Proc. SymCon’03

Comma-Free Codes

Justin Pearson

Department of Information Technology
Division of Computer Systems
Uppsala University, Box 337, 751 05 Uppsala, Sweden
justin@docs.uu.se

Abstract. In this short paper Comma-Free Codes are introduced and
symmetry breaking techniques are applied to their search. Comma-Free
Codes have a lot of symmetry: both in the values and in the variables.
Symmetry Breaking via Dominance Detection is applied to find Comma-
Free Codes. To check if a current partial solution is symmetrically equiv-
alent to a previously found no-good, graph isomorphism is used. In par-
ticular the powerful and fast graph isomorphism package nauty is used.
Experimental results show that for difficult instances SBDD+Nauty out
performs lexicographic ordering.

1 Comma-Free Codes

A comma-free code [7-9] over an alphabet A is a set, C C A*, of words over A
such that given any two words, w,v € C, any sub-word, u, of the concatenation,
wwv, is not in the code. Here we will be only interested in codes where all the
words have the same length. See figure 1 for an example of a comma-free code.

00001 00101 00110 11001 11010 11110

Fig. 1. A Comma-Free Code of 6 words of length 5 over the alphabet {0,1}

Comma-Free Codes were originally inspired by biology. Genetic information
in the cell is stored in DNA, which for a computer scientist is a string of letters
from the alphabet A, C, T and G. Via a transcription mechanism proteins are
constructed which are chains of amino acids from an alphabet of 20 different
acids. One question that exercised biologists was: How are each of the 20 different
acids coded as strings of DNA? One proposal is that the 20 acids are coded as
comma-free codes, so as to aid transcription. As it turns out there is a comma-
free code of size 20 of words of length 3 over a four letter alphabet. But in reality
nature is not so simple: the genetic code is not a comma-free code and in fact is
not even a code in the mathematical sense. Figure 2 shows a comma free code
over alphabet size 4 with words of length 3.

Comma-Free Codes are still interesting from a mathematical point of view.
One property of interest in the theory of comma-free codes is: given an alphabet

161

Proc. SymCon’03

112 113 114 212 213 214 223 224 312 313
314 323 324 334 412 413 414 423 424 434

Fig. 2. Comma-Free code with word length 3 over an alphabet of size 4.

size and a word length what is the maximal number of words a comma-free code
can contain?

If a word, w = wy ... wy, belongs to a comma-free code then any sub-word
of

w1 ... WEpW1 -..WE

should not be in the code. Two words are said to be in the same cyclic equivalence
class if one is a cyclic permutation of the other. If a cyclic equivalence class of a
word contains £ members (where k is the word length) then it is called complete.
Words from incomplete equivalence classes cannot be in comma-free codes (see
[8] and the references therein for details). Thus an upper bound on the size of
comma-free codes can be found by counting the number of complete classes. Let
Wi (n) denote the maximum number of words of length k that a code can contain
over an alphabet of size n. The bound

Weln) < & dz“:'“(d)"k/d

is derived in [7, 8] where p is the Mobius function defined by:

1 ifd=1
pu(d) = € 0 if d has any square factor(—1)" if d = p1ps - .. pr
where pi, ..., p, are distinct primes.

This bound is not always achieved.

2 Symmetry Breaking via Dominance Detection (SBDD)

Essentially SBDD [2] prevents symmetrically equivalent no-goods being explored.
In more detail, given a failure during search (where a failure is some partial
assignment that cannot be extended) the search procedure should guarantee
that no symmetrically equivalent partial assignment is ever explored. Symme-
try breaking during search (SBDS [6]) achieves this by adding symmetric no-
goods: that is given some partial assignment for each symmetrically equivalent
partial assignment a constraint is added forbidding that symmetrically partial
assignment. In SBDD, on the other hand, instead of adding no-goods an extra
procedure is added to the search procedure which checks if the current partial
assignment has already been seen before (dominated) as a no-good.

One way of implementing SBDD is by maintaining a database of previously
seen partial assignments and checking the current assignment against all the
previous partial assignments for equality modulo symmetry.

