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Introduction

In the first quantization formulation of quantum mechanics,
observables are represented by operators and states by
functions.

In the second quantization formulation, the wavefunctions
are also expressed in terms of operators — the creation
and annihilation operators working on the vacuum state.

Operators (e.g., the Hamiltonian) and wavefunctions are
described by a single set of elementary creation and
annihilation operators.

The antisymmetry of the electronic wavefunction follows
from the algebra of the creation and annihilation operators.
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The Fock space

Let {¢pp(x)} be a basis of M orthonormal spin orbitals,
where x represents the electron’s spatial (r) and spin (ms)
coordinates.

A Slater determinant is a normalized, antisymmetrized
product of spin orbitals,

¢p (x1)  opy(x1) ... @py(x1)

1 ¢p (x2)  opy(x2) ... dpy(x2)
|¢P1¢P2H-¢PN|:ﬁ : : .

P, (xn) ép, (xn) - ¢’PN-(XN)

In Fock space (a linear vector space), a determinant is
represented by an occupation-number (ON) vector |k),

1 ¢p(x) occupied

k) = [k1, ko, ..o k), kp = { 0 ¢p(x) unoccupied
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The inner product

Inner product between two ON vectors |k) and |m):

(kjm) = icm = H5kpmp

Applies also to the product between states with different
electron numbers.

Resolution of the identity: 1 =", |k) (k]|
For two general vectors in Fock space:

=Y alk), [d)=> dlk), (c|d)= chdk
k k
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The 2¥-dimensional Fock space

The Fock space F(M) may be decomposed as a direct
sum of subspaces F'(M, N),

F(M)=F(M,0)® F(M,1)& --- & F(M, M)

F(M, N) contains all (1) vectors for which the sum of the
occupation numbers is N.

The subspace F'(M,0) is the true vacuum state,

F(M,0) = |vac) = |01,0,...,057), (vac|vac) =1
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Creation operators

The M elementary creation operators are defined by

(lTp’kl,kQ,...,Op,...,kM>:rlg’kl,kz,...,lp,...,kM>

aL’kl,kz,...,lp,...,kM> =0
P—-1
with the phase factor Tk = J[(-1)*<
Q=1
Anticommutation relations take care of the phase factor.

An ON vector can be expressed as a string of creation
operators (in canonical order) working on the vacuum,

M
k) = [H(a}z)’@] vac)

P=1
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Annihilation operators

The M elementary annihilation operators are defined by

aplky, ko, ..., 1p, ... ky) =Txlk1, ko, ..., 0p, ... k)
ap‘kl,kz,...,Op,...,kM> =0
aplvac) =0

with the same phase factor as before.

Again, anticommutation relations take care of the
phase factor.

a}; is the Hermitian adjoint to ap. These operators are
distinct operators and are not self-adjoint (Hermitian).
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Anticommutation relations

The anticommutation relations constitute the fundamental
properties of the creation and annihilation operators:

l[ap,agl+ = apag +agap =0

[a};, CLTQ]+ = a}ag + aga}g =0

[a}, aQl+ = CL]]L;CLQ + aQa}; = 0pQ

All other algebraic properties of the second quantization
formalism follow from these simple equations.

The anticommutation relations follow from the definitions of
ap and a!, given on the previous slides.
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Occupation-number operators

The occupation-number (ON) operator is defined as

Np = CLIDCLP
Np|k) = abap|k) = 6;,1k) = kp|k)

ON operators are Hermitian (N], = Np) and commute
among themselves, [Np, Ng] = 0.

The ON vectors are simultaneous eigenvectors of the
commuting set of Hermitian operators Np.

