NOTE ON REGULAR SEQUENCES ON SEMIGROUPS

RYÛKI MATSUDA

Received March 30, 1999

Abstract. We determine what are Macaulay semigroups which satisfy Property (*).

Let G be a torsion-free abelian (additive) group, and let S be a subsemigroup of G which contains 0 . Then S is called a grading monoid (or a g-monoid)[N$]$.

Let S be a g-monoid, and let A be a non-empty set. Assume that, for every $s \in S$ and $a \in A$, there is defined $s+a \in A$ so that, for every $s_{1}, s_{2} \in S$ and $a \in A$, we have $\left(s_{1}+s_{2}\right)+a=s_{1}+\left(s_{2}+a\right)$ and $0+a=a$. Then A is called an S-module. Clearly, S is an S-module.

Throughout the paper, S denotes a g-monoid. If every ideal of S is finitely generated, then S is called a Noetherian semigroup.

Let A be an S-module and $s \in S$. If $s+a_{1}=s+a_{2}$ (for $a_{1}, a_{2} \in A$) implies $a_{1}=a_{2}$, then s is called a non-zerodivisor on A. If s is not a non-zerodivisor, then s is called a zerodivisor on A. The set of zerodivisors on A is denoted by $Z(A)$. Let B be a submodule of an S-module A, and $s \in S$. If $s+a \in B$ (for $a \in A$) implies $a \in B$, then s is called a nonzerodivisor on A modulo B (or a non-zerodivisor on A / B). If s is not a non-zerodivisor on A / B, then s is called a zerodivisor. The set of zerodivisors on A / B is denoted by $Z(A / B)$.

For a subset T of S, the ideal generated by T is denoted by (T). The ordered sequence x_{1}, \cdots, x_{n} of elements of S is called a regular sequence on A, if $\left(x_{1}, \cdots, x_{n}\right)+A \varsubsetneqq A$ and if $x_{1} \notin Z(A), x_{2} \notin Z\left(A /\left(\left(x_{1}\right)+A\right)\right), \cdots, x_{n} \notin Z\left(A /\left(\left(x_{1}, \cdots, x_{n-1}\right)+A\right)\right)$.

Let I be an ideal of S, and let x_{1}, \cdots, x_{n} be a regular sequence in I on A. If x_{1}, \cdots, x_{n}, x is not a regular sequence on A for each $x \in I$, then x_{1}, \cdots, x_{n} is called a maximal regular sequence in I on A. The maximum of lengths of all regular sequences in I on A is called the grade of I on A, and is denoted by $G(I, A)$.

If S is a Noetherian semigroup with maximal ideal M, and if $G(M, S)$ equals to the dimension of S, then S is called a Macaulay semigroup.

In [TM] and [M, Section 3], we studied regular sequences on semigroups and Macaulay semigroups.

Remark. Let S be a Noetherian semigroup. Then two maximal regular sequences on S need not have the same length.

For example, let Z_{0} be the g -monoid of non-negative integers and let $S=Z_{0} \oplus Z_{0}$. Set $p=(1,0), q=(0,1)$ and $x=(1,1)$. Then the sequence p, q is a maximal regular sequence on S. Also, the sequence x is a maximal regular sequence on S.

Let A be an S-module. If any two maximal regular sequences in I on A have the same length for every ideal I with $I+A \varsubsetneqq A$, then we say that A satisfies Property $\left(^{*}\right)$.

[^0]In [M], we obtained the following two Propositions.
Proposition 1. Let S be a Macaulay semigroup which satisfies Property (*). Then $G(I, S)$ equals to the height of I for every ideal I of S.

Let X be an indeterminate. Then the g-monoid $S+Z_{0} X$ is denoted by $S[X]$, and is called the polynomial semigroup of X over S.

Proposition 2. The polynomial semigroup $S[X]$ is a Macaulay semigroup if and only if S is a Macaulay semigroup.

The aims of this note are to determine what are Macaulay semigroups which satisfy Property (*), and when the $S[X]$-module $S[X]$ satisfies Property (*).

