ECONOMIC VALUE DRIVERS IN SEVERE RED BLOOD CELL DISORDERS: A REVIEW AND DEVELOPMENT OF AN ECONOMIC CONCEPTUAL FRAMEWORK

Lemay W^{*1}, Tomaras D¹, Tremblay G¹

1. Purple Squirrel Economics, Montreal, Canada; *Presenting author

BACKGROUND

- Red blood cell (RBC) transfusion was historically the standard of care in the treatment of anemia. This practice has fallen out of favor because of the increased risk of adverse events such as fatal organ failure.
- Erythropoiesis-stimulating agents (ESAs) received initial approval for anemia related to chronic renal failure in 1989. Multiples sources have reported reduction in the need for RBC transfusion in patients treated with an ESA.
- The success of ESAs shows that it is possible to increase clinical benefits to patients through new drugs. This study evaluated newer treatments for severe types of anemia between 2010 and 2020. The objective was to explore the landscape of economic evaluations conducted in the last few years.
- Subsequently, a guideline for future economic evaluations modeling severe types of anemia will be created based on the strengths and weaknesses of the identified studies.

OBJECTIVE

The purpose of this study is to inform the conceptual framework for future economic research in severe anemia by reviewing published economic studies in major RBC disorders including autoimmune hemolytic anemia, beta-thalassemia, chemotherapy-induced anemia, chronic kidney disease anemia, and severe aplastic anemia.

METHODS

Database:

A targeted literature review was conducted via PubMed Central ® (PMC), Google Scholar, and Ovid.

Selection criteria:

The studies were stratified by multiple specifications such as study design and perspective, disease area, treatments, time horizon, and costs.

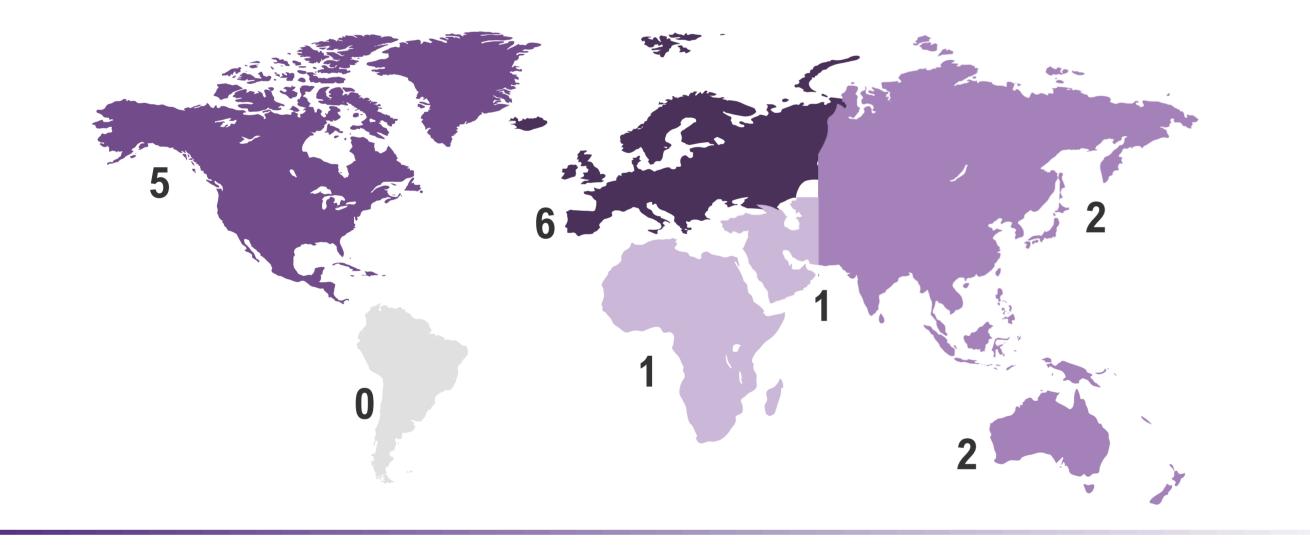
Selection criteria (CONT'D):

- 1. The study designs must be a budget impact model (BIM), cost-effectiveness analyses (CEA) or cost-utility analyses (CUA).
- 2. The disease of interest in the study must be related to any type of severe anemia, and stem cell transplant treatment was excluded.
- 3. The study must have been published between 2010 and 2020.