The ON operators are idempotent projection operators,

NI% = a}raapaTPap = aJ]rD(l — a};ap)ap = a};ap — Np
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The number operator

The Hermitian number operator N is obtained by adding
together all ON operators,

M M
N=Y Np=> dabap, Nk = ka\k N k)

P=1 P=1

Let X be a string with creation and annihilation operators
with more creation than annihilation operators (the excess
being NX, which can be negative). Then,

N commutes with a number-conserving string for which
NX =0.
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Excitation operators

e The simplest number-conserving operators are the
elementary excitation operators

Xg = a})aQ
o X/ applied to |k):

P<Q  XEk) =0podoulrgl .. 1p,...,0q,...)
P>Q  XEk) =—6podoilsrgl...,00, ..., 1p,...)
P=qQ  X{lk) =kplk)
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Wavefunctions represented by operators

e Let {¢pp(x)} be a basis of M orthonormal spin orbitals.

e An arbitrary wavefunction (within the space spanned by all
Slater determinants that can be formed using these M
spin orbitals) can be written as

M

€)= alk) =) a [H (a};)’fP] vac) = > e Xi|vac)
k k k

P=1

e An excitation operator can be applied to the above
wavefunction to yield another function,

Xgle) =)
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One-electron operators

e In first quantization, one-electron operators are written as

N
= fx)
=1
e The second-quantization analogue has the structure
F=>frodhao.  fro= [ 6px)1 (xoa(ix
PQ

e The order of the creation and annihilation operators
ensures that the one-electron operator f produces zero
when it works on the vacuum state.
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One-electron operators: Slater—Condon rules

occupied

(k| f|k) = prp klahaplk) = kpfep = > fu
P I

|k1) and |k,) differ in one pair of occupation numbers:

k1) = |k1, k2o, 00y ooy gy k)

ko) = |k1, koo ooy 1r, oo, 00, o k)

(kolflki) =TT frs

lk1) and |k,) differ in more than one pair of occupation numbers:

(k| f|k1) = 0
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Two-electron operators

e In first quantization, one-electron operators are written as

N
9°=3> g°(xi,x;)
i#]

e The second-quantization analogue has the structure

g=13 Z gPQRsa;aTRasaQ

PQRS

e The two-electron integral is

9gPQRS ://¢}(X1)¢E(X2)QC(X17X2)¢Q(X1)¢S(X2)dX1dX2
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with

The molecular electronic Hamiltonian

H = hoe + Y hpqapaq + 3 > IPQRSApaRasaQ
PQ PQRS

YA

_12 asB
hnuc_§ r

azp P

hpq = /¢}3(X) (—%A - %) $q(x)dx

67

gpans = / / 01 (a) 0k (x2) g (x1)os (ke dxad
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First- and second-quantization operators compared

First quantization

Second quantization

— one-electron operator:

Zi fc(xz')

— two-electron operator:
1
3 2inj 9°(Xi, X;)

— operator independent of
spin-orbital basis

— operator depends on
number of electrons

— exact operator

— one-electron operator:
E:PQfPQa;aQ

— two-electron operator:

1
1Y poRrs IPQRSARARASAQ

— operator depends on
spin-orbital basis

— operator independent of
number of electrons

— projected operator
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Matrix elements in 2" quantization

e Let

€)= cxlk) =) e Xilvac)
k k

d) =) dilk) = diXy|vac)
k k

e Then,

(|Old) => "> cidi (vac| X[ O Xiw|vac)

k k

e Matrix elements become linear combinations of vacuum
expectation values. Note that X, and O consist of strings
of the same elementary creation and annihilation

operators.
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Products of operators in 2"9 quantization

e Recall: The (finite) matrix representation P of the operator
product P¢(x) = A¢(x)B¢(x) is not equal to the product of
the matrices A and B,

P + AB

« Similarly, the product of the operators A and B in second
quantization requires special attention,

AC = Z A°(x;), A= ZAPQCLJILCLQ
i PQ
B¢ = ZBC(XZ'), é = ZAPQQIDCLQ
i PQ
P¢ = A°B°, p=7
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Products in 2"4 quantization (continued)

P = AB°=0°+T" =) A°(x;)B(x;)

