

Figure II-140 Cross-section of Density (kg/m³) from the North Side to the South Side in the Bay Central Part During the Southeast Monsoon

2.2 BIOLOGY

2.2.1 Terrestrial Biology

As described in the ANDAL Terms of Reference document agreed by Minister of the Environment, the Tangguh LNG has performed several biological diversity surveys to illustrate the biological environmental conditions in the Tangguh LNG areas. The surveys are:

- 1. Environmental baseline study for ANDAL 2002;
- 2. Flora and Fauna Survey in the Tangguh LNG Project Site in 2007; and
- 3. Monitoring of Flora and Fauna at Tangguh LNG in 2011.

Land Cover

In the flora and fauna monitoring report 2011, it is described that in general the major forest ecosystem type at the proposed location of the Tangguh LNG Expansion Project consists of (1) mangrove forest, (2) swamp forest, and (3) lowland forest. Forest areas cleared for the Tangguh LNG activities are totally 3,266 ha, but only 365 ha (11.18%) of the area is cleared for the expansion of Tangguh LNG site and 39 ha of the area is fenced as a buffer zone. Of the cleared area, approximately 100 ha have been re-vegetated. Further, for the development of the LNG Plant facilities and its supporting facilities required as part of the Tangguh LNG Expansion Project, land clearing of maximum 500 ha is needed.

Analysis results of satellite images over a period of ten years (Landsat Images year 2000, 2008 and 2011) indicate the vegetation density level in the Buffer Zone area. The vegetation density condition in the buffer zone area from 2000 to 2011 is as presented in **Figure II-141**.

Based on **Figure II-141**, it can be observed that areas with sparse vegetation density levels are decreasing i.e. from 1,080 ha (38%) in 2000, to 273 ha (9%) in 2008 and to 160 ha (6%) in 2011. However, on the contrary the medium vegetation density level slightly fluctuated i.e. from 1,243 ha (43%) in 2000 to 1,671 ha (58%) in 2008 and decreased to 1,074 ha (37%) in 2011. These changes may be due to the changes of the medium vegetation density in 2008 to dense vegetation in 2011. Therefore, consistently the dense vegetation density increased from 539 ha (19%) in 2000, to 917 ha or (32%) in 2008 and furthermore increased to 1,628 ha (57%) in 2011.

Source: Analysis results of Landsat Images, 2011 by the IPB Team for the Report of the Tangguh LNG Flora and Fauna Survey

Figure II-141 Vegetation Density in the Buffer Zone from 2000 to 2011

From the analysis results, there is an increase in the extent of dense vegetation. This is due to the fencing performed by the Tangguh LNG resulting in a limited access for outsiders to undertake any activities in this area. Apart from the limited human activities due to the fencing, this also results in control on logging activities, thus providing space and time for the existing vegetation to experience natural recovery processes (natural succession). The Tangguh LNG also performed re-vegetation in this area by prioritizing the planting of local species.

Landsat 5 and 7 ETM images **Figure II-142** indicates that the land clearing activities only occur at the Tangguh LNG site (LNG Train 1 and 2 as well as its existing supporting facilities), and there will no land clearing activities in the buffer zone of

the Tangguh LNG Project (2,852 ha). **Figure II-143** indicates the vegetation density level based on the NDVI analysis in the buffer zone of the Tangguh LNG based on Landsat 5 and Landsat 7 ETM Images, year 2000, 2008 and 2011.

Figure II-142 Land Closure Conditions at the Tangguh LNG Buffer Zone, Based on Landsat 5 and Landsat 7 ETM Images, Year 2000, 2008 and 2011

Figure II-143 Vegetation Density Level Based on the NDVI Analysis at the Tangguh LNG Buffer Zone Based on the Landsat 5 and Landsat 7 ETM Images, Year 2000, 2008 and 2011

2.2.1.1 Terrestrial Flora

Structure and Composition of Species - Forest Stand

Density of Plant Species

Lowland Forest

Based on the survey in 2011, three transects were performed to identify the lowland forest vegetation composition in the Tangguh LNG area. At transect-1, tree habitus plant species with the highest density at the tree level is Kibo (*Xylopia caudata*) with a density of 19 individuals/ha; the pole level is Jabon (*Anthocephalus chinensis*) with a density of 60 individuals/ha; the sapling level is Mahang (*Macaranga involucrata*) with a density of 420 individuals/ha; and the seedling level is Watartesa, Senapa, Senepa, Sapartesa (*Rhodamnia latifolia*) with a density of 750 individuals/ha.

The densities of five tree-habitus plant species with the highest density in lowland forest of Transect-1 in the Tangguh LNG area are presented in **Table II-50**.

Level of Growth	Local Name	Scientific Name	Density (individuals/ha)
	Kibo	Xylopia caudata Hook.f. & Thoms.	19
	Jabon	Anthocephalus chinensis (Lamk.) Rich. Ex Walp.	13
Tree	Tangguh, dura, sea, tago, tagoh	Goniothalamus aruensis Scheff.	5
	Merbau	Intsia bijuga A. Gray.	5
	Siwa, tago	Alphitonia incana (Roxb.) Teijsm.& Binn. ex Kurz.	5
	Jabon	Anthocephalus chinensis (Lamk.) Rich. Ex Walp.	60
	Koma	Ficus variegata Bl.	35
Pole	Tororo, koma	Ficus virens W. Ait.	35
	Sinatibi	Macaranga aleuritoides F. Muell.	30
	Mahang	Macaranga involucrata (Roxb.) Baillon	25
	Mahang	Macaranga involucrata (Roxb.) Baillon	420
	Sinatibi	Macaranga aleuritoides F. Muell.	260
Sapling	Tororo, koma	Ficus virens W. Ait.	200
	Kisawe, kisawai, sawi	Pleomele angustifolia (Roxb.) N.E. Br.	180
	Mahang daun besar	Macaranga gigantea (Reichb.f. & Zoll.) Muell. Arg.	180
	Watartesa, senapa, senepa, sapartesa	Rhodamnia latifolia (Benth.) Miq.	750
Seedling	Sp1-T2P9	Brookea tomentosa Benth.	750
	Idona	Ficus obscura Bl.	625
	Witai, weto	Mangifera foetida Lour.	500
	Kiwikebe	Vitex trifolia L.	500

Table II-50The Densities of the Five Tree-Habitus Plant Species with the
Highest Density at Transect-1 in Lowland Forest at the Tangguh
LNG Area

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

At Transect-2 in lowland forest, tree habitus plant species with the highest density at the tree level is Damar, Arowe, Kibi, Parada, Marada (*Vatica Rasak*) with a density of 29 individuals/ha; at the pole level is Damar (*Macaranga labilardieri*) with a density of 40 individuals/ha; at the sapling level is Mahang (*Macaranga involucrata*) with a density of 560 individuals/ha; and at the seedling level is Damar, Arowe, Kibi, Marada, Marada (*Vatica Rassak*) with a density of 1,750 individuals/ha. The densities of the five tree habitus plant species with the highest density at Transect-2 lowland forest in the Tangguh LNG area are presented in **Table II-51**.

Level of Growth	Local Name	Scientific Name	Density (individuals/ha)
	Damar, arowe, kibi, parada, marada	Vatica rassak (Korth.) Bl.	29
	Damar	Agathis labilardieri Warb.	29
Tree	Kibo	Xylopia caudata Hook.f. & Thoms.	14
	Kayu minyak	Goniothalamus cauliflorus K. Sch.	10
	Wakore	Santiria griffithii Engl.	9
	Damar	Agathis labilardieri Warb.	40
	Mahang	Macaranga involucrata (Roxb.) Baillon	25
Pole	Damar, arowe, kibi, parada, marada	Vatica rassak (Korth.) Bl.	20
	Kiwibi	Memecylon cf. oleaefolium Baker	20
	Jabon	Anthocephalus chinensis (Lamk.) Rich. Ex Walp.	15
	Mahang	Macaranga involucrata (Roxb.) Baillon	560
	Sp-1 T1P7	Champereia manillana (Bl.) Merrill	420
Sapling	Sinatibi	Macaranga aleuritoides F. Muell.	260
	Tororo, koma	Ficus virens W. Ait.	240
	Kisawe, kisawai, sawi	Pleomele angustifolia (Roxb.) N.E. Br.	200
Seedling	Damar, arowe, kibi, parada, marada	Vatica rassak (Korth.) Bl.	1,750
	Tree-1 T3P5	Aceratium ledermannii Schltr.	1,500
	Pinang	Areca catechu L.	1,125
	Wena	Xylopia malayana Hook.f. & Thoms.	1,125
	Mateya, matea, kefe	Evodia elleryana F. & M.	750

Table II-51The Densities of the Five Tree Habitus Plant Species with the
Highest Density at Transect-2 in Lowland Forest at the Tangguh
LNG Area

Source : Flora and Fauna Survey Result Report at Tangguh LNG Project Site Year 2011

At Transect-3 in lowland forest, tree habitus plant species with the highest density at the tree level is Merbau (*Intsia bijuga*) with a density of 15 individuals/ha; at the pole level is Soma-soma, Kofa (*Baringtonia racemosa*) with a density of 27 individuals/ha; at the Sapling level is Soma-soma, Kofa (*Baringtonia racemosa*) with a density of 293 individuals/ha; and at the seedling level is the delicate Palm leaf (*Gulubia costata*) with a density of 2,333 individuals/ha. The densities of the five tree habitus plant species with the highest density at Transect-3 in lowland forest are presented in **Table II-52**.