4. Only studies published in English were considered.

RESULTS

DISEASE	COUNTRY	STUDY	TYPE OF STUDY	TIME HORIZON	PERSPECTIVE	TREATMENT
β-thalassemia	Thailand	Luangasanatip et al.	CUA	Lifetime	Societal	Deferasirox (DFX) vs deferiprone (DFP)
	Australian	Karnon et al.	CUA	50 years	Healthcare payer	DFX vs Deferoxamine (DFO)
	United Kingdom	Bentley et al.	CUA	5 years	Healthcare payer	DFO, DFP, DFX & combination therapy (DFO-DFP)
	China, Taiwan	Ho et al.	CUA	50 years	Healthcare payer	DFX vs DFO
	Iran	Keshtkaran et al	CUA	Lifetime	Societal	DFX vs DFO
	Poland	Walczak et al.	CUA	1 years	Healthcare payer	DFX vs DFO
	Italy	Pepe et al.	CUA	5 years	Healthcare payer	DFX vs DFP
AIHA	Italy	Rognoni et al.	BIM	3 and 5 years	Hospital and taxpayer	Rituximab originator vs rituximab biosimilars and SC vs IV
Chemotherapy-Induced Anemia	Greece	Nikolaidi et al.	BIM	15 weeks	Social Security funds	ESA originator vs ESA biosimilar
SAA	United States	Tremblay et al.	BIM	3 years	Private healthcare system	EPAG + ATGAM + Cyclosporine vs ATGAM + Cyclosporine
	Germany	Heublein et al.	CEA	1 year	Healthcare payer	h-GAM (ATGAM) vs R-GAM (thymoglobulin)
Chronic Kidney Disease- Related Anemia	United States	Yarnoff et al.	CEA	Lifetime	Healthcare payer	ESA for optimal Hb level
	Australia	Wong et al.	CEA	Lifetime	Healthcare payer	IV vs oral iron supplementation
	Canada	Clement et al.	CUA	Lifetime	Healthcare Payer	ESA vs without ESA
	Canada	Tsao et al.	BIM	5 years	Healthcare payer	ESA originator vs ESA biosimilar
	Morocco	Maoujoud et al.	CUA	1 year	Healthcare payer	Continuous erythropoietin receptor activator vs epoetin beta vs Red blood cell transfusion
	United States	Quon et al.	CEA	5 years	Healthcare payer	ESA for optimal Hb level

