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Let X be a complete metric space in which the following makes
sense (e.g. a Banach space).

Let C C X be convex, closed, bounded, nonempty and let
T : C — C be nonexpansive, i.e. for all x, y € C,

d(Tx, Ty) < d(x,y).

Fix x € C and put, for all t € [0,1), T;: C — C, defined, for all
y € C, by
Tiy = tTy + (1 — t)x.



The Browder-Halpern result

It is easy to see that for each t, T; is a t-contraction and thus, by
Banach, there is a unique point x; with x; = Tx; or

xe = tTxe + (1 — t)x

(note that xp = x).
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It is easy to see that for each t, T; is a t-contraction and thus, by
Banach, there is a unique point x; with x; = Tx; or

xe = tTxe + (1 — t)x

(note that xp = x).

Theorem (Browder, 1967; Halpern, 1967)

In the framework above, if X is a Hilbert space, then for all x € C
we have that lim;_,1 x; exists and it is a fixed point of T.
Moreover, this p € Fix(T) satisfies p = Prj(yx — that is, for all
q € Fix(T),

Ix = pll < [x—al,
or, equivalently, for all g € Fix(T),

(x—p,g—p) <0

(the “variational inequality”).
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Proof mining:
@ an applied subfield of mathematical logic

o first suggested by G. Kreisel in the 1950s (under the name
“proof unwinding”), then given maturity by U. Kohlenbach
and his collaborators starting in the 1990s

@ goals: to find explicit and uniform witnesses or bounds and to
remove superfluous premises from concrete mathematical
statements by analyzing their proofs

@ tools used: primarily proof interpretations (modified
realizability, negative translation, functional interpretation)

Let us see what this may mean in our case.
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Convergence and metastability

A convergence statement usually looks like
Ve INVn > N ||x, — x|| <e.
In a complete space, this is equivalent to Cauchyness, i.e.
Ve AN Vm,n > N ||xm — x5|| < e.

In turn, this is equivalent to a Herbrandized variant of it, called
“metastability” by T. Tao (at the suggestion of J. Chayes),
expressed as

Ve Vg IN Vm,n € [N, N+ g(N)] ||xm — xn|| < e.

As this is a [, statement (in a generalized sense), by the
metatheorems of proof mining one can extract from its proof a
rate of metastability, i.e. a bound ©(e, g,...) on the N.
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In our case, since we deal with an approximating curve (Xt)te[O,l)v
we appropriately modify the metastability statement into

V(tn) /1 1VeVgIN < O(e,g,...)Vm,n €[N, N+g(N)] ||xt,—xz, | < e.

Such a bound has been extracted by Kohlenbach (Adv. Math.,
2011) for the Browder-Halpern case, and its additional parameters
are

@ «: N — N such that for all n and all m > «(n), t,, > 1— 1.

e 7 : N — N* such that for all n, tnﬁl—ﬁ?

@ a bound b on the diameter of C.

He extracted bounds out of analyses of both Browder's and
Halpern's proofs.
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analysis proved crucial in extracting a rate of metastability for
another nonlinear analysis result, namely Wittmann's theorem from
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Although Halpern's proof was easier to analyze, the Browder
analysis proved crucial in extracting a rate of metastability for
another nonlinear analysis result, namely Wittmann's theorem from
1992 — the essential improvement was the elimination of the use of
weak compactness.

Later, Saejung in 2010 generalized Wittmann's result to a class of
nonlinear spaces called CAT(0) spaces. A rate of metastability was
extracted in this case by Kohlenbach and Leustean (Adv. Math.,
2012). Here the novelty was the elimination of Banach limits.

Why do we care about eliminating proof principles?
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What is S7 Recall the Gddel hierarchy:

| | | |
| | | TTTTPI >
PA SOA ZFC

@ PA ~» System T (Godel, early 1940s, published 1958)

@ SOA ~~ System T + BR (Spector, 1962)

@ ZFC: beyond the range of current interpretative proof theory
The point of the simplifications before was to show that the
System T functionals are sufficient for expressing the desired rates.

Also, see the recent approach of Ferreira/Leustean/Pinto (Adv.
Math., to appear) via the bounded functional interpretation.
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What about extending the Browder-Halpern theorem to more
general Banach spaces? (Browder covered the (P case but left
open the LP one, expect for the L? spaces which are Hilbert.)

Theorem (Reich, 1980)

In the framework above, if X is a uniformly smooth Banach
space, then for all x € C we have that lim;_1 x; exists and it is a
fixed point of T.

What property does this p € Fix(T) satisfy? (We expect it to be
relevant, since the corresponding variational inequality turned out
to be in the Browder analysis.) To find out, we delve into the
theory of uniformly smooth spaces.
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If X is a Banach space, one defines the duality mapping
J: X = 2%, for any x € X, by

J(x) = {x" € X" [ x7(x) = [IxI1%, Ix*]l = [Ix][}-

Then X is called smooth if for any x, y in its unit sphere there

exists

Iyl = I
h—0 h ’

which can be shown to be equivalent to the fact that for all x € X,
J(x) is a singleton.