Table II-50The Densities of the Five Tree Habitus Plant Species with the
Highest Density at Transect-3 in Lowland Forest at Tangguh LNG
Areas

Level of Growth	Local Name	Scientific Name	Density (individuals/ha)
	Merbau	Intsia bijuga A. Gray.	15
	Wata, matoa	Pometia pinnata J.R. & G. Forst.	13
Tree	Jabon	Anthocephalus chinensis (Lamk.) Rich. Ex Walp.	13
	Kiwibi, kiwi	Hymenaea courbaril Linn.	10
	Adaura	Artocarpus teysmannii Miq.	7
	Soma-soma, kofa	Barringtonia racemosa Hort. ex Miq.	27
	Seri	Glochidion lutescens Bl.	13
Pole	Watartesa, senapa, senepa, sapartesa	Rhodamnia latifolia (Benth.) Miq.	13
	Senau	Palaquium sericeum H.J. Lam	13
	Tororo, koma	Ficus virens W. Ait.	13
	Soma-soma, kofa	Barringtonia racemosa Hort. ex Miq.	293
	Sukun hutan	Artocarpus altilis (Parkinson) Fosberg.	267
Sapling	Watartesa, senapa, senepa, sapartesa	Rhodamnia latifolia (Benth.) Miq.	240
	Sp-15 T3	Ficus tinctoria Forst. f. subsp. tinctoria	240
	Senau	Palaquium sericeum H.J. Lam	213
	Palem daun halus	Gulubia costata (Becc.) Becc.	2,333
	Sp-1 T1P7	Champereia manillana (Bl.) Merrill	1,167
	Kisawe, kisawai, sawi	Pleomele angustifolia (Roxb.) N.E. Br.	1,000
Seedling	Watartesa, senapa, senepa, sapartesa	Rhodamnia latifolia (Benth.) Miq.	1,000
	Damar, arowe, kibi, parada, marada	Vatica rassak (Korth.) Bl.	833

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project location year 2011

Swamp Forest

Swamp forest in the Tangguh LNG area that have tree habitus plant species with a highest density at the tree and seedling level is the Watura (*Bruguirea parviflora*) with a density of respectively 42 individuals/ha and 2,000 individuals/ha; while at the pole and sapling levels is the Kakabora/Kakabaura (*Dolichandrone spathacea*) with a density of respectively 67 individuals/ha and 1,467 individuals/ha. Plant species with the highest density at every growth level are presented in **Table II-53**.

Table II-51	Plant Species with the Highest Density at Every Growth Level in
	Swamp Forest at the Tangguh LNG Area

Level of Growth	Local Name	Scientific Name	Density (individuals/ha)
	Watura	Bruguirea parviflora (Roxb.) Wight. & Arn.	42
	Kakabora, kakabaura	Dolichandrone spathacea (L.f.) K. Sch.	38
Tree	Kimura, kiriri, kiropa	Pongamia pinnata (L.) Pierre	12
	Wisi, kibisi	Inocarpus fagiferus (Parkinson) Forsb.	2
	Kitis, kitisi	Hibiscus tiliaceus L.	2
	Kakabora, kakabaura	Dolichandrone spathacea (L.f.) K. Sch.	67
	Watura	Bruguirea parviflora (Roxb.) Wight. & Arn.	47
Pole	Wisi, kibisi	Inocarpus fagiferus (Parkinson) Forsb.	20
	Kimura, kiriri, kiropa	Pongamia pinnata (L.) Pierre	20
	Soma-soma, kofa	Barringtonia racemosa Hort. ex Miq.	13
	Kakabora, kakabaura	Dolichandrone spathacea (L.f.) K. Sch.	1,467
	Kitis, kitisi	Hibiscus tiliaceus L.	693
Sapling	Wisi, kibisi	Inocarpus fagiferus (Parkinson) Forsb.	427
	Kimura, kiriri, kiropa	Pongamia pinnata (L.) Pierre	320
	Soma-soma, kofa	Barringtonia racemosa Hort. ex Miq.	213
Seedling	Watura	Bruguirea parviflora (Roxb.) Wight. & Arn.	2,000
	Kitis, kitisi	Hibiscus tiliaceus L.	667
	Kakabora, kakabaura	Dolichandrone spathacea (L.f.) K. Sch.	333
	Benabo	Ficus sp.	167

Mangrove Forest

Tree habitus plant species with the highest density in mangrove forest are as follows: at the tree and pole level is Sapo (*Sonneratia alba*) with a density of respectively 149 individuals/ha and 60 individuals/ha; at the Sapling and seedling level is Weda laut (*Avicennia marina*) with a density of respectively 780 individuals/ha and 1,875 individuals/ha. Plant species with the highest density at every growth level in the mangrove forest in the Tangguh LNG areas presented in **Table II-54**.

Table II-52Plant Species with the Highest Density at Every Growth Level in
Mangrove Forest at the Tangguh LNG Area

Level of Growth	Local Name	Scientific Name	Density (individuals/ha)
Tree	Sapo	Sonneratia alba J. Smith.	149
Tree	Weda laut	Avicennia marina (Forst.f.) Bakh.	4
Dele	Sapo	Sonneratia alba J. Smith.	60
role	Weda laut	Avicennia marina (Forst.f.) Bakh.	65
Conling	Weda laut	Avicennia marina (Forst.f.) Bakh.	780
Sapling	Watora, tonate, wabi-wabi	Rhizophora apiculata Bl.	220

Level of Growth	Local Name	Scientific Name	Density (individuals/ha)
	Sapo	Sonneratia alba J. Smith.	100
	Weda laut	Avicennia marina (Forst.f.) Bakh.	1,875
Seedling	Sapo	Sonneratia alba J. Smith.	875
	Watora, tonate, wabi-wabi	Rhizophora apiculata Bl.	375

Cover crop

Cover crop species with the highest density in lowland forest at Transect-1 is Grintingan (*Cynodon dactylon*); Transect-2 is Tesa/Wantaro/Taa/Siropa (*Taenitis blechnoides*); and Transect-3 is Owe-owe (*Selaginella plana*). The list of five cover crop species with the highest Important Value Index (IVI) at lowland forest ecosystem is presented in **Table II-55**.

Table II-53Five Cover crop Species with the Highest IVI at Lowland Forest
Ecosystem Type

Transect	Local Name	Scientific Name	Density (individuals/ha)
Transect-1	Grintingan	Cynodon dactylon Pers.	6,250
	Tesa, wantaro, taa, siropa	Taenitis blechnoides (Willd.) Swartz.	2,250
	Nede-nede, nida-nida	Melastoma malabathricum Linn.	1,875
	Palas duri	Licuala brevicalyx Becc.	1,125
	Pandan	Pandanus sp.	1,000
Transect-2	Tesa, wantaro, taa, siropa	Taenitis blechnoides (Willd.) Swartz.	3,000
	Nede-nede, nida-nida	Melastoma malabathricum Linn.	1,625
	Palem daun halus	Gulubia costata (Becc.) Becc.	1,125
	Batisa, nesanububu	Pityrogramma calomelanos (L.) Link.	1,000
	Watora	Nephrolepis falcata (Cav.) C. Chr.	875
Transect-3	Owe-owe	Selaginella plana (Desv.) Hieron	2,333
	Musuri	Alpinia sp.	833
	Musuri huruma	Zingiber sp.	333
	Nede-nede, nida-nida	Melastoma malabathricum Linn.	167
	Sopage	Donax cannaeformis (G. Forst.) K. Schum.	167

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

In swamp forest, cover crop species that have the highest density is Pandan (*Pandanus sp.*) with a density of 3,330 individuals/ha. While in mangrove forest cover crop species are not found. The list of the cover crop species with the highest IVI at the swamp forest ecosystem is presented in **Table II-56**.

Table II-54	Five Cover crop Species with the Highest IVI at Swamp Forest
	Ecosystem Type

Local Name	Scientific Name	Density (individuals/ha)
Pandan pohon, paku pohon	Pandanus sp.	3,330
Yatesa, catesa, piyai	Acrostichum aureum L.	2,500
Kafenisa	Acanthus ilicifolius L.	1,670
Kafirsa, kafirsa huruma	Paspalum conjugatum Berg.	670
Firiwo	Crinum asiaticum L.	500

Epiphytes and Liana

At the epiphytes and liana habitus, plant species that have the highest density in lowland forest at Transect-1 is *Bunga ternate* (*Clitoria ternatae*) with a density of 68 individuals/ha; while at Transect-2 and Transect-3 is *Kagetisa daun besar/sedang* (*Rhaphidophora sylvestris* (*Bl*) *Engl.*) with a density of respectively 74 individuals/ha and 142 individuals/ha. **Table II-57** presents the five epiphyites and liana habitus species with highest IVI at the lowland forest ecosystem type.

Table II-55	Five Epiphytes and Liana Habitus Species with the Highest IVI at
	the Lowland Forest Ecosystem Type

Transect	Local Name	Scientific Name	Density (individual/ha)
Transect-1	Bunga ternate	Clitoria ternatae L.	68
	Pipi kisiri, deda	Mikania cordata (Burm.f.) B.L. Robinson	55
	Rotan daun halus	Calamus sp. 1	30
	Yesirara	Flagellaria indica L.	30
	Rotan T1P1-1	Calamus aruensis Becc.	29
Transect-2	Kagetisa daun besar/sedang	Rhaphidophora sylvestris (Bl.) Engl.	74
	Muki	Freycinetia graminea Bl.	44
	Rotan T1P1-1	Calamus aruensis Becc.	34
	Tantega	Uncaria glabrata (Bl.) DC.	33
	Yesirara	Flagellaria indica L.	29
Transect-3	Kagetisa daun besar/sedang	Rhaphidophora sylvestris (Bl.) Engl.	142
	Kagetisa daun kecil	Pothos falcifolius Engl. & K. Krause	75
	Sapo-sapo, sapara	Ficus pumila L.	60
	Rotan T1P1-1	Calamus aruensis Becc.	37
	Muki	Freycinetia graminea Bl.	18

Source: Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

In swamp forest, the epiphytes and liana habitus species that have the highest density is the Yesilara (*Flagellaria indica*) with a density of 105 individuals/ha. Five epiphytes and liana habitus species with the highest IVI in swamp forest ecosystems are presented in **Table II-58**.

Table II-56Five Epiphytes and Liana Habitus Species with the HighestImportant Value Index at the Swamp Forest Ecosystem Type

Local Name	Scientific Name	Density (individual/ha)
Yesirara	Flagellaria indica L.	105
Kagetisa daun kecil	Pothos falcifolius Engl. & K. Krause	103
Kagetisa daun besar/sedang	Rhaphidophora sylvestris (Bl.) Engl.	37
Fiso	Derris trifoliata Lour.	28
Wadatene	Asplenium nidus L.	22

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

While in the mangrove forest, the epiphytes and liana species that have the highest density is the Wadatene (*Lecanopteris carnosa*) with a density of 15 individuals/ha. Three species of epiphytes and liana habitus with the highest IVI at the mangrove forest ecosystem type are presented in **Table II-59**.

