of operators is fully contracted, if all operators are pairwise contracted. Only full contractions contribute to the vacuum expectation value.
- An example with two contractions:

$$
\underset{a_{P} a_{R} a_{Q}^{\dagger}}{a_{S}^{\dagger}}=-{ }_{a_{P} a_{R} a_{S}^{\dagger}}^{a_{Q}^{\dagger}}=-a_{P} a_{Q}^{\dagger} \delta_{R S}=-\delta_{P Q} \delta_{R S}
$$

- Rule of thumb: the sign of a full contraction is negative if the number of crossings is odd, else positive.

Wick's theorem

Wick's theorem provides a recipe by which an arbitrary string of annihilation and creation operators, $A B C \ldots X Y Z$, may be written as a linear combination of normal-ordered strings. Schematically, Wick's theorem is:

$$
\begin{aligned}
A B C \ldots X Y Z & =\{A B C \ldots X Y Z\} \\
& +\sum_{\text {singles }}\{A B C \ldots X Y Z\} \\
& +\sum_{\text {doubles }}\{\overparen{A B C \ldots X Y Z\}+\ldots}
\end{aligned}
$$

where "singles", "doubles", etc. refer to the number of pairwise contractions.

Wick's theorem (continued)

Applying Wick's theorem to $a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger}$ yields:

$$
\begin{aligned}
a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger} & =\left\{a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger}\right\}+\left\{a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger}\right\} \\
& +\left\{a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger}\right\}+\left\{a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger}\right\} \\
& +\left\{a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger}\right\} \\
& =-a_{Q}^{\dagger} a_{S}^{\dagger} a_{P} a_{R}-\delta_{P Q} a_{S}^{\dagger} a_{R}+\delta_{P S} a_{Q}^{\dagger} a_{R} \\
& -\delta_{R S} a_{Q}^{\dagger} a_{P}+\delta_{P Q} \delta_{R S}
\end{aligned}
$$

This result is identical to that obtained using the anticommutation relations.

Wick's theorem (continued)

Another example:

$$
\begin{aligned}
a_{P}^{\dagger} a_{Q} a_{S} a_{R}^{\dagger} & =\left\{a_{P}^{\dagger} a_{Q} a_{S} a_{R}^{\dagger}\right\}+\left\{a_{P}^{\dagger} a_{Q} a_{S} a_{R}^{\dagger}\right\}+\left\{a_{P}^{\dagger} a_{Q} a_{S} a_{R}^{\dagger}\right\} \\
& =a_{P}^{\dagger} a_{R}^{\dagger} a_{Q} a_{S}+\delta_{S R} a_{P}^{\dagger} a_{Q}-\delta_{Q R} a_{P}^{\dagger} a_{S}
\end{aligned}
$$

This result is also easily obtained using the anticommutation relations:

$$
\begin{aligned}
a_{P}^{\dagger} a_{Q} a_{S} a_{R}^{\dagger} & =a_{P}^{\dagger} a_{Q} \delta_{S R}-a_{P}^{\dagger} a_{Q} a_{R}^{\dagger} a_{S} \\
& =a_{P}^{\dagger} a_{Q} \delta_{S R}-a_{P}^{\dagger} \delta_{Q R} a_{S}+a_{P}^{\dagger} a_{R}^{\dagger} a_{Q} a_{S}
\end{aligned}
$$

Application of Wick's theorem

- Consider the two one-electron states $|T\rangle=a_{T}^{\dagger}|\mathrm{vac}\rangle$ and $|U\rangle=a_{U}^{\dagger}|\mathrm{vac}\rangle$. The matrix element $\langle T| a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger}|U\rangle$ is evaluated by retaining only the fully contracted terms,

$$
\begin{aligned}
& \langle T| a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger}|U\rangle=\langle\operatorname{vac}| a_{T} a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger} a_{U}^{\dagger}|\mathrm{vac}\rangle \\
& =\langle\operatorname{vac}|\left\{a_{T} a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger} a_{U}^{\dagger}\right\}+\left\{\overparen{\square} a_{T} a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger} a_{U}^{\dagger}\right\} \\
& +\left\{a_{T} a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger} a_{U}^{\dagger}\right\}+\left\{a_{T} a_{P} a_{Q}^{\dagger} a_{R} a_{S}^{\dagger} a_{U}^{\dagger}\right\}|\mathrm{vac}\rangle \\
& =\delta_{T U} \delta_{P Q} \delta_{R S}+\delta_{T Q} \delta_{P S} \delta_{R U}-\delta_{T Q} \delta_{P U} \delta_{R S}-\delta_{T S} \delta_{P Q} \delta_{R U}
\end{aligned}
$$