In this case, one defines j : X — X* to be the unique section of J.
Since, when X is a Hilbert space, for all x, y € X, j(x)(y) = (y, x),
one puts for all x* € X* and y € X, (y,x*) := x*(y).
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Uniformly smooth spaces

A Banach space X is uniformly smooth if the limit in the
definition of smoothness exists uniformly in the pair (x,y), or,
equivalently, if there is a 7: (0,00) — (0, 00) such that for all
€ > 0, all x in the unit sphere and all y in the closed ball of radius
7(e),

Ix+yll+lx =yl <2+ellyll

It is a classical result that if X is uniformly smooth, then j is
uniformly continuous on bounded subsets. An explicit modulus of
uniform continuity w, (b, -) was extracted by Kohlenbach and
Leustean in 2012. Also, Kornlein proved in 2015 a strong converse
of this property, requiring only the uniform continuity on bounded
subsets of an arbitrary section of J.



Sunny nonexpansive retractions

Let E be a nonempty subset of C and Q : C — E. We call Q a
retraction if for all x € E, Qx = x. If Q is a retraction, we call it
sunny if for all x € C and t > 0, Q(Qx + t(x — Qx)) = Qx.

Proposition (Variational Inequality)

A retraction Q : C — E is sunny and nonexpansive iff for all x € C
andy € E,
(x — @x,i(y — Q) < 0.

As a consequence, there is at most one sunny nonexpansive
retraction @ : C — E. We may now say that the point p in Reich’s
theorem satisfies p = Qi ()X, Where Qi (7)1 C — Fix(T) is the
unique sunny nonexpansive retraction.
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Start of the proof analysis

How do proofs of Reich-type results look like?

Usually, they use Banach limits, in a more intricate way than in the
proof of Saejung's result. We found, however, a 1990 proof by
Morales, who replaces it by the “ordinary” limit superior, which
still lies above the strength of first-order arithmetic, though only
barely so. In addition, there is a proof segment which uses some
even stronger principles that needs to be dealt first.

We first put, for any n, x, := x¢,. The asymptotic regularity
property is immediate:

[xn — Txnll = [[tn Txn + (1 — tn)x — Txq|
= [|(1 = ta)(x = Txa)|| < (1 = t5) - b — 0.
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Since f is convex and continuous, C is closed convex bounded
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The crucial segment defines a function f : C — R, for all z € C,
by f(z) := limsup,_ - [|xn — z||. Let K be the set of minimizers of
f. The claim is that there is a p € KN Fix(T).

Since f is convex and continuous, C is closed convex bounded
nonempty, and X is uniformly smooth, hence reflexive, we have
that (1) K#0. Let y € K and z € C. Then:

f(Ty) = limsup ||x, — Ty|| < limsup(||x, — Txal| + || Tx» — Ty||)
n—oo n—oo
< limsup(|[xn — Txal| + [Ixa — ¥
n—oo
<limsup|[[x, — Txs|| + lim sup [|x, — y/|
n—oo n—oo
=f(y) < f(2),

so Ty € K. Now, since K is a closed convex bounded nonempty
T-invariant subset of a uniformly smooth space, we have that (!)
there is a p € KN Fix(T).
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On uniqueness

We try to find an alternative path to the claim. Of course, a
posteriori the point in K N Fix(T) is unique, as it is simply the
limit p of the sequence (x,), characterized by f(p) = 0.

Is there a way of obtaining this uniqueness a priori?
Answer: Yes, if we use an appropriate modulus of uniqueness,

which exists if the space is in addition uniformly convex (still
covering the LP case).
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Let X be uniformly convex with modulus n and b > % Then there
is apy, 1 (0,2] = (0,00) such that for all ¢ € (0,2] and all x, y in
the closed ball of radius b with ||x — y|| > ¢, one has that
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In 2018, Bacdk and Kohlenbach have obtained an explicit formula
for Yp,.
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Reproof of the claim

With this modulus of uniform convexity for the squared norm in
mind, we may prove that there is a p € K N Fix(T) by:

@ taking a minimizing sequence for f;

@ making sure, using the modulus and a variant of the previous
T-invariance argument, that it is an approximate fixed point
sequence;

@ showing, again using the modulus, that any such sequence
must be Cauchy;

e taking its limit.
Still, some problems remain:

e an amount of (M$-)comprehension is used to pass to the limit
in this argument;

@ most importantly, there is this constant use of limsup's which
is also problematic.
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Removal of comprehension axioms

The first (tedious) step is to replace the ideal elements (limits,
fixed points) by approximate ones. For example, it turns out that in
the previous argument, only arbitrarily good minimizers are needed.