Table II-57Three Epiphytes and Liana Habitus Plant Species with Highest IVI
at the Mangrove Forest Ecosystem Type

Local Name Scientific Name		Density (individual/ha)	
Wadatene	Lecanopteris carnosa (Reinw.) Bl.	15	
Wadatene	Asplenium nidus L.	6	
Wetara	Drynaria sparsisora (Desv.) Moore	4	

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

Domination of Plant Species

Lowland Forest

Dominant plant species at Transect-1 in lowland forest at tree level is dominated by Kibo (*Xylopia caudata*) with an IVI of 78.15 %; the pole level is dominated by Jabon (*Anthocephalus chinensis*) with an IVI of 49.77 %; the sapling level is dominated by Mahang (*Macaranga involucrata*) with an IVI of 22.86 %; and the seedling level is dominated by Watartesa, Senapa, Senepa, Sapartesa (*Rhodamnia latifolia*) with an IVI of 19.09 %. Five tree habitus plant species with highest IVI at Transect-1 in lowland forest are presented in **Table II-60**.

Table II-58Five Tree Habitus Plant Species with Highest IVI at Transect-1 in
Lowland Forest

Level of Growth	Local Name	Scientific Name	IVI (%)
	Kibo	Xylopia caudata Hook.f. & Thoms.	78.15
	Jabon	Anthocephalus chinensis (Lamk.) Rich. Ex Walp.	35.97
Tree	Tangguh, dura, sea, tago, tagoh	Goniothalamus aruensis Scheff.	19.98
	Merbau	Intsia bijuga A. Gray.	19.84
	Siwa, tago	Alphitonia incana (Roxb.) Teijsm.& Binn. ex Kurz.	18.32

Level of Growth	Local Name	Scientific Name	IVI (%)
	Jabon	Anthocephalus chinensis (Lamk.) Rich. Ex Walp.	49.77
	Koma	Ficus variegata Bl.	30.15
Pole	Tororo, koma	Ficus virens W. Ait.	28.77
	Mahang	Macaranga involucrata (Roxb.) Baillon	23.58
	Siwa, tago	Alphitonia incana (Roxb.) Teijsm.& Binn. ex Kurz.	21.29
	Mahang	Macaranga involucrata (Roxb.) Baillon	22.86
	Sinatibi	Macaranga aleuritoides F. Muell.	12.98
Sapling	Kisawe, kisawai, sawi	Pleomele angustifolia (Roxb.) N.E. Br.	10.51
	Mahang daun besar	Macaranga gigantea (Reichb.f. & Zoll.) Muell. Arg.	10.51
	Watartesa, senapa, senepa, sapartesa	Rhodamnia latifolia (Benth.) Miq.	10.51
	Watartesa, senapa, senepa, sapartesa	Rhodamnia latifolia (Benth.) Miq.	19.09
Seedling	Sp1-T2P9	Brookea tomentosa Benth.	16.82
	Witai, weto	Mangifera foetida Lour.	13.48
	Idona	Ficus obscura Bl.	12.88
	Kiwikebe	Vitex trifolia L.	11.21

Dominant plant species at Transect-2 in lowland forest at tree level is dominated by Damar, Arowe, Kibi, Parada, Marada (*Vatica rassak*) with an IVI of 39.40%; the pole level is dominated by Damar (*Agathis labilardieri*) with an IVI of 32.95%; the sapling level is dominated by Mahang (*Macaranga involcrata*) with an IVI of 18.97; and at the seedling level is dominated by Damar, Arowe, Kibi, Parada and Marada (*Vatica rassak*) with an IVI of 18.92%. Five tree habitus plant species with highest IVI at Transect-2 in lowland forest are presented in **Table II-61**.

Table II-59	Five Tree Habitus Plant Species with Highest IVI at Transect-2 in
	Lowland Forest

Level of Growth	Local Name	Scientific Name	IVI (%)
	Damar, arowe, kibi, parada, marada	Vatica rassak (Korth.) Bl.	39.40
	Damar	Agathis labilardieri Warb.	35.45
Tree	Kibo	Xylopia caudata Hook.f. & Thoms.	29.01
	Merbau	Intsia bijuga A. Gray.	21.92
	Kayu minyak	Goniothalamus cauliflorus K. Sch.	16.03
	Damar	Agathis labilardieri Warb.	32.95
	Damar, arowe, kibi, parada, marada	Vatica rassak (Korth.) Bl.	22.14
Pole	Mahang	Macaranga involucrata (Roxb.) Baillon	20.34
	Jabon	Anthocephalus chinensis (Lamk.) Rich. Ex Walp.	14.98
	Kiwibi	Memecylon cf. oleaefolium Baker	14.15
	Mahang	Macaranga involucrata (Roxb.) Baillon	18.97
Sapling	Sp-1 T1P7	Champereia manillana (Bl.) Merrill	16.81
	Kisawe, kisawai, sawi	Pleomele angustifolia (Roxb.) N.E. Br.	11.78
	Tororo, koma	Ficus virens W. Ait.	10.63
	Sinatibi	Macaranga aleuritoides F. Muell.	10.06

Level of Growth	Local Name	Scientific Name	IVI (%)
	Damar, arowe, kibi, parada, marada	Vatica rassak (Korth.) Bl.	18.92
Seedling	Pohon-1 T3P5	Aceratium ledermannii Schltr.	18.81
	Mateya, matea, kefe	Evodia elleryana F. & M.	14.86
	Pinang	Areca catechu L.	12.29
	Wena	Xylopia malayana Hook.f. & Thoms.	10.47

Dominant plant species at Transect-3 in lowland forest at the tree level is dominated by Merbau (*Intsia bijuga*) with an IVI of 35.12 %; the pole level is dominated by Soma-soma, Kofa (*Barringtonia racemosa*) with an IVI of 37.41 %; the sapling level is dominated by Sukun hutan (*Artocarpus altilis*) with an IVI of 8.78%; and the seedling level is dominated by Palem daun halus (*Gulubia costata*) with an IVI of 22.91 %. Five tree habitus plant species with highest IVI at Transect-2 in lowland forest are presented in **Table II-62**.

Table II-60	Five Tree Habitus Plant Species with Highest IVI at the Transect-3
	in Lowland Forest

Level of Growth	Local Name	Scientific Name	IVI (%)
	Merbau	Intsia bijuga A. Gray.	35.12
	Wata, matoa	Pometia pinnata J.R. & G. Forst.	23.05
Tree	Adaura	Artocarpus teysmannii Miq.	16.73
	Kiwibi, kiwi	Hymenaea courbaril Linn.	13.12
	Jabon	Anthocephalus chinensis (Lamk.) Rich. Ex Walp.	12.51
	Soma-soma, kofa	Barringtonia racemosa Hort. ex Miq.	37.41
	Seri	Glochidion lutescens Bl.	26.42
Pole	Watartesa, senapa, senepa, sapartesa	Rhodamnia latifolia (Benth.) Miq.	22.97
	Senau	Palaquium sericeum H.J. Lam	22.36
	Tororo, koma	Ficus virens W. Ait.	19.32
	Sukun hutan	Artocarpus altilis (Parkinson) Fosberg.	8.78
	Sp-1 T1P7	Champereia manillana (Bl.) Merrill	8.13
Sapling	Soma-soma, kofa	Barringtonia racemosa Hort. ex Miq.	7.67
	Watartesa, senapa, senepa, sapartesa	Rhodamnia latifolia (Benth.) Miq.	7.50
	Senau	Palaquium sericeum H.J. Lam	7,02
	Palem daun halus	Gulubia costata (Becc.) Becc.	22,91
Seedling	Kisawe, kisawai, sawi	Pleomele angustifolia (Roxb.) N.E. Br.	14,66
	Sp-1 T1P7	Champereia manillana (Bl.) Merrill	14,00
	Watartesa, senapa, senepa, sapartesa	Rhodamnia latifolia (Benth.) Miq.	11,27
	Damar, arowe, kibi, parada, marada	Vatica rassak (Korth.) Bl.	10,24

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

Swamp Forest

Tree habitus dominant plant species in swamp forest at the tree and seedling levels are dominated by Watura (*Bruguirea parviflora*) with an IVI of respectively 122.02% and 113.16 %; while the pole and Sapling level of growth are dominated by Kakabora/Kakabaura (*Dolichandrone spathacea*) with an IVI of respectively 125.50 % and 64.12 %. Five tree habitus plant species with highest IVI in swamp forest at every level of growth are presented in **Table II-63**.

Level of Growth	Local Name	Scientific Name	IVI (%)
	Watura	Bruguirea parviflora (Roxb.) Wight. & Arn.	122.02
	Kakabora, kakabaura	Dolichandrone spathacea (L.f.) K. Sch.	121.45
Tree	Kimura, kiriri, kiropa	Pongamia pinnata (L.) Pierre	31.06
	Wisi, kibisi	Inocarpus fagiferus (Parkinson) Forsb.	6.63
	Kitis, kitisi	Hibiscus tiliaceus L.	6.39
	Kakabora, kakabaura	Dolichandrone spathacea (L.f.) K. Sch.	125.50
	Watura	Bruguirea parviflora (Roxb.) Wight. & Arn.	77.46
Pole	Wisi, kibisi	Inocarpus fagiferus (Parkinson) Forsb.	38.07
	Kimura, kiriri, kiropa	Pongamia pinnata (L.) Pierre	37.84
	Soma-soma, kofa	Barringtonia racemosa Hort. ex Miq.	21.12
	Kakabora, kakabaura	Dolichandrone spathacea (L.f.) K. Sch.	64.12
	Kitis, kitisi	Hibiscus tiliaceus L.	34.79
sapling	Wisi, kibisi	Inocarpus fagiferus (Parkinson) Forsb.	29.25
	Kimura, kiriri, kiropa	Pongamia pinnata (L.) Pierre	22.42
	Soma-soma, kofa	Barringtonia racemosa Hort. ex Miq.	13.66
	Watura	Bruguirea parviflora (Roxb.) Wight. & Arn.	113.16
Coodling	Kitis, kitisi	Hibiscus tiliaceus L.	46.05
Seedling	Kakabora, kakabaura	Dolichandrone spathacea (L.f.) K. Sch.	27.19
	Benabo	Ficus sp.	13.60

Table II-61	Five Tree Habitus Plant Species with Highest IVI at Various Levels
	of Growth at Swamp Forest in the Tangguh LNG Area

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

Mangrove Forest

Tree habitus plant species dominating at the tree and pole levels in mangrove forest is Sapo (*Sonneratia caseolaris*) with an IVI of respectively 287.51 % and 150.80 %; while the sapling and seedling level is dominated by Weda laut (*Avicennia marina*) with an IVI of respectively 130.91 % and 124.29 %. Plant species with highest IVI in mangrove forest at the respective level of growth are presented **Table II-64**.