Generalized Wick's theorem

The generalized Wick's theorem provides a recipe by which we can evaluate a product of two normal-ordered strings,

$$
\begin{aligned}
\{A B C \ldots\}\{X Y Z \ldots\} & =\{A B C \ldots X Y Z \ldots\} \\
& +\sum_{\text {singles }}\{A B C \ldots X Y Z \ldots\} \\
& +\sum_{\text {doubles }}\{A B C \ldots X Y Z \ldots\}+\cdots
\end{aligned}
$$

Contractions need only be evaluated between normal-ordered strings and not within them.

Application of the generalized Wick's theorem

Let us consider the product of the the strings $a_{P}^{\dagger} a_{Q}$ and $a_{R}^{\dagger} a_{S}$, which both are in normal order:

$$
\begin{aligned}
a_{P}^{\dagger} a_{Q} a_{R}^{\dagger} a_{S} & =\left\{a_{P}^{\dagger} a_{Q} a_{R}^{\dagger} a_{S}\right\}+\left\{a_{P}^{\dagger} a_{Q} a_{R}^{\dagger} a_{S}\right\} \\
& =-a_{P}^{\dagger} a_{R}^{\dagger} a_{Q} a_{S}+\delta_{Q R} a_{P}^{\dagger} a_{S}
\end{aligned}
$$

Of course, the same result is also obtained by inserting the anticommutation relation $a_{Q} a_{R}^{\dagger}=\delta_{Q R}-a_{R}^{\dagger} a_{Q}$ into the product $a_{P}^{\dagger} a_{Q} a_{R}^{\dagger} a_{S}$.

Fermi vacuum

- In configuration-interaction or coupled-cluster theories, it is more convenient to deal with the N-electron reference determinant |HF \rangle than with the true vacuum state |vac \rangle.
- The evaluation of matrix elements using Wick's theorem were very tedious if one had to include the whole set of creation operators to generate $|\mathrm{HF}\rangle$ from the true vacuum,

$$
|\mathrm{HF}\rangle=a_{I}^{\dagger} a_{J}^{\dagger} a_{K}^{\dagger} a_{L}^{\dagger} \ldots|\mathrm{vac}\rangle
$$

- We alter the definition of normal ordering from one given relative to the true vacuum to one given relative to the reference state |HF (Fermi vacuum).

Fermi vacuum and particle-hole formalism

- When working on the Fermi vacuum, a hole is created by the operator a_{I} while a particle is created by a_{A}^{\dagger}.
- We refer to operators that create or destroy holes and particles as quasiparticle operators (q-operators). That is, q -annihilation operators are those that annihilate holes and particles (e.g., a_{I}^{\dagger} and a_{A}), and q-creation operators are those that create holes and particles (e.g., a_{I} and a_{A}^{\dagger}).
- A string of second-quantization operators is normal ordered relative to the Fermi vaccuum if all q-annihilation operators are standing to the right of all q-creation operators.

Contractions in the particle-hole formalism

- The definition of normal ordering relative to the Fermi vacuum (denoted as ":...:") changes the application of Wick's theorem only slightly. The only nonzero contractions take place between q -annihilation operators that stand to the left of q-creation operators,

$$
\begin{aligned}
& a_{I}^{\dagger} a_{J}=a_{I}^{\dagger} a_{J}-: a_{I}^{\dagger} a_{J}:=a_{I}^{\dagger} a_{J}+a_{J} a_{I}^{\dagger}=\delta_{I J} \\
& a_{A} a_{B}^{\dagger}=a_{A} a_{B}^{\dagger}-: a_{A} a_{B}^{\dagger}:=a_{A} a_{B}^{\dagger}+a_{B}^{\dagger} a_{A}=\delta_{A B} \\
& a_{A}^{\dagger} a_{B}=a_{I} a_{J}^{\dagger}=0
\end{aligned}
$$

- All other combinations involve mixed hole and particle indices for which the Kronecker delta functions give zero.

