

HARVARD MEDICAL SCHOOL AFFILIATE

Where the world comes for answers

3,700,000 newborns screened

+5,105 (0.1%) undergo surveillance

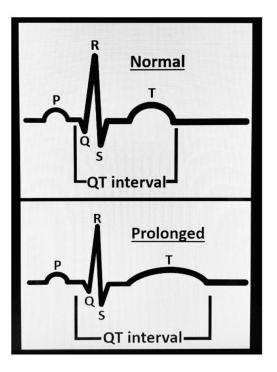
+901 (17.6%) diagnosed with LQTS and treated

> 17 (1.9%) deaths prevented

Cost Effectiveness of Newborn Genetic Screening for Long QT Syndrome

Kurt D. Christensen, Madison R. Hickingbotham, Jennifer M. Yeh, Natasha K. Stout, Christine Lu, Sarah Stein, Robyn J. Hylind, Ann Chen Wu

Supported by NICHD Grant R01-HD090019


2023 ISPOR Annual Meeting, May 8, 2023

Financial Disclosures

• The authors report no financial interests to disclose

Although rare, long QT syndrome is a leading cause of sudden cardiac death in the young

- Affects between 1 in 2,500 to 1 in 10,000 people
- 15% to 20% of unexplained sudden cardiac death in youth
- 3 genes definitively associated with congenital cases
 - KCNQ1, KCNH2, SCN5A

Newborn genetic screening for LQTS is feasible. What's the tradeoff of benefits to harms, costs?

Opportunistic genetic screening for LQTS is already happening

Genetics inMedicine

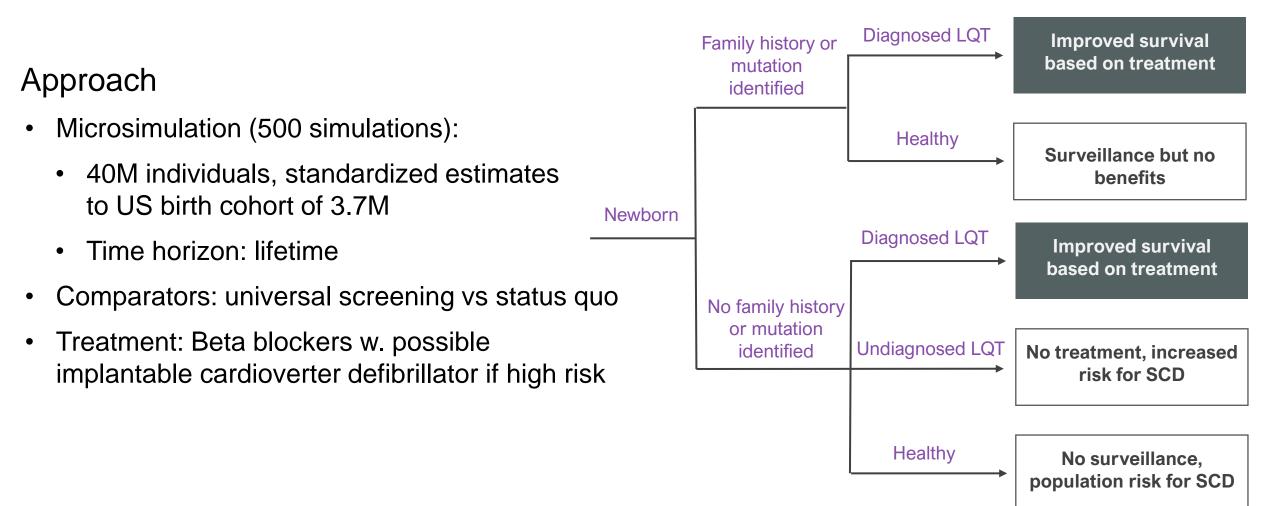
www.nature.com/gin

Check for updates

ACMG STATEMENT

Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2021 update: a policy statement of the American College of Medical Genetics and Genomics (ACMG)

David T. Miller¹, Kristy Lee², Adam S. Gordon³, Laura M. Amendola⁴, Kathy Adelman⁵, Sherri J. Bale⁶, Wendy K. Chung⁷, Michael H. Gollob⁸, Steven M. Harrison⁹, Gail E. Herman¹⁰, Ray E. Hershberger¹¹, Teri E. Klein¹², Kent McKelvey¹³, C. Sue Richards¹⁴, Christopher N. Vlangos¹⁵, Douglas R. Stewart¹⁶, Michael S. Watson¹⁷, Christa Lese Martin¹⁸ and ACMG Secondary Findings Working Group¹⁹*