Table II-62Tree Habitus Plant Species with Highest IVI at Various Levels of
Growth at Mangrove Forest in the Tangguh LNG Are

Level of Growth	Local Name	Scientific Name	IVI (%)
Tree	Sapo	Sonneratia caseolaris (L.) Engl.	287.51
	Weda laut	Avicennia marina (Forst.f.) Bakh.	12.49
Pole	Sapo	Sonneratia caseolaris (L.) Engl.	150.80
	Weda laut	Avicennia marina (Forst.f.) Bakh.	149.20
Sapling	Weda laut	Avicennia marina (Forst.f.) Bakh.	130.91
	Watora, tonate, wabi-wabi	Rhizophora apiculata Bl.	44.00
	Sapo	Sonneratia caseolaris (L.) Engl.	25.09
Seedling	Weda laut	Avicennia marina (Forst.f.) Bakh.	124.29
	Sapo	Sonneratia caseolaris (L.) Engl.	42.29
	Watora, tonate, wabi-wabi	Rhizophora apiculata Bl.	33.43

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

Cover crop

Types of cover crop dominating at Transect-1 in lowland forest is Grintingan (*Cynodon dactylon*) with an IVI of 37.26 %; at Transect-2 are Tesa, Wantaro, Taa, Siropa (*Taenitis blechnoides*) with an IVI of 41.41 %; and at Transect-3 is Owe-owe (*Selaginella plana*) with an IVI of 89.10 %. **Table II-65** presents five cover crop plant species with highest IVI at lowland forest ecosystem.

Table II-63Five Cover crop Species with Highest IVI at Lowland Forest
Ecosystem Type

Transect	Local Name	Scientific Name	IVI (%)
Transect-1	Grintingan	Cynodon dactylon Pers.	37.26
	Tesa, wantaro, taa, siropa	Taenitis blechnoides (Willd.) Swartz.	19.77
	Nede-nede, nida-nida	Melastoma malabathricum Linn.	19.75
	Pandan	Pandanus sp.	15.53
	Palas duri	Licuala brevicalyx Becc.	14.35
Transect-2	Tesa, wantaro, taa, siropa	Taenitis blechnoides (Willd.) Swartz.	41.41
	Nede-nede, nida-nida	Melastoma malabathricum Linn.	26.60
	Safe nate	Licuala brevicalyx Becc.	17.71
	Palem daun halus	Gulubia costata (Becc.) Becc.	16.75
	Pandan kecil	Bromheadia finlaysoniana (Lindl.) Miq.	13.78
Transect-3	Owe-owe	Selaginella plana (Desv.) Hieron	89.10
	Musuri	Alpinia sp.	51.60
	Musuri huruma	Zingiber sp.	23.72
	Nede-nede, nida-nida	Melastoma malabathricum Linn.	11.86
	Sopage	Donax cannaeformis (G. Forst.) K. Schum.	11.86

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project location year 2011

In the swamp forest, dominant undestory species is Pohon Pandan, Pohon Paku (*Pandanus sp.*) with an IVI of 70.37 %. While there are no cover crop species found in the mangrove forest. Five cover crop species with the highest IVI at the swamp forest ecosystem are presented in **Table II-66**.

Table II-64Five Cover crop Species with Highest INP at Swamp Forest
Ecosystem Type

Local Name	Scientific Name	IVI (%)
Pandan pohon, paku pohon	Pandanus sp.	70.37
Yatesa, catesa, piyai	Acrostichum aureum L.	53.70
Kafenisa	Acanthus ilicifolius L.	40.74
Firiwo	Crinum asiaticum L.	12.96
Kafirsa, kafirsa huruma	Paspalum conjugatum Berg.	11.11

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

Epiphytes and Liana

In epiphytes and liana habitus, dominant plant species at Transect-1 in lowland forest are Pipi kisiri, Deda (*Mikania cordata*) with an IVI of 16.80 %; while at Transect-2 and Transect-3 is *Kagetisa daun besar/sedang* (*Rhaphidophora sylvestris*) with an IVI of respectively 27.10% and 50.01%. Five epiphytes and liana habitus plant species with the highest IVI at lowland forest ecosystem are presented in **Table II-67**.

Table II-65Five Epiphytes and Liana Habitus Plant Species with Highest IVI
at Lowland Forest Ecosystem Type

Transect	Local Name	Scientific Name	IVI (%)
Transect-1	Pipi kisiri, deda	Mikania cordata (Burm.f.) B.L. Robinson	16.80
	Bunga ternate	Clitoria ternatae L.	16.04
	Rotan T1P1-1	Calamus aruensis Becc.	12.69
	Rotan daun halus	Calamus sp. 1	11.60
	Yesirara	Flagellaria indica L.	11.60
Transect-2	Kagetisa daun besar/sedang	Rhaphidophora sylvestris (Bl.) Engl.	27.10
	Muki	Freycinetia graminea Bl.	18.06
	Rotan T1P1-1	Calamus aruensis Becc.	16.52
	Yesirara	Flagellaria indica L.	13.91
	Kafeta, somasio, takuri	Entada phaseoloides (L.) Merr.	13.50
Transect-3	Kagetisa daun besar/sedang	Rhaphidophora sylvestris (Bl.) Engl.	50.01
	Kagetisa daun kecil	Pothos falcifolius Engl. & K. Krause	31.19
	Sapo-sapo, sapara	Ficus pumila L.	23.10
	Rotan T1P1-1	Calamus aruensis Becc.	17.73
	Kafeta, somasio, takuri	Entada phaseoloides (L.) Merr.	11.59

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

In swamp forest, five epiphytes and liana species with the highest INP is dominated by Yesirara (*Flagellaria indica*) species with an IVI of 49.48 % and the smallest is Wadatene (*Asplenium nidus*) with an IVI of 14.22 %. Five epiphytes and liana habitus plant species in the swamp forest ecosystem with the highest INP are presented in **Table II-68**.

Local Name	Scientific Name	IVI (%)
Yesirara	Flagellaria indica L.	49.48
Kagetisa daun kecil	Pothos falcifolius Engl. & K. Krause	47.41
Kagetisa daun besar/sedang	Rhaphidophora sylvestris (Bl.) Engl.	24.91
Fiso	Derris trifoliata Lour.	17.74
Wadatene	Asplenium nidus L.	14.22

Table II-66	Five Epiphytes and Liana Habitus Plant Species with Highest INP
	at Swamp Forest Ecosystem Type

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

While in mangrove forest, epiphytes and liana plant that have the highest INP is Wadatene (*Asplenium nidus*) with an INP of 87.50 %. Five epiphytes and liana habitus plant species in mangrove forest with the highest INP are presented in **Table II-69**.

Table II-67Epiphytes and Liana Habitus Plant Species with Highest Important
Value Index at the Mangrove Forest Ecosystem Type

Local Name	Scientific Name	INP (%)
Wadatene	Asplenium nidus L.	87.50
Wadatene	Lecanopteris carnosa (Reinw.) Bl.	72.50
Wetara	Drynaria sparsisora (Desv.) Moore	40.00

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

Distribution Pattern of Plant Species

Trees

Plant distribution patterns of tree habitus in lowland forest, swamp forest, and mangrove forest in the Tangguh LNG area are grouped and evenly, such as presented in **Table II-70**.

Table II-68Distribution Pattern of Tree Habitus Plant Species in Various
Levels of Growth at Each Forest Type in the Tangguh LNG Area

Type of Forest Ecosystem	Transect	Level of Growth	Id	Mc	Mu	Ip	Spread
Lowland Forest (Hdr)	Transect-1	Tree	2.105	9.927	33.917	0.062	Grouped
	(Hdr-1)	Pole	2.474	9.925	33.915	0.083	Grouped
		Sapling	7.474	9.916	33.906	0.363	Grouped
		Seedling	2.105	9.927	33.917	0.062	Grouped

Type of Forest Ecosystem	Transect	Level of Growth	Id	Mc	Mu	Ip	Spread
	Transect-2	Tree	6.632	9.917	33.907	0.316	Grouped
	(Hdr-2)	Pole	2.368	9.926	33.916	0.077	Grouped
		Sapling	10.474	9.915	33.905	0.528	Grouped
		Seedling	4.421	9.920	33.910	0.192	Grouped
	Transect-3	Tree	6.857	6.639	27.109	-0.033	Evenly
	(Hdr-3)	Pole	0.929	6.667	27.137	-0.006	Evenly
		Sapling	13.786	6.635	27.105	-1.078	Evenly
		Seedling	5.857	6.640	27.110	0.431	Grouped
		Tree	3.143	9.927	33.917	0.120	Grouped
Swamp Forest		Pole	0.714	9.952	33.942	-0.016	Evenly
(Hr)		Sapling	8.500	9.918	33.908	0.421	Grouped
		Seedling	0.286	9.966	33.956	-0.040	Evenly
Mangrove Forest (Hm)		Tree	5.368	9.918	33.908	0.245	Grouped
		Pole	0.714	9.952	33.942	-0.016	Evenly
		Sapling	1.842	9.929	33.919	0.047	Grouped
		Seedling	0.263	9.952	33.942	-0.041	Evenly

Cover crop

The cover crop distribution pattern at the various types of lowland forest and swamp forest in the Tangguh LNG are grouped, however in mangrove forest no significant distributions are found, as presented in Table II-71.

