Advertisement
FULL-LENGTH ARTICLE | Basic Research| Volume 25, ISSUE 8, P866-876, August 2023

Download started.

Ok

Differentiation of human adipose tissue–derived mesenchymal stromal cells into steroidogenic cells by adenovirus-mediated overexpression of NR5A1 and implantation into adrenal insufficient mice

Abstract

Background aims

Cell therapy for adrenal insufficiency is a potential method for physiological glucocorticoid and mineralocorticoid replacement. We have previously shown that mouse mesenchymal stromal cells (MSCs) differentiated into steroidogenic cells by the viral vector–mediated overexpression of nuclear receptor subfamily 5 group A member 1 (NR5A1), an essential regulator of steroidogenesis, and their implantation extended the survival of bilateral adrenalectomized (bADX) mice.

Methods

In this study, we examined the capability of NR5A1-induced steroidogenic cells prepared from human adipose tissue-derived MSCs (MSC [AT]) and the therapeutic effect of the implantation of human NR5A1-induced steroidogenic cells into immunodeficient bADX mice.

Results

Human NR5A1-induced steroidogenic cells secreted adrenal and gonadal steroids and exhibited responsiveness to adrenocorticotropic hormone and angiotensin II in vitro. In vivo, the survival time of bADX mice implanted with NR5A1-induced steroidogenic cells was significantly prolonged compared with that of bADX mice implanted with control MSC (AT). Serum cortisol levels, which indicate hormone secretion from the graft, were detected in bADX mice implanted with steroidogenic cells.

Conclusions

This is the first report to demonstrate steroid replacement by the implantation of steroid-producing cells derived from human MSC (AT). These results indicate the potential of human MSC (AT) to be a source of steroid hormone-producing cells.

Key Words

To read this article in full you will need to make a payment

Purchase one-time access:

Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
One-time access price info
  • For academic or personal research use, select 'Academic and Personal'
  • For corporate R&D use, select 'Corporate R&D Professionals'

Subscribe:

Subscribe to Cytotherapy
Already a print subscriber? Claim online access
Already an online subscriber? Sign in
Institutional Access: Sign in to ScienceDirect