+ 3D IA(x)BY(xg) + A%(x;) BY(xi)]
i#]

o
I

O + T = Z OPQCL}[DCLQ + % Z TPQRSa}TDaEaSaQ
PQ PQRS

Opg = / bp(%) A°(x) B (x) b (x)dx

Tpors = ApgBrs+ ArsBpg
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Using the anticommutation relations

= % Z (APQBRS‘FARSBPQ)GLCLECLSCLQ
PQRS

— Z APQBRSCLJ]L(IECLSCLQ
PQRS

= Z APQBRS(CLTPCLQCLECLS — 5RQaJIrDaS)

PQRS
= ZAPQCLTPCLQ (Z BRSaEcm) — Z (Z APRBRS> CL}LDCLS
PQ RS PS R
= AB — Z (ZAPRBRQ) G}DCLQ
PQ R

AIT

Operators in 2" quantization are projections

e The final result for the representation of P¢ in second
quantization is

p = Aé + Z (OPQ — ZAPRBRQ> a}LDCLQ
PQ R
e In a complete basis: > % _; AprBrg = Opg.

e The second quantization operators are projections of the
exact operators onto a basis of spin orbitals. For an
incomplete basis, the second quantization representation
depends on when the projection is made.
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Heisenberg uncertainty principle

e Position and momentum do not commute: [z¢,pS] = iN.
Note that ¢ and p¢ contain sums over N electrons, and
only the observables of the same electron do not
commute.

o What happens with [z, p.] in second quantization?
e |t follows that

[2..] =D (Z {zpPr(pz)Rq — (Px)PR-%’RQ}> abag

PQ \ R

« In a complete basis, we find: [z, p,] = iN.
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Expectation values

e We are interested in the expectation value of a general
one- and two-electron Hermitian operator 2 with respect to
a normalized reference state |0).

ﬁ = Qo + Z QPQCL};CLQ -+ % Z QPQRSa};CLEasaQ
PQ PQRS

0) = alk), (0|0) =1, (0|Q]0) =7
k
o We write the expectation value as follows:

(01Q10) = Qo+ Qpo(0labagl0)+3 Y Qrors(Olabahasaql)
PQ PQRS
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Density matrices

(0Q0) = Qo+ 2pe(0labagl0) +3 Y Qprors(Olabahasaglo)
PQ PQRS

= Qo+ Z DpoQpg + 3 Z dporsQQPoRs
PQ PQRS
e One-electron density-matrix elements:
Dpq = (0labaq0)

e Two-electron density-matrix elements:

dpors = (0labakasag|0)
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Properties of the one-electron density matrix

D is an M x M positive semidefinite, Hermitian matrix.

A diagonal element is referred to as the occupation number
wp of the spin orbital ¢p(x) in the electronic state |0),

@p = Dpp = (0lahap|0) = (0] Np|0) = ka|ck|2

Occup. numbers are real numbers between zero and one,

0<wp<1

The trace of the density matrix is equal to the number of
electrons,

TD =" @p =Y (0|Np[0) = (0]]0) =
P i R




Natural spin orbitals

 Since D is a Hermitian matrix, we may diagonalize it with a
unitary matrix U, )
D = UxfU!

e The eigenvalues are real numbers 0 < 77p < 1, known as
natural-orbital occupation numbers. The sum of the these
numbers is again equal to the number of electrons.

e The eigenvectors U constitute the natural spin orbitals.
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Properties of the two-electron density matrix

» The elements of the two-electron density matrix d are not
all independent,

dpors = —drgrs = —dpsrq = drsPQ
o We define the two-electron density matrix T with elements
Tro.rs = dprQs with P>Q, R>S
e The diagonal elements wpg are pair-occupation numbers,

opq = Trqrq = (Olapabagap|0) = (0|NpNg|0)
= kak@|ck|2
k

AT




Operator rank

e In the manipulation of operators and matrix elements in
second quantization, we often encounter commutators and
anticommutators,