Table II-69	Distribution Pattern of the Cover crop species in Each Forest Type
	in Tangguh LNG Area

Type of Forest Ecosystem	Id	Mc	Mu	Ip	Distribution Type
Lowland Forest (Hdr) :					
Transect-1 (Hdr-1)	7.684	9.916	33.906	0.375	Grouped
Transect-2 (Hdr-2)	4.263	9.92	33.91	0.183	Grouped
Transect-3 (Hdr-3)	0.643	6.673	27.143	-0.031	Evenly
Swamp Forest (Hr)	2.786	9.929	33.919	0.1	Grouped
Mangrove Forest (Hm)	-	-	-	-	-

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

Epiphytes and Liana

For epiphytes and liana, plant distribution patterns in various forest types at the Tangguh LNG area are grouped and evenly, as presented in Table II-72.

Table II-70Distribution Pattern of Epiphytes and Liana Plant Species at Each
Forest Type in Tangguh LNG Area

Type of Forest Ecosystem	Id	Mc	Mu	Ip	Distribution Pattern
Lowland Forest (Hdr) :					
Transect-1 (Hdr-1)	19.211	9.913	33.903	0.961	Grouped
Transect-2 (Hdr-2)	17.421	9.913	33.903	0.872	Grouped
Transect-3 (Hdr-3)	17.571	6.634	27.104	-1.649	Evenly
Swamp Forest (Hr)	13.714	9.915	33.905	0.874	Grouped
Mangrove Forest (Hm)	0.000	9.963	33.953	-0.056	Evenly

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

<u>Flora Diversity</u>

Trees

The highest species diversity of the tree habitus are found in the lowland forest ecosystems. Based on the tree level of growth, this ecosystem type has the highest species diversity index on the entire tree level of growth. The Shanon diversity index of the seedling level of growth is 3.211-3.346, the sapling level is 3.431- 4.075, pole level of growth is 2.841-3.348, and tree level of growth is 2.640-3.506. The ecosystem type that has the lowest species diversity index at all tree level of growths is mangrove forest ecosystem. This indicates that the mangrove forest ecosystem in the Tangguh LNG area in 2011 is included in the poor tree vegetation types. The tree plant species diversity in the respective forest type can be observed in **Table II-73**.

Table II-71Diversity Index of Tree Plant Species Based on Each Forest Type in
the Tangguh LNG Area

Type of Forest Feedbystom	Shanon Diversity Index (H')						
Type of Forest Ecosystem	Seedling	Sapling	Pole	Tree			
Lowland Forest (Hdr)							
Transect-1 (Hdr-1)	3.211	3.431	2.841	2.640			
Transect-2 (Hdr-2)	3.260	3.619	3.348	3.219			
Transect-3 (Hdr-3)	3.346	4.075	2.941	3.506			
Swamp forest (Hr)	1.114	2.031	1.424	1.294			
Mangrove Forest (Hm)	0.923	0.871	0.693	0.173			

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

Cover crop

For the cover crop, the highest diversity type is found in the lowland forest, i.e. 2.801; while in the mangrove forest it is a low diversity vegetation species with a zero value or no cover crop species are found (**Table II-74**).

Table II-72Diversity Index of Cover crop species at Each Forest type in the
Tangguh LNG Area

Forest Econstant Type	Shanon Diversity Index (H')
Forest Ecosystem Type	Cover crop
Lowland Forest (Hdr)	
Transect-1 (Hdr-1)	2.801
Transect-2 (Hdr-2)	2.602
Transect-3 (Hdr-3)	1.465
Swamp Forest (Hr)	1.582
Mangrove Forest (Hm)	0.000

Epiphytes and Liana

For the epiphytes and liana habitus, the highest plant species diversity is found in lowland forest, namely 3.352; while the lowest is found in mangrove forest, namely 1.051. The high and low diversity levels of plant species in an area is comparable to the many or less plants found in the area. Therefore, if an area has many plant species then it will have a higher type of diversity level and vice versa. The diversity index of epiphytes and liana in Tangguh LNG areas can be observed in **Table II-75**.

Table II-73Diversity Index of Epiphytes and Liana Species at Each ForestSpecies in the Tangguh LNG Area

Forest Ecosystem Type	Shanon Diversity Index (H')
Forest Ecosystem Type	Epiphytes and Liana
Lowland forest (Hdr)	
Transect-1 (Hdr-1)	3.352
Transect-2 (Hdr-2)	2.949
Transect-3 (Hdr-3)	2.452
Swamp forest (Hr)	2.154
Mangrove forest (Hm)	1.051

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

Based on the Richness of Family Numbers

In terms of the family, plant species richness found in the Tangguh LNG area in 2011 can be grouped into 111 families, which the highest number of plant species are included in the *Euphorbiaceae* family, namely 38 species. Based on the Flora Fauna Survey Report in the Tangguh LNG area, Bintuni Bay Year 2002, the plant family species found are 113 families, which the highest number of plant species are included in the *Arecaceae* family, namely 24 species; while according to the Flora Fauna Survey Report in the Tangguh LNG Project Site, Bintuni Bay Year 2007, the number of plant species families found are 110 families, in which the highest number of plant species is included in the *Euphorbiaceae* family, namely 51 species.

This information indicates that the number of plant species families found in the Tangguh LNG concession area in 2011 is less than in 2002, however it is higher than

the numbers found in 2007. The difference is due to the plant species number found in the three monitoring periods experienced differences, as described previously.

Based on the Richness of Plant Species/Habitus

The richness of plant species in the Tangguh LNG concession area in 2011 which 484 habitus species identified that can be grouped into ten habitus, namely pandanus, rattan, palm, nails, shrubs, epiphytes, herbs, liana, trees, and bamboo. Based on the spreading, the tree habitus have the highest species richness in all forest ecosystem types, i.e. respectively 94 species (lowland forest Transect-1), 135 species (lowland forest Transect-2), 137 species (lowland forest Transect-3), 28 species (swamp forest), and 3 species (mangrove forest); while in areas surrounding the basecamp the herbs habitus are 56 species. Plant species richness in every forest ecosystem type in Tangguh LNG area in 2011 based on its habitus is presented **Table II-76**.

Table II-74 Richness of Plant Species based on Habitus at Each Forest **Ecosystem Type in the Tangguh LNG Area Year 2011**

Plant Class	Number of Species								
Flant Class	Hdr-1	Hdr-2	Hdr-3	Hr	Hm	Sbc	Total		
Trees	94	135	137	28	3	24	241		
Herb	23	12	9	9	0	56	81		
shrub	15	10	8	3	0	34	50		
Liana	23	18	23	9	0	8	40		
Nails	19	17	14	6	3	4	30		
Ephiphytes	6	8	8	5	0	1	13		
Palm	9	5	5	1	0	3	12		
Rattan	10	3	1	0	0	0	10		
Pandanus	5	3	1	2	0	0	6		
Bamboo	0	0	1	0	0	0	1		
Total plant species	204	211	207	63	6	130	484		

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

It can be observed from Table II-76 that plant species in the Tangguh LNG concession area in 2011 is dominated by plants included in tree habitus. This indicates that the forest area condition in the area is still good. The high number of the tree habitus plant species is due to the forest area is still classified as a virgin forest and the level of disturbances to the forest such as illegal logging is relatively very low or virtually non-existent.

Based on its habitus, the richness of plant species found in the Tangguh LNG concession area in 2011 was decreasing compared to 2007, however is lhigher than the numbers found in 2002. The highest plant species richness in the three monitoring periods, are as presented in **Table II-77**.

TT-1-1	Number of Types					
Habit	2002	2007	2011	Total		
Identified:						
Bamboo	0	1	1	2		
Epiphytes	23	77	13	72		
Herb	13	106	81	187		
Liana	68	125	40	128		
Moss	0	1	0	1		
Nails	101	31	30	67		
Palm	0	14	12	22		
Pandanus	0	4	6	8		
Shrub	0	46	50	84		
tress	211	509	241	584		
Rattan	0	8	10	12		
Total identified types	416	922	484	1.166		
Total non-identified types	0	119	0	245		
Total plant types	416	1,041	484	1,411		

Table II-75Richness of Plant Species based on Surveys in 2002, 2007 and 2011

Above information indicates that the habitus number of the plant species found in the Tangguh LNG concession area in 2011 is less than in 2007, however higher than the numbers found in 2002. The difference is due to the plant species number found in the three monitoring periods differs, as described previously.

Based on the Richness of Protection and Scarcity Status of Flora Species

Plant species found in the Tangguh LNG conservation areas in 2011 protected by Government Regulation No. 7 Year 1999 is one species and included in the CITES List Appendix II are nine species. The plant species found in the Tangguh LNG area in 2011 included in the IUCN red list are 16 namely eight species are included in the LC/Least Concern category, one species in the NT/Near Threatened category, six species in the VU/Vulnerable category and one species in EN/Endangered category. The list of plant species based on the plant status in the Tangguh LNG area in 2011 presented in **Table II-78**.

Table II-76Plant Species Richness Based on Plant Status in Each Forest
Ecosystem Type in the Tangguh LNG Area Year 2011

No	Scientific Name	Local Name	Location	Plant Status			
INU.	Scientific Name	Local Name	Location	PP	CITES	IUCN	
1	Agathis labilardieri Warb.	Damar	Hdr-2	TD	TT	LC	
2	Aquilaria filaria (Oken.) Merrill	Gaharu	Hdr-3	TD	App. II	TT	
3	Bromheadia finlaysoniana (Lindl.) Miq.	Pandan kecil	Hdr-1, Hdr-2	TD	App. II	TT	
4	Bulbophyllum sp.	Anggrek putih	Hr	Un.	App. II	Un.	

