
Doctoral Dissertation

SMT Solving for Polynomial Constraints

Vu Xuan Tung

Supervisor: Mizuhito Ogawa

School of Information Science
Japan Advanced Institute of Science and Technology

June, 2018

Abstract

The need for solving non-linear arithmetic arises from many applications in artificial
intelligence and formal methods. Although the full first-order theory of real numbers is
decidable, the best well-known decision procedure for it, namely quantifier elimination
by cylindrical algebraic decomposition, has the complexity of double exponential with
respect to the number of variables. This remains as an impediment for a solver supporting
non-linear arithmetic. This thesis aims at an efficient complete framework for solving
existential fragment of polynomial constraints by first developing (incomplete) efficient
procedures as heuristics and then combine them with a complete procedure. Two efficient
procedures proposed are

• an extension of raSAT loop, which is in turn an extension of interval constraint prop-
agation (ICP) with testing, with the application of the intermediate value theorem
(IVT), and

• subtropical satisfiability.

Distinct procedures and their combinations are further integrated into a satisfiability
module theories (SMT) framework by supporting features of SMT solving such as unsat
core computation.

While raSAT loop (an extension of the ICP with testing) aims at quickly detecting
satisfiability of inequalities, the application of the IVT aims at showing satisfiability of
equations. We propose a scheme to combine interval arithmetic, testing, and the IVT to
show satisfiability of combinations of inequalities and equations. SAT-directed heuristics
are also proposed for the framework to quickly detect satisfiability while not affecting
performances of detecting unsatisfiability. Experimental data shows that the proposed
extensions increase the number of solved problems and the heuristics improved the running
time on solved problems and also increases the number of solved benchmarks. Comparing
with other SMT solvers, except for weaknesses in completeness, raSAT shows comparable
running time on problems it solved.

The second procedure, i.e. subtropical satisfiability, aims at finding an assignment for
variables which satisfies inequalities by examining the exponent vectors of polynomials
appearing in the inequalities. From those exponent vectors, the method generate linear
arithmetic constraints such that if they are satisfiable, then the original inequalities are
also satisfiable. The solution of the generated linear constraints are further used to provide
a witness for satisfiability of non-linear inequalities. Experimental results show that the
procedure is quite fast at either detecting satisfiability or failing. In particular, it finds
solutions for problems where other state-of-the-art non-linear arithmetic SMT solvers
times out.

Both proposed procedures are incomplete, and in order to produce a decision frame-
work, we utilize quantifier elimination methods implemented in the computer algebra
system Redlog/Reduce. We propose two kinds for combining the ICP-based methods

i

and the quantifier elimination, namely lazy and less lazy approaches. While the lazy
approach uses ICP-based methods as pre-processing steps for the quantifier elimination,
the less lazy one invokes the quantifier elimination on every boxes generated by the ICP
framework. In both approaches, subtropical satisfiability is utilized first as an attempt to
find a model for inequalities. Experimentally, the lazy method performs better than the
less lazy one but we expect some future improvements for the less lazy approach so that
several unsatisfiable boxes can be all discarded once the quantifier elimination method
detects the unsatisfiability of one box. Experimental results also show that our frame-
work is an efficient decision procedure to solve non-linear arithmetic SMT problems and
complementary to implementations in other SMT solvers.
Keywords: SMT solving, non-linear arithmetic, interval constraint propagation, sub-
tropical satisfiability, complete efficient framework.

ii

Acknowledgments

This work was carried out during years 2015− 2018 at Japan Advanced Institute of Sci-
ence and Technology, Japan. It was also partially done at LORIA, Nancy, France from
June 2016 to May 2017

I would like to express my sincere gratitude to my supervisor, Mizuhito Ogawa, for his
continuous support of not only my thesis but also my life. His guidance into the world of
formal methods and SMT solving have been essential during this work.

My sincere thanks also goes to my second supervisor, Nao Hirokawa, for his detailed
and constructive comments through this work. I also learned a lot from him about for-
malization and knowledge from other fields especially term rewriting systems.

It is a pleasure to appreciate collaboration efforts from Haniel Barbosa, Pascal Fontaine,
and Thomas Sturm during my off-campus research at LORIA, Nancy, France. Their great
collaboration had helped me to fulfill the objective of my off-campus research.

This thesis would not have been completed and polished unless the referees of my dis-
sertation committee, Pascal Fontaine, Nao Hirokawa, Mizuhito Ogawa, Kazuriho Ogata,
Hiroyuki Seki, read and gave invaluable comments on the structure and contents of the
thesis.

I also would like to acknowledge JAIST 5D scholarship for supporting expenses dur-
ing my study at JAIST, and JAIST Off-Campuse Research Grant for fully supporting the
expenses during my stay at LORIA, Nancy, France.

Last but not least, I owe my loving thanks to my parents, my older brother, my older
sister, and my wife for their constant encouragement and understanding. Thank you for
always being beside me during happy moments and also difficult times.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

2 SMT Solving for Polynomial Constraints 3
2.1 Satisfiability Modulo Theories . 3
2.2 SMT Solving for Polynomial Constraints 7

3 Existing Methodologies for Solving Polynomial Constraints 8
3.1 Algebraic Methods . 8
3.2 Topological Methods . 12
3.3 Linearization . 14
3.4 Other Methodologies . 17

4 Interval Constraint Propagation 19
4.1 Intervals and Interval Arithmetic . 19
4.2 Constraint Propagation . 21
4.3 ICP as a Theory Solver of an SMT Solver 22

5 raSAT Loop for Inequalities 27
5.1 Early Satisfiability Detection with Testing 27
5.2 Various Interval Arithmetic . 30
5.3 Various Heuristics to boost SAT Detection 32
5.4 raSAT Loop for Constraints over Integers 34

6 Subtropical Satisfiability 35
6.1 Basic Facts about Newton Polytopes . 36
6.2 Subtropical Real Root Finding Revisited 37
6.3 From One Polynomial to Multiple Ones . 41
6.4 More Generalization . 43

7 The Intermediate Value Theorem for Solving Equations 46
7.1 The Generalized Intermediate Value Theorem 46
7.2 Combining Interval Arithmetic, Testing, and the IVT to Show Satisfiability

of Combinations of Inequalities and Equations 52

iv

8 Combining Procedures 59
8.1 Utilizing Redlog/Reduce for Completeness 59
8.2 Lazy Combination . 60
8.3 Less Lazy Combination . 61

9 Experiments on SMT-LIB Benchmarks 63
9.1 Performance of raSAT . 63
9.2 Performance of STROPSAT . 73
9.3 Performance of the Efficient Complete Framework 75
9.4 Annual SMT Competitions . 82

10 Comparing raSAT with other ICP-based SMT Solvers 85
10.1 iSAT3 . 85
10.2 dReal . 87
10.3 Handling Floating-point Arithmetic in SMT Solvers 87

11 Future Work 89
11.1 Tighter Interaction between ICP and Algebraic Methods 89
11.2 Subtropical Satisfiability: From Vertices to Faces, and to Subset of Frame . 90

12 Conclusion 92

References 94

Publications 101

Appendix A Definition of CAI 102

Appendix B Proof of Theorem 10 104

Appendix C Experiments on strategy combinations 106

v

Chapter 1

Introduction

Due to numerous applications (see [66] for more than 100 references), solving polynomial
constraints has been an active area in research for a few decades. In 1948, Tarski pro-
posed a decision procedure for the full first-order theory of real closed fields [80] with
unfortunately non-elementary complexity. Since then, Tarski’s procedure has been much
improved. In 1975, Collins [12] gave a much more efficient method of quantifier elimina-
tion using cylindrical algebraic decomposition (CAD) which again has gone through many
improvements [51, 39, 40, 13]. Despite those improvements, the worst-case complexity of
doubly-exponential remains as an obstacle for their applications [18]. As a consequence,
the attention turns to first developing (incomplete) efficient procedures for fragments of
the full real closed fields theory, and then combining them with complete methods to
produce an efficient complete framework. Here we focus on the existential fragment of
the theory and propose two efficient heuristic methods, namely extensions of the interval
constraint propagation (ICP) and subtropical satisfiability. Then we combine them with
a quantifier elimination procedure to produce an efficient complete framework for the
existential fragment.

Starting from the work in [65], and then [28, 34, 32, 36], ICP showed practical efficiency
although it is incomplete in solving polynomial constraints. In [46], testing was introduced
into the ICP framework in order to make the framework quickly find satisfying assignments
in the case that (strict) inequalities have solutions. The authors in [46] further suggested
a combination of interval arithmetic (IA) and the intermediate value theorem (IVT) as a
heuristic to show satisfiability of equations. This thesis further extends the idea to allow
combining the result of testing with IA and IVT to show satisfiability of combinations
between inequalities and equations. Several efficiency heuristics are also proposed in
this thesis. The extensions were implemented inside the SMT solver raSAT which uses
miniSAT as the SAT solver.

Observation on timed-out SMT-LIB benchmarks for the previous extension shows
that on average one third of the running time was spent on testing phase. As a result,
a heuristics for quick model finding is desirable for improvement of the framework. Re-
cently, a method of subtropical real root finding is introduced in the context of symbolic
computation [76] with the aim of computing real zeros of single very large multivariate
polynomial. The method takes an abstraction of polynomials as exponent vectors over
the natural numbers tagged with the signs of the corresponding coefficients. It then uses
linear programming to determine which monomial dominates others in a polynomial, and
computes two points at which the polynomial is positive and negative respectively. The

1

intermediate value theorem provides a guide for computing the root of the polynomial
between such two points. Ignoring the task of finding roots, this thesis extends the idea to
find points at which multiple polynomials are all positive. The task is reduced to solving
linear constraints over reals. The existence of a solution for the generated linear con-
straints entails the existence of a point at which all the original polynomials are positive.
The proposed procedure was implemented as the STROPSAT library.

Assuming the existence of the above two efficient methods, we combine them with
a complete procedure to produce an efficient complete framework. For a complete pro-
cedure, we use quantifier elimination methods, namely CAD and virtual substitution,
implemented in the Redlog/Reduce package that provides interfaces for interacting with
SMT solvers. Two schemes of combinations are proposed and implemented inside the
nonlinear theory solver of the SMT solver veriT. We experimentally evaluated the com-
bination schemes on SMT-LIB benchmarks.

This thesis is organized as follows. Chapter 2 overviews general SMT solving and SMT
solving for polynomial constraints. Various techniques for solving non-linear arithmetic
are discussed in Chapter 3. An introduction for ICP is given in Chapter 4. Next two
chapters propose heuristics for handling inequalities. While chapter 5 describes the ex-
tension of ICP with testing and efficiency heuristics for solving inequalities, an extension
of the subtropical method for finding a model of inequalities is discussed in Chapter 6.
Chapter 7 introduces the combination of testing, IA, and the IVT to solve combinations
of inequalities and equations. Chapter 8 introduces two schemes of combining distinct
components. Chapter 10 compares our ICP implementation with ones in other solvers.
Before concluding in Chapter 12, we address some future work in Chapter 11.

Fig. 1.1 illustrates the contributions of the thesis. While raSAT loop and subtropical
satisfiability aim at inequalities solving, the application of the IVT aims at equations
solving. raSAT loop and the applilcation of the IVT were implemented in the SMT solver
raSAT which uses miniSAT as the SAT solver. Subtropical satisfiability was implemented
as the STROPSAT library. When combining those procedures with complete methods,
the theory reasoner of raSAT and the library STROPSAT are first integrated as modules
of the SMT sover veriT by implementing required theory interfaces of veriT. Combining
those modules with the complete framework is done inside the nonlinear theory solver of
veriT by making calls to the implemented interfaces.

Figure 1.1: Contributions of the thesis

2

Chapter 2

SMT Solving for Polynomial
Constraints

2.1 Satisfiability Modulo Theories

2.1.1 Syntax

The syntax of Satisfiability Modulo Theories (SMT) problems follows the classical first-
order logic. To make the chapter self-contained, however, here we introduce all the relevant
concepts and notations.

Definition 1 A signature Σ is a 4-tuple (F, P, V, α) consisting of a set F of function
symbols, a set P of predicate symbols, a set V of variables, and α : (F ∪ P) → N is a
function mapping each function or predicate symbol to one natural number indicating the
arity of the symbol.

We call the 0-arity symbols of F and P constant symbols and propositional symbols
respectively.

A term is constructed by either a single variable or a function application with terms
as arguments.

Definition 2 Given a signature Σ = (F, P, V, α), a Σ-term t is defined as following.

t := v where v ∈ V
| f(t1, · · · , tn) where f ∈ F , α(f) = n, and t1, . . . , tn are terms

A formula is either a relation between terms (applying some predicate symbol to
terms), a propositional bottom ⊥ symbol, a boolean combination between formulas, or a
quantified formula.

Definition 3 Given a signature Σ = (F, P, V, α), a Σ-formula ϕ is defined as follows.

ϕ := p(t1, · · · , tn) where p ∈ P , n = α(p), and t1, . . . , tn are terms
| ⊥ | ¬ϕ
| ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 where ϕ1 and ϕ2 are formulas
| ∃vϕ | ∀vϕ where v ∈ V

Atomic formulas are of the form p(t1, . . . , tn) or ⊥.

3

Given a signature Σ = (F, P, V, α), we define the function var() as the set of (free)
variables appearing in Σ-terms and Σ-formulas as following.

Definition 4 The set of variables appearing in a term t, denoted by var(t), is recursively
defined as:

1. var(v) = {v} where v ∈ V ,

2. var(f(t1, . . . , tn)) =
⋃n
i=1 var(ti) where f ∈ F and n = α(f).

Definition 5 The set of variables appearing in a formula ϕ, denoted by var(ϕ), is recur-
sively defined as:

1. var(p(t1, . . . , tn)) =
⋃n
i=1 var(ti) where p ∈ P and n = α(p);

2. var(⊥) = ∅, var(¬ϕ) = var(ϕ);

3. var(ψ1 ∧ ψ2) = var(ψ1) ∪ var(ψ2);

4. var(ψ1 ∨ ψ2) = var(ψ1) ∪ var(ψ2);

5. var(∃vϕ) = var(ϕ) \ {v}, and var(∀vϕ) = var(ϕ) \ {v}.

2.1.2 Semantics

Formulas are given a truth value from the set {true, false} by means of interpretations
which are pairs of a structure and a valuation.

Definition 6 Given a signature Σ = (F, P, V, α), a Σ-structure S is a tuple (U, Pu, Fu)
where U is an universe, and

• Fu maps each predicate symbol p ∈ P of arity n = α(p) to a function I(p) : Un →
{true, false},

• Pu maps each function symbol f ∈ F of arity n = α(f) to a function I(f) : Un → U .

Definition 7 Given a signature Σ = (F, P, V, α), a Σ-interpretation I is a pair (S,V)
consisting of a structure S = (U, Pu, Fu) and a valuation V which maps each variable
v ∈ V to an element V(v) ∈ U .

Given an interpretation, we can evaluate the values of terms.

Definition 8 Given a signature Σ = (F, P, V, α) and a Σ-interpretation I = (S,V) where
S = (U, Pu, Vu), the evaluation tI ∈ U of a term t is defined as followings.

vI := V(v) where v ∈ V , and
f I(t1, · · · , tn) := Fu(f)(tI1, · · · , tIn) where f ∈ F and n = α(f)

Similarly, we define the evaluation of a formula with respect to a model.

Definition 9 Given a signature Σ = (F, P, V, α) and a Σ-interpretation I = (S,V) where
S = (U, Pu, Vu), the evaluation ϕI ∈ {true, false} of a formula ϕ is defined as follow-
ings.

4

pI(t1, · · · , tn) := Pu(p)(t
I
1, · · · , tIn) where p ∈ P and n = α(p)

⊥I := false
(¬ϕ)I := ¬(ϕI)
(ϕ1 ∧ ϕ2)I := ϕI1 ∧ ϕI2
(ϕ1 ∨ ϕ2)I := ϕI1 ∨ ϕI2

(∃vϕ)I :=

{
true if there exists u ∈ U such that ϕI[u/v] = true,

false otherwise

(∀vϕ)I :=

{
true for all u ∈ U , we have ϕI[u/v] = true,

false otherwise

where I[u/v] denotes the addition (replacing if already exists) of the mapping from variable
v to value u into the evaluation V in I.

We say that a Σ-interpretation M satisfies (respectively falsifies) a Σ-formula ϕ if
and only if ϕM is true (respectively false). In SMT solving, we are only interested
in interpretations belonging to a given theory T which restricts the domain of variables,
the interpretation of function symbols and predicate symbols. Traditionally one theory
is defined by a set of axioms, and an interpretation is said to belong to such a theory
if and only if it satisfies all the axioms of the theory. Following the more recent SMT
literature, one Σ-theory is most generally defined as a set of (possibly infinitely many)
Σ-interpretations. A Σ-formula ϕ is T -satisfiable for a Σ-theory T , if and only if there is
an element of the set T that satisfies ϕ. Otherwise, ϕ is T -unsatisfiable.

Given a theory T , SMT solving is the problem of determining if a formula is T -
satisfiable or not. When the theory is clear from the context, we often say that the
formula is satisfiable, or unsatisfiable instead of T -satisfiable, or T -unsatisfiable respec-
tively. Since the theory specifies the universe U and the interpretation of function and
predicate symbols, SMT solving can be simply stated as the problem of finding an as-
signment from variables to values in the universe U such that the assignment makes the
formula true. Moreover, an assignment θ uniquely determines an interpretation when
the theory is specified. Later on, we will use notations of assignments as interpretations.
For example, ϕθ is the same as ϕI where I is the interpretation uniquely determined by
θ.

2.1.3 Methods for SMT Solving

We can distinguish two main approaches for SMT solving, namely eager and lazy ap-
proaches.

Eager Approach

This method involves translating the original formula into an equisatisfiable Boolean
formula in a single step. The translation by nature is theory-specific.

In [4], the authors show that if linear constraints over integers have a satisfying so-
lution, then there exists a solution with size in bits is polynomially bounded in terms of
the number of variables, the number of constraints, and the maximum constants appear-
ing in the constraints. As a result, one can easily convert the original linear constraints
into a propositional formula by representing each integer-valued variable as a sequence

5

of Boolean (bits) variables whose size is the above polynomial bound. Arithmetic and
comparison operations are converted into propositional formulas (see [89]). At the end,
we have a SAT formula which is equisatisfiable to the original linear constraint, and the
generated SAT formula can be efficiently solved by state-of-the-art SAT solvers.

Another approach for solving linear constraints over rationals (or integers) was pro-
posed in [74] which is based on the Fourier-Motzkin elimination method [16]. The Fourier-
Motzkin elimination method works by eliminating variables one after the other until reach-
ing comparisons between constants and thus the constraints can be decided. Suppose we
are eliminating variable xn. From each linear constraint containing xn, we can compute
either lower bound or upper bound of xn as a linear expression of other variables. For
example, the linear constraint 2x1 + 4x2 − 3x3 ≤ 0 implies that 3x3 ≥ 2x1 + 4x2, or x3

has the lower bound as 2
3
x1 + 4

3
x2. For every pair (u, l) of lower bound and upper bound

of xn, i.e. u ≤ xn and xn ≤ l, we can derive a new linear constraint u ≤ l which does
not contain xn. The method in [74] introduces new Boolean variables e1, e2, and e3 for
u ≤ xn, xn ≤ l, and u ≤ l respectively. After adding the new constraint e3 (representing
u ≤ l) into the SAT formula, we need to further add e1∧e2 → e3. It should be noted that
the Fourier-Motzkin elimination method works on a conjunction of linear constraints, and
the method in [74] apply the Fourier-Motzkin elimination method for the set of all linear
constraints appearing in the original formulas which has an arbitrary Boolean structure.
Conjunction of the generated SAT formula and the corresponding SAT formula of the
original linear formula ensures the equisatisfiability.

Lazy Approach

The lazy approach integrates theory solvers into SAT solvers. In the simplest form, a
theory solver for theory T is a procedure which takes as input a conjunction of atomic
formulas with possibly negations and decides whether the conjunction is T -satisfiable
or not. First, each atomic formula in the input is abstracted by a Boolean variable,
resulting in a SAT formula. The SAT formula is passed to a SAT solver to enumerate the
propositional models. Each of such models is a conjunction ϕ of atomic formulas with
possibly negations and is checked by the theory solver.

If the solver detects unsatisfiability, it is desirable to find a (possibly minimal) subset
of ϕ which is already unsatisfiable. Such a subset is called an unsat core. The negation of
the unsat core is added into the SAT solver so that the propositional models containing
the same cause of inconsistency will not be considered again by the SAT solver.

Otherwise, if the theory solver detects satisfiability, it is required to provide a witness,
i.e. an assignment for variables which satisfies the conjunction. In some combinations of
decision procedures, the theory solvers are also required to perform deductions of equalities
between variables [20].

In a less lazy approach, the theory solver is integrated more tightly within the DPLL
procedure of SAT solving where deciding literals and unit propagation are assisted by
theory consistency ([28, 43]).

6

2.2 SMT Solving for Polynomial Constraints

2.2.1 Syntax

The signature Σ = (F, P, V, α) (for simplicity, we abuse the notations introduced in
Sec. 2.1 for polynomial constraints) for polynomial constraints consists of

• a set F = {+,−, ∗, 1} of function symbols,

• a set P = {<,>,≥,≤, 6=} of predicate symbols,

• a set V of variables, and

• the function α : (F ∪P)→ N, such that α(1) = 0, and α(s) = 2 for s ∈ (F ∪P)\{1}.

A polynomial is a Σ-term (Definition 2), and a polynomial constraint is a Σ-formula
with the exclusion of quantified formulas, i.e., we only interested in formulas without
quantifiers ∃ and ∀. We call an atomic Σ-formula an atomic polynomial constraint (APC).

For technical convenience, any conjunction of APCs is represented as a set of APCs.

2.2.2 Semantics

In SMT solving for polynomial constraints, we are interested in interpretations belonging
to the theory of real numbers R [55] equipped with the ordinary arithmetic operations
{+,−, ∗} and comparison operations {<,>,≥,≤, 6=}. Again, here we abuse the function
and predicate symbols in Sec. 2.2.1, but it should be clear to distinguish when we are
using them for syntax and when we are using them for semantics.

Definition 10 A Σ-structure S for polynomial constraints is a tuple (R, Pu, Fu) where

• Fu maps each function symbol in {+,−, ∗} to the corresponding arithmetic opera-
tion, e.g. Fu(+) = +, and maps 1 ∈ F to the identity element 1 of R,

• Pu maps each predicate symbol in {<,>,≥,≤, 6=} to the corresponding comparison
equipped with R.

Definition 11 A Σ-interpretation I for polynomial constraints is a pair (S,V) consisting
of a structure S = (R, Pu, Fu) and a valuation V which maps each variable v ∈ V to an
element V(v) ∈ R.

Given a polynomial constraint ϕ and an interpretation I, we can evaluate the truth
value of ϕ with respect to I following the Definition 9.

To the best of our knowledge, there has not been any eager approach towards SMT
solving for polynomial constraints. Although the method in [89] reduces polynomial con-
straints to SAT solving by only considering interpretation over rationals, the translation
is an under-approximation which does not preserve equisatisfiability.

The state-of-the-art methodologies for polynomial SMT solving are mostly based on
the lazy approach. We examine them in the next chapter and classify them by their
properties.

7

Chapter 3

Existing Methodologies for Solving
Polynomial Constraints

3.1 Algebraic Methods

Although methods described in this section can be used for general quantifier elimination
of arbitrary first order logic formula over real closed fields, we summarize them in the
context of SMT solving, i.e., restricting the variables in the formulas to be existentially
quantified.

3.1.1 Cylindrical Algebraic Decomposition

Cylindrical Algebraic Decomposition (CAD) is a complete decision procedure for deciding
constraints over real closed fields. The basic idea of CAD is to split the space into a finite
set of disjoint components (cells) such that in each cell, polynomials in the constraints
have constant signs. The constraints are thus either true or false at all points in each
cell.

Suppose we have a set Fn = {f1, . . . , fm} ofm polynomials over n variables {x1, . . . , xn}.
CAD aims at partitioning Rn into connected cells such that in each of the cells, each poly-
nomial in Fn has a constant sign. A set of polynomials is said to be sign-invariant over
a set C if each polynomial in it has a constant sign at all points in C.

CAD consists of two steps, namely projection and lifting phases which are illustrated
in Figure 3.1.

After each step of projection, a new set Fk−1 ∈ R[x1, . . . , xk−1] is constructed from
Fk ∈ R[x1, . . . , xk] such that if Fk−1 is sign-invariant over C ⊂ Rk−1, then for every
c1, c2 ∈ C, and every f ∈ Fk, f(c1, xk), f(c2, xk) both have the same number of different
real and complex roots. In this case, Fk is said to be delineable on C. Technically, each
polynomial in Fk−1 is computed from coefficients of polynomials in Fk, certain heading
coefficients of subresultants of each pair of polynomials in Fk and certain subresultants of
each polynomial with their derivative. Details for those operations can be found at [12].

Example 1 Consider F2 = {x2
1 + x2

2 − 1,−4x1x2 − 4x1 + x2 − 1}. The projection phase
creates the following new polynomials

F1 = {1, x2
1 − 1,−4x1 + 1,−4x1 + 1,−4x1 − 1,−4(x2

1 − 1), x(16x3
1 − 8x2

1 + x1 + 16)}

8

Figure 3.1: Three steps of CAD

At the end of the projection phase, we have a set F1 of univariate polynomials. The
lifting phase starts by constructing CAD of F1 over R by isolating roots of polynomials in
F1 and partitioning R by those roots. Technically root isolation is done by iteratively split
intervals and count the number of roots (using Sturm sequence [55]) in each interval until
we can isolate each root inside one interval [55]. Initially, bounds on roots are computed
using Cauchy’s inequality [55]. An algebraic number is usually represented as (l, r, f)
where l, r ∈ Q, f is the polynomial that has the considering algebraic number as one and
only one root in]l, r[.

Example 2 Example 1 cont. We need to compute roots of polynomials in F1. Let us take
16x3

1 − 8x2
1 + x1 + 16 as an example. Cauchy’s inequality [55] gives bounds for roots as

] − 2, 2[. Refinement of the interval [55] gives] − 0.9,−0.8[which also contains exactly
one root of 16x3

1 − 8x2
1 + x1 + 16. Denote α = (−0.9,−0.8, 16x3

1 − 8x2
1 + x1 + 16). The

roots of polynomials in F1 are

{−1, α,−1

4
, 0,

1

4
, 1}

Then CAD of F1 over R is

{]−∞,−1[, [−1,−1],]− 1, α[, [α, α],]α,−1

4
[, [−1

4
,−1

4
],]− 1

4
, 0[,

[0, 0],]0,
1

4
[, [

1

4
,
1

4
],]

1

4
, 1[, [1, 1],]1,∞[}

9

We can see that F1 is sign-invariant over each cell in the computed CAD over R. Sample
points of the constructed CAD are computed by the following function

sample([l, r]) = l

sample(]l, r[) =

r − 1, if l = −∞
l + 1, if r =∞
l+r
2
, otherwise

For general quantifier elimination, representation of algebraic cells are required to produce
the final quantifier-free formula. Each cell in CAD over Ri can be uniquely defined by
polynomial constraints which are computed from the polynomials in Fi [12]. However,
in the context of SMT solving, such a requirement is unnecessary, and only the sample
points of cells are enough to decide satisfiability of the existential closed sentence. As a
result, we here represent each cell only by its sample point.