(A,B] = AB-BA
[A,B], = AB+BA
e The anticommutation relations of creation and annihilation

operators can be used to simplify commutators and
anticommutators of strings of operators.

e The particle rank of a string is the number of elementary
operators divided by two (e.g., the rank of a creation
operator is 1/2 and the rank of a ON operator is 1).
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Rank reduction

e Rank reduction is said to occur when the rank of a
commutator or anticommutator is lower than the combined
rank of the operators involved,

a}ap + apaL =1

The rank of the operator products is 1, the rank of the
anticommutator is 0.

o Simple rule:
Rank reduction follows upon anticommutation of two
strings of half-integral rank and upon commutation of all
other strings.

[, aras] = [a}, ar], as — agrlah, as], = dpras — dpsar
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Useful operator identities

n
[A,BC), =[A,B]C + B[A,C], = [A,B],C - B[A,C]
For example:
[a};, CLRaTSaT]+ = [a};, aR]JraTSaT — aR[a}LD, aTSaT]

= 5pRaTSaT —ap ([a;, aTS]+aT — aTS[aL, aT]+)

= 5PRCLECLT + 5PTaRaTq
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Normal-ordered second-quantization operators

e A normal-ordered string of second-quantization operators
is one in which we find all annihilation operators standing
to the right of all creation operators.

« As an example, consider the string apa),aral;,

CLPCLTQCLRCLL = 5anRairg — agapaRaTS

= 5PQ5RS — 5anTSaR - (SRSCLE?CLP + agapaTSaR

= 5PQ5RS — 5angaR — 535&22&13 + (5psa22aR — CLZQCLTSCLPCLR

o All of the strings in the rearrangement are in normal order.
e None of them contribute to the vacuum expectation value,

(vac\apaTQaRag \vac} = 5PQ5RS

AT




Normal-ordered operators (continued)

Consider the two wavefunctions |c) and |d):
e) = aXilvac),  |d) =) diXy|vac)
k k

The matrix element
(c\apagaRayd) = Z Crdy <VaC‘XlCLPCLTQCLRang/|V8.C>
kK’

can be evaluated by rearranging Xapabaral Xy into
normal order.
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Contractions

A contraction between two arbitrary elementary operators,
for example between ap and and a}, is defined as

1

apag = apaz2 — {apag}

where the notation {apal,} indicates the normal-orderer
string.

Thus, the contraction between the operators is simply the
original ordering of the pair minus the normal-ordered pair.

The notation {... } introduces a sign (—1)?, where p is the
number of permutations required to bring the operators
into normal order.
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Contractions (continued)

Examples with two elementary operators:

n ] ]

apag = 0, CLPCLZ2 =0, apag =0,

[ ]
apai2 = apaz2 — {CLPCLZ?} = CLPCLZ? + CLZ?CLP = dpQ

An example with more than two elementary operators:

;

apaRaZ)ag = —0pQaRag

A sign change occurs for every permutation that is required
until the contracted operators are adjacent to one another.
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Full contractions

A string of operators is fully contracted, if all operators are
pairwise contracted. Only full contractions contribute to the
vacuum expectation value.

An example with two contractions:

NN e I e

apaRagag = — GPARAGHG = — apai2 drs = —0pPQIRs

Rule of thumb: the sign of a full contraction is negative if
the number of crossings is odd, else positive.
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Wick’s theorem

Wick’s theorem provides a recipe by which an arbitrary string of
annihilation and creation operators, ABC...XY Z, may be
written as a linear combination of normal-ordered strings.
Schematically, Wick’s theorem is:

ABC..XYZ = {ABC..XYZ}

[
+ > {ABC..XYZ}

singles

+ > {ABC.XYZ} +

doubles

where “singles”, “doubles”, etc. refer to the number of pairwise
contractions.