Wick's theorem in the particle-hole formalism
Consider the overlap between two doubly-substituted determinants:

$$
\begin{aligned}
& \left\langle\left.\begin{array}{c|c}
C D \\
K L
\end{array} \right\rvert\, \begin{array}{c}
A B \\
I J
\end{array}\right\rangle=\langle\mathrm{HF}| a_{K}^{\dagger} a_{L}^{\dagger} a_{D} a_{C} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I}|\mathrm{HF}\rangle \\
& =\langle\mathrm{HF}| a_{K}^{\dagger} a_{L}^{\dagger} a_{D} a_{C} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I}+a_{K}^{\dagger} a_{L}^{\dagger} a_{D} a_{C} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I} \\
& \\
& \\
& +a_{K}^{\dagger} a_{L}^{\dagger} a_{D} a_{C} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I}+a_{K}^{\dagger} a_{L}^{\dagger} a_{D} a_{C} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I}|\mathrm{HF}\rangle \\
& =\left(\delta_{I K} \delta_{J L}-\delta_{I L} \delta_{J K}\right)\left(\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}\right)
\end{aligned}
$$

Normal-ordered one-electron operator

- The molecular electronic Hamiltonian reads:

$$
\hat{H}=h_{\text {nuc }}+\sum_{P Q} h_{P Q} a_{P}^{\dagger} a_{Q}+\frac{1}{2} \sum_{P Q R S} g_{P Q R S} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}
$$

- Applying Wick's theorem to its one-electron term yields:

$$
\begin{aligned}
\sum_{P Q} h_{P Q} a_{P}^{\dagger} a_{Q} & =\sum_{P Q} h_{P Q}: a_{P}^{\dagger} a_{Q}:+\sum_{P Q} h_{P Q}: \bar{a}_{P}^{\dagger} a_{Q} \\
& =\sum_{P Q} h_{P Q}: a_{P}^{\dagger} a_{Q}:+\sum_{I} h_{I I}
\end{aligned}
$$

Normal-ordered two-electron operator

- We rewrite $a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}$ as:

$$
\begin{aligned}
a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q} & =: a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}: \\
& +: a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}:+: a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}:+: a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q} \\
& +: a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}:+: a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}:+: a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}
\end{aligned}
$$

- Hence,

$$
\begin{aligned}
& \frac{1}{2} \sum_{P Q R S} g_{P Q R S} a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}=\frac{1}{2} \sum_{P Q R S} g_{P Q R S}: a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}: \\
& +\sum_{I P Q}\left(g_{I I P Q}-g_{I P Q I}\right): a_{P}^{\dagger} a_{Q}:+\frac{1}{2} \sum_{I J}\left(g_{I I J J}-g_{I J J I}\right)
\end{aligned}
$$

The normal-ordered electronic Hamiltonian

- We note that:

$$
\begin{array}{rll}
\sum_{I} h_{I I}+\frac{1}{2} \sum_{I J}\left(g_{I I J J}-g_{I J J I}\right) & =E_{\mathrm{HF}} & \text { (Hartree-Fock energy) } \\
h_{P Q}+\sum_{I}\left(g_{I I P Q}-g_{I P Q I}\right)=f_{P Q} & \text { (Fock-matrix element) }
\end{array}
$$

- We obtain:

$$
\begin{aligned}
& \hat{H}=\sum_{P Q} f_{P Q}: a_{P}^{\dagger} a_{Q}:+\frac{1}{2} \sum_{P Q R S} g_{P Q R S}: a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}:+E_{\mathrm{HF}} \\
& \hat{H}=\hat{F}_{N}+\hat{V}_{N}+E_{\mathrm{HF}} \\
& \hat{H}_{N}=\hat{F}_{N}+\hat{V}_{N}=\hat{H}-E_{\mathrm{HF}}
\end{aligned}
$$