Example 3 Continue the Example 1,the CAD of F1 over R can be uniquely defined by

{−2,−1, −1+α
2
, α,

α− 1
4

2
,−1

4
,−1

8
, 0, 1

8
, 1

4
, 5

8
, 1, 2}.

For 1 < i ≤ n, CAD over Ri are constructed recursively. Because projection phase
ensures the delineability of Fi on each cell C of CAD over Ri−1, the roots of polynomials
in Fi with respect to variable xi cut the cylinder C × R above C into finitely many
connected cells. CAD over Ri is computed by taking all those cells arising from cells
of CAD over Ri−1. Sample points of new cells arising from the base cell C in Ri−1 are
computed by lifting the sample point of C into various cells of the cylinder C ×R. First,
the sample point of C is plugged into polynomials in Fi making them univariate ones
in xi with coefficients as algebraic numbers and root isolation is implemented to find the
values of xi in the new sample points for the corresponding new cells. It should be noticed
that when plugging sample points into polynomials, we will have new polynomials with
coefficients as algebraic numbers. The root isolation algorithm (Cauchy’s inequality and
Sturm sequence) works with any real closed field [55], and thus the real algebraic field. The
readers are encouraged to read [55] for arithmetic operations over real algebraic numbers.

Example 4 Continue the Example 1. Consider the cell C represented by 0 of CAD of
F1 over R. Plugging x1 = 0 into polynomials in F2 gives {x2

2 − 1, x2 − 1}. Roots of the
polynomials in this set are {−1, 1}. Thus the cylinder C × R is decomposed into 5 cells
{C×]−∞,−1[, C × [−1,−1], C×]− 1, 1[, C × [1, 1], C × [1,∞]} which are represented by
{(0,−2), (0,−1), (0, 0), (0, 1), (0, 2)}

The complexity of CAD is doubly exponential in the number of variables [12]. It is
implemented in RAHD [63, 62], Z3 4.3 [43], Yices [24], and SMT-RAT [15].

3.1.2 Gröbner bases

The fundamental idea of Gröbner bases is from a set of polynomials to construct a new
set of polynomials (Gröbner basis) such that the ideal generated by such a new set is
identical to the ideal generated by the original polyomials. As a consequence, the original

10

polynomials have some common zeros if and only if the newly constructed polynomials
also do.

In the case of polynomials over complex numbers, the Hilbert’s Nullstellensatz theo-
rem [55] implies that the set of polynomials do not have any common zeros if and only if
the Gröbner basis of the ideal generated by such polynomials contains 1. The procedure is
then formulated by first computing the Gröbner basis of the polynomials in the equations,
then check if 1 is in the Gröbner basis or not.

In the case of real numbers, we need to take more care since the Gröbner basis gives a
sound but incomplete procedure for solving polynomial constraints since a set of polyno-
mials having common zeros over complex numbers do not necessarily have common zeros
over reals.

Example 5 Consider the unsatisfiable equation over reals x2 + 1 = 0. Gröbner basis of
the ideal ({x2 + 1}) is {x2 + 1} which does not contain 1. As a result, x2 + 1 have some
zeros over complex numbers, but in fact those zeros are not reals.

Let us give some definitions related to Gröbner basis first before explaining a method
for deciding satisfiability of constraints over real numbers using Gröbner basis.

Let Q[x1, . . . , xn] be the set of multivariate polynomials over the variables x1, . . . , xn
with coefficients in Q. A subset I ⊆ Q[x1, . . . , xn] is an ideal iff I is a subgroup with
respect to addition, and for all f ∈ I, g ∈ Q[x1, . . . , xn] we have fg ∈ I. The ideal
generated by a set G ⊆ Q[x1, . . . , xn], denoted by (G), is the smallest ideal I containing
G.

An admissible monomial order ≺ is a strict well-order on monomials such that if
u ≺ v then uw ≺ vw for arbitrary monomials u, v, w. Admissible orders are extended to
Q[x1, . . . , xn] as a multiset order [7].

We say that a polynomial f ∈ Q[x1, . . . , xn] is reduced to g ∈ Q[x1, . . . , xn] with
respect to a set G ⊂ Q[x1, . . . , xn] iff there exist f0, . . . , fm ∈ Q[x1, . . . , xn] such that
f0 = f, fm = g, for all 0 ≤ i < m, fi+1 = fi−higi for some hi ∈ Q[x1, . . . , xn], gi ∈ G, and
fi+1 ≺ fi. If g cannot be reduced any more with respect to G, then we write g = redG(f).

Definition 12 Given an ideal I ⊆ Q[x1, . . . , xn], a finite subset G ⊆ I is a Gröbner basis
if and only if I = (G) and redG(f) is unique for any f ∈ Q[x1, . . . , xn].

Theorem 1 ([72]) Let R be a real closed field, and G ∈ R[x1, . . . , xn]. Then the set
{x ∈ Rn | g(x) = 0 for all g ∈ G} of common roots of polynomials in G is empty if and
only if there exist polynomials s1, . . . , sm ∈ R[x1, . . . , xn] such that 1+s2

1 + · · ·+s2
m ∈ (G).

Moreover, if G ⊆ Q[x1, . . . , xn], then s1, . . . , sm can be chosen among Q[x1, . . . , xn].

This theorem yields a complete decision procedure for solving polynomial constraints
assuming a complete algorithm for finding witnesses s1, . . . , sm. It should be noted that
any inequality can be transformed into an equisatisfiable equation by introducing new
variables. A method using semidefinite programming was proposed to find such a wit-
ness [64]. The idea is to parameterize the resulting polynomials s1, . . . , sm and encode the
search in terms of semidefinite programs. Since degree bounds on witnesses exist [61], a
decision procedure combining Gröbner basis and semidefinite programming for deciding
polynomial constraints exists. However, these bounds are at least triply exponential [61],
the search needs to incrementally increase the bound and search for polynomials with
such a bounded degree [38, 64].

11

Example 6 Consider the unsatisfiable constraint ϕ := x ≥ y ∧ z ≥ 0 ∧ xz < yz. First,
it is transformed into a satisfiability-equivalent constraint ϕ′ := x − y = a2 ∧ z = b2 ∧
(yz − xz) ∗ c2 = 1 consisting of only equations. The Gröbner basis of the ideal I =
(x−y−a2, z− b2, (yz−xz)∗ c2−1) with respect to variables order a ≺ b ≺ c ≺ x ≺ y ≺ z
is {a2 − x + y, b2 − z, c2x − c2yz + 1}. The method proposed in [64] finds a witness
1 + a2b2c2 ∈ I. By Theorem 1, polynomials in {x− y − a2, z − b2, (yz − xz) ∗ c2 − 1} do
not have any common zeros, thus ϕ′ as well as ϕ are unsatisfiable.

3.2 Topological Methods

3.2.1 Virtual Substitution

The central idea of virtual substitution is to find a finite set of test points which are
enough to decide the satisfiability of the constraints. Such points are computed from root
formulas of polynomials appearing in the constraints. Since the method requires roots
formulas, it theoretically limits the application to only polynomials whose degree is less
than or equal to three.

Example 7 Consider the constraint f1 > 0∧f2 < 0 where f1 := x2 +xy+1 and f2 := xy.
Consider f1 as a polynomial over variable x leaving y as a parameter, and then consider
the following possible cases and test points.

• If y2 − 4 < 0, then x2 + xy + 1 does not have any zeros, thus the test point −∞ is
enough to check the sign of x2+xy+1, and thus decide the satisfiability of x2+xy+1
over R.

• If y2 − 4 = 0, x2 + xy + 1 has only one real root −y
2

. Checking the two points
{−∞, −y

2
} is enough to conclude satisfiability of x2 + xy + 1 > 0. In this case, the

test point −y
2

can be safely discarded since it makes x2 + xy + 1 zero.

• If y2 − 4 > 0, x2 + xy + 1 has two distinct real roots: e1 =
−y−
√
y2−4

2
and e2 =

−y+
√
y2−4

2
. Checking 5 test points {−∞, e1, e1 + ε, e2,∞} is enough to conclude the

satisfiability of x2+xy+1 > 0. Further, e1 and e2 can be discarded because x2+xy+1
becomes 0 at them.

In this example, 0 < ε < R+ is interpreted as a positive infinitesimal [86]. After testing
points along with their existence conditions are computed, they are virtually substituted
into the original constraints resulting in new constraints with one variable eliminated.
We write f [e/x] to denote the result of the substitution of variable x by expression e into
polynomial f .

Example 8 Continuing the previous example, the original constraint is equivalent to the

12

following formula over reals.

(y2 − 4 < 0 ∧ f1[−∞/x] > 0 ∧ f2[−∞/x] < 0)

∨(y2 − 4 = 0 ∧ f1[−∞/x] > 0 ∧ f2[−∞/x] < 0)

∨(y2 − 4 = 0 ∧ f1[
−y
3
/x] > 0 ∧ f2[

−y
3
/x] < 0)

∨(y2 − 4 > 0 ∧ f1[−∞/x] > 0 ∧ f2[−∞/x] < 0)

∨(y2 − 4 > 0 ∧ f1[e1/x] > 0 ∧ f2[e1/x] < 0)

∨(y2 − 4 > 0 ∧ f1[e1 + ε/x] > 0 ∧ f2[e1 + ε/x] < 0)

∨(y2 − 4 > 0 ∧ f1[e2/x] > 0 ∧ f2[e2/x] < 0)

∨(y2 − 4 > 0 ∧ f1[∞/x] > 0 ∧ f2[∞/x] < 0)

In order to continue virtual substitution for remaining variables, the following three
obligations need to be removed:

• the substitution of infinity,

• removing square-root expressions, and

• removing ε.

The detailed techniques for removing those expressions are presented in [86]. We are
going to provide examples to illustrate the method.

Example 9 The following example illustrates the removal of infinity.

f1[−∞/x] > 0 := x2(1 +
y

x
+

1

x2
)[−∞/x] > 0 :=∞ > 0 ≡ true

The following example illustrates the removal of square-root expression.

xy[
−y −

√
y2 − 4

2
/x] < 0 :=

−y2 − y
√
y2 − 4

2
< 0

≡ y > 0 ∨
(
y ≤ 0 ∧ y4 − y2(y2 − 4) > 0

)
Finally, the following example illustrates the removal of infinitesimal symbol for the con-
straint f > 0 and the test point e+ ε for variable x. Define the function v(f) as following
with n is the degree of f with respect to variable x.

v(f) =

{
f > 0 if n = 0

f > 0 ∨ (f = 0 ∧ v(f ′)) otherwise

Then, we have
f [e+ ε/x] > 0 := v(f)[e/x]

The intuition is that since f is continuous, and ε is arbitrarily small, f is greater than 0
at point x = e+ ε if and only if one of two following cases happens.

1. Polynomial f is positive at the point x = e, then since f is continuous, it is still
positive in a small neighborhood of e.

2. Polynomial f becomes 0 at x = e, and its derivative f ′ is positive at x = e. Since
f ′[e/x] > 0, f [e+ ε/x] > f [e/x] = 0.

The complexity of Virtual Substitution for SMT problem (existential quantified for-
mulas) is exponential in the number of variables [86]. The method has been implemented
in Redlog/Reduce [21], SMT-RAT [15].

13

3.2.2 Interval Constraint Propagation

This section briefly introduces Interval Constraint Propagation (ICP) [3], a numerical
technique that provides an incomplete but practically very efficient method to check
the satisfiability of a set of polynomial constraints [28, 65, 32]. The mechanism of the
ICP is to iteratively evaluate polynomial constraints over boxes (Cartesian products of
intervals), contract boxes using constraints, and decompose boxes, until either sat or
unsat is detected. Evaluation of polynomial constraints is done by interval arithmetic
which over-approximates the ranges of polynomials given intervals of variables.

Example 10 Consider x2 + xy − 4 < 0 and x ∈ [−3, 1], y ∈ [−4,−2], then interval
arithmetic [57] approximates the value of x2 + xy − 4 as

[−3, 1] ∗ [−3, 1] + [−3, 1][−4,−2]− [1, 1] = [−11, 17]

Comparing [−11, 17] with 0, we cannot conclude if x2 + xy − 4 < 0 is satisfiable.

If evaluating constraints does not result in sat/unsat answers, the constraints are in
turn used to contract the boxes into possibly smaller ones.

Example 11 Continue Example 10, since the constraint is x2 + xy − 4 < 0 and the
range of x2 + xy − 4 is [−11, 17], the value of x2 + xy − 4 must be in [−11, 0] at points
in [−3, 1] × [−4,−2] that satisfy x2 + xy − 4 < 0. Doing interval arithmetic in the
backward manner gives the contracted box [−2, 1]× [−4,−2] (The detail of operations will
be described in Chapter 4).

If the box can be contracted successfully, the constraints will be evaluated over such a
contracted box again and possibly the contraction will be done again until no changes of
the box. If the contracted box is the same as the current box, then the box is decomposed
into smaller ones and each of them will be processed in the same procedure as above.

ICP concludes unsatisfiability when no box satisfies the constraints, and concludes
satisfiability if some box makes the constraints valid (all points in the box satisfy the
constraints).

Since the ICP is based on interval arithmetic which is an over-approximation, its
applicability is limited to detection of satisfiability of inequalities and unsatisfiability of
equations/inequalities. The ICP is almost incapable of proving satisfiable equations since
it utilizes floating-point arithmetic which cannot represent real algebraic numbers. For
some equations which have special structures, namely strongly satisfiable equations, the
ICP can prove their satisfiability. More details are discussed in Chapter 10.

The ICP has been implemented in HySAT-II [28], dReal [34, 32], RSolver [65], and
RealPaver [36].

3.3 Linearization

3.3.1 Linearization using CORDIC

A method of linearization was introduced in [30] using CORDIC algorithms [82] which are
used for computing many elementary functions such as multiplication, division, sin, cos,

14

exp, log, etc [82]. The method is able to decide satisfiability of polynomial constraints
given a precision requirement, which is a delta-complete problem [33]. The method is
useful in verifying discrete-continuous and embedded systems with a tolerance of a given
error bound. In the context of SMT solving, we can only obtain unsat answer from this
method.

For nonlinear arithmetic, the method in [30] linearizes the multiplication p = s × t
using a sequence of triples (x0, y0, z0), . . . , (xn, yn, zn) where x0 = s, y0 = 0, z0 = t and for
0 ≤ k < n, we have

yk+1 = yk + δkxk2
−k

zk+1 = zk − δk2−k

xk+1 = xk

where

δk =

{
1 if zk ≥ 0,

−1 otherwise

Example 12 Consider s = 5, t = 1.125. With n = 8, we have the following sequence
of triples: (x0 = 5, y0 = 0, z0 = 1.125), (x1 = 5, y1 = 5, z1 = 0.125), . . . , (x8 = 5, y8 =
5.6640625, z8 = −0.0078125).

The resulting multiplication yn has the error of ex02−(n−1) [30] where e is in [−1, 1], then
we add the following correction term ecmult to the result.

y′n = yn + ex02−(n−1) = yn + ecmult

We have
|ecmult| ≤

∣∣x02−(n−1)
∣∣

Linearization is done by fixing the number n and transformation using the above
sequence of triples and the resulting linear constraints can be decided efficiently [25, 31].
The number of variables, however, explodes with respect to the number of multiplication
in the non-linear constraints.

The method has been implemented in CORD [30].

3.3.2 Linearization with Uninterpreted Function Symbols

Recently, a counterexample-guided abstraction refinement approach was introduced [8]
for solving non-linear constraints using linearization with uninterpreted function symbols
(EUF). The approach abstracts each multiplication xy as a term fmul(x, y) where fmul()
is an uninterpreted function returning a real. For each fmul(x, y) the following axioms
are added.

fmul(x, y) = fmul(y, x)

fmul(x, y) = fmul(−x,−y)∧fmul(x, y) = −fmul(−x, y)∧fmul(x, y) = −fmul(x,−y)

(x = 0 ∨ y = 0↔ fmul(x, y) = 0)

((x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0))→ fmul(x, y) > 0

((x > 0 ∧ y < 0) ∨ (x < 0 ∧ y > 0))→ fmul(x, y) < 0

15

(a) Graph of xy (b) Graph of xy and the tangle plane at (0.5, 0.5)

Figure 3.2: Multiplication function and table plane

If SMT solving for LRA+EUF returns unsat, then we can conclude that the original
formula in unsatisfiable. In the case of a sat answer with a model π, we need to check
if for each uninterpreted function fmul(x, y), π(fmul(x, y)) = π(x)π(y). If this is the
case, then the original formula is satisfiable. Otherwise, lemmas are learned so that such
a spurious model will not appear again. Consider the tangent plane T (x, y, a, b) to xy at
a point (a, b) ∈ R2 (the plane just touches the surface xy at (a, b)).

T (x, y, a, b) = bx+ ay − ab

Figure 3.2 illustrates the surface xy and its tangle plane at the point (0.5, 0.5). In the case
of the previous spurious model, the following lemmas are added into the constraints to
force the correct value of fmul(x, y) at (a, b) and to provide bounds of fmul(x, y) when
x and y are not on the multiplication surface (which is useful to remove unsatisfiable
regions).

fmul(a, y) = ay ∧ f(x, b) = xb

((x > a ∧ y < b) ∨ (x < a ∧ y > b))→ fmul(x, y) < T (x, y, a, b)

((x < a ∧ y < b) ∨ (x > a ∧ y > b))→ fmul(x, y) < T (x, y, a, b)

where a, b can be chosen as:
a := π(x) and b := π(y)

a :=
1

π(fmul(x, y))
and b := π(y)

a := π(x) and b :=
1

π(fmul(x, y))

The procedure is sound but incomplete. It has been implemented in CVC4 [9] and Math-
SAT [8].

16

3.4 Other Methodologies

3.4.1 Reduction to SAT

The method in [89] reduces the task of finding a satisfiable solution for non-linear con-
straints into a SAT problem by considering rational numbers Q as domains of variables.
Each variable is represented as a pair (a, b) of an integer enumerator a and a positive
integer denominator b. With a fixed number k of initial number of bits, a and b can
be represented as lists of k Boolean variables corresponding to their bits representations.
Arithmetic over Q is transformed into arithmetic over integers I which is transformed into
arithmetic over N which in turn is transformed into SAT formulas over those Boolean
variables (see [89] for details). The resulting Boolean formula is solved by state-of-the-
art SAT solvers. If the SAT solver returns sat, then the original non-linear constraints
are satisfiable and we can construct the model from the true, false values of Boolean
variables. Encoding arithmetic also introduces new variables for the sums, carries, and
shifting results [89].

Example 13 Consider the bits representation (ak, . . . , a1) of a ∈ N, and (bk, . . . , b1) of
b ∈ N. The sum of a, and b is defined as (ck, sk, . . . , s1) where

c0 = false si = ai ⊗ bi ⊗ ci−1 ci = (ai ∧ bi) ∨ (ai ∧ ci−1) ∨ (bi ∧ ci−1)

with 1 ≥ i ≥ k and x⊗ y := ¬(x↔ y).

Let us illustrate the addition by actual natural numbers.

Example 14 Continue Example 13. Suppose k = 4, a = 3 and b = 14 which have rep-
resentation respectively as (false, false,true,true) and (true,true,true, false).
Following the formulas in Example 13, we have the representation of a+ b as:

(true, false, false, false,true)

The procedure is incomplete and unable to show unsatisfiability. It has been implemented
in MiniSmt [89].

3.4.2 Subtropical Real Root Finding

Recently, subtropical real root finding was proposed in [76] which efficiently finds root of
equation f = 0 where f is an extremely large polynomial. The motivation is that some
biology application results in solving f = 0 with f is extremely large, e.g. includes of
thousands monomials in 10 variables, which is clearly beyond the classical methods in
symbolic computation. The approach is finding two points at which f has different signs,
then the intermediate value theorem asserts the existence of a solution for f = 0.

For the first task, without loss of generality, suppose we want to determine one point
at which f is greater than 0. The method views the polynomial as the set of exponents
vectors associated with the sign information on the coefficients. Consider the convex
hull [69] of those exponent vectors (Newton polytope) of f and any exponent vector is
a vertex of the convex hull, then the corresponding monomial will dominates others [76]
with respect to some polynomial curve. When an exponent vector is a vertex of the
Newton polytope, there exists a hyperplane that separates it and other exponent vectors.
Such a hyperplane (specifically its normal vector) provides a witness of the polynomial
curve.

17

1 2 3 4

1

2

3

4

0

Figure 3.3: Newton polytope of x4y2 − 3x3 + x2y2 − 1000x2y3 − 9xy2

Example 15 Consider f = 0 where f := x4y2−3x3 +x2y2−1000x2y3−9xy2. Figure 3.3
illustrates the Newton polytope of f . Since (4, 2) is a vertex of the Newton polytope, the
monomial x4y2 dominates −3x3 + x2y2 − 1000x2y3 − 9xy2 when (x, y) follows the curve
(a2, a1). As a result, with a large enough a, f(a2, a1) > 0.

The method employs linear programming to check if one exponent vector is the vertex of
the Newton polytope. If it is, the model of the linear constraints provides the witness of
the hyperplane that separates the vertex with other points.

After determining two points p, q at which f has different signs, the intermediate value
theorem implies that there exists one point z on the line connecting p and q such that
f(z) = 0. Such a z is the solution of the following system of equations

t = p+ y(q − p) ∧ f(t) = 0

where y is a new variable such that 0 < y < 1. Plugging t = p+ y(q − p) into f(t) yields
an equation over one variable y. Root isolation algorithms can be applied here to find a
root of f .

The method has been implemented in Redlog/Reduce [76].

18

Chapter 4

Interval Constraint Propagation

4.1 Intervals and Interval Arithmetic

Let R be the set of real numbers and R∞ = R ∪ {−∞,∞}. The standard arithmetic
operations on R are extended to those on R∞ as presented in [57].

Definition 13 The set of all intervals I is defined as I = {[l, h] | l ≤ h ∈ R∞}.

Definition 14 A box B for a sequence of variables (x1, · · · , xn) is a Cartesian product
of intervals, i.e., B = I1 × · · · × In, where I1, · · · , In ∈ I are intervals of x1, · · · , xn
respectively. We write B(xj) to denote Ij for j = 1, · · · , n.

Since most real numbers are not computable, representing them in a computer system
is impossible. Numerical frameworks such as ICP generally approximate the set R by
the set of floating-point numbers. In order to deal with round-off errors in floating-point
arithmetic, ICP uses the notions of round-down and round-up for real numbers.

Definition 15 Let r ∈ R. Its round-down value, denoted as r, is the largest floating-point
number f such that f ≤ r. Its round-up value, denoted as r, is the smallest floating-point
number f such that f ≥ r.

Definition 16 An interval function G : In 7→ I is an interval extension of a function
g : Rn 7→ R if and only if, for every box B ∈ In, the inclusion {g(x) | x ∈ B} ⊆ G(B)
holds.

An interval arithmetic is a function mapping each polynomial function to one interval
extension.

There are many kinds of interval arithmetic based on symbolic transformations such
as Affine Intervals (AIs) [14, 46], or numerical relaxations such as the Classical Interval
(CI) [57].

Example 16 CI maps g = x2 + xy− 4 to the interval extension G(Ix, Iy) = Ix ∗ Ix + Ix ∗
Iy − [4, 4], where Ix and Iy are intervals of x and y respectively, and interval operations
are defined as:

[l1, h1] + [l2, h2] = [l1 + l2, h1 + h2]

[l1, h1] ∗ [l2, h2] = [min(l1l2, l1h2, h1l2, h1h2),max(l1l2, l1h2, h1l2, h1h2)]

[l1, h1]− [l2, h2] = [l1, h1] + [−h2,−l2].

19

As a result, if Ix = [−3, 1], Iy = [−4,−2], we have

G(Ix × Iy) = [−3, 1] ∗ [−3, 1] + [−3, 1] ∗ [−4,−2]− [4, 4]

= [−11, 17].

The result G(B) can be sharpened with a consideration of power functions. More specifi-
cally, Ix ∗ Ix or I2

x can be better approximated as [0, 9], which improves the value of G(B)
to [−8, 17].

For polynomial functions f, g, . . . we use FIA, GIA, . . . respectively to denote the in-
terval extensions of these functions, which are mapped by a specific interval arithmetic
“IA”. When “IA” is clear from the context, we simply ignore the subscript and denote
F,G, . . . respectively. We call G(B) the estimated range of g over the box B by using
“IA”.

Definition 17 Given an interval arithmetic and a box B, an APC g � 0 is

• ia-valid in B if and only if for all r ∈ G(B), r � 0 holds,

• ia-unsat in B if and only if for all r ∈ G(B), r � 0 does not hold, and

• ia-sat, otherwise.

Example 17 (Fig. 4.1) Suppose an APC g > 0 and a box B.

• If G(B) = [−5,−2], then g > 0 is ia-unsat.

• If G(B) = [−2, 5], then g > 0 is ia-sat.

• If G(B) = [2, 5], then g > 0 is ia-valid.

Figure 4.1: Example 17: ia-unsat, ia-sat, and ia-valid examples

Except for the ia-sat case where we cannot conclude anything about satisfiability of
the APC, we have the following theorem for relating ia-valid and ia-unsat to satisfia-
bility.

Theorem 2 Suppose we have an interval arithmetic, a box B, and an APC g � 0.

• If the APC is ia-valid, then it is sat at any point inside B.

• If the APC is ia-unsat, then it is unsat inside B.

20

Proof 1 • If the APC is ia-valid, then for all r ∈ G(B), we have r �0. In addition,
by definition of interval arithmetic, we have for all x ∈ B, g(x) ∈ G(B). As a
result, for all x ∈ B, g(x) � 0. In other words, the APC is satisfiable at any points
inside B.

• If the APC is ia-unsat, then for all r ∈ G(B), we have ¬(r � 0). In addition, by
definition of interval arithmetic, we have for all x ∈ B, g(x) ∈ G(B). As a result,
for all x ∈ B, ¬(g(x) � 0). In other words, the APC is unsatisfiable inside B.

Definition 18 Given an interval arithmetic and a box B, an conjunction ϕ of APCs is

• ia-valid in B, if and only if, each APC g � 0 ∈ ϕ is ia-valid,

• ia-unsat in B, if and only if, some APC g � 0 ∈ ϕ is ia-unsat, and

• ia-sat, otherwise.

The following lemma follows directly from Definition 18 and Theorem 2.

Lemma 1 Suppose we have an interval arithmetic, a box B, and a conjunction ϕ of
APCs.

• If ϕ is ia-valid, then it is sat at any point inside B.

• If ϕ is ia-unsat, then it is unsat inside B

4.2 Constraint Propagation

Constraint propagation consists of two steps: interval contraction and interval propaga-
tion.