References

    • Newell-Price J.D.C.
    • Auchus R.J.
    The adrenal cortex.
    14th ed. Elsevier, Philadelphia2019
    • Kadmiel M.
    • Cidlowski J.A.
    Glucocorticoid receptor signaling in health and disease.
    Trends in Pharmacological Sciences. 2013; 34: 518-530
    • Strehl C.
    • Ehlers L.
    • Gaber T.
    • Buttgereit F.
    Glucocorticoids—all-rounders tackling the versatile players of the immune system.
    Frontiers in Immunology. 2019; 10: 1744
    • Ruggiero C.
    • Lalli E.
    Impact of ACTH signaling on transcriptional regulation of steroidogenic genes.
    Frontiers in Endocrinology. 2016; 7
    • Son G.H.
    • Cha H.K.
    • Chung S.
    • Kim K.
    Multimodal regulation of circadian glucocorticoid rhythm by central and adrenal clocks.
    Journal of the Endocrine Society. 2018; 2: 444-459
    • Arlt W.
    • Allolio B.
    Adrenal insufficiency.
    The Lancet. 2003; 361: 1881-1893
    • Pignatti E.
    • Flück C.E.
    Adrenal cortex development and related disorders leading to adrenal insufficiency.
    Mol Cell Endocrinol. 2021; 527111206
    • Yanase T.
    • Tajima T.
    • Katabami T.
    • Iwasaki Y.
    • Tanahashi Y.
    • Sugawara A.
    • Hasegawa T.
    • Mune T.
    • Oki Y.
    • Nakagawa Y.
    • Miyamura N.
    • Shimizu C.
    • Otsuki M.
    • Nomura M.
    • Akehi Y.
    • Tanabe M.
    • Kasayama S.
    Diagnosis and treatment of adrenal insufficiency including adrenal crisis: a Japan Endocrine Society clinical practice guideline [Opinion].
    Endocr J. 2016; 63: 765-784
    • Bornstein S.R.
    • Allolio B.
    • Arlt W.
    • Barthel A.
    • Don-Wauchope A.
    • Hammer G.D.
    • Husebye E.S.
    • Merke D.P.
    • Murad M.H.
    • Stratakis C.A.
    • Torpy D.J.
    Diagnosis and treatment of primary adrenal insufficiency: an Endocrine Society Clinical Practice Guideline.
    J Clin Endocrinol Metab. 2016; 101: 364-389
    • Peacey S.R.
    • Guo C.Y.
    • Robinson A.M.
    • Price A.
    • Giles M.A.
    • Eastell R.
    • Weetman A.P.
    Glucocorticoid replacement therapy: are patients over treated and does it matter?.
    Clin Endocrinol (Oxf). 1997; 46: 255-261
    • Johannsson G.
    • Falorni A.
    • Skrtic S.
    • Lennernas H.
    • Quinkler M.
    • Monson J.P.
    • Stewart P.M.
    Adrenal insufficiency: review of clinical outcomes with current glucocorticoid replacement therapy.
    Clin Endocrinol (Oxf). 2015; 82: 2-11
    • Dalin F.
    • Nordling Eriksson G.
    • Dahlqvist P.
    • Hallgren Å.
    • Wahlberg J.
    • Ekwall O.
    • Söderberg S.
    • Rönnelid J.
    • Olcén P.
    • Winqvist O.
    • Catrina S.B.
    • Kriström B.
    • Laudius M.
    • Isaksson M.
    • Halldin Stenlid M.
    • Gustafsson J.
    • Gebre-Medhin G.
    • Björnsdottir S.
    • Janson A.
    • Åkerman A.K.
    • Åman J.
    • Duchen K.
    • Bergthorsdottir R.
    • Johannsson G.
    • Lindskog E.
    • Landin-Olsson M.
    • Elfving M.
    • Waldenström E.
    • Hulting A.L.
    • Kämpe O.
    • Bensing S.
    Clinical and immunological characteristics of autoimmune addison disease: a nationwide Swedish multicenter study.
    J Clin Endocrinol Metab. 2017; 102: 379-389
    • Esposito D.
    • Pasquali D.
    • Johannsson G.
    Primary adrenal insufficiency: managing mineralocorticoid replacement therapy.
    J Clin Endocrinol Metab. 2018; 103: 376-387
    • Lala D.S.
    • Rice D.A.
    • Parker K.L.
    Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I.
    Mol Endocrinol. 1992; 6: 1249-1258
    • Morohashi K.
    • Honda S.
    • Inomata Y.
    • Handa H.
    • Omura T.
    A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s.
    J Biol Chem. 1992; 267: 17913-17919
    • Luo X.
    • Ikeda Y.
    • Parker K.L.
    A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation.
    Cell. 1994; 77: 481-490
    • Crawford P.A.
    • Sadovsky Y.
    • Milbrandt J.
    Nuclear receptor steroidogenic factor 1 directs embryonic stem cells toward the steroidogenic lineage.
    Mol Cell Biol. 1997; 17: 3997-4006
    • Gondo S.
    • Yanase T.
    • Okabe T.
    • Tanaka T.
    • Morinaga H.
    • Nomura M.
    • Goto K.
    • Nawata H.
    SF-1/Ad4BP transforms primary long-term cultured bone marrow cells into ACTH-responsive steroidogenic cells.