Brillouin's theorem

- Let $\left|\begin{array}{c}A \\ I\end{array}\right\rangle=a_{A}^{\dagger} a_{I}|\mathrm{HF}\rangle$ be a singly-substituted determinant. The matrix element $\langle\mathrm{HF}| \hat{H}\left|\begin{array}{c}A \\ I\end{array}\right\rangle$ can be computed using Wick's theorem,

$$
\begin{aligned}
\langle\mathrm{HF}| \hat{H}\left|\begin{array}{c}
{ }_{I}^{A}
\end{array}\right\rangle & =\langle\mathrm{HF}| \hat{H} a_{A}^{\dagger} a_{I}|\mathrm{HF}\rangle=\langle\mathrm{HF}| \hat{F}_{N} a_{A}^{\dagger} a_{I}|\mathrm{HF}\rangle \\
& =\sum_{P Q} f_{P Q}\langle\mathrm{HF}|: a_{P}^{\dagger} a_{Q}: a_{A}^{\dagger} a_{I}|\mathrm{HF}\rangle \\
& =\sum_{P Q} f_{P Q}\langle\mathrm{HF}| a_{P}^{\dagger} a_{Q} a_{A}^{\dagger} a_{I}|\mathrm{HF}\rangle \\
& =f_{I A}=0 \quad \text { (if Brillouin condition fulfilled) }
\end{aligned}
$$

First-order interacting space

- Similarly, for $\left|{ }_{I J}^{A B}\right\rangle=a_{A}^{\dagger} a_{I}|\mathrm{HF}\rangle$ we obtain:

$$
\begin{aligned}
& \langle\mathrm{HF}| \hat{H}\left|{ }_{I J}^{A B}\right\rangle=\langle\mathrm{HF}| \hat{V}_{N} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I}|\mathrm{HF}\rangle \\
& =\frac{1}{2} \sum_{P Q R S} g_{P Q R S}\langle\mathrm{HF}|: a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q}: a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I}|\mathrm{HF}\rangle
\end{aligned}
$$

$$
=\frac{1}{2} \sum_{P Q R S} g_{P Q R S}\langle\mathrm{HF}| a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I}
$$

$$
+a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I}+a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I}
$$

$$
+a_{P}^{\dagger} a_{R}^{\dagger} a_{S} a_{Q} a_{A}^{\dagger} a_{B}^{\dagger} a_{J} a_{I}|\mathrm{HF}\rangle=g_{I A J B}-g_{I B J A}
$$

Spin in second quantization

- So far, we have used the upper-case index P to count spin orbitals of the form

$$
\phi_{P}(\mathbf{x})=\phi_{p \sigma}\left(\mathbf{r}, m_{\mathbf{s}}\right)=\phi_{p}(\mathbf{r}) \sigma\left(m_{\mathbf{s}}\right)
$$

- m_{s} is the spin coordinate and the spin function $\sigma\left(m_{\mathrm{s}}\right)$ is either $\alpha\left(m_{\mathrm{s}}\right)$ or $\beta\left(m_{\mathrm{s}}\right)$.
- The theory of second quantization can also be formulated using the composite index $p \sigma$. For example, the anticommutator between creation and annihilation operators can be written as

$$
\left[a_{p \sigma}^{\dagger}, a_{q \tau}\right]_{+}=\delta_{p \sigma, q \tau}=\delta_{p q} \delta_{\sigma \tau}
$$

- With lower-case indices p, we count spatial orbitals $\phi_{p}(\mathbf{r})$.

Spinfree one-electron operators

- Consider the following spinfree (or spinless) operator:

$$
\begin{aligned}
& f^{c}=\sum_{i=1}^{N} f^{c}\left(\mathbf{r}_{i}\right), \quad \hat{f}=\sum_{p \sigma q \tau} f_{p \sigma, q \tau} a_{p \sigma}^{\dagger} a_{q \tau} \\
& f_{p \sigma, q \tau}=\iint \phi_{p}^{*}(\mathbf{r}) \sigma^{*}\left(m_{\mathbf{s}}\right) f^{c}(\mathbf{r}) \phi_{q}(\mathbf{r}) \tau\left(m_{\mathbf{s}}\right) \mathrm{d} \mathbf{r} \mathrm{~d} m_{\mathbf{s}} \\
&=\delta_{\sigma \tau} \int \phi_{p}^{*}(\mathbf{r}) f^{c}(\mathbf{r}) \phi_{q}(\mathbf{r}) \mathrm{d} \mathbf{r}=\delta_{\sigma \tau} f_{p q}
\end{aligned}
$$

- The sum over spin functions in the second quantization operator \hat{f} can be accounted for in the singlet excitation operator

$$
E_{p q}=a_{p \alpha}^{\dagger} a_{q \alpha}+a_{p \beta}^{\dagger} a_{q \beta}, \quad \hat{f}=\sum_{p q} f_{p q} E_{p q}
$$