Na	Local Name		Lesstian	Plant Status			
INO.	Scientific Name	Local Name	Location	PP	CITES	IUCN	
5	Calophyllum insularum P.F. Stevens.	Bintangur daun halus	Hdr-1, Hdr-2, Hdr-3	TD	TT	EN B1+2c	
6	Cyathea latebrosa (Wall.) Copel.	Tegabe	Hdr-1, Hdr-2, Hdr-3	TD	App. II	TT	
7	Cyathea lurida (Bl.) Copel.	Tegabe	Hdr-1	TD	App. II	TT	
8	Flindersia laevicarpa White & Francis	Tiang-1 T3P6	Hdr-2, Hdr-3	TD	TT	VU	
9	Gonystylus macrophyllus (Miq.) Airy Shaw	Yebi-yebi	Hdr-1, Hdr-2	TD	App. II	VU	
10	Grammatophyllum speciosum Bl.	Anggrek kuning	Hdr-1, Sbc	D	App. II	TT	
11	Horsfieldia irya (Gaertn.) Warb.	Firoro, nete-nete	Hdr-1, Hdr-3	TD	TT	LC	
12	Instia acuminata Merrill	Merbau	Hdr-3	TD	TT	VU	
13	Intsia bijuga A. Gray.	Merbau	Hdr-1, Hdr-2, Hdr-3	TD	TT	VU	
14	Myristica cf. lancifolia Merrill	Nate, nesaro	Hdr-1, Hdr-2, Hdr-3	TD	TT	VU	
15	Myristica globosa Warb.	Sp5-T1P4	Hdr1, Hdr-2	TD	TT	NT	
16	Nageia wallichiana (Presl.) O. Kuntze.	Kayu cina	Hdr-3	TD	TT	LC	
17	Pericopsis mooniana Thwaites	Pohon-3 T3P8	Hdr-2 Hdr-3	TD	TT	VU	
18	Pholidota chinensis Lindl.	Anggrek bonggol	Hdr-2	TD	App. II	TT	
19	Rhizophora apiculata Bl.	Watora, tonate, wabi-wabi	Hm	TD	TT	LC	
20	Santiria apiculata A.W. Benn.	Keda	Hdr-1	TD	TT	LC	
21	Santiria griffithii Engl.	Wakore	Hdr-1, Hdr-2, Hdr-3	TD	TT	LC	
22	Santiria laevigata Blume	Wakore	Hdr-3	TD	TT	LC	
23	Spathoglottis plicata Bl.	Anggrek tanah	Hdr-1, Hdr-2, Hdr-3	TD	App. II	TT	
24	Vatica rassak (Korth.) Bl.	Damar, arowe, kibi, parada, marada	Hdr-2, Hdr-3	TD	TT	LC	

PP= Government Regulation No. 7 Year 1999; CITES = Convention on International Trade in Endangered Species of Wild Fauna and Flora Appendix, IUCN (International Union for Conservation of Nature and Natural Resources) ver 2.3 of 2010

Habitat: Hdr-1= Lowland forest Transect 1, Hdr-2= Lowland forest Transect 2, Hdr-3= Lowland forest Transect 3, Hr= Swamp forest, Hm= Mangrove forest, Sbc= Surrounding basecamp

Plant Status: EN= Endangered, VU= Vulnerable, Low risk NT= Near Threatened, LC= Least concerned, D= Protected, TD= Not protected, App.= Appendix, TT= Not registered, Un.= Undeterminated.

Plant species based on the plant status found in the Tangguh LNG concession area in 2002, 2007 and 2011 entirely are as follows: 3 plants were found as the protected species under Government Regulation No. 7 Year 1999, 45 plants were identified as the species listed in the CITES List Appendix II and 27 plants were listed as the species of the IUCN red list. In terms of the period of monitoring, richness of plant species found in the Tangguh LNG concession area in 2011 that are protected in accordance with Government Regulation No. 7 Year 1999 and included in the CITES List Appendix II are less than the number of species found in 2002 and 2007 survey; whereas the plant species found in 2011 included in IUCN red list are higher than the number of species found in 2002 survey, but the same result from 2007 survey, as presented in **Table II-79**.

Table II-77	Plant Species Richness Based on Plant Status According to Surveys
	in 2002, 2007, and 2011

Diant Status	Number of Types					
Plant Status	2002	2007	2011	Total		
Protected under Government Regulation No. 7 Year 1999	2	2	1	3		
CITES :						
Appendix I	0	0	0	0		
Appendix II	16	30	9	45		
Appendix III	0	0	0	0		
IUCN :						
LC/Least Concern	4	10	8	13		
NT/Near Threatened	2	1	1	3		
VU/Vulnerable	6	4	6	10		
EN/Endangered	1	1	1	1		

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

Potential Stand /Plant

Highest Potential wood in the Tangguh LNG areas are in the lowland forest, i.e. 296.24 m³/ha, while the lowest are in the mangrove forest, i.e. 24.31m³/ha. Potential wood volume of various forest ecosystem types in the Tangguh LNG areas are presented in **Table II-80**.

Table II-78Potential Wood Volume of Various Forest Ecosystem Types in the
Tangguh LNG Areas

Forest Ecosystem Types	Wood Volume (m³/ha)						
Forest Ecosystem Types	10-19	20-29	30-39	40-49	50 up	Total	
Lowland forest (Hdr) :							
Transect-1 (Hdr-1)	17.04	18.68	8.35	5.51	30.58	80.16	
Transect-2 (Hdr-2)	21.96	57.47	22.64	7.69	163.40	273.15	
Transect-3 (Hdr-3)	11.58	11.64	23.95	15.26	233.80	296.24	
Hdr Average	16.86	29.26	18.31	9.49	142.59	216.52	

Swamp forest (Hr)	14.58	9.11	13.77	16.62	31.25	85.33
Mangrove forest (Hm)	2.50	4.75	7.73	3.51	5.82	24.31

Value of Plant Utilization

Based on interviews with community in the surroundings of Tangguh LNG forest areas, field observations and literature studies indicated that there were 154 species of plants that have utilization values and can be used for 21 utilization purposes. The highest utilization as medicinal plants are 137 species, while the lowest utilization are respectively one plant species used as material for chewing and gum producing plant. Plant utilization groups in the Tangguh LNG areas can be seen in Table II-81.

Table II-79 Plant Utilization Group in Tangguh LNG Forest in Tangguh LNG Areas

No.	Utilization Groups	Number of Species
1.	Medicinal Plants	137
2.	Ornamental Plants	28
3.	Food Producing Plants	18
4.	Aromatic Plants	2
5.	Root and Tuber Producing Plants	5
6.	Fuel Producing Plants	2
7.	Dye Material Producing Plants	5
8.	Chew Material Producing Plants	1
9.	Gum Producing Plants	2
10.	Plants Producing Sugar, Alcohol or Acid	3
11.	Plants Producing Gum	1
12.	Plants Producing Oil and Vegetable Fat	2
13.	Plants Producing Essential Oils	2
14.	Plants Producing Animal Feed	13
15.	Plants Producing Toxins, including Insecticides	8
16.	Plants Producing Spices and Herbs	4
17.	Plants Producing Resin	1
18.	Plants Producing Fibers	5
19.	Plants Producing Tannin	1
20.	Plants Producing Wax	1
21.	Plants Producing Rope and Plait Materials	11
	Total plant species	190

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

2.2.1.2 Terrestrial Fauna

The following description is based on the results of fauna survey that has been performed for five months, i.e starting in September 2011 and ending in January 2012.

Mammals

Based on ANDAL Study in 2002, the Flora Fauna Survey in the Tangguh LNG Project Site in 2007 as well as the Flora and Fauna Monitoring Survey in the Tangguh LNG in 2011 that have been performed in the Tangguh LNG Buffer Zone, there were found 25 species of mammals fauna in the observation location. In detail, fauna species observation results of mammals group in the Tangguh LNG areas based on three surveys presented in **Table II-82**.

Table II-80Mammals in the Observation Location of the Tangguh LNG Based
on Surveys in 2002, 2007 and 2011

Smaring	Year of Observation				
Species	2002	2007	2011		
Megachiroptera					
Dobsonia minor (Dobson, 1879)	-	+	+		
Dobsonia magna Thomas, 1905	-	+	-		
Syconycteris australis (Peters, 1867)	-	+	+		
Nyctimene albiventer (Gray, 1867)	+	+	+		
Macroglossus minimus (Geoffroy, 1810)	+	+	+		
Nyctimene aello (Thomas, 1900)	-	+	+		
Paranyctimene raptor Tate, 1942	-	+	+		
Pteropus macrotis (Peters, 1867)	-	+	+		
Microchiroptera					
Hipposideros diadema (Geoffroy, 1813)	-	+	+		
Nyctophilus sp.	-	+	-		
Saccolaimus saccolaimus (Temminck, 1838)	-	+	-		
Murina florium Thomas, 1908	-	-	+		
Rodentia					
Rattus praetor (Thomas, 1888)	-	+	-		
Rattus leucopus (Gray, 1867)	-	-	+		
Rattus tanezumi Temminck, 1844	+	+	+		
Hydromys chrysogaster E. Geoffroy, 1804	-	+	-		
Paramelomys platyops (Thomas, 1911)		+	-		
Paramelomys naso Thomas, 1922		+	-		
Marsupialia					
Myoictis melas (Muller, 1840)	+				
Spilocuscus maculatus (Desmarest, 1818)	+				
Pseudochirulus canescens (Waterhouse, 1846)	+				
Mapurus breviceps Waterhouse, 1838	-	+	-		
Strigocuscus gymnotis (Peters&Doria, 1875)	-	+	-		

Species	Year of Observation					
	2002	2007	2011			
Echymipera clara Stein, 1932	-	+	-			
Echymipera kalubu (Lesson, 1828)	-	+	-			

The data of mammal species from 2002 to 2011 indicates that the disclosure of mammal species that possibly exist in Tangguh LNG's Buffer Zone Area has not been maximal. Survey reports in the Tangguh LNG area in 2002 records that there are no less than 20 species of *Marsupialia*; 13 species of *Rodentia*; 12 species of *Megachiroptera*; and 29 species of *Microchiroptera*, that are estimated to inhabit the buffer forest of the Tangguh LNG.