Definition 19 Given a relation � and an interval I, the interval contraction is the func-
tion ic(�, I), which returns the smallest interval I ′ such that

{r ∈ I | r � 0} ⊆ I ′

Example 18 ic(>, [−2, 5]) = [0, 5], ic(>, [2, 5]) = [2, 5], and ic(>, [−2,−5]) = ∅.

Definition 20 Given an APC g � 0, a box B, and an interval I ⊆ G(B), interval propa-
gation is the function ip(g � 0, I, B), which returns a box B′ ⊆ B such that:

• G(B′) ⊇ I, and

• B′ ∩ S = B ∩ S,

where S = {x | x ∈ B and g(x) � 0} is the set of solutions of g � 0 in B.

In practice, the operations of interval arithmetic, interval contraction, and interval
propagation are executed along the syntax tree of a polynomial as stipulated in Exam-
ple 19.

21

Example 19 Consider the APC x2 + xy − 4 < 0 and the box B = [−3, 1] × [−4,−2]
for the variable sequence (x, y) in Example 16. Fig. 4.2 illustrates operations at lines
18, 19, and 20 in Algorithm 1. Constraint propagation promulgates interval contraction in
a top-down manner. For example, consider three nodes n1, n2, and n3 s.t. n1 = n2 + n3.
Interval arithmetic yields In1 = In2 + In3. If constraint propagation reduces the interval
of n1 to I ′n1

⊂ In1, new intervals I ′n2
of n2 and I ′n3

of n3 can be inferred by the following
operations.

I ′n2
= In2 ∩ (I ′n1

− In3) I ′n3
= In3 ∩ (I ′n1

− In2)

The right-hand-side tree in Fig. 4.2 indicates that the range of n1 = x2+xy is contracted to
[−4, 4]. Since the original ranges of n2 = x2 and n3 = xy are In2 = [0, 9] and In3 = [−4, 12]
respectively, the range of n3 = xy is contracted to:

I ′n3
= In3 ∩ (I ′n1

− In2) = [−4, 12] ∩ ([−4, 4]− [0, 9]) = [−4, 12] ∩ [−13, 4] = [−4, 4]

Figure 4.2: Example 19: interval arithmetic, interval contraction, and interval propaga-
tion.

4.3 ICP as a Theory Solver of an SMT Solver

Since ICP is based on interval arithmetic, which is an over-approximation, it can be ap-
plied to determine sat/unsat of inequalities and unsat of equations. However, ICP
generally does not produce interesting results on satisfiable equations. This section ex-
plains ICP as a theory solver (for inequalities) inside an SMT framework in the spirit of
the very lazy approach [60]. An extension of ICP to handle constraints with the presence
of equations is introduced in Chapter 7.

Fig. 4.3 outlines the SMT framework that utilizes ICP as a theory solver. Given a
conjunctive normal form (CNF) formula, the SAT solver enumerates the propositional
models of the CNF. Each such model is a conjunction of APCs and is delivered to the
theory solver ICP. If ICP detects sat, then the CNF is sat. If ICP detects unsat,
then conflict clause learning (“learn clause”) is implemented in which the negation of
the conjunction is passed to the SAT solver so that it will not be repeatedly selected
in the future. In addition, theory solvers identify a subset of the conjunction that is

22

already unsat, whose negation will be added to the SAT solver as an optimized learned
clause. If the SAT solver cannot find any further propositional model, it concludes the
unsatisfiability of the CNF.

Figure 4.3: ICP-based SMT solver

The “Box storage” is a set which contains all the boxes generated by ICP. Starting
with the “Box storage” that consists of a single box B ([−∞,∞]n by default), the ICP [3]
theory solver tries to detect the satisfiability of the conjunction ϕ of APCs in B, by
iteratively doing the following operations until successfully proving/disproving ϕ.

• Pop a box called the current box from the “Box storage”.

• Evaluate ϕ and contract the current box with interval arithmetic and constraint
propagation (“IA and CP”). The “IA and CP” module judges ϕ as either ia-valid,
ia-unsat, or ia-sat.

– If ϕ is ia-valid, ICP outputs sat.

– If ϕ is ia-unsat, the control comes back to “Box storage” to either pop a new
box if the storage is non-empty, or to implement clause learning otherwise.

– If ϕ is ia-sat, the control goes to “Box decomposition”.

• Decompose the contracted current box into smaller ones (“Box decomposition”).
New boxes created by box decomposition are pushed into “Box storage”.

Algorithm 1 clarifies the module “IA and CP” in Fig. 4.3, which assumes a global
variable unsat cores to keep a set of sub-formulas of ϕ. The algorithm maintains an
invariant that whenever ϕ is unsat, so is unsat cores. In addition, since unsatisfiability
of unsat cores implies that of ϕ, it is advantageous to add ¬unsat cores instead of ¬ϕ
to the SAT solver during conflict clause learning.

In addition to ia-valid, ia-unsat, and ia-sat, the algorithm also returns the box
contracted from the original one by the constraints.

Since interval arithmetic (Definition 16) is an over-approximation and constraint prop-
agation (Definition 20) preserves solutions, we obtain the soundness of ia cp(,).

Theorem 3 Suppose we have a conjunction of APCs ϕ and a box B.

23

Algorithm 1 Interval Arithmetic and Constraint Propagation for proving ϕ in a box B

1: function ia cp(ϕ,B)
2: is valid← true
3: for g � 0 in ϕ do
4: Compute G(B) . Compute range of g
5: if g � 0 is ia-unsat inside B then . Use Def. 17
6: unsat cores← unsat cores ∪ g � 0
7: return ia-unsat, ∅
8: end if
9: if g � 0 is ia-sat inside B then . Use Def. 17
10: is valid← False
11: end if
12: end for
13: if is valid = true then
14: return ia-valid, B
15: end if
16: Binit ← B . Store the initial value of B
17: for g � 0 in ϕ do
18: I ← G(B) . Interval arithmetic
19: I ′ ← ic(�, I) . Interval contraction
20: B′ ← ip(g � 0, I ′, B) . Interval propagation
21: if B′ 6= B then . Contractions occurred
22: unsat cores← unsat cores ∪ g � 0
23: end if
24: B ← B′

25: end for
26: if B = Binit then . No contractions occurred
27: return ia-sat, B
28: else
29: ia cp(ϕ,B) . Continue the function until no contractions occurred
30: end if
31: end function

• If ia cp(ϕ,B) returns ia-unsat, ϕ is unsat inside B.

• If ia cp(ϕ,B) returns ia-valid, ϕ is sat at any point inside B.

Proof 2 At line 20 of Algorithm 1, Definition 20 guarantees that B′ contains all and only
solutions of g � 0 in B. As a result, after the loop at line 17 finishes, the set of solutions
of ϕ in Binit is preserved in B. In other words, before each recursive call at line 29, the
set of solutions is preserved, thus the soundness of the algorithm is guaranteed. Lemma 1
concludes the statements of the theorem. (Q.E.D.)

In “Box decomposition”, the contracted current box is decomposed into smaller ones
which satisfy some properties described in Definition 21 to preserve the soundness and
the progress of the ICP framework.

24

Definition 21 Given a box B, box decomposition produces two boxes, B1 and B2, such
that B1 ∪B2 = B, B1 \B2 6= ∅, and B2 \B1 6= ∅.

We are ready to give the pseudo-code algorithm for ICP (Algorithm 2) for solving a
conjunction ϕ.

Algorithm 2 icp(f)or a set of polynomial constraints ϕ

1: function icp(ϕ)
2: S ← {]−∞,∞[n}
3: while S 6= ∅ do
4: choose B ∈ S
5: S ← S \ {B}
6: ia-result, B′ ← ia cp(ϕ,B)
7: if ia-result = ia-unsat then
8: continue
9: else if ia-result = ia-valid then
10: return SAT
11: end if
12: B1, B2 ← decompose B′

13: S ← S ∪ {B1, B2}
14: end while
15: return UNSAT
16: end function

Limitations of ICP in solving inequalities

Assume a conjunction of strict inequalities ϕ =
∧
i gi > 0 and a box B. The conjunction

is either sat or unsat in B.
In the first case where ϕ is sat in B, there is a non-empty box B′ ⊆ B in which ϕ is

ia-valid (Fig. 4.4a). If intervals I1, · · · , In in the box B are bounded and the ICP solver
follows a breath-first-search manner (e.g. the “Box storage” is implemented as a queue),
the ICP solver will eventually produce a box in which ϕ is ia-valid. As a result, ICP
can prove satisfiability of ϕ in B.

In the second case where ϕ is unsat in B, we consider three more possible cases: non-
touching case, touching case, and convergence case. The ICP can prove the unsatisfiability
of ϕ for the first case, but cannot do so for the last two cases.

If it is not a touching case (Fig. 4.4b) and I1, · · · , In are bounded, there exists one
finite set of small boxes whose union is B and inside each of them ϕ is ia-unsat. As a
result, by box decomposition, the unsatisfiability of ϕ is consistently proved by ICP. In
this case, Algorithm 1 might not terminate because of infinite contractions (the condition
at line 26 might infinitely not be satisfied).

If it is a touching case (Fig. 4.4c), in order to prove unsatisfiability, a necessary con-
dition is that ICP needs to compute the touching point to decompose boxes. This is
generally not achievable because ICP uses floating-point numbers which are not enough
to represent algebraic numbers.

If it is a convergence case (Fig. 4.4d), suppose that B is unbounded because otherwise
it becomes a non-touching case and ICP will eventually prove the unsatisfiability of ϕ

25

in B. In this case, ICP will not terminate for the following two reasons. First, interval
arithmetic and constraint propagation cannot conclude unsatisfiability of the ϕ within B
because essentially there is not any box B′ ⊆ B, which is contracted from B by “IA and
CP”, such that B′ can separate satisfiable areas of APCs. Second, given an unbounded
box B1 in which the varieties of polynomials are convergent, the box decomposition will
eventually create a new unbounded box B2 ⊆ B1 in which the varieties of polynomials
are still convergent. As a result, there always exists an unbounded box in which the
convergence occurs and thus ICP will not terminate.

(a) SAT detection (b) UNSAT detection (c) Touching case (d) Convergence case

Figure 4.4: Solvable and unsolvable cases of polynomial inequalities with ICP

26

Chapter 5

raSAT Loop for Inequalities

raSAT (refinement of approximations for satisfiability) loop [46, 85] was intended to
accelerate ICP for SAT detection by testing. The framework is illustrated in Fig. 5.1.
When interval arithmetic and constraint propagation cannot conclude satisfiability of the
conjunction (i.e. ia-sat), testing is implemented to find a satisfiable instance for the
conjunction. While the first section of this chapter introduces testing in details, the
second and third sections provide various kinds of interval arithmetic and heuristics in
the framework, and the last section presents a modification of the framework for handling
constraints over integers.

Figure 5.1: raSAT loop

5.1 Early Satisfiability Detection with Testing

For a conjunction ϕ of APCs and a box B, testing tries to find an assignment from points
in B to variables, which satisfies ϕ. Let us start with definitions related to test cases and
test values.

Definition 22 A test case on a set V of variables is regarded as a function θ : V 7→ R.
We call θ(x) the test value of x. The domain of θ is denoted by dom(θ). The test case
is in a box B if θ(x) ∈ B(x) for all x ∈ V .

27

Next, we give the definition for (un)satisfying instances of constraints.

Definition 23 A test case θ on var(ϕ) is a satisfying (resp. an unsatisfying) instance
of ϕ if ϕθ = true (resp. ϕθ = false).

Example 20 Let ϕ = x3x4 − x4 > 0 and B = [0, 1.5] × [−5,−0.5] for (x3, x4). Testing
may produce a test case θ in B with θ(x3) = 1.2 and θ(x4) = −4.3. Since ϕθ = false, θ
is an unsatisfying instance of ϕ.

Given a set of test cases, we define the notions of Test-sat and Test-unsat for poly-
nomial constraints.

Definition 24 Let TC be a set of test cases on V such that var(ϕ) ⊆ V . TC concludes
that ϕ is Test-sat if there exists a sat instance of ϕ in TC; otherwise, Test-unsat.

We are ready to describe the box “Testing” in Fig. 5.1. It is formalized by the function
testing(ϕ, B, θ) which is specified by Algorithm 3. Given a conjunction ϕ and a box
B, the algorithm calls testing(ϕ, B, ∅) (i.e. θ is initialized as ∅) and incrementally
constructs new test cases (when testing a new APC) in the box B from θ by extending
the domain of θ with new variables, and checks each new test case to find a sat instance
of ϕ. The purpose of incremental construction is that if some test case do not satisfy
some APCs, it is discarded and not extended further.

Algorithm 3 Testing ϕ in a box B = [l1, h1]× · · · [ln, hn] for the variables (x1, · · · , xn)

1: testing(ϕ,B, ∅)
2: function testing(ϕ,B, θ)
3: if ϕ = ∅ then . All inequalities are satisfied
4: return Test-sat
5: end if
6: (gi > 0, ϕ′)← pop APC(ϕ) . Pop an APC gi > 0 from ϕ
7: for θ′ ∈ generate test cases(gi > 0, B, θ) do
8: if satisfy(gi > 0, θ′) and testing(ϕ′, B, θ′)=Test-sat then
9: return Test-sat
10: end if
11: end for
12: return Test-unsat
13: end function

The function pop APC(ϕ) returns an APC gi > 0 in ϕ and update the current
conjunction as ϕ′ = ϕ \ {gi > 0}. The function generate test cases(gi > 0, B, θ)
constructs new test cases by extending θ with newly generated test values of variables in
var(gi) \ dom(θ).

Example 21 Let gi = x3x4−x4, B = [−2, 3.5]×[−5, 0]×[0, 1.5]×[−5,−0.5] for variables
(x1, x2, x3, x4), and θ = {(x2,−3.9), (x4,−2.5)}. The steps of generate test cases(gi >
0, B, θ) are as follows.

• Generating test values (of the specified number) for variables in var(gi) \dom(θ) =
{x3} in B. Assume such test values for x3 are {1.1, 0.3}

28

• Extending θ with those new test values and returning the set of extended test cases.
In this example, the returned set of test cases is {θ1, θ2} where

θ1 = {(x2,−3.9), (x3,1.1), (x4,−2.5)}

θ2 = {(x2,−3.9), (x3,0.3), (x4,−2.5)}

There are various choices for generating test values. Current raSAT applies random
testing [46, 85], i.e., randomly selecting values from intervals that are assigned to variables.
Section 5.3 proposes a heuristic based on affine intervals to guide the generation of test
values.

The subtropical method was recently proposed [76], which heuristically constructs a
satisfiable instance of an APC g > 0. The idea is to find in g a dominant monomial with
a positive coefficient and construct an assignment for variables so that such a positive
monomial dominates others and make g greater than 0. This might offer a promising
alternative to random testing.

Example 22 Continuing Example 21, θ1 is an unsat instance of gi > 0. As a conse-
quence, θ1 can be discarded to avoid useless extension on remaining variables, i.e., {x1}.

The number of generated test cases affects the performance of the framework in terms
of the following sense. If the constraint is satisfiable, an insufficient number of test cases
may cause raSAT miss to detect satisfiability. If the constraint is unsatisfiable, on the
other hand, a large number of test cases will cause overhead because they are not able to
satisfy the constraint.

raSAT restricts the number of test cases to at most 2N (N is a constant) by selecting
N most likely influential variables to have 2 test values and leaving a single test value for
the rest. The heuristic to select such N variables is presented in Section 5.3. The value of
N is chosen from the candidates {1, 5, 10, 20} by experiments on SMT-LIB benchmarks.
We found that 10 performed better than the others.

Box decomposition in raSAT is fundamentally the bisection at the half-way point on
a selected dimension of the box B.

Example 23 Given a box B = [−2, 3.5] × [−5, 0] × [0, 1.5] × [−5,−0.5] for variables
(x1, x2, x3, x4). First, raSAT selects a variable, e.g., x3. Then, its assigned interval, e.g.,
[0, 1.5], is bisected at the half-way point. As a consequence, the resulting two boxes are
B1 = [−2, 3.5]× [−5, 0]× [0,0.75]× [−5,−0.5] and B2 = [−2, 3.5]× [−5, 0]× [0.75, 1.5]×
[−5,−0.5].

An interval may be open ended. The precise operation for the bisection in raSAT is
as follows.

[−∞,∞]
Decomposition−−−−−−−−→ [−∞, 0], [0,∞]

[−∞, h]
Decomposition−−−−−−−−→ [−∞, h− 8], [h− 8, h]

[l,∞]
Decomposition−−−−−−−−→ [l, l + 8], [l + 8,∞]

[l, h]
Decomposition−−−−−−−−→ [l,

l + h

2
], [
l + h

2
, h]

29

where l 6= −∞ and h 6=∞. The number 8 here comes from our intention to create finite
small boxes for the framework to quickly detect satisfiable instances. We made various
experiments with different numbers such as 1, 8, 64, 128, and 1024; and we saw that 8 is
the most likely effective value.

Section 5.3 introduces a heuristic to select the most likely influential variable whose
interval is going to be decomposed.

Before presenting heuristics used in the raSAT framework, we show the pseudo-code
of raSAT loop in Algorithm 4

Algorithm 4 raSAT loop for a set of polynomial constraints ϕ

1: function rasatloop(ϕ)
2: S ← {]−∞,∞[n}
3: while S 6= ∅ do
4: choose B ∈ S
5: S ← S \ {B}
6: ia-result, B′ ← ia cp(ϕ,B)
7: if ia-result = ia-unsat then
8: continue
9: else if ia-result = ia-valid then
10: return SAT
11: end if
12: ϕia-sat ← {ϕapc | ϕapc ∈ ϕ and ϕapc is ia-sat in B′} . exclude ia-valid

APCs
13: test-result← testing(ϕia-sat, B

′, ∅)
14: if test-result =Test-sat then
15: return SAT
16: end if
17: B1, B2 ← decompose B′

18: S ← S ∪ {B1, B2}
19: end while
20: return UNSAT
21: end function

In addition to testing, raSAT further prepares various kinds of interval arithmetic
which aims at a refined result of interval arithmetic.

5.2 Various Interval Arithmetic

A popular IA is CI [57] used in Example 16. The main weakness of CI is the loss of
dependency among values. For instance, if x ∈ [2, 4] then, x − x is evaluated to [−2, 2]
instead of [0, 0].

Affine intervals (AIs) [14, 54, 46] introduce noise symbols ε, which are interpreted as
intervals [−1, 1]. Thus, an AI correctly cancels the subtraction among the same variable,
e.g., x ∈ [2, 4] above is represented as 3 + ε and x − x becomes 0. Consider an example
with multiplications x2 − x × y with x ∈ [2, 4] and y ∈ [0, 2]. Then, an AI respectively
represents the intervals of x and y as [3, 3]+ ε1 and 1+ ε2. The interpretation of x2−x×y
is:

30

([3, 3] + ε1)2 − ([3, 3] + ε1)× ([1, 1] + ε2)

= [9, 9] + [6, 6]ε1 + ε21 − ([3, 3] + [3, 3]ε2 + ε1 + ε1ε2)

= [6, 6] + [5, 5]ε1 − [3, 3]ε2 + ε21 − ε1ε2.

In order to preserve the soundness of affine intervals w.r.t. Definition 16 (as an over-
approximation), constants in Affine forms are represented by intervals, and CI is used
during arithmetic of affine intervals.

Types of affine intervals vary due to choices of approximations on the multiplications
ε2i and εiεj.

1. AA [14, 73] replaces εiεj with a fresh noise symbol.

2. AF1 and AF2 [54] prepare a fixed noise symbol for any εiεj.

3. EAI [59] replaces εiεj with [−1, 1]εi or [−1, 1]εj.

4. AF2 [54] replaces ε2i with the fixed noise symbols ε+ or ε−.

5. The Chebyshev Approximation Interval (CAI) was proposed in [46], which uses
linear Chebyshev approximations (Fig. 5.2) on ε2i and εi|εi|.

The main drawback of AIs is that the estimates of the multiplications between different
variables may be less precise than those of CI.

Example 24 Consider xy for x ∈ [2, 4] and y ∈ [0, 2]. Then, CI evaluates it as [0, 8],
where AA computes

([3, 3] + ε1)× ([1, 1] + ε2) = [3, 3] + [3, 3]ε2 + ε1 + ε1ε2

which is evaluated to [3, 3] + [−3, 3] + [−1, 1] + [−1, 1][−1, 1] = [−2, 8].

However, as mentioned previously, AIs partially preserve the dependency among val-
ues, which is lost in CI. The example below shows the value dependency.

Example 25 Let g(x1, x2) = x3
1 − 2x1x2 for x1 = [0, 2] = 1 + ε1 and x2 = [1, 3] = 2 + ε2.

• While CI [57] estimates g(x1, x2) as [−12, 8],

• AF2 does as −[3, 3]− ε1 − [2, 2]ε2 + [3, 3]ε+ + [3, 3]ε± which is evaluated to [−9, 6].

The Chebyshev approximations in CAI [46] on ε2 and ε|ε| (Fig. 5.3) are given by:

|x| − 1

4
≤ x2 = |x|2 ≤ |x| and x− 1

4
≤ x|x| ≤ x+

1

4

which leads to:

εε = |ε||ε| = |ε|+ [−1

4
, 0] and ε|ε| = ε+ [−1

4
,
1

4
].

Detailed definitions are given in Appendix A.

Example 26 Let f = (x2 − 2y2 + 7)2 + (3x + y − 5)2, x ∈ [−1, 1], and y ∈ [−2, 0]. The
bounds of f computed by AF1, AF2, and CAI are [−98, 220], [−53, 191], and [−4.6875, 163.25]
respectively.

31

a u b

Figure 5.2: Chebyshev ap-
proximation

y = x2

1

y

-0.25

x-1 1

y y = x|x|

1

x
-0.25

0.25

1-1

-1

Figure 5.3: Chebyshev approximation of x2 and x |x|

Example 27 Let sin(x) = x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
(an initial segment of Taylor expan-

sion) and x ∈ [0, 0.523598]. The bounds of sin(x) computed by AF1, AF2, and CAI
are 10−6[−6290.49099241, 523927.832027], 10−6[−6188.00580507, 514955.797111], and
10−6[−1591.61467700, 503782.471931] respectively.

The authors in [26] utilized a symbol δ, which is similar to ε in AIs, to handle strict
linear inequalities over rationals. The domain of rationals Q is extended to Qδ = {c+kδ |
c, k ∈ Q}. In addition, the operations and comparison over Qδ are defined with the
presence of the symbol δ [26]. While the symbolic transformations involving δ in [26] and
ε in AIs share similarities, they are essentially different in their purposes. AIs introduce
ε symbols to present bounded intervals and maintain the relationship between related
intervals. However, δ in [26] is used to convert strict inequalities and strict bounds into
corresponding non-strict ones with the following observation. A conjunction of strict
inequalities p1 > 0∧ · · · ∧ pn > 0 is satisfiable if and only if there exists a positive rational
number δ such that p1 ≥ δ ∧ · · · ∧ pn ≥ δ [26, Lemma 1].

Although raSAT provides implementations of CI [57], AF1, AF2, EAI, and CAI [14,
54, 46], AF2 and CI are selected by using an empirical trade off between efficiency and
precision. Given an APC g � 0, raSAT uses CI first. If it detects that the APC is either
ia-valid or ia-unsat, the interval arithmetic for the APC is complete. Otherwise, i.e.,
ia-sat is returned by CI, AF2 is applied to prove or disprove the APC. The result of CI
is further re-used to refine the range of g in the box B as G(B) = GCI(B) ∩GAF2(B).

Computation of interval arithmetic is generally more expensive than computation of
floating-point arithmetic because the upper and lower bounds of the intervals must be
rounded up and down respectively. In addition, AIs involve symbolic computations which
are expensive. Since the procedure of decomposing a box B into B1 and B2 makes B
different from new boxes in only one of its dimensions, most heavy computations in IA
are repeated when reestimating the range of a polynomial g in one of the new boxes.
raSAT avoids such repetitions by storing IA results at each node of the syntax tree of
g and re-computing them only when the IA results at one of the direct child nodes was
changed.

5.3 Various Heuristics to boost SAT Detection

This section proposes two heuristic measures to improve the performance of the raSAT
loop framework, namely SAT-likelihood and variables sensitivity.

32

Suppose AI estimates the range of a polynomial g in a box B as [c1, d1]ε1 + · · · +
[cn, dn]εn, which is evaluated by instantiating [−1, 1] to εi for i = 1, . . . , n.

Definition 25 SAT-likelihood of an APC g � 0 in a box B is:

|ic(g � 0, G(B))|
|G(B)|

.

For a conjunction ϕ of APCs, the SAT-likelihood of the box B is the least SAT-likelihood
in B among APCs.

Definition 26 The sensitivity of a variable xi in g > 0 is max(|ci|, |di|).

Example 28 Continue the Example 25, the SAT-likelihood of g(x1, x2) > 0 is 6
9−(−6)

=
0.4 by AF2, and the sensitivities of x1 and x2 are 1 and 2 by AF2, respectively.

When popping a box from the box storage, raSAT pops the box with the largest value
of SAT-likelihood. The box storage in Fig. 5.1 is consequently implemented as a priority
queue.

When generating test values for the variable xi, raSAT further observes the coefficient
of the corresponding error symbol εi to guide the generation. The following example
illustrates the details of the heuristic.

Example 29 The AF2 transforms g as [2, 2] − [6, 6]ε1 − [2, 2]ε2 + [4, 4]e+ + [6, 6]ε± for
the APC g = x2

1 + x1x2 − 4 < 0 and the box B = [−3, 1] × [−4, 2] of (x1, x2). The
coefficient corresponding to x1 is −[6, 6] which is negative. We consequently estimate that
g is monotonically decreasing w.r.t. x1, and similarly w.r.t. x2. In addition, we need the
test values such that the value of g become as small as possible because the APC is g < 0.
We can select the upper bounds of x1 and x2 as the test values for these two reasons. The
test case {(x1, 1), (x2, 2)} in this example will satisfy the APC. If we rather take the lower
bounds as test values, i.e., {(x1,−3), (x4,−4)}, the test case will not satisfy the APC.

The concrete strategy for generating the test values of each variable in raSAT is
summarized in Table 5.1. Note that when generating test values for some variables at line
6 of Algorithm 3, one APC gi � 0 is passed into the generation function.

If one test value is generated for a variable, the generation follows the strategy in
Table 5.1. On the other hand, if two test values are generated, one follows the strategy
in Table 5.1, and the other is randomly selected.

Sign of the error coefficient gi > 0 or gi ≥ 0 gi < 0 or gi ≤ 0 gi = 0
Positive Upper bound Lower bound Random
Negative Lower bound Upper bound Random
0 Random Random Random

Table 5.1: Strategy for generating one test value of a variable in raSAT

As mentioned, raSAT restricts the number of test cases to at most 210 by selecting
the 10 most influential variables for generating 2 test values. The selection proceeds as
following two steps.