Spinfree two-electron operators

The spinfree two-electron operator

$$
g^{c}=\frac{1}{2} \sum_{i \neq j} g^{c}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)
$$

gives

$$
\begin{aligned}
\hat{g} & =\frac{1}{2} \sum_{p q r s} \sum_{\sigma \tau \mu \nu} g_{p \sigma, q \tau, r \mu, s \nu} a_{p \sigma}^{\dagger} a_{r \mu}^{\dagger} a_{s \nu} a_{q \tau} \\
& =\frac{1}{2} \sum_{p q r s} \sum_{\sigma \tau} g_{p q r s} a_{p \sigma}^{\dagger} a_{r \tau}^{\dagger} a_{s \tau} a_{q \sigma} \\
& =\frac{1}{2} \sum_{p q r s} g_{p q r s} e_{p q r s}, \quad \text { with } \quad e_{p q r s}=E_{p q} E_{r s}-\delta_{q r} E_{p s}
\end{aligned}
$$

Pure spin operators

The representation of first-quantization operators f^{c} that work in spin space only may be written in the general form

$$
\begin{aligned}
\hat{f} & =\sum_{p \sigma q \tau} \int \phi_{p}^{*}(\mathbf{r}) \sigma^{*}\left(m_{\mathrm{s}}\right) f^{c}\left(m_{\mathrm{s}}\right) \phi_{q}(\mathbf{r}) \tau\left(m_{\mathrm{s}}\right) \mathrm{d} \mathbf{r} \mathrm{~d} m_{\mathrm{s}} a_{p \sigma}^{\dagger} a_{q \tau} \\
& =\sum_{\sigma \tau} \int \sigma^{*}\left(m_{\mathrm{s}}\right) f^{c}\left(m_{\mathrm{s}}\right) \tau\left(m_{\mathrm{s}}\right) \mathrm{d} m_{\mathrm{s}} \sum_{p} a_{p \sigma}^{\dagger} a_{p \tau}
\end{aligned}
$$

Consider the operators S_{z}^{c}, S_{+}^{c} and S_{-}^{c} (the latter are known as step-up and step-down operators or ladder operators).

$$
\begin{array}{ll}
S_{z}^{c}\left(m_{\mathrm{s}}\right) \alpha\left(m_{\mathrm{s}}\right)=\frac{1}{2} \alpha\left(m_{\mathrm{s}}\right), & S_{z}^{c}\left(m_{\mathrm{s}}\right) \beta\left(m_{\mathrm{s}}\right)=-\frac{1}{2} \beta\left(m_{\mathrm{s}}\right) \\
S_{-}^{c}\left(m_{\mathrm{s}}\right) \alpha\left(m_{\mathrm{s}}\right)=\beta\left(m_{\mathrm{s}}\right), & S_{-}^{c}\left(m_{\mathrm{s}}\right) \beta\left(m_{\mathrm{s}}\right)=0 \\
S_{+}^{c}\left(m_{\mathrm{s}}\right) \alpha\left(m_{\mathrm{s}}\right)=0, & S_{+}^{c}\left(m_{\mathrm{s}}\right) \beta\left(m_{\mathrm{s}}\right)=\alpha\left(m_{\mathrm{s}}\right)
\end{array}
$$

Pure spin operators (continued)

$$
\hat{S}_{z}=\frac{1}{2} \sum_{p}\left(a_{p \alpha}^{\dagger} a_{p \alpha}-a_{p \beta}^{\dagger} a_{p \beta}\right), \quad \hat{S}_{+}=\sum_{p} a_{p \alpha}^{\dagger} a_{p \beta}, \quad \hat{S}_{-}=\sum_{p} a_{p \beta}^{\dagger} a_{p \alpha}
$$