AIT

Wick’s theorem (continued)

Applying Wick's theorem to apalyaral, yields:
]
apagaRag = {apagaRag}—k{apagaRag}

1

+ {apagaRag}—k{apagaRaS
T DT

+ {apagarag

= —agagapag——5anLaR—%5p5agaR

— 5RSGTQGP + dpQORs

This result is identical to that obtained using the
anticommutation relations.
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Wick’s theorem (continued)

Another example:

f t f

]
apagasay = {apagasal} +{apagasal} + {apagasay}

= a;rga}r%agag + 5SRa}aQ — 5QRa}LDaS

This result is also easily obtained using the anticommutation
relations:

T T

a}anSSR — apaQaRas

— aLangR — aLéQRaS + a};a}}aQaS
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Application of Wick’s theorem

o Consider the two one-electron states |T') = a}\vac> and
\U) = aJ{]|vac>. The matrix element <T|apaJ£2GRCLTS‘U> is
evaluated by retaining only the fully contracted terms,

<T\apaTQaRaTS\U) = <VaC\aTapagaRagaL|vaC>

| 1 Fﬁﬂ

= (VaC|{aTapaQaRagaJ{J} + {&T@PGJ&GR&S(IJ{]}

ol T

+ {aTapagaRagaTU} + {aTapaZ?aRaSaU}\va@

= 0ru0pPQORS + 017QO0PSORU — 07QdPUORS — OTSOPQORU
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Generalized Wick’s theorem

The generalized Wick’s theorem provides a recipe by which we
can evaluate a product of two normal-ordered strings,

{ABC.}{XYZ..} = {ABC..XYZ..}

+ > {ABC.XYZ.}

singles

1 |
+ Y {ABC.XYZ.} +

doubles

Contractions need only be evaluated between normal-ordered
strings and not within them.
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Application of the generalized Wick’s theorem

Let us consider the product of the the strings alag and alas,
which both are in normal order:

]
aLaQaEaS = {a;aQa%as}%—{a}aQaEaS}

= —-a}aEaQaS—%dQRa;aS

Of course, the same result is also obtained by inserting the

anticommutation relation G,QGTR = 0QR — CLE&Q into the product

a}aQaEaS.
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Fermi vacuum

e In configuration-interaction or coupled-cluster theories, it is
more convenient to deal with the N-electron reference
determinant |HF) than with the true vacuum state |vac).

e The evaluation of matrix elements using Wick’s theorem
were very tedious if one had to include the whole set of
creation operators to generate |HF) from the true vacuum,

HF) = a}aBa%aE...W&C}
o We alter the definition of normal ordering from one given

relative to the true vacuum to one given relative to the
reference state |HF) (Fermi vacuum).
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Fermi vacuum and particle—hole formalism

e When working on the Fermi vacuum, a hole is created by
the operator a; while a particle is created by al,.

o We refer to operators that create or destroy holes and
particles as quasiparticle operators (g-operators). That is,
g-annihilation operators are those that annihilate holes and
particles (e.g., a} and a 4), and g-creation operators are

those that create holes and particles (e.g., a; and aL).

e A string of second-quantization operators is normal
ordered relative to the Fermi vaccuum if all g-annihilation
operators are standing to the right of all g-creation
operators.
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Contractions in the particle—hole formalism

o The definition of normal ordering relative to the Fermi
vacuum (denoted as “:...:”) changes the application of
Wick’s theorem only slightly. The only nonzero contractions
take place between g-annihilation operators that stand to
the left of g-creation operators,

[+ ]

a]}aJ:a}aJ —:a}[aJ: :a}aJ—l—aJa}:éU

[ ]

aAaL:aAaTB —:aAaJlrg: :aAaE—I—aEaA:@lB
s N

aj,ap = ara; =0

e All other combinations involve mixed hole and particle
indices for which the Kronecker delta functions give zero.
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Wick’s theorem in the particle—hole formalism

Consider the overlap between two doubly-substituted
determinants:

CD AB
KL

17 > = <HF|a];(aTLaDaCaLaLaJaI|HF>

AR, e byl

= (HF| a}(aLaDacaAaBaJaI +aga;apaca,agayar

Pl T

+agarapaca,agagar + aKaEaDacaAaBaJaI |HF)
= (0rx0s. — 61.97K) (6acéBD — daD0BC)
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Normal-ordered one-electron operator

e The molecular electronic Hamiltonian reads:
H= Prue + Z han}LDaQ + % Z gpQRSaJIfDaEaSaQ
PQ PQRS

e Applying Wick’s theorem to its one-electron term yields:

Y hpoapag = Z hpqiapag: + Z hpq: ODCLQ

PQ
= th@ apaq:+ Zh[}
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Normal-ordered two-electron operator

o We rewrite CL]LPCL%CLSCLQ as:

CLTPCLECLSaQ = :aTPaEaSaQ:

Pt .y

+ :a}aTRaSaQ i+ lapagasag i+ laparasaq
PR R S A e
[ApARASAQ I+ 1ApARASAQ I+ 1ApARASAQ -

e Hence,

L grorsabakasag = 3 Y grorsiabahasag:

PQRS PQRS
+ Z (9r1PQ — 91PQI) 1GLCLQ1 + % Z (91100 — 9r571)
1PQ 1J

AT




The normal-ordered electronic Hamiltonian

e We note that:

Z hir + 3 Z (91150 —91501) = Ewr (Hartree—Fock energy)
1 1J
hpq+ Y (91rrq —g1rq1) = frq  (Fock-matrix element)
I
e We obtain:

H=> frquabag: + 3 Y grorsiabahasaq: + B
PQ PQRS

H=Fyx+Vy+ Fue

Ay =FEy+Vy =H— By
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Brillouin’s theorem
e let | 7 )= aLaI]HF> be a singly-substituted determinant.

The matrix element (HF|H| 4 ) can be computed using
Wick’s theorem,

(HF|A| 4 ) = (HF|Hd'arHF) = (HF|Fyal ar|HF)
= prQ<HF| :a};aQ:akaﬂHH

PQ
[

= > fro(HF| abagal,ar |HF)
PQ

= fra=0  (if Brillouin condition fulfilled)
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First-order interacting space

e Similarly, for | 4% ) = al,a;|HF) we obtain:

(HF|A| 4% ) = (HF|Vya'al a0 |HF)

= % Z grqors(HF| :aLaEaSaQ:aTAaEaJaI|HF>
PQRS

InB
= § gpors(HF|ahalasagal,alazar
PQRS

oo bl e

+ aLaRaSaQaAaBaJal +aparasagaagagar

+abalasagntal HF) = -
PAR SaQaAaBaJaI| ) = grAJB — gIBJA
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Spin in second quantization

e So far, we have used the upper-case index P to count spin
orbitals of the form

PP (%) = dpo(r, ms) = gp(r)o(ms)
* ms is the spin coordinate and the spin function o(ms) is

either a(ms) or G(ms).

e The theory of second quantization can also be formulated
using the composite index po. For example, the anti-
commutator between creation and annihilation operators
can be written as

[a;Lxﬂ aqT] = Opo,qr = OpgOor

» With lower-case indices p, we count spatial orbitals ¢,(r).
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Spinfree one-electron operators

e Consider the following spinfree (or spinless) operator:

N

fe= Z fe(ri), f= Z fpa,qTa;aaqT

i=1 poqTr

forar = [ [ 6300 0n) @)y (m e i,
= G [ GO0 = b F

e The sum over spin functions in the second quantization

operator f can be accounted for in the singlet excitation
operator

Epg = a;raaaqa + a;ﬁaqb’a f= Z JraEpq
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Spinfree two-electron operators

The spinfree two-electron operator

gc = % ch(ria rj)

2]
gives
qg = al al a.a
g 2 ng',q’TT,u SV Ypo r'u svqT
pqrs oTuYV
= 3 E E :gpqrs Ape @ TTCLSTaqU
pqrs oT

1 1 —_—
- E E gpqrs epqrs, Wlth equrs —_— quEer - 6q7~Eps
pqars
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Pure spin operators

The representation of first-quantization operators f¢ that work
in spin space only may be written in the general form

F=y / 65(1)0™ (ma) £ () g (r) (ma)dr dimg al

pogt

— Z / o* (ms)fc(ms)T(ms)dms Z a,;ggapT

Consider the operators S¢, S¢ and S¢ (the latter are known as
step-up and step-down operators or ladder operators).