    Genes Cells. 2004; 9: 1239-1247
    • Yazawa T.
    • Mizutani T.
    • Yamada K.
    • Kawata H.
    • Sekiguchi T.
    • Yoshino M.
    • Kajitani T.
    • Shou Z.
    • Umezawa A.
    • Miyamoto K.
    Differentiation of adult stem cells derived from bone marrow stroma into Leydig or adrenocortical cells.
    Endocrinology. 2006; 147: 4104-4111
    • Tanaka T.
    • Gondo S.
    • Okabe T.
    • Ohe K.
    • Shirohzu H.
    • Morinaga H.
    • Nomura M.
    • Tani K.
    • Takayanagi R.
    • Nawata H.
    • Yanase T.
    Steroidogenic factor 1/adrenal 4 binding protein transforms human bone marrow mesenchymal cells into steroidogenic cells.
    J Mol Endocrinol. 2007; 39: 343-350
    • Gondo S.
    • Okabe T.
    • Tanaka T.
    • Morinaga H.
    • Nomura M.
    • Takayanagi R.
    • Nawata H.
    • Yanase T.
    Adipose tissue-derived and bone marrow-derived mesenchymal cells develop into different lineage of steroidogenic cells by forced expression of steroidogenic factor 1.
    Endocrinology. 2008; 149: 4717-4725
    • Sonoyama T.
    • Sone M.
    • Honda K.
    • Taura D.
    • Kojima K.
    • Inuzuka M.
    • Kanamoto N.
    • Tamura N.
    • Nakao K.
    Differentiation of human embryonic stem cells and human induced pluripotent stem cells into steroid-producing cells.
    Endocrinology. 2012; 153: 4336-4345
    • Wei X.
    • Peng G.
    • Zheng S.
    • Wu X.
    Differentiation of umbilical cord mesenchymal stem cells into steroidogenic cells in comparison to bone marrow mesenchymal stem cells.
    Cell Prolif. 2012; 45: 101-110
    • Ruiz-Babot G.
    • Balyura M.
    • Hadjidemetriou I.
    • Ajodha S.J.
    • Taylor D.R.
    • Ghataore L.
    • Taylor N.F.
    • Schubert U.
    • Ziegler C.G.
    • Storr H.L.
    • Druce M.R.
    • Gevers E.F.
    • Drake W.M.
    • Srirangalingam U.
    • Conway G.S.
    • King P.J.
    • Metherell L.A.
    • Bornstein S.R.
    • Guasti L.
    Modeling congenital adrenal hyperplasia and testing interventions for adrenal insufficiency using donor-specific reprogrammed cells.
    Cell Rep. 2018; 22: 1236-1249
    • Mariniello K.
    • Guasti L.
    Towards novel treatments for adrenal diseases: Cell- and gene therapy-based approaches.
    Molecular and Cellular Endocrinology. 2021; 524
    • Viswanathan S.
    • Shi Y.
    • Galipeau J.
    • Krampera M.
    • Leblanc K.
    • Martin I.
    • Nolta J.
    • Phinney D.G.
    • Sensebe L.
    Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature.
    Cytotherapy. 2019; 21: 1019-1024
    • Tanaka T.
    • Aoyagi C.
    • Mukai K.
    • Nishimoto K.
    • Kodama S.
    • Yanase T.
    Extension of survival in bilaterally adrenalectomized mice by implantation of SF-1/Ad4BP-induced steroidogenic cells.
    Endocrinology. 2020; 161
    • Viswanathan S.
    • Ciccocioppo R.
    • Galipeau J.
    • Krampera M.
    • Blanc K.Le
    • Martin I.
    • Moniz K.
    • Nolta J.
    • Phinney D.G.
    • Shi Y.
    • Szczepiorkowski Z.M.
    • Tarte K.
    • Weiss D.J.
    • Ashford P.
    Consensus International Council for Commonality in Blood Banking Automation-International Society for Cell & Gene Therapy statement on standard nomenclature abbreviations for the tissue of origin of mesenchymal stromal cells.
    Cytotherapy. 2021; 23: 1060-1063
    • Nishi Y.
    • Yanase T.
    • Mu Y.
    • Oba K.
    • Ichino I.
    • Saito M.
    • Nomura M.
    • Mukasa C.
    • Okabe T.
    • Goto K.
    • Takayanagi R.
    • Kashimura Y.
    • Haji M.
    • Nawata H.
    Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor.
    Endocrinology. 2001; 142: 437-445
    • Thompson L.A.
    • Spoon T.R.
    • Goertz C.E.
    • Hobbs R.C.
    • Romano T.A.
    Blow collection as a non-invasive method for measuring cortisol in the beluga (Delphinapterus leucas).
    PLoS One. 2014; 9e114062
    • Yamashita K.
    • Takahashi M.
    • Tsukamoto S.
    • Numazawa M.
    • Okuyama M.
    • Honma S.
    Use of novel picolinoyl derivatization for simultaneous quantification of six corticosteroids by liquid chromatography-electrospray ionization tandem mass spectrometry.
    J Chromatogr A. 2007; 1173: 120-128
    • Yamashita K.
    • Okuyama M.
    • Nakagawa R.
    • Honma S.
    • Satoh F.
    • Morimoto R.
    • Ito S.
    • Takahashi M.