33

1. Select 10 APCs with the least SAT-likelihood.

2. For each selected APC, choose one variable with the highest sensitivity.

The premise behind this is that in incremental testing on APCs, test cases for an APC
with the least SAT-likelihood will be more likely to be discarded, and test-unsat thus
will be detected earlier. In addition, variables with smaller sensitivities will not make the
polynomial change it values much when their values are changed.

These metrics are also used in “Box decomposition” where raSAT selects the variable
with the largest sensitivity in the Test-unsat APC with the least SAT-likelihood to
decompose its interval.

raSAT starts the search with a small initial box. Current choice is [−8, 8]n, which
is selected by experiments. If satisfiability is detected inside it, the search completes
and returns sat. If unsatisfiability is detected, raSAT restarts with the box [−∞,∞]n.
Because of our strategy in “Box decomposition” (Section 5.1), raSAT eventually produces
the box [−8, 8]n after iterative decompositions, which is immediately discarded because
it had been proven to not satisfy the constraint.

Since ICP may not terminate (viz., for the cases in Fig. 4.4c and 4.4d), in order to
avoid local pitfalls selected by the heuristics, raSAT prepares a threshold on the size
of boxes to avoid further decompositions and switches the search to other boxes. When
all boxes are below the threshold, raSAT selects another propositional solution provided
by the SAT solver. If raSAT fails to show either sat or unsat on every propositional
solutions with the given threshold, it decreases the threshold and resets the search. The
initial threshold is currently set to 0.125 and reset by dividing the previous threshold by
8.

The effect of heuristics was examined with 18 combinations of these metrics and ran-
dom choices (details are in Appendix C). Of these, only the above combination demon-
strated visible differences from the random choices, especially on SAT detection for quite
large problems such as QF NRA/zankl/matrix-[2-5]-all-*.smt2. The current heuristics
choice detects 15 SAT (including nine problems marked “unknown” in the SMT-LIB
benchmarks), whereas others detect at most 5 SATs (with at most 1 problem annotated
as “unknown”).

5.4 raSAT Loop for Constraints over Integers

We have mostly focused on polynomial constraints over reals (QF NRA) in this paper.
The required modifications to apply the techniques to those over integers (QF NIA) are
simple.

• In testing, test values are restricted to integer-valued ones.

• In box decomposition, the lower and upper bounds of intervals in each box are
rounded up and down respectively, to the nearest integers. For instance, [−9.6, 10.63]
becomes [−9, 10].

Since, we can directly compute exact equality on integers, the above modifications of
raSAT loop is able to solve satisfiable equations.

34

Chapter 6

Subtropical Satisfiability

This chapter extends the idea in [76] to find a satisfiable instance for multiple inequalities.
While Sect. 3.4.2 overviews about subtropical real root finding, we are going to illustrate
our extension idea through an example.

1 2 3 4

1

2

3

4

0 1 2 3 4

1

2

3

4

0

Figure 6.1: Newton polytope of x4y2− 3x3 +x2y2− 1000x2y3− 9xy2 and x4y3− 555x3y−
793xy2 − y

Example 30 Consider f > 0 ∧ g > 0 where f := x4y2 − 3x3 + x2y2 − 1000x2y3 − 9xy2

and g = x4y3 − 555x3y − 793xy2 − y > 0. Figure 6.1 illustrates the Newton polytope of f
and g. We might construct a solution for f > 0 ∧ g > o as follows.

• Following example 15, since (4, 2) is a vertex of the Newton polytope, the monomial
x4y2 dominates −3x3 +x2y2−1000x2y3−9xy2 when (x, y) follows the curve (a2, a1).
As a result, with a large enough a, f(a2, a1) > 0.

• Similarly (4, 3) is a vertex of Newton polytope for g, the monomial x4y3 dominates
others in g when (x, y) follows the curve (a2, a1). As a result, with a large enough
a, f(a2, a1) > 0.

As a consequence, with a large enough a, f(a) > 0 ∧ g(a) > 0.

In this example, the common normal vector (2, 1) ensures the global solution for inequal-
ities, which is the central idea of our extension.

Before describing the extension and some generalizations for the method, we briefly
introduce basic facts and revisit the idea of subtropical real root finding [76].

35

(a) The frame and the Newton polytope P of f (b) The variety of f and the
moment curve (a−2, a3)

Figure 6.2: An illustration of Example 31, where f = y + 2xy3 − 3x2y2 − x3 − 4x4y4

6.1 Basic Facts about Newton Polytopes

For a ∈ R, a vector x = (x1, . . . , xd) of variables, and p = (p1, . . . , pd) ∈ Rd we use
notations ap = (ap1 , . . . , apd) and xp = (xp11 , . . . , x

pd
d). The frame F of a multivariate

polynomial f ∈ Z[x1, . . . , xd] in sparse distributive representation

f =
∑
p∈F

fpxp, fp 6= 0, F ⊂ Nd,

is uniquely determined, and written frame(f). It can be partitioned into a positive and a
negative frame, according to the sign of fp:

frame+(f) = {p ∈ frame(f) | fp > 0 }, frame−(f) = {p ∈ frame(f) | fp < 0 }.

For p, q ∈ Rd we define pq = {λp + (1 − λ)q ∈ Rn | λ ∈ [0, 1] }. Recall that
S ⊆ Rd is convex if pq ⊆ S for all p, q ∈ S. Furthermore, given any S ⊆ Rd, the convex
hull conv(S) ⊆ Rd is the unique inclusion-minimal convex set containing S. The Newton
polytope of a polynomial f is the convex hull of its frame, newton(f) = conv(frame(f)).
Fig. 6.2a illustrates the Newton polytope of

y + 2xy3 − 3x2y2 − x3 − 4x4y4 ∈ Z[x, y],

which is the convex hull of its frame {(0, 1), (1, 3), (2, 2), (3, 0), (4, 4)} ⊂ N2. As a con-
vex hull of a finite set of points, the Newton polytope is bounded and thus indeed a
polytope [69].

The face [69] of a polytope P ⊆ Rd with respect to a vector n ∈ Rd is

face(n, P) = {p ∈ P | nTp ≥ nTq for all q ∈ P }.

36

Faces of dimension 0 are called vertices. We denote by V(P) the set of all vertices of
P . We have p ∈ V(P) if and only if there exists n ∈ Rd such that nTp > nTq for all
q ∈ P \ {p}. In Fig.6.2a, (4, 4) is a vertex of the Newton polytope with respect to (1, 1).

It is easy to see that for finite S ⊂ Rd we have

V(conv(S)) ⊆ S ⊆ conv(S). (6.1)

The following lemma gives a characterization of V(conv(S)):

Lemma 2 Let S ⊂ Rd be finite, and let p ∈ S. The following are equivalent:

(i) p is a vertex of conv(S) with respect to n.

(ii) There exists a hyperplane H : nTx + c = 0 that strictly separates p from S \ {p},
and the normal vector n is directed from H towards p.

Proof 3 Assume (i). Then there exists n ∈ Rd such that nTp > nTq for all q ∈ S\{p} ⊆
conv(S) \ {p}. Choose q0 ∈ S \ {p} such that nTq0 is maximal, and choose c such that
nTp > −c > nTq0. Then nTp + c > 0 and nTq + c ≤ nTq0 + c < 0 for all q ∈ S \ {p}.
Hence H : nTp + c = 0 is the desired hyperplane.

Assume (ii). It follows that nTp+ c > 0 > nTq+ c for all q ∈ S \{p}. If q ∈ S \{p},
then nTp > nTq. If, in contrast, q ∈ (conv(S)\S)\{p} = conv(S)\S, then q =

∑
s∈S tss,

where ts ∈ [0, 1],
∑

s∈S ts = 1, and at least two ts are greater than 0. It follows that

nTq = nT
∑
s∈S

tss < nTp
∑
s∈S

ts = nTp. (Q.E.D.)

Let S1, . . . , Sm ⊆ Rd, and let n ∈ Rd. If there exist p1 ∈ S1, . . . , pn ∈ Sm such
that each pi is a vertex of conv(Si) with respect to n, then the (unique) vertex cluster of
{Si}i∈{1,...,m} with respect to n is defined as (p1, . . . ,pm).

6.2 Subtropical Real Root Finding Revisited

This section improves on the original method described in [76]. It furthermore lays some
theoretical foundations to better understand the limitations of the heuristic approach.

The method finds real zeros with all positive coordinates of a multivariate polynomial
f in three steps:

1. Evaluate f(1, . . . , 1). If this is 0, we are done. If this is greater than 0, then consider
−f instead of f . We may now assume that we have found f(1, . . . , 1) < 0.

2. Find p with all positive coordinates such that f(p) > 0.

3. Use the Intermediate Value Theorem (a continuous function with positive and neg-
ative values has a zero) to construct a root of f on the line segment 1p.

We focus here on Step 2. Our technique builds on [76, Lemma 4], which we are going
to restate now in a slightly generalized form. While the original lemma required that
p ∈ frame(f) \ {0}, inspection of the proof shows that this limitation is not necessary:

37

Lemma 3 Let f be a polynomial, and let p ∈ frame(f) be a vertex of newton(f) with
respect to n ∈ Rd. Then there exists a0 ∈ R+ such that for all a ∈ R+ with a ≥ a0 the
following holds:

1. |fp an
Tp| > |

∑
q∈frame(f)\{p} fq a

nTq|,

2. sign(f(an)) = sign(fp). (Q.E.D.)

In order to find a point with all positive coordinates where f > 0, the original method
iteratively examines each p ∈ frame+(f) \ {0} to check if it is a vertex of newton(f)
with respect to some n ∈ Rd. In the positive case, Lemma 3 guarantees for large enough
a ∈ R+ that sign(f(an)) = sign(fp) = 1, in other words, f(an) > 0.

Example 31 Consider f = y + 2xy3 − 3x2y2 − x3 − 4x4y4. Figure 6.2a illustrates the
frame and the Newton polytope of f , of which (1, 3) is a vertex with respect to (−2, 3).
Lemma 3 ensures that f(a−2, a3) is strictly positive for sufficiently large positive a. For
example, f(2−2, 23) = 51193

256
. Figure 6.2b shows how the moment curve (a−2, a3) with a ≥ 2

will not leave the sign invariant region of f that contains (2−2, 23).

An exponent vector 0 ∈ frame(f) corresponds to an absolute summand f0 in f . Its above-
mentioned explicit exclusion in [76, Lemma 4] originated from the false intuition that one
cannot achieve sign(f(an)) = sign(f0) because the monomial f0 is invariant under the
choice of a. However, inclusion of 0 can yield a normal vector n which renders all other
monomials small enough for f0 to dominate.

Given a finite set S ⊂ Rd and a point p ∈ S, the original method uses linear pro-
gramming to determine if p is a vertex of conv(S) w.r.t. some vector n ∈ Rd. Indeed,
from Lemma 2, the problem can be reduced to finding a hyperplane H : nTx + c = 0 that
strictly separates p from S \ {p} with the normal vector n pointing from H to p. This is
equivalent to solving the following linear problem with d+ 1 real variables n and c:

ϕ(p, S,n, c) =̇ nTp + c > 0 ∧
∧

q∈S\{p}

nTq + c < 0. (6.2)

Notice that with the occurrence of a nonzero absolute summand the corresponding
point 0 is generally a vertex of the Newton polytope with respect to −1 = (−1, . . . ,−1).
This raises the question whether there are other special points that are certainly vertices
of the Newton polytope. In fact, 0 is a lexicographic minimum in frame(f), and it is not
hard to see that minima and maxima with respect to lexicographic orderings are generally
vertices of the Newton polytope.

We are now going to generalize that observation. A monotonic total preorder � ⊆
Zd × Zd is defined as follows:

(i) x � x (reflexivity)

(ii) x � y ∧ y � z −→ x � z (transitivity)

(iii) x � y −→ x + z � y + z (monotonicity)

(iv) x � y ∨ y � x (totality).

38

The difference to a total order is the missing anti-symmetry. As an example in Z2 consider
(x1, x2) � (y1, y2) if and only if x1 + x2 ≤ y1 + y2. Then −2 � 2 and 2 � −2 but
−2 6= 2. Our definition of � on the extended domain Zd guarantees a cancellation law
x + z � y + z −→ x � y also on Nd. The following lemma follows by induction using
monotonicity and cancellation:

Lemma 4 For n ∈ N \ {0} denote as usual the n-fold addition of x as n � x. Then
x � y←→ n� x � n� y. (Q.E.D.)

Any monotonic preorder � on Zd can be extended to Qd: Using a suitable principle
denominator n ∈ N \ {0} define(x1

n
, . . . ,

xd
n

)
�
(y1

n
, . . . ,

yd
n

)
if and only if (x1, . . . , xd) � (y1, . . . , yd).

This is well-defined.
Given x � y we have either y � x or y � x. In the former case we say that x

and y are strictly preordered and write x ≺ y. In the latter case they are not strictly
preordered, i.e., x ⊀ y although we might have x 6= y. In particular, reflexivity yields
x � x and hence certainly x ⊀ x.

Example 32 Lexicographic orders are monotonic total orders and thus monotonic total
preorders. Hence our notion covers our discussion of the absolute summand above. Here
are some further examples: For i ∈ {1, . . . , d} we define x �i y if and only if πi(x) ≤
πi(y), where πi denotes the i-th projection. Similarly, x �i y if and only if πi(x) ≥ πi(y).
Next, x �Σ y if and only if

∑
i xi ≤

∑
i yi. Our last example is going to be instrumental

with the proof of the next theorem: Fix n ∈ Rd, and define for p, p′ ∈ Zd that p �n p′ if
and only if nTp ≤ nTp′.

Theorem 4 Let f ∈ Z[x1, . . . , xd], and let p ∈ frame(f). Then the following are equiva-
lent:

(i) p ∈ V(newton(f))

(ii) There exists a monotonic total preorder � on Zd such that

p = max≺(frame(f)).

Proof 4 Let p be a vertex of newton(f) specifically with respect to n. By our definition
of a vertex in Sect. 6.1, p is the maximum of frame(f) with respect to ≺n.

Let, vice versa, � be a monotonic total preorder on Zd, and let p = max≺(frame(f)).
Shortly denote V = V(newton(f)), and assume for a contradiction that p /∈ V . Since
p ∈ frame(f) ⊆ newton(f), we have

p =
∑
s∈V

tss, where ts ∈ [0, 1] and
∑
s∈V

ts = 1.

According to (6.1) in Sect. 6.1 we know that V ⊆ frame(f) ⊆ newton(f). It follows that
s ≺ p for all s ∈ V , and using monotony we obtain

p ≺
∑
s∈V

tsp =

(∑
s∈V

ts

)
p = p.

On the other hand, we know that generally p ⊀ p, a contradiction. (Q.E.D.)

39

(a) f = y − x2 + 5x− 4 (b) f = −y − x2 + 2x+ 3

(c) f = −y − x2 + 4x (d) f = −y − x2 + 6x− 5

Figure 6.3: Four scenarios of polynomials for the subtropical method. The shaded regions
show Π(f).

In Fig. 6.2a we have (0, 1) = max�1(frame(f)), (3, 0) = max�2(frame(f)), and (4, 4) =
max�1(frame(f)) = max�2(frame(f)). This shows that, besides contributing to our the-
oretical understanding, the theorem can be used to substantiate the efficient treatment
of certain special cases in combination with other methods for identifying vertices of the
Newton polytope.

Corollary 1 Let f ∈ Z[x1, . . . , xd], and let p ∈ frame(f). If p = max(frame(f)) or
p = min(frame(f)) with respect to an admissible term order in the sense of Grbner Basis
theory (see Sec. 3.1.2), then p ∈ V(newton(f)). (Q.E.D.)

It is one of our research goals to identify and characterize those polynomials where
the subtropical heuristic succeeds in finding positive points. We are now going to give
a necessary criterion. Let f ∈ Z[x1, . . . , xd], define Π(f) = { r ∈]0,∞[d | f(r) > 0 }, and
denote by Π(f) its closure with respect to the natural topology. In Lemma 3, when a
tends to∞, an will tend to some r ∈ {0,∞}d. If r = 0, then 0 ∈ Π(f). Otherwise, Π(f) is
unbounded. Consequently, for the method to succeed, Π must have at least one of those
two properties. Figure 6.3 illustrates four scenarios: the subtropical method succeeds
in the first three cases while it fails to find a point in Π(f) in the last one. The first
sub-figure presents a case where Π(f) is unbounded. The second and third sub-figures
illustrate cases where the closure of Π(f) contains (0, 0). In the fourth sub-figure where
neither Π(f) is unbounded nor its closure contains (0, 0), the method cannot find any
positive value of the variables for f to be positive.

40

6.3 From One Polynomial to Multiple Ones

The subtropical method as presented in [76] finds zeros with all positive coordinates of
one single multivariate polynomial. This requires to find a corresponding point with a
positive value of the polynomial. In the sequel we restrict ourselves to this sub-task. This
will allow us generalize from one polynomial to simultaneous positive values of finitely
many polynomials.

A Sufficient Condition

With a single polynomial, the existence of a positive vertex of the Newton polytope
guarantees the existence of positive real choices for the variables with a positive value
of that polynomial. For several polynomials we introduce a more general notion: A
sequence (p1, . . . ,pm) is a positive vertex cluster of {fi}i∈{1,...,m} with respect to n ∈ Rd
if it is a vertex cluster of {frame(fi)}i∈{1,...,m} with respect to n and pi ∈ frame+(fi)
for all i ∈ {1, . . . ,m}. The existence of a positive vertex cluster will guarantee the
existence of positive real choices of the variables such that all polynomials f1, . . . , fm
are simultaneously positive. The following lemma is a corresponding generalization of
Lemma 3:

Lemma 5 If there exists a vertex cluster (p1, . . . ,pm) of {frame(fi)}i∈{1,...,m} with respect
to n ∈ Rn, then there exists a0 ∈ R+ such that the following holds for all a ∈ R+ with
a ≥ a0 and all i ∈ {1, . . . ,m}:

1. |(fi)pi
an

Tpi| > |
∑

q∈frame(fi)\{pi}(fi)q a
nTq|,

2. sign(fi(a
n)) = sign((fi)pi

).

Proof 5 From [76, Lemma 4], for each i ∈ {1, . . . ,m}, there exist a0,i ∈ R+ such that
for all a ∈ R+ with a ≥ a0,i the following holds:

1. |(fi)pi
an

Tpi| > |
∑

q∈frame(fi)\{pi}(fi)q a
nTq|,

2. sign(fi(a
n)) = sign((fi)pi

).

It now suffices to take a0 = max{a0,i | 1 ≤ i ≤ m}. (Q.E.D.)

Similarly to the case of one polynomial, the following Proposition provides a sufficient
condition for the existence of a common point with positive value for multiple polynomials.

Proposition 1 If there exists a positive vertex cluster (p1, . . . ,pm) of the polynomials
{fi}i∈{1,...,m} with respect to a vector n ∈ Rd, then there exists a0 ∈ R+ such that for all
a ∈ R+ with a ≥ a0 the following holds:

m∧
i=1

fi(a
n) > 0.

Proof 6 For i ∈ {1, . . . ,m}, since pi ∈ frame+(fi), Lemma 5 implies fi(a
n) > 0.

(Q.E.D.)

41

Example 33 Consider f1 = 2− xy2z + x2yz3, f2 = 3− xy2z4 − x2z − x4y3z3, and f3 =
4 − z − y − x + 4. The exponent vector 0 is a vertex of newton(f1), newton(f2), and
newton(f3) with respect to (−1,−1,−1). Choose a0 = 2 ∈ R+. Then for all a ∈ R with
a ≥ a0 we have f1(a−1, a−1, a−1) > 0 ∧ f2(a−1, a−1, a−1) > 0 ∧ f3(a−1, a−1, a−1) > 0.
(Q.E.D.)

Existence of Positive Vertex Clusters

Given polynomials f1, . . . , fm, Proposition 1 provides a sufficient condition, i.e. the
existence of a positive vertex cluster of {fi}i∈{1,...,m}, for the satisfiability of

∧m
i=1 fi > 0.

A straightforward method to decide the existence of such a cluster is to verify whether
each (p1, . . . ,pm) ∈ frame+(f1)×· · ·× frame+(fm) is a positive vertex cluster by checking
the satisfiability of the formula ∧

i∈{1,...,m}

ϕ(pi, frame(fi),n, ci),

where ϕ is defined as in (6.2) on p.38. This is a linear problem with d+m variables n, c1,
. . . , cm. Since frame(f1), . . . , frame(fm) are finite, checking all m-tuples (p1, . . . ,pm) will
terminate, provided we rely on a complete algorithm for linear programming, such as the
Simplex algorithm [17], the ellipsoid method [45], or the interior point method [44]. This
provides a decision procedure for the existence of a positive vertex cluster of {fi}i∈{1,...,m}.
However, this requires checking all candidates in frame+(f1)× · · · × frame+(fm).

We propose to use instead state-of-the-art SMT solving techniques over linear real
arithmetic to examine whether or not {fi}i∈{1,...,m} has a positive vertex cluster with
respect to some n ∈ Rd. In the positive case, a solution for

∧m
i=1 fi > 0 can be constructed

as an with a sufficiently large a ∈ R+.
To start with, we provide a characterization for the positive frame of a single polyno-

mial to contain a vertex of the Newton polytope.

Lemma 6 Let f ∈ Z[x]. The following are equivalent:

(i) There exists a vertex p ∈ frame+(f) of newton(f) = conv(frame(f)) with respect to
n ∈ Rd.

(ii) There exists a vertex p′ ∈ frame+(f) such that p′ is also a vertex of conv(frame−(f) ∪ {p′})
with respect to n′ ∈ Rd.

Proof 7 Assume (i). Take p′ = p and n′ = n. Since p is a vertex of newton(f) with
respect to n, nTp > nTp1 for all p1 ∈ frame(f) \ {p}. This implies that nTp > nTp1

for all p1 ∈ frame−(f) \ {p} =
(
frame−(f) ∪ {p}

)
\ {p}. In other words, p is a vertex of

conv(frame−(f) ∪ {p}) with respect to n.
Assume (ii). Suppose V = V(newton(f)) ⊆ frame−(f). Then, p′ =

∑
s∈V tss where

ts ∈ [0, 1],
∑

s∈V ts = 1. It follows that

n′Tp′ =
∑
s∈V

tsn
′T s <

∑
s∈V

tsn
′Tp′ = n′Tp′

∑
s∈V

ts = n′Tp′,

which is a contradiction. As a result, there must be some p ∈ frame+(f) which is a vertex
of newton(f) with respect to some n ∈ Rd. (Q.E.D.)

42

Thus some p ∈ frame+(f) is a vertex of the Newton polytope of a polynomial f if and
only if the following formula is satisfiable:

ψ(f,n′, c) =̇
∨

p∈frame+(f)

ϕ
(
p, frame−(f) ∪ {p},n′, c

)

≡
∨

p∈frame+(f)

n′
T
p + c > 0 ∧

∧
q∈frame−(f)

n′
T
q + c < 0

≡

 ∨
p∈frame+(f)

n′
T
p + c > 0

 ∧
 ∧

p∈frame−(f)

n′
T
p + c < 0

 .
For the case of several polynomials, the following theorem is a direct consequence of

Lemma 6.

Theorem 5 Polynomials {fi}i∈{1,...,m} have a positive vertex cluster with respect to n ∈
Rd if and only if

∧m
i=1 ψ(fi,n, ci) is satisfiable. (Q.E.D.)

The formula
∧m
i=1 ψ(fi,n, ci) can be checked for satisfiability using combinations of

linear programming techniques and DPLL(T) procedures [25, 31], i.e., satisfiability mod-
ulo linear arithmetic on reals. Any SMT solver supporting the QF LRA logic is suitable.
In the satisfiable case {fi}i∈{1,...,m} has a positive vertex cluster and we can construct a
solution for

∧m
i=1 fi > 0 as discussed earlier.

Example 34 Consider f1 = −12 + 2x12y25z49 − 31x13y22z110 − 11x1000y500z89 and f2 =
−23 + 5xy22z110 − 21x15y20z1000 + 2x100y2z49. With n = (n1, n2, n3) this yields

ψ(f1,n, c1) = 12n1 + 25n2 + 49n3 + c1 > 0 ∧ 13n1 + 22n2 + 110n3 + c1 < 0

∧ 1000n1 + 500n2 + 89n3 + c1 < 0 ∧ c1 < 0,

ψ(f2,n, c2) = (n1 + 22n2 + 110n3 + c2 > 0 ∨ 100n1 + 2n2 + 49n3 + c2 > 0)

∧ 15n1 + 20n2 + 1000n3 + c2 < 0 ∧ c2 < 0.

The conjunction ψ(f1,n, c1)∧ ψ(f2,n, c2) is satisfiable. The SMT solver CVC4 computes
n = (−238834

120461
, 2672460

1325071
,− 368561

1325071
) and c1 = c2 = −1 as a model. Theorem 5 and Proposition 1

guarantee that there exists a large enough a ∈ R+ such that f1(an) > 0 ∧ f2(an) > 0.
Indeed, a = 2 already yields f1(an) ≈ 16371.99 and f2(an) ≈ 17707.27. (Q.E.D.)

6.4 More Generalization

So far all variables were assumed to be strictly positive, i.e., only solutions x ∈]0,∞[d

were considered. This section proposes a method for searching over Rd by encoding sign
conditions along with the condition in Theorem 5 as a quantifier-free formula over linear
real arithmetic.

Let V = {x1, . . . , xd} be the set of variables. We define a sign variant of V as a
function τ : V 7→ V ∪ {−x | x ∈ V } such that for each x ∈ V , τ(x) ∈ {x,−x}. We write
τ(f) to denote the substitution f(τ(x1), . . . , τ(xd)) of τ into a polynomial f . Furthermore,

τ(a) denotes
(τ(x1)

x1
a, . . . , τ(xd)

xd
a
)

for a ∈ R. A sequence (p1, . . . ,pm) is a variant positive

43

vertex cluster of {fi}i∈{1,...,m} with respect to a vector n ∈ Rd and a sign variant τ if
(p1, . . . ,pm) is a positive vertex cluster of {τ(fi)}i∈{1,...,m}. Note that the substitution of
τ into a polynomial f does not change the exponent vectors in f in terms of their exponents
values, but only possibly changes signs of monomials. Given p = (p1, . . . , pd) ∈ Nd and a
sign variant τ , we define a formula ϑ(p, τ) such that it is true if and only if the sign of
the monomial associated with p is changed after applying the substitution defined by τ :

ϑ(p, τ) =̇
d⊕
i=1

(
τ(xi) = −xi ∧ (pi mod 2 = 1)

)
.

Note that this xor expression becomes true if and only if an odd number of its operands
are true. Furthermore, a variable can change the sign of a monomial only when its
exponent in that monomial is odd. As a result, if ϑ(p, τ) is true, then applying the
substitution defined by τ will change the sign of the monomial associated with p. In
conclusion, some p ∈ frame(f) is in the positive frame of τ(f) if and only if one of the
following mutually exclusive conditions holds:

(i) p ∈ frame+(f) and ϑ(p, τ) = false

(ii) p ∈ frame−(f) and ϑ(p, τ) = true.