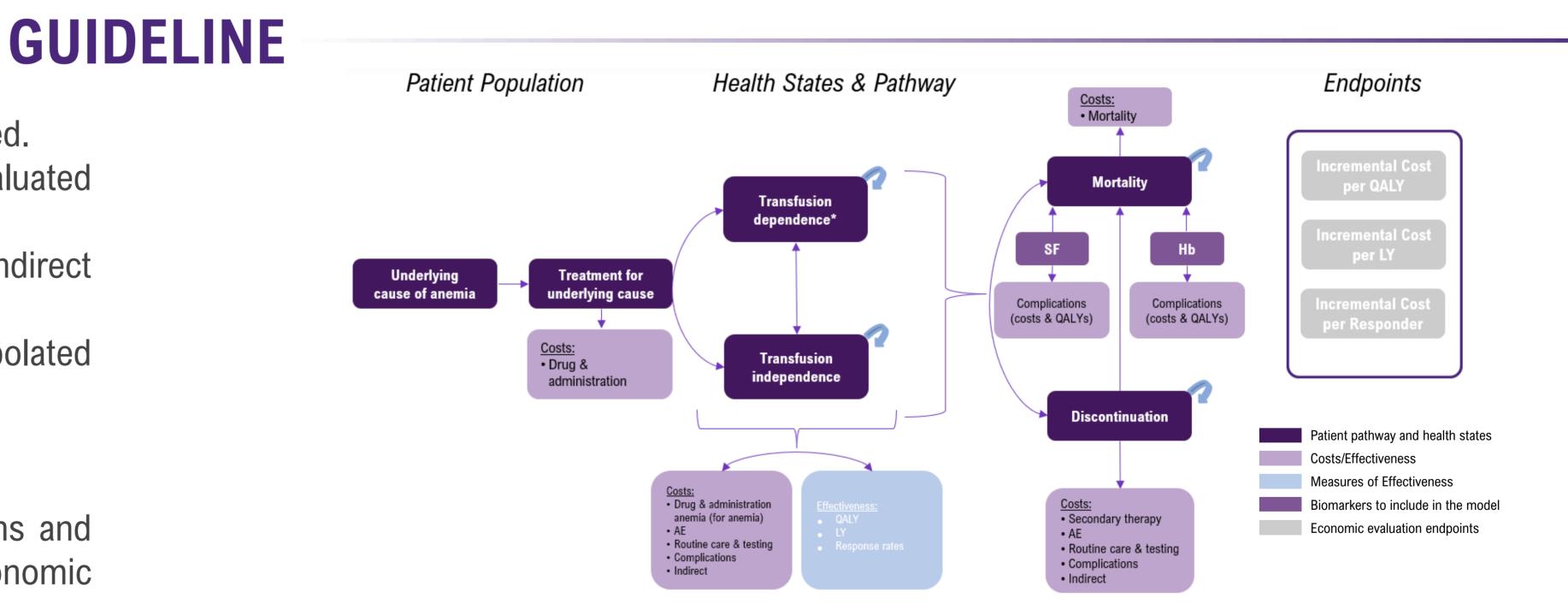

Database:

17 studies satisfied the inclusion/exclusion criteria. Seven studies evaluated therapies in Beta-thalassemia, one in autoimmune hemolytic anemia (AIHA), one in chemotherapy-induced anemia, two in severe aplastic anemia, and six in chronic-kidney disease anemia.

Reported assessing uncertainty:

Uncertainty could be evaluated through different methods such as scenarios, probabilistic sensitivity analyses, or deterministic sensitivity analyses. 14 studies (82%) reported one of the tools used to assess uncertainty, and three studies didn't report any uncertainty assessment.

Number of studies by continent:



Model structure:

Various cost-analysis models were found in the literature, but Markov models were the most popular, used in nine studies (52%). Micro-simulations were used in two studies (12%), and model type went unreported in two studies (12%). Four of the studies were budget impact models.

Framework for health economics studies:

A general conceptual framework was developed for CEAs and CUAs in severe anemia from the targeted literature search. The framework is specifically aimed at CEAs and CUAs but should also be considered by health economists creating BIMs.

*Transfusion dependent health states should be separated by level of transfusion burden when possible if data permits – this will facilitate a more granular, accurate approach as different levels of transfusion burden burden area associated with different costs and quality of life Acronyms: AE, adverse event; Hb, hemoglobin; LY, life years; QALY, quality-adjusted life years; SF, serum ferritin.

Treatment comparisons

- If multiple trials are used, an indirect treatment comparison (ITC) should be performed.
- An unadjusted ITC could lead to bias if there is significant heterogeneity in evaluated population characteristics.
- The usage of simulated treatment comparison (STC) or matching-adjusted indirect comparison (MAIC) should be
- It is recommended to consult a clinical expert to assess the acuteness of the extrapolated long-term outcomes of the trial data.

Complications and adverse events

- Serum ferritin and hemoglobulin levels should be used as a proxy for complications and adverse events. The hemoglobulin levels were only directly considered in five economic evaluations, mostly chronic kidney diseases anemia related.
- The modeling approach should consider the dynamic rates of long-term complications

based on the transfusion burden, serum ferritin, and the hemoglobulin level.

Health states

- Multiple health states should be considered when creating a model related to severe types of anemia.
- Transfusion-dependent patients are more likely to need hospitalization and outpatient visits.
- A decrease in quality of life has been associated with iron overload, which could be estimated through serum ferritin.
- Hemoglobulin also influence patient's quality of life. Patients with elevated/reduced hemoglobulin are prone to adverse events and mortality.

FUTURE LANDSCAPE

Key considerations for future analyses:

- 1- Including hemoglobin and iron concentration level in the model
- 2- Include indirect costs (adverse events, mortality, and productivity costs)
- 3- Assess uncertainty through sensitivity analyses.
- 4- Inclusion of multiple transfusiondependent health states if possible

ISPOR 2020info@pshta.comStudy by Purple Squirrel Economics+1-646-478-8213

Limitations:

- The proposed conceptual framework does not include all the disease-specific reality complications. It should be used as a recommendation rather than an exact reality. The modeler might have to face different challenges such as:
- Limited access to data for indirect treatment comparison considering the type of data is not always reported by studies.
- Need to adjust the model for specific treatment related to the disease such as kidney transplant for chronic kidney disease.