From these operators, it follows:

$$
\begin{aligned}
& \hat{S}_{+}^{\dagger}=\hat{S}_{-}, \quad \hat{S}_{-}^{\dagger}=\hat{S}_{+} \\
& \hat{S}_{x}=\frac{1}{2}\left(\hat{S}_{+}+\hat{S}_{-}\right)=\frac{1}{2} \sum_{p}\left(a_{p \alpha}^{\dagger} a_{p \beta}+a_{p \beta}^{\dagger} a_{p \alpha}\right) \\
& \hat{S}_{y}=\frac{1}{2 i}\left(\hat{S}_{+}-\hat{S}_{-}\right)=\frac{1}{2 i} \sum_{p}\left(a_{p \alpha}^{\dagger} a_{p \beta}-a_{p \beta}^{\dagger} a_{p \alpha}\right) \\
& \hat{S}^{2}=\hat{S}_{x}^{2}+\hat{S}_{y}^{2}+\hat{S}_{z}^{2}=\hat{S}_{+} \hat{S}_{-}+\hat{S}_{z}\left(\hat{S}_{z}-1\right)=\hat{S}_{-} \hat{S}_{+}+\hat{S}_{z}\left(\hat{S}_{z}+1\right) \\
& {\left[\hat{S}_{+}, \hat{S}_{-}\right]=2 \hat{S}_{z}}
\end{aligned}
$$

ROHF expectation value of \hat{S}^{2}

The expectation value of \hat{S}^{2} with respect to a restricted open-shell Hartree-Fock (ROHF) reference state can easily be evaluated using Wick's theorem in the particle-hole formalism.

$$
\begin{aligned}
\langle\mathrm{HF}| \hat{S}_{+} \hat{S}_{-}|\mathrm{HF}\rangle & =\sum_{p q}\langle\mathrm{HF}| a_{p \alpha}^{\dagger} a_{p \beta} a_{q \beta}^{\dagger} a_{q \alpha}|\mathrm{HF}\rangle=N_{\alpha}-N_{\beta} \\
\langle\mathrm{HF}| \hat{S}_{-} \hat{S}_{+}|\mathrm{HF}\rangle & =\sum_{p q}\langle\mathrm{HF}| a_{p \beta}^{\dagger} a_{p \alpha} a_{q \alpha}^{\dagger} a_{q \beta}|\mathrm{HF}\rangle=0 \\
\langle\mathrm{HF}| \hat{S}_{z}|\mathrm{HF}\rangle & =\frac{1}{2} \sum_{p}\langle\mathrm{HF}| \overline{a_{p \alpha}^{\dagger}} a_{p \alpha}-a_{p \beta}^{\dagger} a_{p \beta}|\mathrm{HF}\rangle=\frac{1}{2}\left(N_{\alpha}-N_{\beta}\right) \\
\langle\mathrm{HF}| \hat{S}_{z}^{2}|\mathrm{HF}\rangle & =\frac{1}{4} \sum_{p q}\langle\mathrm{HF}| a_{p \alpha}^{\dagger} a_{p \alpha} a_{q \alpha}^{\dagger} a_{q \alpha}+\ldots|\mathrm{HF}\rangle=\frac{1}{4}\left(N_{\alpha}-N_{\beta}\right)^{2} \\
\langle\mathrm{HF}| \hat{S}^{2}|\mathrm{HF}\rangle & =\frac{1}{2}\left(N_{\alpha}-N_{\beta}\right)\left\{\frac{1}{2}\left(N_{\alpha}-N_{\beta}\right)+1\right\}
\end{aligned}
$$

Mixed operators

Consider the (atomic) first-quantization spin-orbit operator,

$$
V_{\mathrm{SO}}^{c}=\sum_{i=1}^{N} V_{\mathrm{SO}}^{c}\left(\mathbf{r}_{i}, m_{\mathrm{s} i}\right)=\sum_{i=1}^{N} \xi\left(r_{i}\right) \ell^{c}\left(\mathbf{r}_{i}\right) \cdot \mathbf{S}^{c}\left(m_{\mathrm{s} i}\right)
$$

which in second quantization takes the form:

$$
\hat{V}_{\mathrm{SO}}=\sum_{p q}\left(V_{p q}^{x} \hat{T}_{p q}^{x}+V_{p q}^{y} \hat{T}_{p q}^{y}+V_{p q}^{z} \hat{T}_{p q}^{z}\right)
$$

with

$$
V_{p q}^{\mu}=\int \phi_{p}^{*}(\mathbf{r}) \xi(r) \ell_{\mu}^{c}(\mathbf{r}) \phi_{q}(\mathbf{r}) \mathrm{d} \mathbf{r}, \quad(\mu=x, y, z)
$$

and the triplet excitation operators

$$
\begin{aligned}
& T_{p q}^{x}=\frac{1}{2}\left(a_{p \alpha}^{\dagger} a_{q \beta}+a_{p \beta}^{\dagger} a_{q \alpha}\right), \quad T_{p q}^{y}=\frac{1}{2 i}\left(a_{p \alpha}^{\dagger} a_{q \beta}-a_{p \beta}^{\dagger} a_{q \alpha}\right) \\
& T_{p q}^{z}=\frac{1}{2}\left(a_{p \alpha}^{\dagger} a_{q \alpha}-a_{p \beta}^{\dagger} a_{q \beta}\right)
\end{aligned}
$$