S5 (ms)a(ms) = %a(ms), S5 (ms)B(ms) = _%5(7”5)
S¢ (ms)a(ms) = 5(ms), Si(ms)ﬂ(ms) =0
S¢S (ms)a(ms) = 0, S5 (ms)B(ms) = a(ms)
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Pure spin operators (continued)

N 1 O &
S.=3) (aia%a - %Taﬁapﬂ) e =) afaas, S =) a0
p P P

From these operators, it follows:
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ROHF expectation value of 52

The expectation value of 52 with respect to a restricted
open-shell Hartree—Fock (ROHF) reference state can easily be
evaluated using Wick’s theorem in the particle—hole formalism.

]

(HF|S,S_|HF) = Y (HF|af,appa! ;000 HF) = N, — Nj

prq
(HFIS 8. IHF) = ST{HFla! jayad g0 [HF) =

pbq

N [ ] [y ]
(HF|S,|HF) = 1 Z (HF|al,apa — a! sa,5 |HF) = 3 (No — Np)

A T
(HF|S?|HF) = 42 HF| a} 4 apaal qaga + . .. [HF) = 1 (N, — Np)°
(HF|S?|HF) = %(Na—Nﬁ){%(Na—Nﬁ)Jrl}
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Mixed operators

Consider the (atomic) first-quantization spin—orbit operator,

N

N
Vio = Y Veo(ri,ms) =Y &(ri) £°(x;) - S°(ms;)

i=1 =1

which in second quantization takes the form:

Vso = Z (V;%qu prngq - VquT;q>

with
LZQ-—L/Q¢ ¢Q( ) (u:::x,y,z)
and the triplet excitation operators
Ty = 3(ahatqs +alpag), Ty = 5i(abates — afsaga)
Tpy = %(a;aaqa - aLﬁan)
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One-electron density matrix

<O‘Q‘O> = Qo+ Zﬂpq 0| Eypql0) + 3 Z Qpgrs(0lepgrs|0)

pq pars

= Qo+ Z DypeS2pg + % Z AparsSpgrs

pq pagrs

e One-electron density matrix,
Dpq <0‘qu‘0> Dpa,ga + Dpﬁ aBs Dypq = D;]kp
» Orbital occupation numbers,
Dpp = wp = Opa + Wpg, 0<wp<2
o Natural occupation numbers,

D=UnU", 0<7,<2
3 AT

Two-electron density matrix

<O‘Q‘O> = Qo+ Zﬂpq 0[Epq|0) + +3 Z Qpgrs(0lepgrs|0)

pq pqrs
1
= Qo+ Z DypeS2pg + 2 Z dpqrsSlpgrs
pq pqrs

e Two-electron density matrix,

dpgrs = (Olepgrs|0) = Z<O|apa rrawaqo*|0> = Z Jpa,qo,rT,ST

oT

e Pair occupation numbers,

dppgq = Wpq = pra qr> 0 < wpg < 2(2—dpg)
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The spin-density matrix
The spin-density matrix is defined as
ng = %<0‘a£aaqa - a;ﬁaqu} = %(Dpa,qa — Dyp qp)

The spin-density matrix measures the excess of the
density of alpha electrons over beta electrons.

Similarly, the spin occupation number
T 1/~ -
Wp = 5 (@pa — @pp)
measures the excess of alpha over beta electrons in ¢,.

The trace of D' yields the total spin projection,
TD" = 3% (Olajaapa —afza,6(0) = (0[5.10)
p
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