Apart from the buffer zone of the Tangguh LNG, observations were also performed in the Tangguh LNG areas. A total of five mammal species were found in the Tangguh LNG Areas, in various locations. A list of mammal species found in the Tangguh LNG Area presented in

Туре	Mess	Workplace / Workshop	Yards / Grasslands
Cervus timorensis (Deer)	-	-	+
Sus scrofa (Wild Boar)	-	-	+
Felis domesticus (Cat)	+	+	+
Canis Familiaris (Dog)	+	+	+
<i>Rattus tanezumi</i> (Oriental House rat)	+	+	+

Table II-81Types of Mammals Found in the Tangguh LNG Site

Source : Flora and Fauna Survey Result Report at Tangguh LNG Project Site Year 2011

Based on all types of mammals found in the Tangguh LNG Areas either in the Tangguh LNG Areas as well as the buffer zones, there is only one species of protected mammals which is Deer (*Cervus timorensis*). Deers are protected based on Government Regulation No. 7 Year 1999 regarding Preservation of Flora and Fauna Species which its status is vulnerable to extinction based on IUCN Red List. Although these are protected mammals and have the vulnerable status, deers are not native mammals of the Papua Island but have been introduced from outside Papua.

<u>Birds</u>

Referring to four surveys performed in the Tangguh LNG Areas, namely surveys in 2001, 2002, 2007 and 2011, 250 bird species were found, in detail, 120 species were found in 2001 survey, 122 species in 2002 survey, 108 species in 2007 survey and 142 species in 2011 survey. The list of bird species based on the four surveys presented **Table II-84**.

Table II-82List of Bird Species in the Observation Location of the Tangguh
LNG Area

NT-	Order/Family/Species	Indonesian Name	Existing Species in Year:			
NO.			2001	2002	2007	2011
	ANSE	RIFORMES				
	Α	natidae				
1	Nettapus coromandelianus Gmelin, 1789	Trutu hijau	\checkmark			
2	Tadorna radjah Lesson, 1828	Umukia raja	\checkmark	\checkmark		\checkmark
	APOI	DIFORMES				
	A	podidae				
3	Aerodramus vanikorensis Quoy & Gaimard, 1830	Walet polos	\checkmark	\checkmark		
4	Collocalia esculenta Linnaeus, 1758	Walet sapi	\checkmark		\checkmark	
5	Hirundapus caudacutus Latham, 1802	Kapinis-jarum asia				
6	Mearnsia novaeguineae D'Albertis & Salvadori, 1879	Kapinisjarum papua	\checkmark			\checkmark
	Hem	iprocnidae	•	•		•
7	Hemiprocne mystacea Lesson, 1827	Tepekong jambul	\checkmark			\checkmark
	CAPRIM	ULGIFORMES	•	•		
	Capr	imulgidae				
8	Caprimulgus indicus Latham, 1790	Cabak kelabu	\checkmark			
9	Caprimulgus macrurus Horsfield, 1821	Cabak maling		\checkmark		
	Po	dargidae				
10	Aegotheles bennettii Salvadori & D'Albertis, 1875	Atoku maluku	\checkmark			
11	Podargus ocellatus Quoy & Gaimard, 1830	Paruhkodok pualam		\checkmark	\checkmark	\checkmark
12	Podargus papuensis Quoy & Gaimard, 1830	Paruhkodok papua	\checkmark		\checkmark	
	CHARA	DRIIFORMES				
	Cha	radriidae				
13	Charadrius leschenaultii Lesson, 1826	Cerekpasir besar			\checkmark	\checkmark
14	Charadrius mongolus Pallas, 1776	Cerekpasir mongolia				\checkmark
15	Pluvialis squatorola Linnaeus, 1758	Cerek besar			\checkmark	\checkmark
	Haem	atopodidae			-	
16	Haematopus longirostris Vieillot, 1817	Kedidir belang	\checkmark			
	Ι	aridae				
17	Anous minutus Boie, 1844	Camar-angguk hitam	\checkmark		\checkmark	
18	Chlidonias leucopterus Temminck, 1815	Dara-laut sayap- putih	\checkmark			\checkmark
19	Gelochelidon nilotica Gmelin, 1789	Camar tiram		\checkmark		
20	Gygis alba Sparrman, 1786	Camar-putih mata- cincin	\checkmark			
21	Sterna albifrons Pallas, 1764	Dara-laut kecil	\checkmark			
22	Sterna bergii Lichtenstein, 1823	Dara-laut jambul				\checkmark
23	Sterna fuscata Linnaeus, 1766	Dara-laut sayap- hitam			\checkmark	V
24	Sterna hirundo Linnaeus, 1758	Dara-laut biasa	\checkmark			\checkmark

No	Order/Family/Species	Indonesian Name	Existing Species in Year:					
INO.			2001	2002	2007	2011		
25	Sterna sumatrana Raffles, 1822	Dara-laut tengkuk- hitam	\checkmark					
	Sco	lopacidae						
26	Actitis hypoleucos Linnaeus, 1758	Trinil pantai	\checkmark	\checkmark		\checkmark		
27	Calidris tenuirostris Horsfield, 1821	Kedidi besar				\checkmark		
28	Heteroscelus brevipes Vieillot, 1816	Trinil ekor-kelabu	\checkmark					
29	Heteroscelus incanus Gmelin, 1789	Trinil penjelajah	\checkmark					
30	Numenius phaeopus Linnaeus, 1758	Gajahan penggala	\checkmark			\checkmark		
31	Tringa nebularia Gunnerus, 1767	Trinil betis hijau		\checkmark				
	CICON	NIIFORMES						
Ardeidae								
32	Ardea pacifica Latham, 1801	Cangak pasifik	\checkmark					
33	Ardea picata Gould, 1845	Kuntul belang	\checkmark					
34	Ardea sumatrana Raffles, 1822	Cangkak laut	\checkmark		\checkmark			
35	Bubulcus ibis Linnaeus, 1758	Kuntul kerbau			\checkmark			
36	Butorides striatus Linnaeus, 1758	Kokokan laut	\checkmark	\checkmark	\checkmark	\checkmark		
37	Casmerodius albus Linnaeus, 1758	Cangak-besar erasia	\checkmark					
38	Egretta garzetta Linnaeus, 1766	Kuntul kecil	\checkmark		\checkmark	\checkmark		
39	Egretta novaehollandiae Latham, 1790	Cangak australia	\checkmark					
40	Egretta sacra Gmelin, 1789	Kuntul karang	\checkmark	\checkmark	\checkmark			
41	Ixobrychus flavicollis Latham, 1790	Bambangan hitam	\checkmark	\checkmark	\checkmark	\checkmark		
42	Ixobrychus sinensis Gmelin, 1789	Bambangan kuning			\checkmark			
43	Mesophoyx intermedia Wagler, 1827	Kuntul perak			\checkmark			
44	Nycticorax caledonicus Gmelin, 1789	Kowakmalam merah		\checkmark	\checkmark	\checkmark		
45	Zonerodius heliosylus Lesson & Garnot, 1828	Bambangan rimba			\checkmark			
	Thresl	kiornithidae						
46	Platalea regia Gould, 1838	Ibis-sendok raja		\checkmark				
47	Threskiornis molucca Cuvier, 1829	Ibis australia	\checkmark	\checkmark				
48	Threskiornis spinicollis Jameson, 1835	Ibis papua			\checkmark			
	COLUM	ABIFORMES						
	Col	umbidae						
49	Chalcophaps indica Linnaeus, 1758	Delimukan zamrud			\checkmark	\checkmark		
50	Chalcophaps stephani Pucheran, 1853	Delimukan timur		\checkmark	\checkmark	\checkmark		
51	Columba vitiensis Quoy & Gaimard, 1830	Merpatihutan metalik				\checkmark		
52	Ducula bicolor Scopoli, 1786	Pergam laut			\checkmark			
53	Ducula mullerii Temminck, 1835	Pergam kalung	\checkmark			\checkmark		
54	Ducula pinon Quoy & Gaimard, 1824	Pergam pinon	\checkmark	\checkmark	\checkmark	\checkmark		
55	Ducula rufigaster Quoy & Gaimard, 1830	Pergam ekor-ungu	\checkmark	\checkmark		\checkmark		
56	Ducula zoeae Lesson, 1826	Pergam zoe		\checkmark	\checkmark	\checkmark		
57	Gallicolumba rufigula Pucheran, 1853	Delimukan pomo	\checkmark					
58	Geopelia humeralis Temminck., 1821	Perkutut australia	\checkmark					
59	Goura cristata Pallas, 1764	Mambruk biasa	\checkmark		\checkmark			