162

Proc. SymCon’03

Various modifications can be applied to SBDD in reducing the number of no-
goods that need to be stored. In particular during depth-first search no-goods
below a completed node in the search tree can be removed.

In implementing a search procedure for comma-free codes each no-good and
partial assignment will be converted into a graph. In implementing SBDD with
the optimisation of removing redundant no-goods the dominance checking pro-
cedure has to check if the graph of the previously found no-good is isomorphic
to a subgraph of the current no-good. This procedure is of course NP-complete
[4]. In the implementation of SBDD used in this paper time is traded for space.
All the no-goods are kept, none are thrown away as would be done with an op-
timised implementation of SBDD. This allows graph isomorphism to be used as
a dominance check since only no-goods at the same level in the search tree are
checked. The complexity of graph isomorphism is not known, but in practice it
is often polynomial.

3 Comma-Free Codes: Graph Isomorphism and
Symmetry Breaking

To model and find comma-free codes using a CSP, a code is represented as a list
of lists where each list represents a word. There are two obvious symmetries with
this representation. First, the order of the words does not matter: that is any
permutation of the words is still a comma-free code. Secondly given any comma-
free code, C, over an alphabet A and any bijection, f : A — A, on the alphabet,
applying the bijection to every word in the code (giving the code {f(w)|w € C}
where f(w) = f(w1)--- f(wg) when w = wy - --wy) is still a comma-free code.

One way of combating the first symmetry is to order the code words lexico-
graphically using the lex-chain [1] global constraint.

The second symmetry (the value symmetry) is harder to break and even
harder to break in the presence of the first symmetry. One such approach would
be to reformulate the problem as a matrix model and use two lexicographic
chain constraints (see [3]) but this would still not break all the symmetry in the
problem.

The search procedure implemented to solve the CSP searches for a complete
word at a time in the code. To check if the current partial assignment is sym-
metrically equivalent to a previously found no-good at the same level graphs
are constructed for both the partial assignment and the no-good such that the
graphs are isomorphic if and only if the assignments are symmetrically equiva-
lent. Isomorphism of the graphs is checked using the nauty [10] system, which
is able to return a canonical graph such that two graphs are isomorphic if and
only if they have the same canonical graph. Hence if the no-goods are stored as
nauty canonical graphs then a new partial assignment can be converted into a
canonical graph and checked against stored no-goods.

163

Proc. SymCon’03

The graph used for isomorphism testing is constructed as follows. Given a
partial assignment of n code words of the form:

Wn =wk .. wk

where each wf is a letter from the alphabet of the code (because of the way the
search procedure works there will be no code words to level n which have only
some entries grounded), then a coloured graph with two colours is constructed
as follows:

— The set of nodes of the graph is the disjoint union of the sets A (the domain
or the alphabet of the code) and the set {w]|1 <i<nAl1<j<k};

— There are two colours of the graph: the nodes in A being one and the nodes
w! being the other;

— For every graph, regardless of the code, there are edges from wf to wf * for
al1<i<nandalll1<j<Ek; '

—Foralll <i<nandl<j<kif w/ =d then there is an edge from d to

J

w; -

In figure 3 an example graph is given for the code {001,101}. It is then possible

Fig. 3. Coloured graph for the code {001,101}

to prove that two codes of the same length are symmetrically equivalent (both
in value symmetry and the ordering of the words) if the two graphs are coloured
graph isomorphic. Such an isomorphism gives a bijection on the code words. The
separation of the colours gives a bijection on the domain elements. The edges
between w? and w!*" forces any isomorphism f such that

Fwl) =w]

164

Proc. SymCon’03

forces f (wf +1) to be w{,’+1. Finally edges between the domain elements and the
nodes w; force the isomorphism on domain elements to be an isomorphism of

the code words.

4 Results

An implementation of SBDD with graph isomorphism was compared against
lexicographically ordering the words. Although lexicographic ordering will not
break all the symmetry (that is both the value symmetry and the interchange-
ability of the words in the code) in many cases it performs well. It is not until
relatively difficult instances that SBDD with graph isomorphism competes with
lexicographic ordering.