Costs

- Direct and Indirect costs should be included in the analysis (adverse event, long-term complication, mortality, and productivity costs)
- the analysis should include long term costs since most of the condition evaluated are chronic.

Sensitivity analysis

- Each study should contain an assessment of uncertainty. In each model, multiple assumptions are made and thus should be tested.
- BIMs should have a one-way deterministic sensitivity analysis. CEAs and CUAs should also report one-way deterministic analyses, but also include probabilistic sensitivity analyses.
- The distribution of each variable must be related to the type of variable (costs, odd-ratio, probabilities, utilities, etc.)

CONCLUSIONS

Multiple gaps were found in the published economics literature for severe anemia-related diseases. The objective was to identify those gaps and create a conceptual framework to help future economic evaluations in severe types of anemia. More specifically, key considerations for future economics evaluations consist of the inclusion of Hb and Iron concentrations levels in the model, multiple transfusion-dependent health states if possible, long-term complications, adverse events, early mortality, and productivity costs.

REFERENCES

Bentley A, Gillard S, Spino M, Connelly J, Tricta F. Cost-utility analysis of deferiprone for the treatment of β thalassaemia patients with chronic iron overload: a UK perspective. Pharmacoeconomics. 2013 Sep;31(9):807– 22.

Luangasanatip N, Chaiyakunapruk N, Upakdee N, Wong P. Iron-Chelating Therapies in a Transfusion-Dependent Thalassaemia Population in Thailand. Clin Drug Investig. 2011 Jul 1;31(7):493–505. Karnon J, Tolley K, Vieira J, Chandiwana D. Lifetime Cost-Utility Analyses of Deferasirox in Beta-Thalassaemia

Patients with Chronic Iron Overload. Clin Drug Investig. 2012 Dec 1;32(12):805–15. Ho W-L, Chung K-P, Yang S-S, Lu M-Y, Jou S-T, Chang H-H, et al. A pharmaco-economic evaluation of deferasirox for treating patients with iron overload caused by transfusion-dependent thalassemia in Taiwan.

Journal of the Formosan Medical Association. 2013 Apr 1;112(4):221–9. Keshtkaran A, Javanbakht M, Salavati S, Mashayekhi A, Karimi M, Nuri B. Cost–utility analysis of oral deferasirox versus infusional deferoxamine in transfusion-dependent β-thalassemia patients. Transfusion. 2013;53(8):1722– 9

Walczak J, Obrzut G, Sołtys E, Laczewski T. The Budget Impact Analysis of Deferasirox for the Treatment of Iron Overload Due to Frequent Blood Transfusions in Children and Adolescents (Age ≤18 Years). Value in Health. 2013 Nov 1;16(7):A379. Pene A Rossi G Bentley A Putti MC Frizziero I. D'Ascola DG et al. Cost-Utility Analysis of Three Iron Chelators

Pepe A, Rossi G, Bentley A, Putti MC, Frizziero L, D'Ascola DG, et al. Cost-Utility Analysis of Three Iron Chelators Used in Monotherapy for the Treatment of Chronic Iron Overload in β-Thalassaemia Major Patients: An Italian Perspective. Clin Drug Investig. 2017 May 1;37(5):453–64. Rognoni C, Bertolani A, Jommi C. Budget impact analysis of rituximab biosimilar in Italy from the hospital and payer perspectives. Global & Regional Health Technology Assessment. 2018;2018:2284240318784289.

Nikolaidi E, Hatzikou M, Geitona M. Budget impact analysis on erythropoiesis-stimulating agents use for the management of chemotherapy-induced anaemia in Greece. Cost Eff Resour Alloc. 2013 Jul 16;11(1):16–16.

Tremblay G, Said Q, Roy AN, Cai B, Ashton Garib S, Hearnden J, et al. Budget Impact Of Eltrombopag As First-Line Treatment For Severe Aplastic Anemia In The United States. Clinicoecon Outcomes Res. 2019 Nov 12;11:673–81.

Heublein S, Wehner F, Höchsmann B, Hochhaus A, Hartmann M, La Rosée P. Modelling cost effectiveness of horse antithymocyte globulin for treating severe aplastic anaemia in Germany. Annals of Hematology. 2013 Jun 1;92(6):825–30.