Theorem 1. S is a Macaulay semigroup which satisfies Property (*) if and only if S is a Noetherian semigroup with dimension ≤ 1.

Proof. The sufficiency: If S is of 0 -dimension, we have nothing to prove.
Assume that S is of 1 -dimension and let M be a maximal ideal of S. Let x be any element of M. Then the sequence x is a regular sequence. Suppose that x is not a maximal regular sequence. There is an element $y \in M$ such that x, y is a regular sequence.

There is a positive integer n such that $n y \in(x)$. For, suppose the contrary. Put $T=\{n y \mid n \in N\}$. Let $\left\{J_{\lambda} \mid \lambda\right\}$ be the set of ideals of S between (x) and M which are disjoint from T.

By Zorn's Lemma, the family $\left\{J_{\lambda} \mid \lambda\right\}$ has a maximal member J. Suppose that $s_{1} \notin J$ and $s_{2} \notin J$ for elements s_{1}, s_{2} of S. Since the ideal $\left(J, s_{1}\right)$ of S properly contains J, there exists a positive integer n_{1} such that $\left(J, s_{1}\right) \ni n_{1} y$. Since J is disjoint from T, we have $n_{1} y \in\left(s_{1}\right)$. Similarly, we have $n_{2} y \in\left(s_{2}\right)$ for some positive integer n_{2}. It follows that $\left(n_{1}+n_{2}\right) y \in\left(s_{1}+s_{2}\right)$. By assumption, we have $s_{1}+s_{2} \notin J$. Therefore J is a prime ideal that is properly contained in M. Hence $\operatorname{dim}(S) \geq 2$; a contradiction.

Let m be the least positive integer n such that $n y \in(x)$. Since $m y \in(x)$ and $(m-1) y \notin$ (x), we see that y is a zerodivisor modulo (x); a contradiction.

We have proved the sufficiency.
The necessity: We may assume that $\operatorname{dim}(S)>0$. Let M be a maximal ideal of S, and let $d=\operatorname{dim}(S)$.

First, every element of S is the sum of a finite number of irreducible elements of S. For, suppose that there is an element of S which is not the sum of a finite number of irreducible elements. Let $\left\{x_{\lambda} \mid \lambda\right\}$ be the set of such elements of S. Let (x) be a maximal member in the family $\left\{\left(x_{\lambda}\right) \mid \lambda\right\}$ of ideals. Then x is not an irreducible element of S. Hence we have $x=x_{1}+x_{2}$ for some elements x_{1} and x_{2} of M. Since $\left(x_{i}\right) \supsetneqq(x)$ for $i=1$ and 2 , we see that x_{i} is the sum of irreducible elements of S. Hence x is the sum of irreducible elements of S; a contradiction.

Next, there exists only a finite number of irreducuible elements of S. For, suppose that there exists an infinite number of irreducible elements $x_{1}, x_{2}, x_{3}, \cdots$. Then we have the ascending chain of ideals $\left(x_{1}\right) \varsubsetneqq\left(x_{1}, x_{2}\right) \varsubsetneqq\left(x_{1}, x_{2}, x_{3}\right) \varsubsetneqq \cdots ;$ a contradiction.

Let $x_{1}, x_{2}, \cdots, x_{n}$ be the set of irreducible elements of S. Set $x=x_{1}+\cdots+x_{n}$.
Then x is a maximal regular sequence. For, suppopse the contrary. There is an element $y \in M$ such that x, y is a regular sequence. Then we may assume that y is of the form $n_{1} x_{i_{1}}+\cdots+n_{m} x_{i_{m}}$ with positive integers n_{1}, \cdots, n_{m}. If $\{1, \cdots, n\}-\left\{i_{1}, \cdots, i_{m}\right\}=\emptyset$, we see that y is a zerodivisor modulo (x); a contradiction. If $\{1, \cdots, n\}-\left\{i_{1}, \cdots, i_{m}\right\}=$
$\left\{j_{1}, \cdots, j_{h}\right\}$, let $z=x_{j_{1}}+\cdots+x_{j_{h}}$. Then $y+z \in(x)$ and $z \notin(x)$; that is, y is a zerodivisor modulo (x); a contradiction.