Genetics in Medicine (2021) 23:1391-1398; https://doi.org/10.1038/s41436-021-01171-4

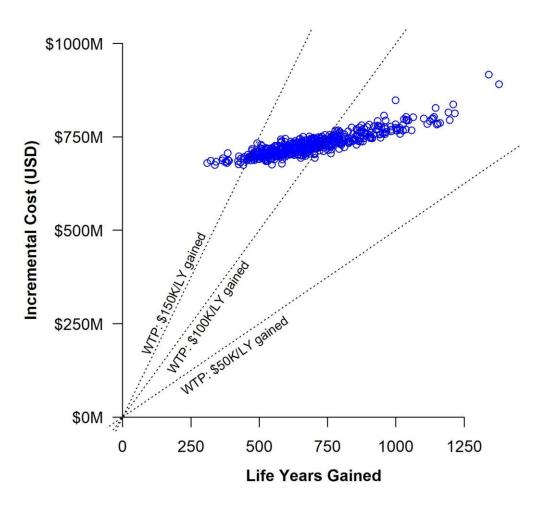
The future of health begins with you.

The *All of Us* Research Program is inviting one million people across the U.S. to help build one of the most diverse health databases in history. We welcome participants from all backgrounds. Researchers will use the data to learn how our biology, lifestyle, and environment affect health. This may one day help them find ways to treat and prevent disease.

PreEMPT Model: diagnostic testing would be triggered by knowledge of mutation or family history

Key model assumptions included 8 undiagnosed children for every 1 diagnosed child

Parameter	Estimate
Cost of screening/newborn	\$15 (\$5/gene)
p(D+), diagnosed, age 20	1/20000
Ratio, undiagnosed to diagnosed	8:1
p(M+ D+)	0.80
p(M+ D-)	0.000662
p(SCD)	By Age
SCD reduction from treatment	30%-48%, by gene
P(ICD moderate/high risk)	2.5%/7.5%

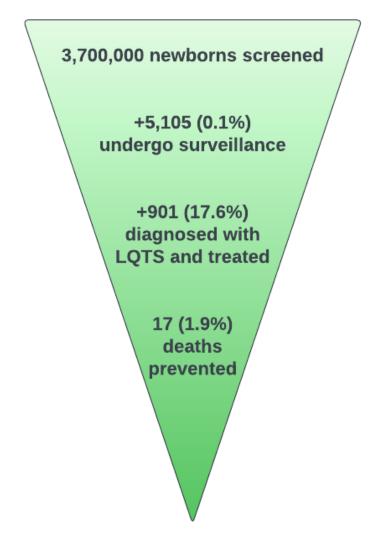

Results: Newborn genetic screening was expected to reduce LQTS deaths by age 20 by 20%

Scenario	Individuals under surveillance	LQTS Cases	% Undiagnosed Long QT	Long QT deaths, age 20	ICDs placed
Usual care	194	1,698	88.9%	83	13
	(66 to 379)	(603 to 3,685)	(86.2%, to 91.0%)	(75 to 90)	(3 to 33)
Screen all	5,299	1,698	35.6%	66	78
	(4,609 to 6,100)	(603 to 3,685)	(33.3%, to 38.4%)	(57 to 73)	(21 to 191)
Difference	5,105	NA	-53.1%	-17	64
	(4,406 to 5,838)		(-57.2% to -62.3%)	(-13 to -21)	(17 to 159)

Population newborn genetic screening for LQTS would cost \$105,000 per life year gained

Scenario	Total Cost	Total Life Years	ICER
Usual care	1.7M USD (0.7M to 3.5M)	113,069K (113,064K to 113,073K)	
Screen all	74.6M USD (69.4M to 83.2M)	113,070K (113,066K to 113,074K)	
Difference	+72.9M USD (68.5M to 79.8M)	+693 (423 to 1132)	\$105,000 (\$70,000 to \$164,000)

Model estimates showed large uncertainty in the value of population screening


WTP Threshold (USD per life year gained)	% of Simulations Cost-Effective
\$50,000	0%
\$100,000	34.6%
\$150,000	94.4%

Cost-effectiveness estimates were most sensitive to

- Diagnostic criteria (eg, suspected D+): ICER=\$268,000/LYG
- Genetic screening costs
- Surveillance and treatment costs
- Ratio of diagnosed to undiagnosed cases

Newborn genetic screening for LQTS would save lives, but greatly increase the number of children receiving surveillance

- Cost-effective at higher thresholds
- Large uncertainty in estimates
- Improving model to better address benefits in adulthood, cascade screening better; address diversity
- Follow us on Twitter: <u>@PROMoTeR_DPM</u>