In other words, p is in the positive frame of τ(f) if and only if the formula Θ(p, f, τ) =̇(
fp > 0∧¬ϑ(p, τ)

)
∨
(
fp < 0∧ ϑ(p, τ)

)
holds. Then, the positive and negative frames of

τ(f) parameterized by τ are defined as

frame+(τ(f)) = {p ∈ frame(f) | Θ(p, f, τ) },
frame−(τ(f)) = {p ∈ frame(f) | ¬Θ(p, f, τ) },

respectively. The next lemma provides a sufficient condition for the existence of a solution
in Rd of

∧m
i=1 fi > 0.

Lemma 7 If there exists a variant positive vertex cluster of {fi}i∈{1,...,m} with respect to
n ∈ Rd and a sign variant τ , then there exists a0 ∈ R+ such that for all a ∈ R+ with
a ≥ a0 the following holds:

m∧
i=1

fi
(
τ(a)n

)
> 0.

Proof 8 Since {τ(fi)}i∈{1,...,m} has a positive vertex cluster with respect to n, Proposi-
tion 1 guarantees that there exists a0 ∈ R such that for all a ∈ R with a ≥ a0, we have∧m
i=1 τ(fi)(a

n) > 0, or
∧m
i=1 fi

(
τ(a)n

)
> 0. (Q.E.D.)

A variant positive vertex cluster exists if and only if there exist n ∈ Rd, c1, . . . , cm ∈ R,
and a sign variant τ such that the following formula becomes true:

Ψ(f1, . . . , fm,n, c1, . . . , cm, τ) =̇
m∧
i=1

ψ
(
τ(fi),n, ci

)
,

44

where for i ∈ {1, . . . ,m}:

ψ
(
τ(fi),n, ci

)
≡

 ∨
p∈frame+(τ(fi))

nTp + ci > 0

 ∧
 ∧

p∈frame−(τ(fi))

nTp + ci < 0

≡

 ∨
p∈frame(fi)

Θ(p, fi, τ) ∧ nTp + ci > 0

∧

 ∧
p∈frame(fi)

Θ(p, fi, τ) ∨ nTp + ci < 0

 .
The sign variant τ can be encoded as d Boolean variables b1, . . . , bd such that bi is true

if and only if τ(xi) = −xi for all i ∈ {1, . . . , d}. Then, the formula Ψ(f1, . . . , fm,n, c1, . . . , cm, τ)
can be checked for satisfiability using an SMT solver for quantifier-free logic with linear
real arithmetic.

45

Chapter 7

The Intermediate Value Theorem for
Solving Equations

As mentioned, using ICP alone is almost impossible to prove satisfiable equations. The
authors in [46] proposed a combination of interval arithmetic (IA) and the intermediate
value theorem (IVT) to show satisfiability of combinations between inequalities and equa-
tions. This chapter extends this idea to also combine testing results with IA and IVT to
do the job. Before that, we revisit the generalized intermediate value theorem.

7.1 The Generalized Intermediate Value Theorem

Let us recall related definitions and the generalized IVT, i.e., Theorem 5.3.7 in [58]. P(E)
denote the set of all subsets of a set E. A set C ∈ P(Rn) is said to connect two sets
A,B ∈ P(Rn) if there is a continuum (i.e. a compact and connected set) C0 ⊆ C such
that A ∩ C0 and B ∩ C0 are nonempty.

Definition 27 For a set-valued function G : E ⊆ Rn → P(Rm), G is connection-
continuous (c-continuous for short) in E, if, for every continuum C ⊆ E and t, t′ ∈ C,

graph(G|C) = {(t, u) | t ∈ C, u ∈ G(t)}

is compact and connects {t} × Rm and {t′} × Rm.

Example 35 Consider the function G : R → P(R) defined by G(x) = {x2, x + 1} for
x ∈ R. Consider any continuum C ⊆ R, e.g. C = [0.5, 1.5], it is easy to see that the graph
graph(G|C) consisting of the red line AB and the green curve CD in Fig. 7.1 connects
{t} × R and {t′} × R for any t, t′ ∈ C.

Theorem 6 ([58, Theorem 5.3.7]) Let G : D×E ⊆ Rn×Rp → P(Rn) be c-continuous
in D × E. Let B = [l1, h1]× · · · × [ln, hn] ⊆ D and suppose that, for i = 1, · · · , n and all
t ∈ E,

sup(Gi(x, t)) ≤ 0 if x = (r1, · · · , rn) ∈ B and ri = li
inf(Gi(x, t)) ≥ 0 if x = (r1, · · · , rn) ∈ B and ri = hi.

If E is closed and convex, then the set-valued function H : E → P(Rn) defined by:

H(t) = {x ∈ B | (0, · · · , 0︸ ︷︷ ︸
n

) ∈ G(x, t)}

46

-1 1 2

1

2

3

4

0

A

B

C

D

t t'

Figure 7.1: Example of a c-continuous function

is c-continuous. In particular, H(t) is nonempty for all t ∈ E.

Figure 7.2: Example for the generalized intermediate value theorem

Example 36 Consider the function G : [0, 4] × [2, 6] ⊂ R × R → P(R) defined by
G(x, y) = {x2y − x2 − y2 − 1}. Let B = [0, 4]. It is easy to see that for all t ∈ [2, 6], we
have

sup(G1(0, t)) = sup({−t2 − 1}) = t2 − 1 ≤ 0
inf(G1(4, t)) = inf({16t− 16− t2 − 1}) = 16t− 16− t2 − 1 ≥ 0.

Since [2, 6] is closed and convex, by Theorem 6, the function H : [2, 6]→ P(R) defined by
H(t) = {x ∈ [0, 4] | 0 ∈ G(x, t)} is c-continuous. In fact,

H(t) = {x ∈ [0, 4] | x2t− x2 − t2 − 1 = 0}.

47

Consider any continuum C ⊆ [2, 6], without loss of generality, let C = [2, 6]. In addition,

graph(H | C) = {(t, x) | t ∈ C, x ∈ H(t)} = {(t, x) | t ∈ C, x ∈ [0, 4], x2t−x2−t2−1 = 0}.

Fig. 7.2 illustrates that graph(H | C) (the curve FE) is compact and connects {t} × R
and {t′} × R for any t, t′ ∈ C. Note that we use the vertical axis for t and we interpret
each point in the plane as (t, x) instead of the casual one (i.e. (x, t)).

It should be noted that in Theorem 6, the dimension of D is n which is equal to the
dimension of g(x) ∈ G(x) for any x ∈ D×E. In other words, intuitively for our problem
setting, the number of variables for applying the IVT is equal to the number of poly-
nomials. First, we provide a theorem extending Theorem 6 so that we can allow the
number of variables to be greater than or equal to the number of polynomials. In order
to simplify the formulas, we defines some notations. Let B = [l1, h1]× · · · [ln, hn] be a
box for variables (x1, · · · , xn). The set of variables is denoted as V = {x1, · · · , xn}, and
let V ′ = {xi1 , · · · , xik} be a subset of V . We write:

B↓V ′ = {(r1, · · · , rn) ∈ B | rj = lj for j = i1, ..., ik} and
B↑V ′ = {(r1, · · · , rn) ∈ B | rj = hj for j = i1, ..., ik}.

Example 37 Consider a box B = [−3, 1] × [−4, 2] for variables sequence (x, y), (i.e.,
V = {x, y}), and V ′ = {y}. We have B↓V ′ = [−3, 1]×[−4,−4] and B↑V ′ = [−3, 1]×[2, 2].

Furthermore, we denote B(i) = hi−li∑n
i=1(hi−li) for i = 1, . . . , n. It is easy to the property that

for any t ∈ R,
∑n

i=1B(i)t = t.

Example 38 For B = [2, 5] × [1, 8], we have B(1) = 3
10

, B(2) = 7
10

, and for any t ∈ R,
B(1)t+B(2)t = t.

We are ready to give the extension of Theorem 6.

Theorem 7 Let G : D1×· · ·×Dn×E ⊆ Rm1×· · ·×Rmn×Rp → P(Rn) be c-continuous
in D1×· · ·×Dn×E where mi > 0 for i = 1, . . . , n. Let B = B1×· · ·×Bn ⊆ D1×· · ·×Dn

be a box in D1 × · · · ×Dn and suppose that, for i = 1, · · · , n and all t ∈ E,

sup(Gi(x, t)) ≤ 0 if x ∈ B1 × . . . Bi↓Vi · · · ×Bn

inf(Gi(x, t)) ≥ 0 if x ∈ B1 × . . . Bi↑Vi · · · ×Bn

where Vi is the set of variables corresponding to Rmi in the definition of G. If E is closed
and convex, then the set-valued function H : E → P(R

∑n
i=1mi) defined by:

H(t) = {x ∈ B | (0, · · · , 0︸ ︷︷ ︸
n

) ∈ G(x, t)}

is c-continuous. In particular, H(t) is nonempty for all t ∈ E.

Proof 9 Denote Bi = [li,1, hi,1]× · · · × [li,mi
, hi,mi

] and let Vi = {xi,j | j = 1, . . . ,mi} for
i = 1, . . . , n.

Define the function G′ : D′1 × · · · ×D′n × E ⊆ Rm1 × · · · × Rmn × Rp → P(Rn) such
that

G′(x1,1, . . . , xn,mn , t) = G(x1,1 + l1,1, . . . , xn,mn + ln,mn , t)

48

where D′i = {(r1 − li,1, . . . , rmi
− l) | (r1, . . . , rmi

) ∈ Di} for i = 1, . . . , n. Since G(x) is
c-continuous in D1 × · · · ×Dn × E, G′(x) is c-continuous in D′1 × · · · ×D′n × E.

Consider B′ = B′1 × · · · × B′n ⊆ D′1 × · · · × D′n such that B′i = [0, hi,1 − li,1] × · · · ×
[0, hi,1 − li,1]× · · · × [0, hi,mi

− li,mi
] for i = 1, . . . , n. From the hypothesis of the theorem,

we can derive that for i = 1, . . . , n and all t ∈ E,

sup(G′i(x, t)) ≤ 0 if x ∈ B′1 × . . . B′i↓Vi · · · ×B
′
n

inf(Gi(x, t)) ≥ 0 if x ∈ B′1 × . . . B′i↑Vi · · · ×B
′
n.

Consider another function G′′ : D′′1 × · · · ×D′′n × E ⊆ Rn × Rp → P(Rn) defined by

G′′(t1, . . . , tn, t) = G′(B′1(1)t1, . . . , B
′
1(m1)t1, . . . , B

′
n(mn)tn, t)

where D′′i = {
∑mi

j=0 rj | (r1, . . . , rmi
) ∈ D′i} for i = 1, . . . , n.

Let B′′ = B′′1 × · · · × B′′n ⊆ D′′1 × · · · × D′′n such that B′′i = [0,
∑mi

j=1(hi,j − li,j)] for
i = 1, . . . , n. By the construction of G′′, we have i = 1, . . . , n and all t ∈ E,

sup(G′′i (x, t)) ≤ 0 if x = (r1, · · · , rn) ∈ B′′ and ri = 0
inf(G′′i (x, t)) ≥ 0 if x = (r1, · · · , rn) ∈ B′′ and ri =

∑mi

j=1(hi,j − li,j).

Since E is closed and convex, Theorem 6 asserts that the set-valued function H ′′ : E →
P(Rn) defined by:

H ′′(t) = {(t1, . . . , tn) ∈ B′′ | (0, · · · , 0︸ ︷︷ ︸
n

) ∈ G′′(t1, . . . , tn, t)}

is c-continuous. In particular, H ′′(t) is nonempty for all t ∈ E. Since the function
H0 : B′′ ⊆ Rn → P(R

∑n
i=1mi) defined by

H0(t1, . . . , tn) = {(B′1(1)t1 + l1,1, . . . , B
′
1(m1)t1 + l1,m1 , . . . , B

′
n(mn)tn + ln,mn)}

is c-continuous, the function composition H1 : E → P(R
∑n

i=1mi) such that

H1(t) = H0(H ′′(t)) := ∪{H0(t̃) | t̃ ∈ H ′′(t)}

is also c-continuous. Since H1(t) ⊆ H(t) for every t ∈ E, H(t) is also c-continuous and
clearly non-empty. (Q.E.D.)

Example 39 Consider the function G : D1 ×D2 ×E ∈ R×R2 ×R→ P(R2) defined by

G(x, y, z, t) = {(−x+ z + 2, yz − xt)}

where D1 = [9.75, 10], D2 = [4.875, 10.25] × [7.875, 8], and E = [4, 8]. Consider the box
B = B1×B2 where B1 = D1 and B2 = D2. Since CI estimates the range of −x+ z+ 2 as
[−0.25,−0.125] in the box B1↓{x} ×B2 ×E and as [0, 0.125] in the box B1↑{x} ×B2 ×E,
we have for for all t in E,

sup(G1(x′, t)) ≤ 0 if x′ ∈ B1↓{x} ×B2

inf(G1(x′, t)) ≥ 0 if x′ ∈ B1↑{x} ×B2.

49

Similarly, CI estimates the range of yz− xt as [−15.619327,−13.917259] in the box B1×
B2↓{y,z} × E and as [27.990048, 29.692116] in the box B1 ×B2↑{y,z} × E,

sup(G2(x′, t)) ≤ 0 if x′ ∈ B1 ×B2↓{y,z}
inf(G2(x′, t)) ≥ 0 if x′ ∈ B1 ×B2↑{y,z}.

Theorem 7 asserts that the function H : E → P(R3) defined by:

H(t) = {x′ ∈ B | (0, 0) ∈ G(x′, t)}

is c-continuous and H(t) is nonempty for all t ∈ E. In other words, for all t ∈ E, there
exists at least one x′ ∈ B such that (−x+ z + 2, yz − xt) = (0, 0).

Let us illustrate how the proof of Theorem 7 works by continuing the previous example.

Example 40 The function G′ : D′1 × D′2 × E → P(R2) in the proof for this example is
defined by

G′(x, y, z, t) = {(−(x+ 9.75) + (z + 7.875) + 2, (y + 4.875)(z + 7.875)− (x+ 9.75)t)}

where D′1 = [0, 0.25] and D′2 = [0, 5.375]×[0, 0.125]. We have G′(x, y, z, t) is c-continuous.
The box B′ in the proof for this example is D′1 ×D′2. Since (see Example 39)

sup(G1(x′, t)) ≤ 0 if x′ ∈ B1↓{x} ×B2

inf(G1(x′, t)) ≥ 0 if x′ ∈ B1↑{x} ×B2,

we have
sup(G′1(x′, t)) ≤ 0 if x′ ∈ B′1↓{x} ×B′2
inf(G′1(x′, t)) ≥ 0 if x′ ∈ B′1↑{x} ×B′2.

Similarly,
sup(G′2(x′, t)) ≤ 0 if x′ ∈ B′1 ×B′2↓{y,z}
inf(G′2(x′, t)) ≥ 0 if x′ ∈ B′1 ×B′2↑{y,z}.

Next, the function G′′ : D′′1 ×D′′2 × E ⊆ R2 × R→ P(R2) is defined by

G′′(t1, t2, t) = G′(t1,
5.375

5.5
t2,

0.125

5.5
t2, t)

where D′′1 = [0, 0.25] and D′′2 = [0, 5.5].
The box B′′ in the proof for this example is D′′1 ×D′′2 . We have for all t ∈ E, and if

r2 ∈ [0, 5.5]

sup(G′′1(0, r2, t)) = sup(G′1(0, 5.375
5.5

r2,
0.125
5.5

r2, t)) ≤ 0.

In other words, for all t ∈ E,

sup(G′′1(r1, r2, t)) ≤ 0 if x = (r1, r2) ∈ B′′ and r1 = 0.

Similarly we have for all t ∈ E,

sup(G′′1(r1, r2, t)) ≥ 0 if x = (r1, r2) ∈ B′′ and r1 = 0.25
sup(G′′2(r1, r2, t)) ≤ 0 if x = (r1, r2) ∈ B′′ and r2 = 0
sup(G′′2(r1, r2, t)) ≥ 0 if x = (r1, r2) ∈ B′′ and r2 = 5.5.

50

By Theorem 6, the function H ′′ : E → P(R2) defined by

H ′′(t) = {(t1, t2) ∈ B′′ | (0, 0) ∈ G′′(t1, t2, t)}

is c-continuous and H ′′(t) is nonempty for any t ∈ E. Since the function H0 : B′′ ⊆
Rn → P(R3) defined by

H0(t1, t2) = {(t1 + 9.75,
5.375

5.5
t2 + 4.875,

0.125

5.5
t2 + 7.875)}

is c-continuous, the function composition H1 : E → P(R3) defined by

H1(t) = H0(H ′′(t)) := ∪{H0(t̃) | t̃ ∈ H ′′(t)}
= {(t1 + 9.75, 5.375

5.5
t2 + 4.875, 0.125

5.5
t2 + 7.875) | (t1, t2) ∈ B′′

and (0, 0) ∈ G′′(t1, t2, t)}

is also c-continuous. Since H1(t) ⊆ H(t) for every t ∈ E, H(t) is also c-continuous and
non-empty.

Intuitively, Theorem 7 requires that the function G has negative values at lower bounds
of considering variables and positive values at upper bounds. The following lemma extends
the theorem to allow the function to have different signs on bounds of variables in order
to apply the intermediate value theorem.

Lemma 8 Let G : D1×· · ·×Dn×E ⊆ Rm1×· · ·×Rmn×Rp → P(Rn) be c-continuous in
D1× · · ·×Dn×E where mi > 0 for i = 1, . . . , n. Let B = B1× · · ·×Bn ⊆ D1× · · ·×Dn

be a box in D1 × · · · ×Dn and suppose that, for i = 1, · · · , n and all t ∈ E,

sup(Gi(x, t)) ≤ 0 if x ∈ B1 × . . . Bi↓Vi · · · ×Bn

inf(Gi(x, t)) ≥ 0 if x ∈ B1 × . . . Bi↑Vi · · · ×Bn

or,
sup(Gi(x, t)) ≥ 0 if x ∈ B1 × . . . Bi↓Vi · · · ×Bn

inf(Gi(x, t)) ≤ 0 if x ∈ B1 × . . . Bi↑Vi · · · ×Bn

where Vi is the set of variables corresponding to Rmi in the definition of G. If E is closed
and convex, then the set-valued function H : E → P(R

∑n
i=1mi) defined by:

H(t) = {x ∈ B | (0, · · · , 0︸ ︷︷ ︸
n

) ∈ G(x, t)}

is c-continuous. In particular, H(t) is nonempty for all t ∈ E.

Proof 10 Define the new function G′ : D1×· · ·×Dn×E ⊆ Rm1×· · ·×Rmn×Rp → P(Rn)
such that for all i = 1, . . . , n, and all t ∈ E, if

sup(Gi(x, t)) ≤ 0 if x ∈ B1 × . . . Bi↓Vi · · · ×Bn

inf(Gi(x, t)) ≥ 0 if x ∈ B1 × . . . Bi↑Vi · · · ×Bn

then G′i(x, t) = Gi(x, t), otherwise G′i(x, t) = −Gi(x, t). Then, G′ is also c-continuous.
Theorem 7 now can be applied to prove the lemma.

51

7.2 Combining Interval Arithmetic, Testing, and the

IVT to Show Satisfiability of Combinations of In-

equalities and Equations

This section proposes a combination of interval arithmetic, testing, and the IVT aiming
at showing satisfiability combinations of inequalities and equations. Our idea is based on
Lemma 8 where if g1, . . . , gm are polynomials, then the function G : Rn → P(Rm) defined
by G(x) = {(g1(x), . . . , gm(x)} is c-continuous.

First, we simplify the conditions in Lemma 8 by defining the notion of check basis for

equations
m∧
j=1

gj = 0, to describe support for a satisfiable assignment of
m∧
j=1

gj = 0.

Definition 28 Let
m∧
j=1

gj = 0 be a conjunction of equations over V . A sequence (V1, · · · , Vm)

is a check basis of (g1, · · · , gm) in B, if, for each j, j′ ≤ m,

1. ∅ 6= Vj ⊆ var(gj),

2. Vj ∩ Vj′ = ∅ if j 6= j′, and

3. either gj ≤ 0 on B↑Vj and gj ≥ 0 on B↓Vj , or gj ≤ 0 on B↑Vj and gj ≥ 0 on B↓Vj .

Example 41 Consider a conjunction of equations g1 = 0 ∧ g2 = 0 where g1 = x− z − 2,
and g2 = yz − xt, a box B = [9.75, 10] × [4.875, 10.25] × [7.875, 8] × [4, 8] for variables
sequence (x, y, z, t). Let us examine if ({x}, {y, z}) is a check basis of (g1, g2) or not. The
first two conditions in Def. 28 are satisfied. The third one is also satisfied since

G1(B↑{x}) = [−0.25,−0.125] implies that g1 ≤ 0 on B↑{x},

G1(B↓{x}) = [0, 0.125] implies that g1 ≥ 0 on B↓{x},

G2(B↑{y,z}) = [27.990048, 29.692116] implies that g2 ≥ 0 on B↑{y,z},

G2(B↓{y,z}) = [−15.619327,−13.917259] implies that g2 ≤ 0 on B↓{y,z}.

Because of the first condition, the existence of a check basis requires that the number
of variables in V must be greater than or equal to the number of equations m.

Given a test case θ : V ′ 7→ R in B, we write

B|θ = {(r1, · · · , rn) ∈ B | ri = θ(xi) if xi ∈ V ′}.

Example 42 Given a box B = [−3, 1] × [−4, 2] for variables sequence (x, y) and a test
case θ = {(x,−2)}, then B|θ = [−2,−2]× [−4, 2].

The next theorem is a corollary of Lemma 8 which combines interval arithmetic, test-
ing, and the application of IVT to show the satisfiability of a combination of inequalities
and equations.

52

Theorem 8 For a conjunction ϕ of polynomial inequalities and equations

m∧
j=1

gj > 0 ∧
m′∧

j=m+1

gj = 0

and B = [l1, h1]× · · · [ln, hn], assume that the following holds.

1. For a decomposition ϕ1 ∧ ϕ2 of
m∧
j=1

gj > 0, ϕ1 is ia-valid in B and ϕ2 is Test-sat

in B with a test case θϕ2 on the set var(ϕ2) and in B.

2. A check basis (Vm+1, · · · , Vm′) over V \ var(ϕ2) of (gm+1, · · · , gm′) in B|θϕ2
exists.

Then, ϕ has a sat instance in B.

Proof 11 Consider the function G : D1 × · · · × Dm′−m × E ⊆ R|Vm+1| × · · · × R|Vm′ | ×
Rn−m′+m → Rm′−m defined by G(x) = {(gm+1, . . . , gm′)} with the assumption that vari-
ables are in an appropriate order and D1 × · · · ×Dm′−m × E = B. With the existence of
a check basis, Lemma 8 asserts that the function H : E → P(Rm′−m) defined by

H(t) = {x ∈ D1 × · · · ×Dm′−m | (0, · · · , 0︸ ︷︷ ︸
m′−m

) ∈ G(x, t)}

= {x ∈ D1 × · · · ×Dm′−m |
m′∧

j=m+1

gj(x, t) = 0}

is nonempty for any t ∈ E. By taking any point t0 ∈ E|θϕ2
, we have the set H(t0) =

{x ∈ D1 × · · · × Dm′−m |
m′∧

j=m+1

gj = 0} is nonempty. Take x0 ∈ H(t0). Consider the

point r = (x0, t0) which is inside B. The conjunction ϕ is satisfiable at r because of the
following reasons.

• Since ϕ1 is ia-valid in B and r ∈ B, it is satisfiable at r (Lemma 1).

• Since ϕ2 is Test-sat with the test case θϕ2, it is satisfiable at point t0 and thus at
point r.

• By the construction of x0, t0, we have
m′∧

j=m+1

gj(x0, t0) = 0.

(Q.E.D.)

Example 43 illustrates Theorem 8 for V = {x, y} with m = 0 and m′ = n = 2.

Example 43 (Fig. 7.3) Let g1(x, y) = 0 and g2(x, y) = 0 be two equations. Assume that
there exists a box B = [c1, d1]× [c2, d2] such that:

• g1(c1, y) < 0 for all y ∈ [c2, d2], g1(d1, y) > 0 for all y ∈ [c2, d2], and

• g2(x, c2) < 0 for all x ∈ [c1, d1], g2(x, d2) > 0 for all x ∈ [c1, d1].

Thus, g1(x, y) = 0 and g2(x, y) = 0 share a common root in B.

53

Figure 7.3: Example of applying IVT Figure 7.4: Failure of applying IVT

There are two limitations to apply Theorem 8.

• The number of variables (dimensions) must be greater than or equal to the number
of equations.

• Trajectories of equations must cross. For instance, even with iterative box decom-
positions, there is no hope of detecting satisfiability if two equations g1 = 0 and
g2 = 0 are touching (Fig. 7.4).

The complexity of finding a check basis is given below.

Lemma 9 For m polynomials (g1, · · · , gm), a set V of n variables, and a box B, the
complexity to find a check basis in B is bounded by S(n,m)m!T (B), where S(n,m) is the
Stirling number of the second kind [67] and T (B) is the complexity of verifying whether a
sequence (V1, · · · , Vm) is a check basis of (g1, · · · , gm) over B.

Proof 12 Finding a check basis can be done by enumerating all possible candidates and
verifying each of them. The candidates are formed as follows.

• Partition n variables into m non-empty subsets. The number of ways to partition
is the Stirling number of the second kind [67].

• For each partition, check whether each of its permutations is a check basis. There
are m! permutations for each partition. (Q.E.D.)

Since the third condition in Definition 28 is the interpretation of a quantified for-
mula over reals, a complete method to check whether (V1, · · · , Vm) is a check basis of
(g1, . . . , gm) is doubly exponential [19] which is the upper bound of T (B). We here pro-
pose an incomplete but terminating and efficient method using interval arithmetic for
verifying a check basis.

The intermediate value theorem (IVT) detects satisfiability of a single equation g(x) = 0
if there exist t1 and t2 such that g(t1) > 0 and g(t2) < 0. Then, g = 0 holds in between.
For multi-variant equations, we apply the generalized IVT [58, Theorem 5.3.7], and its
usage is summarized in Theorem 8.

We borrow notations ϕ, ϕ1, ϕ2, θϕ2 , and B from Theorem 8.

54

Figure 7.5: raSAT loop with the application of the IVT

Fig. 7.5 illustrates the application of Theorem 8, which is added to the raSAT loop.
The label “>: ia-valid” means that the conjunction of inequalities in ϕ is ia-valid. This
is similarly the case for “=: ia-sat” and “>: Test-sat”.

The label “>: Test-sat over var(ϕ2) ⊆ V ” means that a test case on var(ϕ2) concludes
the Test-sat of ϕ2 and the generalized IVT is applied over V \ var(ϕ2) in the box B|θϕ2

(described by “IVT over V \ var(ϕ2)”).