    • Numazawa M.
    Development of sensitive derivatization method for aldosterone in liquid chromatography-electrospray ionization tandem mass spectrometry of corticosteroids.
    J Chromatogr A. 2008; 1200: 114-121
    • Nanba K.
    • Chen A.X.
    • Turcu A.F.
    • Rainey W.E.
    H295R expression of melanocortin 2 receptor accessory protein results in ACTH responsiveness.
    J Mol Endocrinol. 2016; 56: 69-76
    • Herblin W.F.
    • Chiu A.T.
    • McCall D.E.
    • Ardecky R.J.
    • Carini D.J.
    • Duncia J.V.
    • Pease L.J.
    • Wong P.C.
    • Wexler R.R.
    • Johnson A.L.
    • et al.
    Angiotensin II receptor heterogeneity.
    Am J Hypertens. 1991; 4: 299s-302s
    • Yamaguchi T.
    • Franco-Saenz R.
    • Mulrow P.J.
    Effect of angiotensin II on renin production by rat adrenal glomerulosa cells in culture.
    Hypertension. 1992; 19: 263-269
    • Gupta P.
    • Franco-Saenz R.
    • Mulrow P.J.
    Locally generated angiotensin II in the adrenal gland regulates basal, corticotropin-, and potassium-stimulated aldosterone secretion.
    Hypertension. 1995; 25: 443-448
    • Ye P.
    • Nakamura Y.
    • Lalli E.
    • Rainey W.E.
    Differential effects of high and low steroidogenic factor-1 expression on CYP11B2 expression and aldosterone production in adrenocortical cells.
    Endocrinology. 2009; 150: 1303-1309
    • Burnay M.M.
    • Python C.P.
    • Vallotton M.B.
    • Capponi A.M.
    • Rossier M.F.
    Role of the capacitative calcium influx in the activation of steroidogenesis by angiotensin-II in adrenal glomerulosa cells.
    Endocrinology. 1994; 135: 751-758
    • Nogueira E.F.
    • Xing Y.
    • Morris C.A.
    • Rainey W.E.
    Role of angiotensin II-induced rapid response genes in the regulation of enzymes needed for aldosterone synthesis.
    J Mol Endocrinol. 2009; 42: 319-330
    • Sepponen K.
    • Lundin K.
    • Yohannes D.A.
    • Vuoristo S.
    • Balboa D.
    • Poutanen M.
    • Ohlsson C.
    • Hustad S.
    • Bifulco E.
    • Paloviita P.
    • Otonkoski T.
    • Ritvos O.
    • Sainio K.
    • Tapanainen J.S.
    • Tuuri T.
    Steroidogenic factor 1 (NR5A1) induces multiple transcriptional changes during differentiation of human gonadal-like cells.
    Differentiation. 2022; 128: 83-100
    • Le Goascogne C.
    • Sananès N.
    • Gouézou M.
    • Takemori S.
    • Kominami S.
    • Baulieu E.E.
    • Robel P.
    Immunoreactive cytochrome P-450(17 alpha) in rat and guinea-pig gonads, adrenal glands and brain.
    J Reprod Fertil. 1991; 93: 609-622
    • Keeney D.S.
    • Jenkins C.M.
    • Waterman M.R.
    Developmentally regulated expression of adrenal 17 alpha-hydroxylase cytochrome P450 in the mouse embryo.
    Endocrinology. 1995; 136: 4872-4879
    • Ho A.D.
    • Wagner W.
    • Franke W.
    Heterogeneity of mesenchymal stromal cell preparations.
    Cytotherapy. 2008; 10: 320-330
    • Zha K.
    • Li X.
    • Yang Z.
    • Tian G.
    • Sun Z.
    • Sui X.
    • Dai Y.
    • Liu S.
    • Guo Q.
    Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application.
    NPJ Regen Med. 2021; 6: 14
    • Hanley P.J.
    • Mei Z.
    • Durett A.G.
    • Cabreira-Hansen Mda G.
    • Klis M.
    • Li W.
    • Zhao Y.
    • Yang B.
    • Parsha K.
    • Mir O.
    • Vahidy F.
    • Bloom D.
    • Rice R.B.
    • Hematti P.
    • Savitz S.I.
    • Gee A.P.
    Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion System.
    Cytotherapy. 2014; 16: 1048-1058
    • Baer P.C.
    • Geiger H.
    Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity.
    Stem Cells Int. 2012; 2012812693
    • Legzdina D.
    • Romanauska A.
    • Nikulshin S.
    • Kozlovska T.
    • Berzins U.
    Characterization of senescence of culture-expanded human adipose-derived mesenchymal stem cells.
    Int J Stem Cells. 2016; 9: 124-136
    • Li L.
    • Chen X.
    • Wang W.E.
    • Zeng C.
    How to improve the survival of transplanted mesenchymal stem cell in ischemic heart?.
    Stem Cells Int. 2016; 20169682757
    • Galipeau J.
    • Krampera M.
    • Leblanc K.
    • Nolta J.A.
    • Phinney D.G.
    • Shi Y.
    • Tarte K.
    • Viswanathan S.
    • Martin I.
    Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition.
    Cytotherapy. 2021; 23: 368-372
View full text