In figure 4 results are presented for codes of words of length 3 over a domain
of size 4 using Sicstus Prolog on a Pentium 4 2.53Ghz machine (with 512Mb of
memory) running Linux; note that in this case 20 is the maximal code length. The
search looks for one code satisfying the constraints. The number of backtracks
does not refer to the total number of backtracks, but the backtracks at the
word level. At each level in the search tree a complete word is found, thus on a
backtrack a new code word is found. To find each code word at each level in the
tree Sicstus’ normal labelling procedure is used. Figure 6 shows the Sicstus code
used without any symmetry breaking; it is the backtracks of labeling_cmp
that are reported in figures 4 and 5. After code length 16, SBDD with graph
isomorphism wins. Also in figure 5 results are shown for code words of length 3
over an alphabet of size 5.

Code Length|Time: SBDD |Backtracks|Time: lex|Backtracks
13 1.17 34 0.84 18
14 44 96 241 98
15 259.09 3145 159.29 4198
16 328.37 3145 208.6 4198
17 1891.27 13608| 3729.96 57680
18 2272.76 13608| 4591.89 57680
19 2741 13608| 5768.78 57680
20 3234.31 13608| 7247.42 57680

Fig. 4. Results on domain size 4, word length 3, all times reported in seconds.

5 Conclusion

Although it might seem that losing the optimisations possible with SBDD on
a depth-first search requires many no-goods to be stored and checked, by using
graph isomorphism these no-goods can be checked relatively quickly. Also since
the symmetry groups in general would be large and constructing the graphs is

165

Proc. SymCon’03

Code Length|Time: SBDD |Backtracks|Time: lex|Backtracks
22 36.02 704 33.58 1092
23 40.16 704 40.43 1092
24 44.74 704 47.74 1092
25 47.93 704 54.07 1092
26 841.82 2926| 878.23 10827

Fig. 5. Results: Domain size 5, word length 3.

%#labeling_cmp(Words) Words is a list of lists, that is a list of
%code words.
labeling_cmp([]1).
labeling_cmp([WIT]) :-
%#labeling is a call to Sicstus finite domain labelling procedure on
%the code word W
labeling([1,W) ,
labeling_cmp(T) .

Fig. 6. Sicstus code used for labelling without any additional symmetry breaking

quite simple this method avoids generating many no-goods as would be done
with SBDS or its optimisations [5].

The technique of using graph isomorphism could also be applied to Balanced
Incomplete Block Designs and the Social Golfer and this is work in progress.
This work was partially supported by a STINT institutional grant IG2001-67 of
STINT the grant 221-99-369 of the Swedish Research Council.

References

1. Mats Carlsson and Nicolas Beldiceanu. Arc-consistency for a chain of lexicographic
ordering constraints. Technical Report T2002-18, Swedish Institute of Computer
Science, 2002.

2. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In T. Walsh,
editor, Proceedings of CP’01, volume 2293 of LNCS, pages 93-107. Springer-Verlag,
2001.

3. P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetries in matrix models. In P. Van Hentenryck, ed-
itor, Proceedings of CP’02, volume 2470 of LNCS, pages 462—476. Springer-Verlag,
2002.

4. Michael R. Garey and David S. Johnson. Computers and Intractability. W.H.
Freeman and Company, 1979.

5. Ian P. Gent, Warwick Harvey, and Tom Kelsey. Groups and constraints: Symmetry
breaking during search. In P. Van Hentenryck, editor, Proceedings of CP’02, volume
1520 of LNCS, pages 415-430. Springer-Verlag, 2002.

6. I.P. Gent and B.M. Smith. Symmetry breaking during search in constraint pro-
gramming. In Proceedings of ECAI’00, pages 599-603, 2000.

166

10.

Proc. SymCon’03

S.W. Golomb and L.R. Welch. Comma-free codes. Candian Journal of Mathemat-

ics, 10:202-209, 1958.

B.H. Jiggs. Recent results in comma-free codes. Canadian Journal of Mathematics,

15:178-187, 1963.

Nguyen Huong Lam. Completing comma-free codes. Theoretical Computer Science,

301:399-415, 2003.

Brendan McKay. nauty wuser’s guide (version 2.2). Available via
http://cs.anu.edu.au/people/bdm/nauty/.

167