There does not exists a regular sequence of length $>d$. For, we rely on induction on d. Thus let x_{1}, \cdots, x_{d}, y be a regular sequence on S, and set $T=\{n y \mid n \in N\}$. Since y is a non-zerodivisor on $S /\left(x_{1}, \cdots, x_{d}\right)$, we see that T is disjoint from $\left(x_{1}, \cdots, x_{d}\right)$. Take a prime ideal Q which contains $\left(x_{1}, \cdots, x_{d}\right)$ and disjoint from T. Set $S_{Q}=\left\{s-s^{\prime} \mid s, s^{\prime} \in S, s^{\prime} \notin\right.$ $Q\}$.Then x_{1}, \cdots, x_{d} is a regular sequence on S_{Q} of length $>\operatorname{dim}\left(S_{Q}\right)$; a contradiction.

Since S satisfies property $\left(^{*}\right)$, we have $G(M, S)=1$. Since S is a Macaulay semigroup, we have $\operatorname{dim}(S)=1$.

Every element f of $S[X]$ is of the form $s+d X$ with an element s of S and a non-negative integer d. We call d the degree of f.

Theorem 2. Let S be a Noetherian semigroup. Then the $S[X]$-module $S[X]$ satisfies Property $\left(^{*}\right.$) if and only if S is a group.

Proof. We see that $S[X]$ is a Noetherian semigroup. For, suppose the contrary. There exists an ideal J of $S[X]$ which is not finitely generated. Let $f_{1} \in J$ be an element whose degree is minimal in J. Let $f_{2} \in J-\left(f_{1}\right)$ be an element whose degree is minimal in $J-\left(f_{1}\right)$. Inductively, let $f_{i} \in J-\left(f_{1}, f_{2}, \cdots, f_{i-1}\right)$ be an element whose degree is minimal in $J-\left(f_{1}, f_{2}, \cdots, f_{i-1}\right)$ for each i. For each i, set $f_{i}=s_{i}+d_{i} X$ with an element s_{i} of S and a non-negative integer d_{i}. Since the ideal $\left(s_{1}, s_{2}, s_{3}, \cdots\right)$ of S is finitely generated, we have $\left(s_{1}, s_{2}, s_{3}, \cdots\right)=\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ for some positive integer n. There exist an element s of S and a non-negative integer m with $m \leq n$ such that $s_{n+1}=s_{m}+s$. It follows that $f_{n+1}=s_{m}+d_{m} X+s+\left(d_{n+1}-d_{m}\right) X \in\left(f_{1}, f_{2}, \cdots, f_{m}\right)$; a contradiction to the choice of f_{n+1}.

If S is not a group, S has a maximal ideal M. Take an element $x \in M$. Then the sequence x, X is a regular sequence on $S[X]$. Since $S[X]$ has a maximal regular sequence of length 1 by the proof of the necessity of Theorem 1 , we see that $S[X]$ does not satisfy Property (*).

The sufficiency is obvious.

REFERENCES

[M] R. Matsuda, Some results on commutative semigroups and semigroup rings, Coll. Res. Ins. Math. Sci.,Kyoto Univ. (1999),to appear.
[N] D. Northcott, Lessons on Rings,Modules and Multiplicities, Cambridge Univ. Press, 1968.
[TM] T. Tanabe and R. Matsuda, Note on Kaplansky's Commutative Rings, Nihonkai Math. J. 10(1999), to appear.

Department of Mathematics,Ibaraki University,Mito 310,Japan
Tel: 029-228-8336
matsuda@mito.ipc.ibaraki.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 20M14, Secondary 13A15.
 Key words and phrases. regular sequence, Macaulay semigroup, polynomial semigroup.