Algorithm 5 Solving multiple equations
m∧
i=1

gi = 0 for a box B = [l1, h1]× · · · [ln, hn] on

variables x1, · · · , xn

1: equationsProver(
m∧
i=1

gi = 0, B, var(ϕ2))

2: function equationsProver(
m∧
i=j

gi = 0, B, V0)

3: if j > m then . All equations are checked
4: return sat
5: end if
6: for Vj ∈ P (var(gj)) do . P (var(gj)) is the power-set of var(gj)
7: if Vj ∩ V0 = ∅ and ivt(Vj, gj, B) then
8: V0 ← V0 ∪ Vj
9: if equationsProver(

m∧
i=j+1

gi = 0, B, V0) = sat then

10: return sat
11: end if
12: end if
13: end for
14: return unknown
15: end function

Algorithm 5 explains the procedure in the box labeled “IVT over V \ var(ϕ2)” in

Fig. 7.5. For the set of equations
m∧
i=1

gi = 0, the function examines all the check basis

55

candidates in V \ var(ϕ2). The function call ivt(Vj, gj, B) at line 7, which is described in
Algorithm 6, checks the third condition in the Definition 28. Since Algorithm 5 näıvely
searches a check basis, its complexity reaches the upper bound mentioned in Lemma 9
with T (B) is polynomial instead of doubly exponential. If one of two limitations to apply
Theorem 8 mentioned in Sec. 7.1 occurs, Algorithm 5 terminates and returns unknown.

Algorithm 6 Showing the satisfiability of an equation g = 0 inside a box B by applying
IVT at bounds of variables V
1: function ivt(V, g, B)
2: B1 ← B↑V
3: B2 ← B↓V
4: if g(B1) ≤ 0 ∧ g(B2) ≥ 0 then
5: return true
6: end if
7: if g(B1) ≥ 0 ∧ g(B2) ≤ 0 then
8: return true
9: end if
10: return false
11: end function

Example 44 Suppose ϕ is g1 > 0 ∧ g2 = 0 ∧ g3 = 0, where g1 = cd − d, g2 = a − c − 2,
and g3 = bc − ad − 2. Initially the box storage consists of a single box B = [−2, 3.5] ×
[−5, 0]× [0, 1.5]× [−5,−0.5] for (a, b, c, d).

Fig. 7.6 shows the flow for the raSAT loop with the application of the generalized
IVT, where a label [...], B is a pair of a box storage and a currently exploring box B, and
θ denotes a test case. The interval contraction and the constraint propagation reduce B,
B1, and B3 to B′, B′1, and B′3, respectively.

We end this section by a pseudo-code for the addition of the IVT into rasatloop(ϕ)
in the Algorithm 7.

56

Figure 7.6: An example execution of raSAT

57

Algorithm 7 Application of the IVT into raSAT loop for a set of polynomial constraints
ϕ

1: function rasatloop-ivt(ϕ)
2: S ← {]−∞,∞[n}
3: while S 6= ∅ do
4: choose B ∈ S
5: S ← S \ {B}
6: ia-result, B′ ← ia cp(ϕ,B)
7: if ia-result = ia-unsat then
8: continue
9: else if ia-result = ia-valid then
10: return sat
11: end if
12: ϕia-sat ← {ϕapc | ϕapc ∈ ϕ and ϕapc is ia-sat in B′} . exclude ia-valid

APCs
13: test-result← testing(ϕia-sat, B

′, ∅)
14: if test-result =Test-sat then
15: return sat
16: end if
17: ϕ2 ← {ϕapc|ϕapc ∈ ϕia-sat and ϕapc is Test-sat}
18: ϕ3 ← ϕia-sat \ ϕ2

19: if ϕ3 are equations and equationsProver(ϕ3, B
′, var(ϕ2)) = sat then

20: return sat
21: end if
22: B1, B2 ← decompose B′

23: S ← S ∪ {B1, B2}
24: end while
25: return UNSAT
26: end function

58

Chapter 8

Combining Procedures

Our idea is to combine efficient incomplete methods with a complete procedure to pro-
duce an efficient complete framework for solving non-linear arithmetic. As discussed in
Chapter 3, CAD and its variants provide a complete algorithm for solving polynomial
constraints. In our combination, re-implementing CAD would require lots of efforts and
expertise. As a result, we would like to reuse the existing implementation, specifically the
one provided by Redlog/Reduce.

8.1 Utilizing Redlog/Reduce for Completeness

As a complete method, we use Quantifier Elimination techniques (CAD as the core with
virtual substitution as a heuristic) and utilize a computer algebra system, namely Reduce,
and more precisely, the package Redlog [21] which implements interpreted first-order
logic on top of computer algebra. Besides many other domains, Redlog provides decision
procedures for real closed fields. For real arithmetic, Redlog combines two quantifier
elimination techniques, virtual substitution [87, 88, 47] with partial cylindrical algebraic
decomposition [13, 70]. For a survey of real applications of Redlog, see [77]. Further
theories supported by Redlog include discretely valued fields [75], term algebras [78],
QBF [71, 79], Presburger Arithmetic [49] and fragments of non-linear integer arithmetic
[48].

To embed a decision procedure in SMT, one property is mandatory: the procedure
should feature small unsat core production. From an unsatisfiable set of APCs, it should
produce an unsatisfiable subset containing few necessary APCs, optimally a minimal
unsatisfiable subset, i.e. such that all proper subsets are satisfiable. With small unsat core
production, the SMT infrastructure goes considerably beyond a SAT solver enumerating
all possible models of the Boolean abstraction of the input formula, the theory reasoner
refuting them one at a time. Recently a method using linear optimization to compute
conflict sets for cylindrical algebraic decomposition and virtual substitution was presented
in [42] . Virtual substitution and cylindrical algebraic decomposition share the same basic
idea of finding a finite set of test points that suffice to determine the unsatisfiability of
a set of constraints S. If the set S is unsatisfiable, each of these test points falsifies
at least one constraint in S. Finding a conflict set reduces to finding a subset of the
constraints that contains, for each test point, at least one unsatisfied constraint. The idea
was implemented in the Quantifier Elimination algorithms within Redlog. Redlog/Reduce
now furthermore provides an interface for SMT solver, so that the software can be used

59

as a theory reasoner with little effort. This reasoner is used in our portfolio of tools, and
guarantees the completeness of the combination of reasoners on real closed fields.

8.2 Lazy Combination

We have previously discussed subtropical satisfiability, extensions of interval constraint
propagation, and quantifier elimination. Our aim is to combine these in a complete and
efficient framework for solving polynomial constraints. Recall that subtropical satisfia-
bility is only an incomplete heuristic, and the ICP does not even guarantee termination;
it might loop forever, for instance in the case of touching spheres. Combining the ICP
sequentially with other procedures thus requires heuristics for its termination to ensure
fairness and to let the other algorithms also work on the constraints. Before decomposing
a box into smaller ones (line 12 in Algorithm 2), our algorithm will check if bounded boxes
have been generated, all the bounded boxes are smaller than a chosen value ε in all dimen-
sions. If so, the algorithm gives up, and returns unknown along with the box resulting
from the contraction of] − ∞,∞[n from constraints; the algorithm returns the empty
box in case of unsatisfiability and the valid box in case of satisfiability. We furthermore
require that boxes are handled in a chronological order, that is, S in Algorithm 2 becomes
a queue, where the first box (the oldest one) is chosen and removed, and newer boxes are
added at the end. Boxes are decomposed only along axes with lengths greater than ε.
The procedure ensures unbounded boxes are not decomposed infinitely. The algorithm
terminates either when it detects satisfiability (or unsatisfiability) or all bounded boxes
have all dimensions smaller than ε.

A lazy combining approach considers the procedures as black boxes and invokes them
sequentially to check the satisfiability of the constraints. The fastest procedures to ter-
minate are ordered first, and the complete procedure is called last. In Algorithm 8,
stropsat(ϕ) returns sat if and only if subtropical satisfiability succeeds in finding a
model for ϕ; remember that subtropical satisfiability is indeed essentially a model finding
method. The complete decision procedure (in our case, quantifier elimination methods as
implemented in Redlog/Reduce) is called in line 9, and returns either sat (unsat) if the
input is satisfiable (resp. unsatisfiable). Notice that, when calling the complete decision
procedure, the set of constraints ϕ is complemented with a box B found by the ICP.
Actually (this is not shown in Algorithm 8), ϕ is furthermore cleaned of the constraints
that are valid in the box B.

Algorithm 8 Lazy combination of procedures

1: function lazy(ϕ)
2: if subtrop(ϕ) = sat then
3: return SAT
4: end if
5: (result, B) ← rasatloop-ivt(ϕ)
6: if result 6= unknown then
7: return result
8: end if
9: return reduce(ϕ ∧B)
10: end function

60

8.3 Less Lazy Combination

Instead of making a sequential combination of ICP and the complete framework, it is able
to make the integration tighter. Algorithm 9 illustrates such a less lazy combination.

Algorithm 9 Less lazy combination of procedures

1: function less lazy(ϕ, ε)
2: if stropsat(ϕ) then
3: return sat
4: end if
5: S ← {]−∞,∞[n}
6: while S 6= ∅ do
7: choose B ∈ S
8: S ← S \ {B}
9: ia-result, B′ ← ia cp(ϕ,B)
10: if ia-result = ia-unsat then
11: continue
12: else if ia-result = ia-valid then
13: return sat
14: end if
15: ϕia-sat ← {ϕapc | ϕapc ∈ ϕ and ϕapc is ia-sat in B′} . exclude ia-valid

APCs
16: test-result← testing(ϕia-sat, B

′, ∅)
17: if test-result =Test-sat then
18: return sat
19: end if
20: ϕ2 ← {ϕapc|ϕapc ∈ ϕia-sat and ϕapc is Test-sat}
21: ϕ3 ← ϕia-sat \ ϕ2

22: if ϕ3 are equations and equationsProver(ϕ3, B
′, var(ϕ2)) = sat then

23: return sat
24: end if
25: if |B′| < ε then
26: complete-result = complete(ϕia-sat ∧B′)
27: if complete-result = sat then
28: return sat
29: else
30: Add unsat cores computed by complete(ϕia-sat ∧B′) to unsat cores
31: end if
32: else
33: B1, B2 ← decompose B′

34: S ← S ∪ {B1, B2}
35: end if
36: end while
37: return unsat
38: end function

The combination is similar to ideas from [15] where when each box of ICP becomes

61

smaller than a threshold ε, the complete framework is provoked to solve the remaining
unknown constraints over such a small box. The small box is also necessarily passed to
the complete framework (at line 26 of Algorithm 9, the box B′ is complemented to the
ia-sat (unknown) constraints ϕia-sat before being passed to the complete framework).
While the small box B′ helps the complete framework to early prune their searching space,
in the case of unsatisfiable boxes the complete framework has to exhaustively check each
of those boxes which turns to be a bottleneck of the less lazy combination. When the
complete framework detects unsatisfiability, we also ask it for the unsat core and add it to
the global variable unsat cores which we mentioned previously. Note that we only extract
the APC from the returned unsat core by the complete framework since the cause (the
APCs causing contraction) of the box B′ is already stored in the variable unsat cores by
the ia cp(,) algorithm.

62

Chapter 9

Experiments on SMT-LIB
Benchmarks

Experiments in this chapter were done on SMT-LIB benchmarks which have had little
changes over years. Since development of tools happened in different years, the experi-
ments were also done on different version of the SMT-LIB. We explicitly state the version
in each section.

9.1 Performance of raSAT

All experiments in this section were done on SMT-LIB 2015. The ideas in Chapters 5
and 7 were implemented as a theory solver. The implementation consists of 6000 lines
of Ocaml code of which one third accounts for implementing various kinds of interval
arithmetic. the theory solver is combined with the SAT solver miniSAT to create the
SMT solver raSAT.

Effects of Testing and Heuristics

This section clarifies the effects of testing and proposed heuristics in the raSAT frame-
work. The experiments were executed over 192 MPI processes on a SGI UV3000 system.
Each process was distributed one CPU core and ran one pair of solver-benchmark at a
time. The CPU specification is Intel Xeon E5-4655v3. The timeout and the maximum
memory for each task (a pair of solver-benchmark) were set to 2500 seconds and 8G of
RAM respectively.

Table 9.1, Figure 9.1, and Figure 9.2 present experimental results which clarify effects
of testing and proposed heuristics within raSAT framework.

raSAT with testing was generally faster than without testing in detecting satisfiability.
Moreover, testing made raSAT detect 524 sat benchmarks and 2 unsat ones that were
not solved without testing. The 2 unsat benchmarks difference is due to testing, raSAT
decomposed intervals of variables in Test-unsat APCs. On the other hand, without
testing, it decomposed those of variables from ia-sat APCs. Different box decompositions
led to different results on the same benchmark. For the same reason, raSAT without
testing solved 9 unsat benchmarks which were not solved by raSAT.

473 benchmarks out of above 524 ones contain equations. This indicates that testing

63

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

ra
S
A

T
w

it
h
ou

t
te

st
in

g

raSAT

ra
S
A

T
w

it
h
ou

t
te

st
in

g

raSAT

Figure 9.1: Comparing raSAT and raSAT without testing on QF NRA

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

ra
S
A

T
w

it
h
ou

t
h
eu

ri
st

ic
s

raSAT

ra
S
A

T
w

it
h
ou

t
h
eu

ri
st

ic
s

raSAT

Figure 9.2: Comparing raSAT and raSAT without heuristics on QF NRA

64

raSAT without testing raSAT
Benchmarks Number Time(s) Number Time(s)
Commonly solved 8576 11136.76 8576 7334.36
Uniquely solved 9 1184.56 526 1667.368

raSAT without heuristics raSAT
Benchmarks Number Time(s) Number Time(s)
Commonly solved 8924 3867.80 8924 2843.58
Uniquely solved 52 219.552 178 6158.148

Table 9.1: Effects of Testing and Heuristics on QF NRA

improved satisfiability detection of not only inequalities but also combinations of inequal-
ities and equations. Consider the following simple example.

Example 45 Consider the constraint ϕ := x2−2 < 0∧xy = 0 and a box B := [−2, 3.5]×
[−5, 5]. First, “IA and CP” contracts B to B′ = [−

√
2,
√

2] × [−5, 5] and it fails to
conclude that x2 − 2 < 0 is ia-valid in B′. As a result, if we only combine IA and
the IVT, we cannot show satisfiability of ϕ. However, with testing to find the test case
x = 1.23 we have x2 − 2 < 0 is Test-sat and then we can check the values of xy at the
boundaries,

• for y = −5, xy = 1.23 ∗ −5 = −6.15 < 0, and

• for y = 5, xy = 1.23 ∗ 5 = 6.15 > 0.

Here the IVT concludes that xy = 0 has a solution (1.23, y0) in B′ for some y0 ∈ [−5, 5].

In this example, validity of x2 − 2 < 0 can be achieved by iteratively decomposing x ∈
[−
√

2,
√

2] to create a new interval, e.g. x ∈ [0, 1], in which the APC is ia-valid.
However, in general, since Test-sat is weaker than ia-valid, testing essentially improves
satisfiability detection on some combinations of inequalities and equations. It should be
noted that Theorem 8 combines ia-valid, Test-sat, and IVT to show satisfiability of a
combination between inequalities and equations.

In terms of effects of proposed heuristics, we found that they were especially effec-
tive on large benchmarks (large number of APCs and/or variables, e.g. benchmarks in
QF NRA/zankl/Matrix2∼5). In addition, the experiments showed that the incremen-
tal testing was useful in quickly detecting Test-usat while it is still effective in finding
satisfying assignments.

Comparison with other SMT Solvers

Our comparison involved two main views: (1) ICP-based solvers, e.g., iSAT3 and dReal,
and (2) other SMT-solvers from the 2016 SMT competition, viz., Z3, SMT-RAT 2.0,
Yices, and CVC4, which can be downloaded from the execution Website1 of the com-
petition. They were compared on the division QF NRA of the SMT-LIB benchmarks
2015-06-012 with a timeout of 2500 seconds (both CPU and wall time) on an Intel Xeon
E5-4655v3 processor with 8GB of RAM. Note that:

1https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=170422
2http://smtlib.cs.uiowa.edu/benchmarks.shtml

65

• iSAT3 requires bounded intervals, and the bound was set to [−1000, 1000]. For
other tools (including raSAT), it was set to (−∞,∞).

• dReal decides δ-SAT, instead of sat, which allows δ-deviation on the evaluation
of polynomials for some δ > 0. Generally δ-SAT does not imply sat and δ is set to
0.001 by default.

Table 9.2 lists the numbers of solved problems in each family of benchmarks in the
QF NRA category of SMT-LIB. The “Time” row indicates the cumulative running time
of successful cases (sat or unsat). In the “Family” column, the numbers of sat/unsat
problems are associated if there are already known. Here, “*” means δ-SAT.

Family raSAT dReal iSAT3 CVC4 SMT-RAT Yices Z3
zankl (SAT) 36 53∗ 16 0 10 49 53
zankl (UNSAT) 10 0 12 0 15 28 23
meti-tarski (SAT) (3220) 3203 3220∗ 2774 0 3028 3194 3220
meti-tarski (UNSAT) (1526) 1139 1227 1242 245 1452 1496 1522
hong (UNSAT) (20) 20 20 20 0 20 9 9
LassoRanker (SAT) 0 0∗ 0 0 0 0 0
LassoRanker (UNSAT) 0 0 0 0 0 0 2
Total 4408 1247 4064 245 4525 4776 4829
Time(s) 22406.82 11740.17 1823.83 21.72 27222.17 10146.97 8289.79

Family raSAT dReal iSAT3 CVC4 SMT-RAT Yices Z3
zankl (SAT) (11) 11 11∗ 0 0 11 11 11
zankl (UNSAT) (4) 4 4 4 1 4 4 4
meti-tarski (SAT) (1805) 1645 1805∗ 303 0 1765 1805 1805
meti-tarski (UNSAT) (1162) 1011 910 1121 346 1143 1159 1162
kissing (SAT) (42) 15 36∗ 0 0 9 10 36
kissing (UNSAT) (3) 0 1 0 0 0 0 0
hycomp (SAT) 0 256∗ 0 0 98 226 256
hycomp (UNSAT) 1940 2130 2279 2102 1651 2184 2209
LassoRanker (SAT) 0 145∗ 16 0 0 142 145
LassoRanker (UNSAT) 0 0 27 0 0 249 137
Total 4626 3045 3750 2449 4681 5790 5765
Time(s) 22319.20 31781.54 4522.84 319.71 34741.72 109771.08 48787.60

Table 9.2: Comparison of SMT solvers on SMT-LIB benchmark (∗ = δ-SAT)

In the followings, we present the scatter plots indicating the tendency on the execution
time on benchmarks between raSAT and other tools.

66

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

d
R

ea
l

raSAT

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

d
R

ea
l

raSAT

Figure 9.3: Comparing raSAT and dReal on QF NRA

Figure 9.3 compares the performances of raSAT with dReal on unsatisfiable bench-
marks, since dReal does not answer sat. While dReal uses RealPaver for ICP solving,
raSAT implements its own version of ICP which allows combining different kinds of in-
terval arithmetic and optimizations in interval arithmetic as mentioned previously. As
a result, raSAT is expected to spend less time on interval arithmetic with more refined
approximation.

In terms of comparison with iSAT3, because iSAT3 requires bounds on variables, we
only compare on satisfiable benchmarks (the second sub-figure of Figure 9.4). Most of the
time when both solvers solved the same benchmark, iSAT3 was often faster than raSAT
was. This is because iSAT3 has an efficient mechanism for conflict analysis (which is
discussed later in Chapter 10) to early prune boxes in which constraints are unsatisfiable,
leading to a quick detection of satisfiability on relatively small benchmarks on which both
solvers terminated after 0.1 second. There were a number of large benchmarks on which
raSAT with the help of testing detected satisfiability quicker than iSAT3 did.

Figures 9.5 to 9.8 illustrates that raSAT complements to other methodologies imple-
mented in state-of-the-art solvers, and the running time of raSAT on solved problems is
comparable with other solvers.

67

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

iS
A

T
3

raSAT

iS
A

T
3

raSAT

Figure 9.4: Comparing raSAT and iSAT3 on QF NRA

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

C
V

C
4

raSAT

C
V

C
4

raSAT

Figure 9.5: Comparing raSAT and CVC4 on QF NRA

68

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

S
M

T
-R

A
T

raSAT

S
M

T
-R

A
T

raSAT

Figure 9.6: Comparing raSAT and SMT-RAT on QF NRA

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Y
ic

es

raSAT

Y
ic

es

raSAT

Figure 9.7: Comparing raSAT and Yices on QF NRA

69

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Z
3

raSAT

Z
3

raSAT

Figure 9.8: Comparing raSAT and Z3 on QF NRA

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Y
ic

es

raSAT

Y
ic

es

raSAT

Figure 9.9: Comparing raSAT and Yices on satisfiable inequalities of QF NRA

70

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Z
3

raSAT

Z
3

raSAT

Figure 9.10: Comparing raSAT and Z3 on satisfiable inequalities o QF NRA

Figures 9.9 and 9.10 compares raSAT with CAD-based solvers, viz. Yices and Z3
on satisfiable inequalities. It can be seen from the figure that raSAT was comparable to
these two solvers, sometimes it even outperformed them.

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Y
ic

es

raSAT

Y
ic

es

raSAT

Figure 9.11: Comparing raSAT and Yices on satisfiable constraints containing equations
of QF NRA

71

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Z
3

raSAT

Z
3

raSAT

Figure 9.12: Comparing raSAT and Z3 on satisfiable constraints containing equations
of QF NRA

Figures 9.11 and 9.12 compares raSAT with Yices and Z3 on satisfiable constraints
containing equations. Although Yices and Z3 solved a larger number of benchmarks than
raSAT did, raSAT was often faster when it solved a problem. Observing the benchmarks
that were not solved by raSAT, it was often the case that there are many variables in the
equations, which was a bottle neck for finding a check basis when applying IVT. Heuristics
for efficiently finding a check basis is one of our future works.

In addition to the completeness, efficient detection of UNSAT remains as an obstruc-
tion to raSAT. We will briefly address this as a future work in Chapter 11.

Unknown Problems in SMT-LIB

In the SMT-LIB, many problems are marked “unknown”. Table 9.3 summarizes the
number of solved problems by SMT solvers, categorized by inequalities and equations.

Unknown Inequalities raSAT dReal iSAT3 CVC4 SMT-RAT Yices Z3
SAT 12 63∗ 4 0 3 11 13
UNSAT 10 0 12 0 15 28 25

Unknown Equations raSAT dReal iSAT3 CVC4 SMT-RAT Yices Z3
SAT 0 72∗ 10 0 98 302 276
UNSAT 3 524 232 36 38 327 169

Table 9.3: Number of unknown problems solved by SMT solvers

For unknown problems, sat results of raSAT are straightforward to justify. Because
raSAT returns sat with either small intervals or an assignment for the variables (or a

72

combination of both), the verification can be implemented by first adding the following
two assertions to the original benchmark.

• For a small interval x ∈ [l, h], add (assert (and (>= x l) (<= x h))).

• For a test value x = r, add (assert (= x r)).

Thereafter, we can run other SMT solvers against the newly generated benchmarks.
raSAT showed sat of 12 unknown problems which were verified by other SMT solvers
as illustrated in the execution job3 on starexec.org. Table 9.4 lists these 12 unknown
problems, in which “Num of Vars”, “Max Vars among APCs”, and “Num of APCs” are
acronyms for “Number of variables in the benchmark”, “Maximum number of variables
among APCs”, and “Number of APCs in the benchmark” respectively.

Unknown Benchmarks Num of Vars Max Vars among APCs Num of APCs Also solved by
QF NRA/zankl/matrix-1-all-15.smt2 10 7 28 SMT-RAT, Yices, Z3, iSAT3
QF NRA/zankl/matrix-1-all-18.smt2 6 5 21 SMT-RAT, Yices, Z3, iSAT3
QF NRA/zankl/matrix-1-all-24.smt2 11 5 29 SMT-RAT, Yices, Z3 , iSAT3
QF NRA/zankl/matrix-2-all-11.smt2 17 16 36 Yices, iSAT3
QF NRA/zankl/matrix-2-all-6.smt2 17 16 30 Z3, iSAT3
QF NRA/zankl/matrix-4-all-2.smt2 119 42 275 Z3 , iSAT3
QF NRA/zankl/matrix-4-all-3.smt2 139 73 257 iSAT3
QF NRA/zankl/matrix-4-all-7.smt2 178 97 279
QF NRA/zankl/matrix-4-all-9.smt2 193 61 292 Yices, iSAT3
QF NRA/zankl/matrix-5-all-1.smt2 132 47 284
QF NRA/zankl/matrix-5-all-2.smt2 173 57 388 Z3 , iSAT3
QF NRA/zankl/matrix-5-all-5.smt2 173 57 394 Z3 , iSAT3

Table 9.4: Unknown benchmarks that have been proven to be SAT by raSAT

9.2 Performance of STROPSAT

A library STROPSAT implementing Subtropical Satisfiability, is available on our web
page4 which consists of 2000 lines of C code. It should be noted that the idea of converting
the subtropical conditions into linear constraints can be implemented with a very few lines
of code. However, the library needs to implements preprocessing phase, i.e. converting
polynomials into sparse distributive representation (sum of monomials)l, which accounts
for most amount of the code. The library is integrated into veriT [5] as an incomplete
theory solver for non-linear arithmetic benchmarks. We experimented on the QF NRA
category of the SMT-LIB 2016 on all benchmarks consisting of only inequalities, that is
4917 formulas out of 11601 in the whole category. The experiments thus focus on those
4917 benchmarks, comprising 3265 sat-annotated ones, 106 unknowns, and 1546 unsat
benchmarks. We used the SMT solver CVC4 to handle the generated linear real arithmetic
formulas Ψ(f1, . . . , fm,n, c1, . . . , cm, τ), and we ran veriT (with STROPSAT as the theory
solver) against the clear winner of the SMT-COMP 2016 on the QF NRA category, i.e.,
Z3 (implementing nlsat [43]), on a CX250 Cluster with Intel Xeon E5-2680v2 2.80GHz
CPUs. Each pair of benchmark and solver was run on one CPU with a timeout of 2500
seconds and 20 GB memory. The experimental data and the library are also available on
Zenodo5.

3https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=184545
4http://www.jaist.ac.jp/~s1520002/STROPSAT/
5http://doi.org/10.5281/zenodo.817615

73

Since our method focuses on showing satisfiability, only brief statistics on unsat
benchmarks are provided. Among the 1546 unsat benchmarks, 200 benchmarks are
found unsatisfiable already by the linear arithmetic theory reasoning in veriT. For each of
the remaining ones, the method quickly returns unknown within 0.002 to 0.096 seconds,
with a total cumulative time of 18.45 seconds (0.014 seconds on average). This clearly
shows that the method can be applied with a very small overhead, upfront of another,
complete or less incomplete procedure to check for unsatisfiability.