One-electron density matrix

$$
\begin{aligned}
\langle 0| \Omega|0\rangle & =\Omega_{0}+\sum_{p q} \Omega_{p q}\langle 0| E_{p q}|0\rangle+\frac{1}{2} \sum_{p q r s} \Omega_{p q r s}\langle 0| e_{p q r s}|0\rangle \\
& =\Omega_{0}+\sum_{p q} D_{p q} \Omega_{P Q}+\frac{1}{2} \sum_{p q r s} d_{p q r s} \Omega_{p q r s}
\end{aligned}
$$

- One-electron density matrix,

$$
D_{p q}=\langle 0| E_{p q}|0\rangle=\bar{D}_{p \alpha, q \alpha}+\bar{D}_{p \beta, q \beta}, \quad D_{p q}=D_{q p}^{*}
$$

- Orbital occupation numbers,

$$
D_{p p}=\omega_{p}=\bar{\omega}_{p \alpha}+\bar{\omega}_{p \beta}, \quad 0 \leq \omega_{p} \leq 2
$$

- Natural occupation numbers,

$$
\mathbf{D}=\mathbf{U} \boldsymbol{\eta} \mathbf{U}^{\dagger}, \quad 0 \leq \eta_{p} \leq 2
$$

Two-electron density matrix

$$
\begin{aligned}
\langle 0| \hat{\Omega}|0\rangle & =\Omega_{0}+\sum_{p q} \Omega_{p q}\langle 0| E_{p q}|0\rangle+\frac{1}{2} \sum_{p q r s} \Omega_{p q r s}\langle 0| e_{p q r s}|0\rangle \\
& =\Omega_{0}+\sum_{p q} D_{p q} \Omega_{P Q}+\frac{1}{2} \sum_{p q r s} d_{p q r s} \Omega_{p q r s}
\end{aligned}
$$

- Two-electron density matrix,

$$
d_{p q r s}=\langle 0| e_{p q r s}|0\rangle=\sum_{\sigma \tau}\langle 0| a_{p \sigma}^{\dagger} a_{r \tau}^{\dagger} a_{s \tau} a_{q \sigma}|0\rangle=\sum_{\sigma \tau} \bar{d}_{p \sigma, q \sigma, r \tau, s \tau}
$$

- Pair occupation numbers,

$$
d_{p p q q}=\omega_{p q}=\sum_{\sigma \tau} \bar{\omega}_{p \sigma, q \tau}, \quad 0 \leq \omega_{p q} \leq 2\left(2-\delta_{p q}\right)
$$

The spin-density matrix

- The spin-density matrix is defined as

$$
D_{p q}^{T}=\frac{1}{2}\langle 0| a_{p \alpha}^{\dagger} a_{q \alpha}-a_{p \beta}^{\dagger} a_{q \beta}|0\rangle=\frac{1}{2}\left(\bar{D}_{p \alpha, q \alpha}-\bar{D}_{p \beta, q \beta}\right)
$$

- The spin-density matrix measures the excess of the density of alpha electrons over beta electrons.
- Similarly, the spin occupation number

$$
\omega_{p}^{T}=\frac{1}{2}\left(\bar{\omega}_{p \alpha}-\bar{\omega}_{p \beta}\right)
$$

measures the excess of alpha over beta electrons in ϕ_{p}.

- The trace of \mathbf{D}^{T} yields the total spin projection,

$$
\operatorname{Tr} \mathbf{D}^{T}=\frac{1}{2} \sum_{p}\langle 0| a_{p \alpha}^{\dagger} a_{p \alpha}-a_{p \beta}^{\dagger} a_{p \beta}|0\rangle=\langle 0| \hat{S}_{z}|0\rangle
$$