Yarnoff BO, Hoerger TJ, Simpson SA, Pavkov ME, Burrows NR, Shrestha SS, et al. The Cost-Effectiveness of Anemia Treatment for Persons with Chronic Kidney Disease. PLoS One. 2016 Jul 12;11(7):e0157323-e0157323. Wong G, Howard K, Hodson E, Irving M, Craig JC. An economic evaluation of intravenous versus oral iron supplementation in people on haemodialysis. Nephrol Dial Transplant. 2013 Feb 1;28(2):413–20. Clement FM, Klarenbach S, Tonelli M, Wiebe N, Hemmelgarn B, Manns BJ. An economic evaluation of or theroeiceic etimulation conducts in CKD. Am LKidney Dis 2010 Dect Eff(6):1050-61.

erythropoiesis-stimulating agents in CKD. Am J Kidney Dis. 2010 Dec;56(6):1050–61. Tsao NW, Lo C, Leung M, Marin JG, Martinusen D. A budget impact analysis of the introduction of erythropoiesis stimulating agent subsequent entry biologics for the treatment of anemia of chronic kidney disease in Canada. Can J Kidney Health Dis. 2014 Nov 11;1:28–28.

Maoujoud O, Ahid S, Cherrah Y. The cost-utility of treating anemia with continuous erythropoietin receptor activator or Epoetin versus routine blood transfusions among chronic hemodialysis patients. Int J Nephrol Renovasc Dis. 2016 Feb 24;9:35–43.

Quon P, Gitlin M, Isitt JJ, Mohan S, McClellan WM, Javier J, et al. Cost-effectiveness of Treating Chronic Anemia with Epoetin Alfa among Hemodialysis Patients in the United States. Health Outcomes Research in Medicine. 2012 May 1;3(2):e79–89.

Espinoza MA, Manca A, Claxton K, Sculpher MJ. The Value of Heterogeneity for Cost-Effectiveness Subgroup Analysis: Conceptual Framework and Application. Med Decis Making. 2014 Nov 1;34(8):951–64.

Phillippo DM, Ades AE, Dias S, Palmer S, Abrams KR, Welton NJ. Methods for Population-Adjusted Indirec Comparisons in Health Technology Appraisal. Med Decis Making. 2018 Feb;38(2):200–11. Sahu S, Hemlata, Verma A. Adverse events related to blood transfusion. Indian J Anaesth. 2014;58(5):543–51.

Improta S, Villa MR, Volpe A, Lombardi A, Stiuso P, Candore N, et al. Transfusion-dependent low-risk myelodysplastic patients receiving deferasirox: Long-term follow-up. Oncol Lett. 2013 Dec;6(6):1774–8. Clement FM, Klarenbach S, Tonelli M, Johnson JA, Manns BJ. The Impact of Selecting a High Hemoglobin Target Level on Health-Related Quality of Life for Patients With Chronic Kidney Disease: A Systematic Review and Meta-

 analysis. Arch Intern Med. 2009 Jun 22;169(12):1104–12.
Foley RN, Curtis BM, Parfrey PS. Erythropoietin Therapy, Hemoglobin Targets, and Quality of Life in Health Hemodialysis Patients: A Randomized Trial. Clin J Am Soc Nephrol. 2009 Apr;4(4):726–33.
Pakbaz Z, Fischer R, Fung E, Nielsen P, Harmatz P, Vichinsky E. Serum ferritin underestimates liver irol concentration in transfusion independent thalassemia patients as compared to regularly transfused thalassemia

and sickle cell patients. Pediatric Blood & Cancer. 2007 Sep 1;49(3):329–32. Porter J, Viprakasit V, Kattamis A. iron overload and chelation [Internet]. Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT) [Internet]. 3rd edition. Thalassaemia International Federation; 2014

[cited 2020 Mar 30]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK269373/ Kuragano T, Matsumura O, Matsuda A, Hara T, Kiyomoto H, Murata T, et al. Association between hemoglobin variability, serum ferritin levels, and adverse events/mortality in maintenance hemodialysis patients. Kidney Int 2014 Oct:86(4):845–54.

The National Institute for Health and Care Excellence (NICE). 7 Assessing cost effectiveness, The guidelines manual. [Internet]. NICE; 2012 [cited 2020 Apr 7]. Available from https://www.nice.org.uk/process/pmg6/chapter/assessing-cost-effectiveness