Table 9.5: Comparison between STROPSAT and Z3 (times in seconds)

Family
STROPSAT Z3

sat Time unkown Time sat Time unsat Time
meti-tarski (sat - 3220) 2359 32.37 861 10.22 3220 88.55 0 0
zankl (sat - 45) 29 3.77 16 0.59 42 2974.35 0 0
zankl (unknown - 106) 15 2859.44 76 6291.33 14 1713.16 23 1.06

Table 9.5 provides the experimental results on benchmarks with sat or unknown
status, and the cumulative times. The meti-tarski family consists of small benchmarks
(most of them contain 3 to 4 variables and 1 to 23 polynomials with degrees between
1 and 4). Those are proof obligations extracted from the meti-tarski project [1], where
the polynomials represent approximations of elementary real functions; all of them have
defined statuses. The zankl family consists of large benchmarks (large numbers of variables
and polynomials but small degrees) stemming from termination proofs for term-rewriting
systems [29].

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

S
T

R
O

P
S
A

T

Z3

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

S
T

R
O

P
S
A

T

Z3

Figure 9.13: STROPSAT returns sat or timeout (2418 benchmarks, times in seconds)

74

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

S
T

R
O

P
S
A

T

Z3

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

S
T

R
O

P
S
A

T

Z3

Figure 9.14: STROPSAT returns unknown (2299 benchmarks, times in seconds)

Although Z3 clearly outperforms STROPSAT in the number of solved benchmarks,
the results also clearly show that our method is a useful complementing heuristic with
little drawback, to be used either upfront or in portfolio with other approaches. As
already said, it returns unknown quickly on unsat benchmarks. In particular, on all
benchmarks solved by Z3 only, STROPSAT returns unknown quickly (see Figure 9.14).

When both solvers can solve the same benchmark, the running time of STROPSAT
is comparable with Z3 (Figure 9.13). There are 11 large benchmarks (9 of them have the
unknown status) that are solved by STROPSAT but time out with Z3. STROPSAT
times out for only 15 problems, on which Z3 times out as well. STROPSAT provides a
model for 15 unknown benchmarks, whereas Z3 times out on 9 of them. The virtual
best solver (i.e. running Z3 and STROPSAT in parallel and using the quickest answer)
decreases the execution time for the meti-tarski problems to 54.43 seconds, solves all
satisfiable zankl problems in 1120 seconds, and 24 of the unknown ones in 4502 seconds.

Since the exponents of the polynomials become coefficients in the linear formulas,
high degrees do not hurt our method significantly. As the SMT-LIB does not currently
contain any inequality benchmarks with high degrees, our experimental results above do
not demonstrate this claim. However, formulas like in Example 34 are totally within reach
of our method (STROPSAT returned sat within a second) while Z3 runs out of memory
(20 GB) after 30 seconds for the constraint f1 > 0 ∧ f2 > 0.

9.3 Performance of the Efficient Complete Frame-

work

All experiments in this section were conducted on an Intel Xeon E5-2680v2 at 2.80GHz
running GNU/Linux CentOS 6.4 with kernel 2.6.32. Each solver ran on the 11354 bench-
marks of the QF NRA category (quantifier-free Non-linear Real Arithmetic) of the SMT-

75

LIB 2017 (4963 are labeled as satisfiable, 5296 unsatisfiable, 1095 unknown) with a mem-
ory limit of 8 GB memory and a time out of 2500 seconds for each benchmark.6

In our implementation, raSAT [46, 83] serves as the ICP-based solver, the computer
algebra system Redlog/Reduce [21] for quantifier elimination, and STROPSAT as the
implementation of subtropical satisfiability. The interface for the three tools within veriT
is 900 lines of C code. Notice that CVC4 is used inside STROPSAT to solve linear
constraints. The framework for solving polynomial constraints in the SMT solver is called
lazily, when the underlying SAT solver has produced a full model and if the corresponding
set of literals is not shown unsatisfiable by the linear arithmetic decision procedure in
veriT.

9.3.1 Comparing Individual Components with the Combined
One

Table 9.6 presents the experimental performances of raSAT, STROPSAT, Redlog, and
their combinations.

Table 9.6: Numbers of benchmarks solved by component procedures

Benchmarks STROPSAT raSAT Redlog Lazy
Lazy w/o

STROPSAT
Less
Lazy

SAT 1936 4302 4400 4450 4433 4445
UNSAT 2530 4472 4959 5012 5012 4984
Total (11354) 4466 8774 9359 9462 9445 9429
Total time (s) 4744 18835 67945 50632 44815 75676

Redlog alone already solves many problems, but combining the procedures (the lazy
combination) brings improvements both in running time and in the number of solved
problems. Let us use scatter plots to look at more closely on performances of the tools.

Firstly, Figure 9.15 illustrates that raSAT and Redlog are complement and on most
of the problems that were commonly solved by both, raSAT is often faster than Redlog
to solve them. However, due to limitations (on touching and convergent cases) of the ICP-
based method, there was a significant number of benchmarks on which Redlog can solve
but raSAT cannot. We expect to achieve both efficiency (of raSAT) and completeness
(of Redlog) when combining two procedures implemented inside those two tools.

Figure 9.16 compares raSAT alone with the lazy combination without STROPSAT
(i.e. Algorithm 8 without lines 2 to 4). The Figure in addition to Figure 9.15 illustrate that
the lazy combination was able to take advantages of the efficiency of raSAT and it also
was able to complement raSAT in completeness on a significant number of benchmarks.

Figure 9.17 compares the performances of Redlog and the lazy combination with-
out STROPSAT (i.e. Algorithm 8 without lines 2 to 4). While it again shows that
combination was able to take advantages of the efficiency of raSAT, it also clearly says
that there are a large number of benchmarks which are solved by Redlog but not by the
combination. This leaves a room for our future work for improvements.

6See http://www.jaist.ac.jp/~s1520002/veriT+STROPSAT+raSAT+Redlog/ for full results and the
tool with the source code. Note to reviewers: this will soon be on Zenodo.

76

Figure 9.18 presents the effects of STROPSAT in the lazy combination. STROPSAT
increases the number of solved satisfiable problems and improves times for several satisfi-
able problems, without significantly impacting negatively for the problems solved by the
other methods: indeed, STROPSAT actually takes around 2000 additional seconds for
six difficult problems also solved by the combination of raSAT and Redlog, and uses 4000
seconds to solve 17 more problems. In addition, STROPSAT does not affect the solved
unsat problems since it quickly terminates and return unknown on them. The scatter
plots for comparing less lazy with less lazy without STROPSAT is similar to 9.18 and
is omitted here7. Those evidences illustrate our previous claim that subtropical satisfia-
bility establishes a useful complementing heuristic with little drawback, to be used either
upfront or in portfolio with other approaches to deal with non-linear constraints.

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

R
ed

lo
g

raSAT

R
ed

lo
g

raSAT

Figure 9.15: raSAT vs Redlog

7See http://www.jaist.ac.jp/~s1520002/veriT+STROPSAT+raSAT+Redlog/ for full results)

77

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

ra
S
A

T

raSAT + Redlog

ra
S
A

T

raSAT + Redlog

Figure 9.16: raSAT vs Lazy without STROPSAT

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

R
ed

lo
g

raSAT + Redlog

R
ed

lo
g

raSAT + Redlog

Figure 9.17: Redlog vs Lazy without STROPSAT

78

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

L
az

y
w

it
h
ou

t
S
T

R
O

P
S
A

T

Lazy

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

L
az

y
w

it
h
ou

t
S
T

R
O

P
S
A

T

Lazy

Figure 9.18: Lazy vs lazy without STROPSAT

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

L
es

s
L

az
y

Lazy

L
es

s
L

az
y

Lazy

Figure 9.19: Lazy vs Less Lazy

Figure 9.19 compares two types of combination, namely lazy and less lazy approach.
From the detailed experimental data, we observe that the less lazy combination suffers
from repeatedly checking unsatisfiable boxes generated by the ICP framework. As one of
our future work, we will investigate how to discuss multiple unsatisfiable boxes when the

79

complete framework detects unsat over one particular box which is expected to improve
the performance of the less lazy combination.

9.3.2 Comparing with State-of-the-art SMT Solvers

This section compares the lazy combination of our procedures with other state-of-the-art
SMT solvers. Since the lazy combination is implemented as a theory solver inside the
SMT solver veriT, in this section, we simply refer the combination as veriT.

Table 9.7: Performance of state-of-the-art SMT solvers on QF NRA

Benchmarks CVC4 SMT-RAT Z3 Yices veriT
veriT
only

Virtual
best

SAT 2929 4398 4905 4845 4450 18 5183
UNSAT 5324 4425 5038 5120 5012 1 5744
Total (11354) 8253 8823 9943 9965 9462 19 10927
Total time (s) 146154 57787 37740 132137 50632 11706 119998

Table 9.7 presents experimental data of SMT solvers supporting non-linear arithmetic.
SMT-RAT implements a less lazy combination (as mentioned in the previous section) be-
tween interval constraint propagation and cylindrical algebraic decomposition [50], Yices
and Z3 implement the nlsat procedure [43]. CVC4 uses context-dependent simplifica-
tion [68] and incremental linearization [10]. Our results validate the main point of the
paper: a combination of simple heuristics (ICP and subtropical satisfiability) with quan-
tifier elimination as implemented in a computer algebra system (Redlog/Reduce) slightly
tuned to fit the SMT infrastructure is an efficient decision procedure to solve non-linear
arithmetic SMT problems. Figures 9.20 to 9.23 closely compares veriT with each of state-
of-the-art solvers and shows that our method is complementary to ones implemented in
those other solvers. Table 9.7 also clearly exhibits that the virtual best solver — a port-
folio of all mentioned solvers running in parallel — is much better than each individual
solver; we attribute this to the variety of techniques used in the solvers. It should be
noted that our theory solver requires very little implementation efforts. It took lines of
Ocaml code for raSAT, STROPSAT, and the combination.

80

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Y
ic

es

veriT

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Y
ic

es

veriT

Figure 9.20: veriT vs Yices

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Z
3

veriT

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

Z
3

veriT

Figure 9.21: veriT vs Z3

81

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

S
M

T
-R

A
T

veriT

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

S
M

T
-R

A
T

veriT

Figure 9.22: veriT vs SMT-RAT

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

C
V

C
4

veriT

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

C
V

C
4

veriT

Figure 9.23: veriT vs CVC4

9.4 Annual SMT Competitions

Since 2014, we have participated to the annual SMT competitions. The detailed results
of each year is as follows. We present the results of sequential performances while the

82

parallel performances do not differ too much from the sequential ones. Details of results
can be found at the associated links. In the tables, [S] mean that the solver S is non-
competitive. The first row lists the solvers that participated to the competition, the
second one presents the number of solved benchmarks, and the last row shows the total
running time on solved benchmarks in seconds.

SMT-COMP 2014

raSAT was ranked third in the category of QF NRA consisting of 10121 benchmarks8.

Table 9.8: SMT-COMP 2014 result on QF NRA

[Z3] CVC3 CVC4 raSAT
9927 3543 2657 88

21428 33536 129 1

SMT-COMP 2015

raSAT was ranked third and second in the category of QF NRA (10184 benchmarks)
and QF NIA (8475 benchmarks) respectively9.

Table 9.9: SMT-COMP 2015 result on QF NRA

[Z3] Yices2-NL SMT-RAT raSAT CVC3 CVC4(exp) CVC4
10000 9854 8759 7952 3575 2694 2694

458921 884238 3451838 4969779 1220253 1021 1030

Table 9.10: SMT-COMP 2015 result on QF NIA

[Z3] AProVE raSAT
SMT-RAT
(parallel)

SMT-RAT CVC3 CVC4
CVC4
(exp)

8459 8270 7917 7435 7309 191 76
8277

(1 error)
54050 482573 1290125 2496421 2806065 180124 4862 284689

SMT-COMP 2016

raSAT was ranked second and fifth in the category of QF NRA (10245 benchmarks) and
QF NIA (8593 benchmarks) respectively10.

8http://smtcomp.sourceforge.net/2014/results-summary.shtml?v=1403902163
9http://smtcomp.sourceforge.net/2015/results-summary.shtml?v=1446209369

10hhttp://smtcomp.sourceforge.net/2016/results-summary.shtml?v=1467876482

83

Table 9.11: SMT-COMP 2016 result on QF NRA

[Z3] Yices2 raSAT 0.4 raSAT 0.3 CVC4 SMT-RAT

10056 10019 9024 8431 2694
9026

(4 errors)
24785 61990 11176 13577 150 51053

Table 9.12: SMT-COMP 2016 result on QF NIA

[Z3] Yices2 CVC4 SMT-RAT AProVE raSAT 0.4 raSAT 0.3 ProB
8566 8451 8231 8443 8273 8017 7544 7557

27718 8523 161418 6235 8528 159248 70229 13586

SMT-COMP 2017

veriT+raSAT+Redlog was ranked second and fourth in the category of QF NRA (11354
benchmarks) and QF UFNRA (36 benchmarks) respectively11.

Table 9.13: SMT-COMP 2017 result on QF NRA

Yices [Z3] veriT+raSAT+Redlog SMTRAT CVC4
9570 9591 9102 8492 8005

20801 9868 20722 27058 83250

Table 9.14: SMT-COMP 2017 result on QF UFNRA

[Z3] Yices CVC4 veriT+raSAT+Redlog
30 24 12 10

1705 1154 7 0

11http://smtcomp.sourceforge.net/2017/results-summary.shtml?v=1500632282

84

Chapter 10

Comparing raSAT with other
ICP-based SMT Solvers

10.1 iSAT3

SMT Architecture

iSAT3 is a newer version of HySAT-II [28] which implements the iSAT algorithm [28].
Instead of lazily combining DPLL procedure with the theory solver ICP, iSAT3 does it
in an eager way.

• Each interval in a box is treated as a special APC.

• In the “Unit Propagation”, iSAT3 finds clauses that have all but one APC being ia-
unsat with the current box, then the ia-sat APC will be selected to be processed
next.

• When an APC is selected by the “Unit Propagation”, ICP is used to contract the
current box. New APCs, which represents contracted intervals, are generated and
added into the set of selected APCs.

• When both the “Unit Propagation” and contraction cannot be performed, “Box
decomposition” is implemented to split one interval of the current box into smaller
ones.

• The “Decide” step of the DPLL procedure selects one of the decomposed intervals
to add into the set of selected APCs.

Another notable difference between iSAT3 and raSAT loop is that iSAT3 maintains
an “implication graph” to keep track of implications between selected APCs, i.e. which
APCs were selected under the implication from which APCs. In the case that the selected
APCs are ia-unsat, iSAT3 traverses the implication graph to derive a reason for the
conflict and add this reason in negated form to the input formula. In order to do this
effectively, the iSAT algorithm decomposes each polynomial into the three address forms:
x � c and x = y ◦ z, by introducing a number of fresh variables and equations. This
transformation reduces the applicability of testing since it introduces many new equations
and converts any original inequality g > 0 to the form x > 0. As a result, we did not
adopt the methodology of the iSAT algorithm into our framework.

85

Handling equations

As mentioned, the iSAT algorithm decomposes each polynomial into the three address
forms: x � c and x = y ◦ z, by introducing a number of fresh variables and equations.

Example 46 For a constraint x2 ≥ 2 ∧ x ≥ 2, iSAT translates it into the following
equi-satisfiable constraint.

y = x2 ∧ y ≥ 2 ∧ x ≥ 2

ICP will infer the intervals of variables as x ∈ [2,∞] and y ∈ [4,∞]. The IA estimates
the value of y − x2 as [−∞,∞] and concludes that y = x2 is ia-sat.

Although equations are often harmful with sat detection by ICP, the variable y in
the above example is in fact an auxiliary one, and it occurs exactly once on the left-hand
side of the equation. Thus, if a box B does not conflict with the equation y = x2, in the
sense that x2 ∈ B(y) holds for each x ∈ B(x), then the constraint y = x2 is SAT.

iSAT generalizes this idea with the notion of strong satisfiability (SS) [28]. For a
conjunction ϕ = {ψ1, · · · , ψm}, a box B strongly satisfies ϕ if and only if the following
two conditions hold:

1. If ψi is an equation x = y ◦ z, then either B(x) is a point (i.e., |B(x)| = 1), or x
occurs neither in ψj with j > i nor on the right-hand side of ψi (i.e., x 6= y and
x 6= z).

2. The box B does not conflict with any APC ψ ∈ ϕ in the following sense.

ψ = (x � c) implies B(x) ⊆ {u | u ∈ R, u � c}
ψ = (x = y ◦ z) implies B(x) ⊇ B(y) ◦B(z)

Here, we abuse the notion ◦ in B(y) ◦B(z) to denote the interval extension.

Theorem 9 ([28, Lemma 4]) If there exists a box B that strongly satisfies ϕ, ϕ is sat-
isfiable. (Q.E.D.)

If ϕ is strongly satisfiable in a box B, then raSAT loop with the generalized IVT
(Fig. 7.5) detects SAT (Theorem 10), but not vice versa (Example 47). The proof of
Theorem 10 is presented in Appendix B.

Theorem 10 If a box B strongly satisfies a conjunction ϕ, then the extension of ICP
with the generalized IVT detects sat of ϕ over B. (Q.E.D.)

Example 47 Consider a conjunction y = x2∧y = z2 with the box B = [0, 4]×[2, 3]×[1, 5]
for variables (x, y, z).

• The first condition of SS does not hold.

• The application of IVT succeeds because ({x}, {z}) is a check basis of (y−x2, y−z2)
in B. (Q.E.D.)

86

Strong satisfiability often works in proving equations that are either generated from the
transformation of input formulas into the three-address forms, or stem from translating
an assignment associated to transitions of a hybrid system into constraints. However, it
is often difficult to have SS, if the input formula contains equations. The example below
describes such a situation.

Example 48 Consider a simple constraint x2 = 2 ∧ x > 0, the transformation into
three-address forms gives y = x2 ∧ y = 2 ∧ x > 0. The ICP will infer the box B with

B(x) = [
√

2,
√

2] and B(y) = [2, 2]. Although, the first condition of SS is satisfied, the
second condition is not.

10.2 dReal

Instead of showing satisfiability/unsatisfiability of the polynomial constraints ϕ over the
real numbers, dReal proves that either

• ϕ is unsatisfiable, or

• ϕδ is satisfiable.

Here, ϕδ is the δ-weakening of ϕ with δ > 0. For instance, the δ-weakening of x = 0
is |x| ≤ δ. Any constraint with operators in {<,≤, >,≥,=, 6=} can be converted into
constraints that contains only = by the following transformations.

• Removing 6=: Each formula of the form f 6= 0 is transformed into f > 0 ∨ f < 0.

• Removing < and ≤: Each formula of the form f < 0 or f ≤ 0 is transformed into
−f ≥ 0 or −f > 0 respectively.

• Removing > and ≥: Each formula of the form f > 0 or f ≥ 0 is transformed into
f − x = 0 by introducing an auxiliary variable x that has bound [0,m] or (0,m]
respectively. Here, m is any rational number which is greater than the maximum of
f over intervals of variables.

Though both dReal and raSAT pursue the lazy combination between DPLL and
ICP, dReal applies the theory solver incrementally to perform theory propagation. Such
an incremental combination can be done in raSAT by replacing the miniSAT solver by
that of a general SMT solver such as openSMT1 or veriT2.

10.3 Handling Floating-point Arithmetic in SMT Solvers

There are several works on interval arithmetic based SMT solvers.
Abstract conflict driven clause learning (ACDCL) [22, 6] is implemented in Math-

SAT [37], aiming at closer interaction between the SAT solver and the ICP theory solver.
Instead of boolean values, an implication graph in SAT solving is extended to a lattice.
The bottom-everywhere problem over a lattice decides whether a function f always has

1http://verify.inf.usi.ch/opensmt
2http://www.verit-solver.org/

87

the bottom value. The lattice describes an over-approximation, e.g., an interval abstrac-
tion [23], similar to the round up/down techniques in the floating-point arithmetic. Then,
the unsatisfiability problem is encoded as a bottom-everywhere problem of a reductive
function f (i.e., f(x) ⊆ x), which refines the over-approximation. The bottom-everywhere
problem is checked by computing the greatest fixed-point of f . During this procedure,
the unit propagation in SAT solving of DPLL(T) is defined as taking the meet, and the
implication graph gives an edge when the ordering of the lattice holds, instead of boolean
implication. Current raSAT intends the portability of the backend theory solver for
potential amalgamation with other SMT solvers, e.g., veriT, and has shallow communi-
cation with the SAT solver.

The method in [2] focuses on detection of floating-point exceptions, e.g., zero division
caused by roundoff errors and overflow errors. It applies a linearization technique to non-
linear constraints, which is implemented as Z3-ARIADNE, incorporated with a symbolic
execution engine KLEE.

Not precisely from the context of SMT solving, [41] introduces a new branch-and-
prune heuristics in numerical programming to reduce the search in the projection problem
of a hybrid system. The projection problem is to evaluate the projection on particular
parameters of the trajectory of the conjunction of equations and inequalities, which include
not only polynomials but also elementary functions. The new heuristic tunes a variable
selection and a split-point. It improves the original branch-and-prune strategy in [35],
and can be considered to try on future raSAT.

88

Chapter 11

Future Work

This chapter addresses some potential future work that might bring performance improve-
ment for our framework.

11.1 Tighter Interaction between ICP and Algebraic

Methods

In the less lazy combination of ICP and the complete procedure, we observed that gener-
ally the latter often has to repeatedly check multiple unsatisfiable boxes which makes the
combination performing poorly. An interesting question is how to discard such multiple
unsatisfiable boxes from the ICP when the complete procedure detects one.

Figure 11.1: Ideas on efficient unsat detection by removing UNSAT CAD cells from the
searching space

In order to improve the capability of proving unsat, raSAT can benefit from the
idea in [43] in two aspects. First, when an APC is Test-unsat by a test case t, the cell
containing the test case t (illustrated in the left sub-figure of Fig. 11.1) is eliminated from
the search space. Second, when ia-unsat is detected over a box B, by applying CAD to

89

polynomials in unsat cores, all the cells that have nonempty intersections with the box
B (as illustrated in the right sub-figure of Fig. 11.1) are excluded from the search space.

In another direction, with exponential complexity, Gröbner bases provide an incom-
plete but efficient approach for solving equations. Since the limitations of ICP often
appear with multiple roots (touching cases) and/or 0-dimensional ideals (the application
of IVT fails), the Gröbner basis would be a promising direction to handle these situations.
We expect to use the implementation of Gröbner basis in Redlog/Reduce.

11.2 Subtropical Satisfiability: From Vertices to Faces,

and to Subset of Frame

To improve the completeness of subtropical satisfiability, it could be helpful to not only
consider vertices of Newton polytopes, but also faces. Then, the value of the coefficients
and not only their sign would matter. Consider {p1,p2,p3} = face(n, newton(f)), then
we have nTp1 = nTp2 = nTp3. It is easy to see that fp1x

p1+fp2x
p2+fp3x

p3 will dominate
the other monomials in the direction of n. In other words, there exists a0 ∈ R such that
for all a ∈ R with a ≥ a0, sign(f(an)) = sign(fp1 + fp2 + fp3). We leave for future work
the encoding of the condition for the existence of such a face into linear formulas.

The idea can even be generalized to finding any set of exponent vectors that make
the corresponding monomials dominate others when variables follow a certain polynomial
curve. Let us formally specify the extension. First, we define the notion of the cluster of
a normal value.

Definition 29 The set C = {p ∈ S | nTp = c} is the cluster of normal value c in S ⊂ Rd
with respect to n ∈ Rd.

1 2 3 4 5

1

2

3

4

5

0

Figure 11.2: A generalization of subtropical satisfiability

90

Example 49 (Figure 11.2) Consider the set S as follows

S = {(1, 1), (1, 2), (3, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 3)}

and a vector n = (1, 1), then we can easily see that {(2, 3), (3, 2)} is the cluster of normal
value 5 in S with respect to n.

Definition 30 A cluster sequence of S with respect to n is the list of all clusters in S
with respect to n decreasingly sorted by the normal values of the clusters.

Example 50 Continue Example 49, the cluster sequence of S with respect to n = (1, 1)
is

({(4, 2), (3, 3), (2, 4)}, {(2, 3), (3, 2)}, {(3, 1)}, {(1, 2)}, {(1, 1)})
with the corresponding normal values as

(6, 5, 4, 3, 2).

Given a polynomial f , the first element in the cluster sequence of frame(f) with respect
to n is the face of newton(f) with respect to n.

Example 51 Consider the polynomial f as follows

f = −xy − xy2 − x3y + 5x3y2 − 4x2y3 − 100x4y2 + 150x3y3 − 50x2y4

and the frame(f) along with it Newton Polytope are illustrated in Figure 11.2. From the
cluster sequence computed in Example 50, we can see that {(4, 2), (3, 3), (2, 4)} is the face
of the Newton Polytope with respect to n = (1, 1).

We call C a reduced face of newton(f) if it is the first element in the cluster sequence
of frame(f) with respect to n such that

∑
p∈C fp 6= 0, or an empty set if such an element

does not exist.

Example 52 Continue Example 51, we see that for the cluster {(4, 2), (3, 3), (2, 4)}, the
sum of the corresponding coefficients is −100 + 150− 50 = 0, but that for the next cluster
{(2, 3), (3, 2)} is 5 − 4 = 1. As a result, {(2, 3), (3, 2)} is a reduced face with respect to
n = (1, 1) of newton(f).

Lemma 10 Let f be a polynomial, and let C ⊂ frame(f) be a reduced face of newton(f)
with respect to n ∈ Rd. Then there exists a0 ∈ R+ such that for all a ∈ R+ with a ≥ a0

the following holds:

1. |
∑

q∈C fq a
nTq| > |

∑
q∈frame(f)\C fq a

nTq|,

2. sign(f(an)) = sign(
∑

q∈C fq).

Proof 13 The proof is similar to Lemma 4 in [76].

Example 53 Continuing Example 52, the sum 5x3y2 − 4x2y3 will determine the sign of
f when (x, y) reach the limit of (a, a), i.e. (∞,∞). From Figure 11.2, the points (2, 3)
and (3, 2) stays in the interior region of newton(f) but their corresponding monomials
still dominate the others in f when (x, y) reaches the limit of the polynomial curve (a, a).

91

Chapter 12

Conclusion

We developed two heuristic procedures for handling existential polynomial constraints in
the context of SMT solving, namely extensions of the ICP with testing and the application
of IVT, and subtropical satisfiability.

While the addition of testing is to make the ICP framework quickly detect satisfiable
inequalities, the addition of the IVT aims at showing satisfiability of equations. We
also proposed efficiency heuristics for improving the performance of the framework. In
addition, a combination of testing, IA, and the IVT is presented to show satisfiability of
combinations of inequalities and equations.

Subtropical satisfiability is essentially a model finding technique for inequalities. It
abstracts polynomials as sets of exponent vectors and determines in each polynomial a
monomial (with appropriate sign) dominating others when variables follow some polyno-
mial curve. Such a monomial will decide the sign of the polynomial at the limit of the
curve.