The second step is to replace the limsup's by approximate
limsup's, in a process known as arithmetization (this is possible
mainly because the limsup's are used pointwise and not as an
operator in itself). Let us see what this means.



Approximate lim sup'’s

Definition

Let (a,) be a sequence of reals and £ > 0. A number a € R is
called an e-approximate limsup (or simply an e-limsup) for (a,)
if:
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Approximate lim sup'’s

Definition

Let (a,) be a sequence of reals and £ > 0. A number a € R is
called an e-approximate limsup (or simply an e-limsup) for (a,)
if:

o for all n there is an m such that a,+m > a—¢;

@ there is a j such that for all /, a;;) < a+e.

<

What makes approximate limsup's suitable for proof mining is that
the following existence proof uses only M$-induction.

Proposition (M3-1A)

For all b, k € N and for all sequences of reals (a,) contained in the
interval [0, b], there is a p € N with0 < p < b- (k + 1) such that
T is a ﬁ—/imsup of (an)-




“Where the tyre hits the road”

Of course, it is not enough to show that their existence uses only
acceptable principles, one must also make sure that approximate
limsup’s can reliably replace limsup's in our arguments. This is
made possible by the following.

Let e > 0. Let (an), (bn) and (cn) be sequences of reals and q, ¢
and r be 7-limsup's of them, respectively. If ¢ < r + 5 and

q' < r+ 35, then for all N there is a k such that ani < cnik + €
and bN+k < cn+k tE.




Some reverse math

What is even more interesting is that the existence of approximate
limsup's is actually equivalent (over PRA) to M$-IA. This can be
proven by adapting an argument from:

U. Kohlenbach, Things that can and things that cannot be done in
PRA. Ann. Pure Appl. Logic 102, no. 3, 223-245, 2000.



List of simplifications

To sum up, we obtain the following sequence of “intermediate”
proofs:

@ the original proof of Morales from 1990

@ the proof using uniform convexity instead of strong
set-theoretic principles

© the removal of ideal elements

@ the pointwise replacement of limsup's with approximate
limsup's

© a no-counterexample-style proof of the last segment

O the fully analyzed proof

Out of those, proofs (3), (5) and (6) may be found in full in our
paper. Let us consider now the details of the last step, i.e. the
extraction procedure itself.



The analysis of the existence of approximate limsup's

Out of all steps, the extraction of the functionals for of the
existence theorem for approximate limsup’'s may be the easiest, as
it is almost mechanical. This is so because its proof can be
formalized in a standard Hilbert-style proof system using just
elementary operations and the axiom of M3-induction, whose
functional (“ND") interpretation (into T1) may be found in the
following paper:

C. Parsons, On n-quantifier induction. J. Symbolic Logic 37,
466-482, 1972.



Further analysis

@ The following steps in the proof are progressively more
complex, featuring e.g. lNsz-induction (yielding T;-level
functionals) and a large amount of nestings. In the analysis
one thus needs to make use of the Dialectica interpretation of

~~ANA =B — =~(AN B).



Further analysis

@ The following steps in the proof are progressively more
complex, featuring e.g. lNsz-induction (yielding T;-level
functionals) and a large amount of nestings. In the analysis
one thus needs to make use of the Dialectica interpretation of

~~ANA =B — =~(AN B).

@ The end-product is a realizer, i.e. a formula for the N in the
metastability statement, which is not fully computable
because of the case distinctions introduced by contraction-like
behaviour such as the above. To obtain the rate of
metastability, one majorizes this term, removing in the process
the non-computable parts.



On complexity and tameness

The majorization process proceeds smoothly and yields a purely
numerical term. A close analysis of the term shows that the
functional can actually be defined in T7, and it is an open question
whether it is actually in Tg or whether some different proof may
produce a Tp-definable rate of metastability, similarly to all the
rates obtained in proof mining so far. For more information
regarding this phenomenon, see:

U. Kohlenbach, Local formalizations in nonlinear analysis and
related areas and proof-theoretic tameness. Preprint, 2019.
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Applications

@ The rate of metastability thus obtained can be used as an
input to a previous partial analysis by Kohlenbach/Leustean of
a proof of Shioji/Takahashi (Proc. AMS, 1997) for the

convergence in our setting of the Halpern iteration.

e In addition, a slightly modified argument (using a resolvent
construction) works also if one replaces the nonexpansive
mapping T with a more general pseudocontraction (required
to be uniformly continuous), i.e. one that satisfies, for all x,
yeC,

(Tx = Ty, j(x —y)) < Ix = yl*

@ This more general bound completes an analysis of
Kornlein/Kohlenbach of a proof of Chidume/Zegeye (Proc.
AMS, 2004) for the convergence of the Bruck iteration.



All this can be found in:

U. Kohlenbach, A. Sipos, The finitary content of sunny
nonexpansive retractions. arXiv:1812.04940 [math.FA], 2018.



Thank you for your attention.