Experimental data shows that we were successful in achieving efficiency with the two
proposed procedures. We further integrated those two procedures with the quantifier elim-
ination methods implemented in the computer algebra system Redlog/Reduce to produce
an efficient complete framework for solving non-linear arithmetic. Experiments on SMT-
LIB benchmarks show that the resulting framework is efficient and is complementary to
methods implemented in state-of-the-art SMT solvers. It contributes to the variety of
methodologies for solving non-linear arithmetic.

To conclude the thesis, we would like to address some future prospects of nonlinear
SMT solving.

First of all, once the solver successfully proves the unsatisfiability of a constraint, it
is desirable to produce the proof which can be used to verify the algorithm or generating
Craig interpolant [11]. The proof for the UNSAT answer of ICP framework is straight-
forward generated while following the operations of IA and constraint propagation as in
Fig. 4.2. For CAD and VS, the generation of the proof is not simple and need further
investigation.

Second, after generation of a proof, the next step would be to extract Craig interpolant
which can be applied in abstraction refinement [53]. While the interpolant generation
has been well studied for linear arithmetic and EUF [52], it is still at the early stage for
nonlinear arithmetic to generate good interpolant which can be applied well in abstraction
refinement.

Third, combining nonlinear reasoning with that of other theories especially linear

92

arithmetic can bring performance improvements of solving nonlinear constraints. Cur-
rently the combination is somewhat lazy where the non-linear reasoner is called when the
linear one failed. An interesting future direction is to investigate interleaving decision
procedures to take efficiency advantages of linear reasoning inside non-linear reasoner.

Last but not least, while recently machine learning (ML) has made great improve-
ments, connecting ML techniques with formal verification (FV) has been still limited.
One of the difficulties for the connection is that soundness, a critical requirement of FV,
is however not guaranteed by ML algorithms. On the other hands, a lot of algorithms
in FV can gain efficiency by heuristics. It is often the case that programs implementing
the same algorithm shows complementary performances due to different heuristics when
they have to make decisions. Given those programs and benchmarks where they performs
well, ML can help by learning heuristic to choose possibly the best choice when needed,
e.g. choosing variables order to eliminate in CAD and VS.

93

Bibliography

[1] Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic theorem prover for real-
valued special functions. Journal of Automated Reasoning 44(3) (2010) 175–205

[2] Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic detection of floating-point excep-
tions. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’13, New York, ACM (2013) 549–560

[3] Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Handbook
of Constraint Programming. Elsevier, New York (2006) 571–604

[4] Borosh, I., Treybig, L.B.: Bounds on positive integral solutions of linear diophantine
equations. Proceedings of the American Mathematical Society 55(2) (1976) 299–304

[5] Bouton, T., Caminha B. De Oliveira, D., Déharbe, D., Fontaine, P.: veriT: An
open, trustable and efficient SMT-Solver. In: Proceedings of the 22nd International
Conference on Automated Deduction. CADE-22, Springer (2009) 151–156

[6] Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-point
logic with abstract conflict driven clause learning. Formal Methods in System Design
45 (2014) 213–245

[7] Buchberger, B.: Bruno buchbergers phd thesis 1965: An algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal. Journal
of Symbolic Computation 41(3) (2006) 475 – 511 Logic, Mathematics and Computer
Science: Interactions in honor of Bruno Buchberger (60th birthday).

[8] Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant checking
of NRA transition systems via incremental reduction to LRA with EUF. In: Tools
and Algorithms for the Construction and Analysis of Systems: 23rd International
Conference, TACAS 2017. Springer (2017) 58–75

[9] Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Satisfiability modulo
transcendental functions via incremental linearization. In de Moura, L., ed.: Au-
tomated Deduction – CADE 26, Cham, Springer International Publishing (2017)
95–113

[10] Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Satisfiability modulo
transcendental functions via incremental linearization. In de Moura, L., ed.: CADE
2017. Volume 10395 of LNCS., Springer (2017) 95–113

94

[11] Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satisfiabil-
ity modulo theories. In Ramakrishnan, C.R., Rehof, J., eds.: Tools and Algorithms
for the Construction and Analysis of Systems, Berlin, Heidelberg, Springer Berlin
Heidelberg (2008) 397–412

[12] Collins, G.E. In: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. Springer Berlin Heidelberg, Berlin, Heidelberg (1975) 134–183

[13] Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3) (September 1991) 299–328

[14] Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics.
In: SIBGRAPI’93. (1993) 9–18

[15] Corzilius, F., Loup, U., Junges, S., Ábrahám, E.: SMT-RAT: An SMT-compliant
nonlinear real arithmetic toolbox. In Alessandro, C., Roberto, S., eds.: Theory and
Applications of Satisfiability Testing – SAT 2012. Springer (2012) 442–448

[16] Dantzig, G.B., Eaves, B.C.: Fourier-motzkin elimination and its dual. Journal of
Combinatorial Theory, Series A 14(3) (1973) 288 – 297

[17] Dantzig, G.B.: Linear programming and extensions. Prentice University Press,
Princeton, NJ (1963)

[18] Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symb. Comput. 5(1-2) (February 1988) 29–35

[19] Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. Jour-
nal of Symbolic Computation 5(1) (1988) 29 – 35

[20] de Oliveira, D.C.B., Dharbe, D., Fontaine, P.: Combining decision procedures by
(model-)equality propagation. Electronic Notes in Theoretical Computer Science
240 (2009) 113 – 128 Proceedings of the Eleventh Brazilian Symposium on Formal
Methods (SBMF 2008).

[21] Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. SIGSAM
Bull. 31(2) (June 1997) 2–9

[22] D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In: Pro-
ceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL ’13, New York, ACM (2013) 143–154

[23] D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric bounds analysis with
conflict-driven learning. In Flanagan, C., König, B., eds.: Tools and Algorithms for
the Construction and Analysis of Systems. Springer, Berlin (2012) 48–63

[24] Dutertre, B.: Yices2.2. In Biere, A., Bloem, R., eds.: Computer Aided Verification,
Cham, Springer International Publishing (2014) 737–744

[25] Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In Ball,
T., Jones, R.B., eds.: Computer Aided Verification. Springer (2006) 81–94

95

[26] Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In Ball,
T., Jones, R.B., eds.: Computer Aided Verification. Springerg, Berlin (2006) 81–94

[27] Fontaine, P., Ogawa, M., Sturm, T., Vu, X.T.: Subtropical satisfiability. In Dixon,
C., Finger, M., eds.: Frontiers of Combining Systems: 11th International Symposium,
FroCoS 2017. Springer International Publishing, Cham (2017) 189–206

[28] Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving
of large non-linear arithmetic constraint systems with complex Boolean structure.
Journal on Satisfiability, Boolean Modeling and Computation 1 (2007) 209–236

[29] Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In Marques-
Silva, J., Sakallah, K.A., eds.: Theory and Applications of Satisfiability Testing –
SAT 2007. Springer (2007) 340–354

[30] Ganai, M., Ivancic, F.: Efficient decision procedure for non-linear arithmetic con-
straints using CORDIC. In: Formal Methods in Computer-Aided Design, 2009.
FMCAD 2009. (2009) 61–68

[31] Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast
decision procedures. In Alur, R., Peled, D.A., eds.: Computer Aided Verification.
Springer (2004) 175–188

[32] Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: Formal Methods
in Computer-Aided Design (FMCAD), 2013. (2013) 105–112

[33] Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiability
over the reals. In: Proceedings of the 6th International Joint Conference on Auto-
mated Reasoning. IJCAR’12, Berlin, Heidelberg, Springer-Verlag (2012) 286–300

[34] Gao, S., Kong, S., Clarke, E.: dReal: An SMT solver for nonlinear theories over
the reals. In Bonacina, M., ed.: Automated Deduction – CADE-24. Springer (2013)
208–214

[35] Goldsztejn, A.: A branch and prune algorithm for the approximation of non-linear ae-
solution sets. In: Proceedings of the 2006 ACM Symposium on Applied Computing,
New York, USA, ACM (2006) 1650–1654

[36] Granvilliers, L., Benhamou, F.: RealPaver: An interval solver using constraint
satisfaction techniques. ACM Transactions on Mathematical Software 32 (2006)
138–156

[37] Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: 2012 Formal Methods in Computer-Aided Design (FM-
CAD). (Oct 2012) 131–140

[38] Harrison, J. In: Verifying Nonlinear Real Formulas Via Sums of Squares. Springer
Berlin Heidelberg, Berlin, Heidelberg (2007) 102–118

96

[39] Hong, H.: An improvement of the projection operator in cylindrical algebraic decom-
position. In: Proceedings of the International Symposium on Symbolic and Algebraic
Computation. ISSAC ’90, New York, NY, USA, ACM (1990) 261–264

[40] Hong, H.: Simple solution formula construction in cylindrical algebraic decomposi-
tion based quantifier elimination. In: Papers from the International Symposium on
Symbolic and Algebraic Computation. ISSAC ’92, New York, NY, USA, ACM (1992)
177–188

[41] Ishii, D., Goldsztejn, A., Jermann, C.: Interval-based projection method for under-
constrained numerical systems. Constraints 17 (2012) 432–460

[42] Jaroschek, M., Dobal, P.F., Fontaine, P.: Adapting real quantifier elimination meth-
ods for conflict set computation. In Lutz, C., Ranise, S., eds.: FroCoS 2015. Springer
(2015) 151–166

[43] Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In Gramlich, B., Miller,
D., Sattler, U., eds.: Automated Reasoning - 6th International Joint Conference,
IJCAR 2012. Springer (2012) 339–354

[44] Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combi-
natorica 4(4) (1984) 373–395

[45] Khachiyan, L.: Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics 20(1) (1980) 53–72

[46] Khanh, T.V., Ogawa, M.: SMT for polynomial constraints on real numbers. Elec-
tronic Notes in Theoretical Computer Science 289 (2012) 27 – 40 Third Workshop
on Tools for Automatic Program Analysis (TAPAS’ 2012).

[47] Košta, M.: New Concepts for Real Quantifier Elimination by Virtual Substitution.
Doctoral dissertation, Saarland University, Germany (December 2016)

[48] Lasaruk, A., Sturm, T.: Weak integer quantifier elimination beyond the linear case.
In: CASC 2007. Volume 4770 of LNCS. Springer (2007)

[49] Lasaruk, A., Sturm, T.: Weak quantifier elimination for the full linear theory of
the integers. A uniform generalization of Presburger arithmetic. Appl. Algebra Eng.
Commun. Comput. 18(6) (December 2007) 545–574

[50] Loup, U., Scheibler, K., Corzilius, F., Ábrahám, E., Becker, B.: A symbiosis of
interval constraint propagation and cylindrical algebraic decomposition. In Bonacina,
M.P., ed.: CADE 24. Springer (2013) 193–207

[51] McCallum, S.: An improved projection operation for cylindrical algebraic decompo-
sition of three-dimensional space. J. Symb. Comput. 5(1-2) (February 1988) 141–161

[52] McMillan, K.L.: An interpolating theorem prover. In Jensen, K., Podelski, A.,
eds.: Tools and Algorithms for the Construction and Analysis of Systems, Berlin,
Heidelberg, Springer Berlin Heidelberg (2004) 16–30

97

[53] McMillan, K.L.: Lazy abstraction with interpolants. In Ball, T., Jones, R.B., eds.:
Computer Aided Verification, Berlin, Heidelberg, Springer (2006) 123–136

[54] Messine, F.: Extentions of affine arithmetic: Application to unconstrained global
optimization. Journal of Universal Computer Science 8 (2002) 992–1015

[55] Mishra, B.: Algorithmic Algebra. Springer-Verlag New York, Inc., New York, NY,
USA (1993)

[56] Miyajima, S., Miyata, T., Kashiwagi, M.: A new dividing method in affine arithmetic.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences E86-A (9 2003) 2192–2196

[57] Moore, R.: Interval analysis. Prentice-Hall, Englewood Cliffs (1966)

[58] Neumaier, A.: Interval Methods for Systems of Equations. Cambridge Middle East
Library. Cambridge University Press (1990)

[59] Ngoc, D.T.B., Ogawa, M.: Overflow and roundoff error analysis via model checking.
In: Proceedings of the 2009 Seventh IEEE International Conference on Software
Engineering and Formal Methods. SEFM ’09, Washington, IEEE Computer Society
(2009) 105–114

[60] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theo-
ries: From an Abstract Davis–Putnam–Logemann–Loveland Procedure to DPLL(T).
Journal of the ACM 53 (November 2006) 937–977

[61] Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems.
Mathematical Programming 96(2) (May 2003) 293–320

[62] Passmore, G.O.: Combined decision procedures for nonlinear arithmetics, real and
complex. Dissertation, School of Informatics, University of Edinburgh (2011)

[63] Passmore, G.O., Jackson, P.B.: Combined decision techniques for the existential
theory of the reals. In Carette, J., Dixon, L., Coen, C.S., Watt, S.M., eds.: Intelligent
Computer Mathematics, Springer (2009) 122–137

[64] Platzer, A., Quesel, J.D., Rümmer, P. In: Real World Verification. Springer Berlin
Heidelberg, Berlin, Heidelberg (2009) 485–501

[65] Ratschan, S.: Efficient solving of quantified inequality constraints over the real
numbers. ACM Transactions on Computational Logic 7 (2006) 723–748

[66] Ratschan, S.: Applications of quantified constraint solving over the reals - bibliog-
raphy. CoRR abs/1205.5571 (2012)

[67] Rennie, B., Dobson, A.: On stirling numbers of the second kind. Journal of Combi-
natorial Theory 7 (1969) 116 – 121

[68] Reynolds, A., Tinelli, C., Jovanovic, D., Barrett, C.: Designing theory solvers with
extensions. In Dixon, C., Finger, M., eds.: FroCoS 2017. Volume 10483 of LNCS.,
Springer (2017) 22–40

98

[69] Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Inc.,
New York, NY (1986)

[70] Seidl, A.: Cylindrical Decomposition Under Application-Oriented Paradigms. PhD
thesis, Universität Passau, 94030 Passau, Germany (March 2006)

[71] Seidl, A.M., Sturm, T.: Boolean quantification in a first-order context. In Ganzha,
V.G., Mayr, E.W., Vorozhtsov, E.V., eds.: CASC 2003. Institut für Informatik,
Technische Universität München, München, Germany (2003) 329–345

[72] Stengle, G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry.
Mathematische Annalen 207 (1974) 87–98

[73] Stolfi, J., Figueiredo, L.H.D.: Self-validated numerical methods and applications. In:
Monograph for 21st Brazilian Mathematics Colloquium. (1997)

[74] Strichman, O.: On solving presburger and linear arithmetic with sat. In Aagaard,
M.D., O’Leary, J.W., eds.: Formal Methods in Computer-Aided Design, Berlin, Hei-
delberg, Springer Berlin Heidelberg (2002) 160–170

[75] Sturm, T.: Linear problems in valued fields. J. Symb. Comput. 30(2) (August 2000)
207–219

[76] Sturm, T.: Subtropical real root finding. In: Proceedings of the ISSAC 2015. ACM
(2015) 347–354

[77] Sturm, T.: A survey of some methods for real quantifier elimination, decision, and
satisfiability and their applications. Math. Comput. Sci. 11(3–4) (December 2017)
483–502

[78] Sturm, T., Weispfenning, V.: Quantifier elimination in term algebras. The case of
finite languages. 285–300

[79] Sturm, T., Zengler, C.: Parametric quantified SAT solving. In: ISSAC 2010. 77–84

[80] Tarski, A.: A decision method for elementary algebra and geometry. Technical
Report R-109, Rand Corporation (1951)

[81] Truong, A., Hung, D.V., Dang, D., Vu, X.: A type system for counting logs of multi-
threaded nested transactional programs. In: Distributed Computing and Internet
Technology - 12th International Conference, ICDCIT 2016. (2016) 157–168

[82] Volder, J.E.: The cordic trigonometric computing technique. IRE Transactions on
Electronic Computers EC-8(3) (Sept 1959) 330–334

[83] Vu, X.T., Khanh, T.V., Ogawa, M.: raSAT: an SMT solver for polynomial con-
straints. Formal Methods in System Design 51(3) (2017) 462–499

[84] Vu, X.T., Nguyen, L.M., Hoang, D.T.: Semantic parsing for vietnamese question
answering system. In: 2015 Seventh International Conference on Knowledge and
Systems Engineering (KSE). (Oct 2015) 332–335

99

[85] Vu, X.T., Van Khanh, T., Ogawa, M.: raSAT: An SMT solver for polynomial con-
straints. In Olivetti, N., Tiwari, A., eds.: Automated Reasoning - 8th International
Joint Conference, IJCAR 2016. Springer (2016) 228–237

[86] Weispfenning, V.: Quantifier elimination for real algebra — the quadratic case and
beyond. Applicable Algebra in Engineering, Communication and Computing 8(2)
(Jan 1997) 85–101

[87] Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput.
5(1–2) (February–April 1988) 3–27

[88] Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and
beyond. Appl. Algebra Eng. Commun. Comput. 8(2) (February 1997) 85–101

[89] Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In
Clarke, E.M., Voronkov, A., eds.: Logic for Programming, Artificial Intelligence, and
Reasoning. Springer (2010) 481–500

100

Publications

Related to this Thesis

[1] Vu, X.T., Van Khanh, T., Ogawa, M.: raSAT: An SMT solver for polynomial con-
straints. In Olivetti, N., Tiwari, A., eds.: Automated Reasoning - 8th International
Joint Conference, IJCAR 2016. Springer (2016) 228–237

[2] Fontaine, P., Ogawa, M., Sturm, T., Vu, X.T.: Subtropical satisfiability. In Dixon,
C., Finger, M., eds.: Frontiers of Combining Systems: 11th International Symposium,
FroCoS 2017. Springer International Publishing, Cham (2017) 189–206

[3] Vu, X.T., Khanh, T.V., Ogawa, M.: raSAT: an SMT solver for polynomial con-
straints. Formal Methods in System Design 51(3) (2017) 462–499

Others

[4] Vu, X.T., Nguyen, L.M., Hoang, D.T.: Semantic parsing for vietnamese question
answering system. In: 2015 Seventh International Conference on Knowledge and
Systems Engineering (KSE). (Oct 2015) 332–335

[5] Truong, A., Hung, D.V., Dang, D., Vu, X.: A type system for counting logs of multi-
threaded nested transactional programs. In: Distributed Computing and Internet
Technology - 12th International Conference, ICDCIT 2016. (2016) 157–168

101

Appendix A

Definition of CAI

Given CAI1 forms: x̊ = ā0 +
n∑
i=1

āiεi +
n∑
i=1

āi+nεi+n + ā2n+1ε±, and ẙ = b̄0 +
n∑
i=1

b̄iεi +

n∑
i=1

b̄i+nεi+n+b̄2n+1ε±, and c̄ = [−1, 1]. Arithmetic operations {+̊, −̊, ×̊} of CAI1 arithmetic

are defined as follows (for simplicity we denote āb̄ for ā×̄b̄):

• x̊+̊ẙ = (ā0+̄b̄0) +
2n∑
i=1

(āi+̄b̄i)εi + (c̄ā2n+1+̄c̄b̄2n+1)ε±

• x̊−̊ẙ = (ā0−̄b̄0) +
2n∑
i=1

(āi−̄b̄i)εi + (c̄ā2n+1+̄c̄b̄2n+1)ε±

• x̊×̊ẙ = K0 +
n∑
i=1

(ā0b̄i+̄āib̄0+̄āib̄i+n+̄āi+nb̄i)εi+̄

n∑
i=1

(ā0b̄i+n+̄āi+nb̄0+̄āib̄i+̄āi+nb̄i+n)εi+n +Kε±,

where {+̄, −̄, ×̄} are CI arithmetic, and

• K0 = ā0b̄0+̄
n∑
i=1

(āib̄i[−
1

4
, 0]+̄āib̄i+n[−1

4
,
1

4
]+̄b̄iāi+n[−1

4
,
1

4
]+̄āi+nb̄i+n[−1

4
, 0])

• K = (c̄ā0b̄2n+1+̄c̄b̄0ā2n+1)+̄
n∑
i=1

n∑
j=1,j 6=i

c̄āib̄j+̄
n∑
i=1

n∑
j=1,j 6=i

c̄āib̄j+n

+̄
n∑
i=1

c̄āib̄2n+1+̄
n∑
i=1

n∑
j=1,j 6=i

c̄āi+nb̄j+̄
n∑
i=1

n∑
j=1,j 6=i

c̄āi+nb̄j+n

+̄
n∑
i=1

c̄āi+nb̄2n+1 + c̄ā2n+1b̄2n+1

Note that since ε± is propagated from unknown sources, its coefficient is propagated
by applying multiplication other coefficients with c̄ = [−1, 1].

102

Remark 1 Introduction of Chebyshev approximation is not new. For instance, authors
in [73] proposed it based on the mean-value theorem, as in the left of Fig. 5.3. Authors
in [56] applied not only for products of the same noise symbols but also those of different
noise symbols. However, their estimation on x2 is only in the positive interval using the
fact x− 1

4
≤ x2 ≤ x for x ∈ [0, 1]. We newly introduce noise symbols for absolute values.

The advantage is, coefficients are half compared to them, which reduce the effect of the
offset [−1

4
, 0]. Currently, we only focus on products of the same noise symbols, which is

useful for computation like in Taylor expansion.

103

Appendix B

Proof of Theorem 10

Let ϕ = {ψ1, · · · , ψn} be a conjunction of APCs ψ1, · · · , ψn.

Theorem 10 If a box B strongly satisfies a conjunction ϕ, then the extension of ICP
with the generalized IVT detects SAT of ϕ over B.

Proof 14 We are going to prove that ϕ can be divided into two conjunctions ϕ1 and ϕ2

such that

• ϕ1 ∪ ϕ2 = ϕ,

• ϕ1 ∩ ϕ2 = ∅,

• ϕ1 is IA-valid in B,

• ϕ2 contains only equations,

• ϕ2 and ϕ′2 are equivalent, and

• equationsProver(ϕ′2, B, ∅) (Algorithm 5) terminates and returns SAT.

Initially, ϕ1 = ∅, ϕ2 = ∅, and ϕ′2 = ∅. We use an auxiliary variable C = ∅ for storing
a list of variables sets. We assume that the elements in ϕ′2 and C are ordered by the order
pf the insertion. During the construction, we preserve the invariant that C is a check
basis for {g | g = 0 ∈ ϕ′2} in B.

For ϕ = {ψ1, · · · , ψn}, we apply the case analysis below from i = m to i = 1 in the
decreasing order. For i = m down to 1, there are three cases of ψi.

1. ψi = (x � c). From the second condition of SS, B(x) ⊆ {x | u ∈ R, u � c}. Thus,
x− c � 0 is IA-valid, and add ψi to ϕ1 (by conjunction).

2. ψi = (x = y ◦ z) and |B(x)| = 1. From the second condition of SS, x − (y ◦ z) is
IA-valid, and add ψi to ϕ1 (by conjunction).

3. ψi = (x = y ◦ z) such that x does not appear in ϕ1 ∧ ϕ2, x 6= y, and x 6= z. Add
ψi, x− (y ◦ z) = 0, and x to ϕ2, ϕ′2, and C, respectively. From the second condition
of SS, ivt({x}, x− (y ◦ z), B) (Algorithm 6) terminates and return True. Thus, C
remains as a check basis for polynomials in ϕ′2.

104

As the invariant of the procedure, ϕ1 is IA-valid in B, and ϕ2 and ϕ′2 are equivalent.
It remains to show that equationsProver(ϕ′2, B, ∅) terminates and returns SAT. Since
C is a check basis, a brute-force search eventually satisfies the assumptions of Theorem 8.

(Q.E.D.)

Note that the order of APCs in ϕ′2 does not matter for the function equation-
sProver(ϕ′2, B, ∅). We maintain the order (used in the definition of SS) in the proof in
order to show the existence of a check basis.

105

Appendix C

Experiments on strategy
combinations

We evaluate 18 choices of SAT intended heuristics by experiments on Zankl and Meti-
Tarski families in the QF NRA division of SMT-LIB benchmark. Our choices of strategies
are,

Selection of test-UNSAT APC Selection of box (to explore): Selection of variable:
(1) Least SAT-likelyhood. (3) Largest number of SAT APCs. (8) Largest sensitivity.
(2) Largest SAT-likelyhood. (4) Least number of SAT APCs.

(5) Largest SAT-likelyhood.
(6) Least SAT-likelyhood.

(10) Random. (7) Random. (9) Random.

Table C.1 shows the experimental results of the above mentioned combination. The
timeout is set to 500sec, and the time is the total execution time of successful cases.

Note that (10)-(7)-(9) means all random selections. Generally, the combination (1)-
(5)-(8) outperforms in terms of the number of solved problems and the running time.

106

Benchmark (1)-(5)-(8) (1)-(5)-(9) (1)-(6)-(8) (1)-(6)-(9) (10)-(5)-(8) (10)-(6)-(8)
Matrix-1 (SAT) 20 132.72 (s) 21 21.48 19 526.76 18 562.19 21 462.57 19 155.77
Matrix-1 (UNSAT) 2 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00
Matrix-2,3,4,5 (SAT) 11 632.37 1 4.83 0 0.00 1 22.50 9 943.08 1 30.48
Matrix-2,3,4,5 (UNSAT) 8 0.37 8 0.39 8 0.37 8 0.38 8 0.38 8 0.38

Benchmark (2)-(5)-(8) (2)-(5)-(9) (2)-(6)-(8) (2)-(6)-(9) (2)-(7)-(8) (10)-(7)-(9)
Matrix-1 (SAT) 22 163.47 (s) 19 736.17 20 324.97 18 1068.40 21 799.79 21 933.39
Matrix-1 (UNSAT) 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00
Matrix-2,3,4,5 (SAT) 5 202.37 1 350.84 1 138.86 0 0.00 0 0.00 0 0.00
Matrix-2,3,4,5 (UNSAT) 8 0.43 8 0.37 8 0.40 8 0.38 8 0.37 8 0.38

Benchmark (1)-(3)-(8) (1)-(4)-(8) (2)-(3)-(8) (2)-(4)-(8) (10)-(3)-(8) (10)-(4)-(8)
Matrix-1 (SAT) 20 738.26 (s) 21 1537.9 18 479.60 21 867.99 20 588.78 19 196.21
Matrix-1 (UNSAT) 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00
Matrix-2,3,4,5 (SAT) 0 0.00 2 289.17 1 467.12 1 328.03 1 195.18 2 354.94
Matrix-2,3,4,5 (UNSAT) 8 0.36 8 0.36 8 0.34 8 0.37 8 0.37 8 0.39

Benchmark (1)-(5)-(8) (1)-(5)-(9) (10)-(5)-(8) (10)-(7)-(9)
Meti-Tarski (SAT, 3528) 3322 369.60 (s) 3303 425.37 3325 653.87 3322 642.04
Meti-Tarski (UNSAT, 1573) 1052 383.40 1064 1141.67 1100 842.73 1076 829.43

Table C.1: Numbers of solved problems by combinations of the strategies in
QF NRA/Zankl,Meti-Tarski benchmark

107