ANDAL KEGIATAN TERPADU PROYEK PENGEMBANGAN TANGGUH LNG

No	Order/Family/Species	Indonesian Name	Existing Species in Year:						
INO.			2001	2002	2007	2011			
60	Gymnophaps albertisii Salvadori, 1874	Merpati-gunung irian	\checkmark						
61	Macropygia amboinensis Linnaeus, 1766	Uncal amban	\checkmark	\checkmark		\checkmark			
62	Macropygia nigrirostris Salvadori, 1875	Uncal paruh-hitam			\checkmark	\checkmark			
63	Ptilinopus aurantiifrons Gray, 1858	Walik dahi-jingga	\checkmark	\checkmark	\checkmark	\checkmark			
64	Ptilinopus coronulatus Gray, 1858	Walik lunggung	\checkmark	\checkmark		\checkmark			
65	Ptilinopus iozonus Gray, 1858	Walik perut-jingga		\checkmark	\checkmark	\checkmark			
66	Ptilinopus magnificus Temminck, 1821	Walik wompu		\checkmark		\checkmark			
67	Ptilinopus naina Temminck, 1835	Walik kerdil	\checkmark	\checkmark					
68	Ptilinopus ornatus Schlegel, 1871	Walik buma		\checkmark					
69	Ptilinopus perlatus Temminck, 1835	Walik mutiara		\checkmark					
70	Ptilinopus pulchellus Temminck, 1835	Walik elok			\checkmark				
71	Ptilinopus superbus Temminck, 1809	Walik raja		\checkmark	\checkmark				
72	Reinwardtoena reinwardtii Temminck, 1824	Uncal besar		\checkmark	\checkmark				
	CORA	CIIFORMES	•	•	•				
	Ale	cedinidae							
73	Alcedo azurea Latham, 1801	Rajaudang biru- langit	\checkmark			\checkmark			
74	Alcedo pusilla Temminck, 1836	Rajaudang kecil		\checkmark		\checkmark			
75	Ceyx lepidus Temminck, 1836	Udangmerah kerdil		\checkmark	\checkmark	\checkmark			
76	Clytoceyx rex Sharpe, 1880	Rajaudang paruh- sekop	\checkmark			\checkmark			
77	Dacelo gaudichaud Quoy & Gaimard, 1824	Kukabura perut- merah	\checkmark	\checkmark	\checkmark	\checkmark			
78	Dacelo leachii Vigors & Horsfield, 1826	Kukabura sayap-biru				\checkmark			
79	Melidora macorrhina Lesson, 1827	Rajaudang paruh- kait			\checkmark				
80	Melidora macrorrhina Lesson, 1827	Rajaudang paruh- kait		\checkmark		\checkmark			
81	Syma torotoro Lesson, 1827	Cekakak torotoro		\checkmark	\checkmark	\checkmark			
82	Tanysiptera galatea Gray, 1859	Cekakakpita biasa	\checkmark	\checkmark	\checkmark	\checkmark			
83	Tanysiptera nympha Gray, 1840	Cekakakpita bidadari				\checkmark			
84	Todiramphus chloris Boddaert, 1783	Cekakak sungai	\checkmark	\checkmark	\checkmark	\checkmark			
85	Todiramphus macleayii Jardine & Selby, 1830	Cekakak rimba			\checkmark	\checkmark			
86	Todiramphus nigrocyaneus Wallace, 1862	Cekakak biru-hitam		\checkmark		\checkmark			
87	Todiramphus sanctus Vigors & Horsfeld, 1827	Cekakak australia	\checkmark	\checkmark	\checkmark	\checkmark			
88	Rhyticeros plicatus Forster, 1781	Julang papua	\checkmark	\checkmark	\checkmark	\checkmark			
	Co	oraciidae							
89	Eurystomus orientalis Linnaeus, 1766	Tionglampu biasa	\checkmark	\checkmark	\checkmark	\checkmark			
	M	eropidae							
90	Merops ornatus Latham, 1801	Kirikkirik australia		\checkmark	\checkmark	\checkmark			
	CUCI	JLIFORMES	•	•	•	•			
	Cuculidae								

NT-	Order/Family/Species	Indonesian Name	Existing Species in Year:				
No.			2001	2002	2007	2011	
91	Cacomantis variolosus Vigors & Horsfield, 1826	Wiwik rimba		\checkmark		\checkmark	
92	Caliechthrus leucolophus Müller, 1840	Kedasi topi-putih		\checkmark		\checkmark	
93	Centropus bernsteini Schlegel, 1866	Bubut hitam			\checkmark	\checkmark	
94	Centropus menbeki Lesson & Garnot, 1828	Bubut pini		\checkmark		\checkmark	
95	Centropus phasianinus Latham, 1801	Bubut ayam				\checkmark	
96	Chrysococcyx lucidus Gmelin, 1788	Kedasi emas			\checkmark		
97	Cuculus saturatus Blyth, 1843	Kangkok ranting		\checkmark			
98	Eudynamys cyanocephala Latham, 1802	Tuwur australia		\checkmark			
99	Eudynamys scolopaceus Linnaeus, 1758	Tuwur asia			\checkmark	\checkmark	
100	Microdynamis parva Salvadori, 1875	Tuwur kerdil		\checkmark		\checkmark	
101	Scythrops novaehollandiae Latham, 1790	Karakalo australia	\checkmark			\checkmark	
	FALCO	ONIFORMES					
	Acc	cipitridae				1	
102	Accipiter cirrocephalus Vieillot, 1817	Elangalap kalung		\checkmark	\checkmark		
103	Accipiter fasciatus Vigors & Horsfield, 1827	Elangalap coklat				\checkmark	
104	Accipiter novaehollandiae Gmelin, 1788	Elangalap kelabu	\checkmark			\checkmark	
105	Accipiter poliocephalus Gray, 1858	Elangalap pucat- sosonokan	\checkmark		\checkmark	\checkmark	
106	Aquila gurneyi Gray, 1860	Rajawali kuskus	\checkmark				
107	Aviceda subcristata Gould, 1838	Alap-alap kukuk	\checkmark	\checkmark	\checkmark		
108	Haliaeetus leucogaster Gmelin, 1788	Elanglaut perut- putih	\checkmark	\checkmark		\checkmark	
109	Haliastur indus Boddaert, 1783	Elang bondol	\checkmark	\checkmark	\checkmark	\checkmark	
110	Haliastur sphenurus Vieillot, 1818	Elang siul	\checkmark				
111	Henicopernis longicauda Garnot, 1828	Elang ekor-panjang	\checkmark				
112	Hieraaetus morphnoides Gould, 1841	Elang kecil		\checkmark			
113	Pandion haliaetus Linnaeus, 1758	Elang tiram	\checkmark	\checkmark		\checkmark	
	GALI	LIFORMES					
	Meg	apodiidae					
114	Megapodius freycinet Gaimard, 1823	Gosong kelam			\checkmark	\checkmark	
115	Talegalla fuscirostris Salvadori, 1877	Maleo paruh-hitam		\checkmark	\checkmark	\checkmark	
116	Talegalla jobiensis Meyer, 1874	Maleo kerah-coklat			\checkmark		
	Pha	asianidae	r.	[[r	
117	Coturnix ypsilophora Bosc, 1792	Puyuh coklat			\checkmark	\checkmark	
	GRU	IFORMES					
	R	allidae	T			r	
118	Eulabeornis castaneoventris Gould, 1844	Mandar bakau			\checkmark	\checkmark	
119	Gallinula tenebrosa Gould, 1846	Mandar kelam	\checkmark		\checkmark		
120	Gallirallus philippensis Linnaeus, 1766	Mandarpadi kalung- kuning			\checkmark	\checkmark	
121	Porphyrio porphyrio Linnaeus, 1758	Mandar besar				\checkmark	
122	Rallina tricolor Gray, 1858	Tikusan tukar			\checkmark	\checkmark	

Na	Order/Family/Species	Indonesian Name	Existing Species in Yea			ear:
INO.			2001	2002	2007	2011
	PASSI	ERIFORMES				
	Aca	nthizidae				
123	Crateroscelis murina Sclater, 1858	Tepus-tikus merah		\checkmark		
124	Gerygone chloronota Gould, 1843	Remetuk tunggir- hijau		\checkmark		\checkmark
125	Gerygone chrysogaster Gray, 1858	Remetuk perut-emas		\checkmark		\checkmark
126	Gerygone levigaster Gould, 1843	Remetuk bakau	\checkmark			\checkmark
127	Gerygone magnirostris Gould, 1843	Remetuk rawa		\checkmark		
128	Sericornis beccarii Salvadori, 1874	Sericornis kecil				\checkmark
129	Sericornis rufescens Salvadori, 1876	Sericornis vogelkop				\checkmark
	Cam	pephagidae				L
130	Campochaera sloetii Schlegel, 1866	Kepudang-sungu emas		\checkmark		
131	Coracina boyeri Gray, 1846	Kepudangsungu kelek-coklat	\checkmark			\checkmark
132	Coracina caeruleogrisea Gray, 1858	Kepudang-sungu paruh-tebal	\checkmark			
133	Coracina melas Lesson, 1828	Kepudangsungu hitam			\checkmark	\checkmark
134	Coracina papuensis Gmelin, 1788	Kepudang-sungu kartula	\checkmark	\checkmark		
135	Coracina schisticeps Gray, 1846	Kepudang-sungu desin			\checkmark	
136	Coracina tenuirostris Jardine,1831	Kepudangsungu miniak			\checkmark	\checkmark
137	Lalage atrovirens Gray, 1862	Kapasan alis-hitam		\checkmark	\checkmark	\checkmark
138	Lalage leucomela Vigors & Horsfield, 1827	Kapasan alis-putih	\checkmark		\checkmark	\checkmark
139	Lalage sueurii Vieillot, 1818	Kapasan sayap-putih				\checkmark
	Collu	ıricinclidae				
140	Colluricincla megarhyncha Quoy & Gaimard, 1830	Anis-bentet kecil		\checkmark		
	C	orvidae				
141	Corvus orru Bonaparte, 1851	Gagak orru	\checkmark	\checkmark	\checkmark	\checkmark
142	Corvus tristis Lesson & Garnot, 1827	Gagak kelabu		\checkmark		
	PASSI	ERIFORMES				
	Cr	acticidae				
143	Cracticus cassicus Boddaert, 1783	Jagal papua		\checkmark		\checkmark
144	Cracticus quoyi Lesson, 1827	Jagal hitam		\checkmark	\checkmark	
	D	icaeidae				
145	Dicaeum pectorale Müller, 1843	Cabai papua	\checkmark	\checkmark	\checkmark	\checkmark
	Di	cruridae				
146	Dicrurus bracteatus Gould, 1842	Srigunting jambul- rambut	\checkmark	\checkmark		
147	Dicrurus hottentottus Linnaeus, 1766	Srigunting jambul- rambut			\checkmark	\checkmark

Na	Order/Family/Species Indonesian Name		Exi	sting Spe	cies in Y	ear:
NO.			2001	2002	2007	2011
	Esi	trildidae				
148	Lonchura castaneothorax Gould, 1837	Bondol dada-coklat	\checkmark			
	Hirt	ındinidae				
149	Hirundo rustica Linnaeus, 1758	Layang-layang asia		\checkmark		\checkmark
	L	aniidae				
150	Lanius cristatus Linnaeus, 1758	Bentet coklat	\checkmark			
	M	aluridae	r	r.	[
151	Malurus alboscapulatus Meyer, 1874	Cikrak-peri bahu- putih	\checkmark	\checkmark		\checkmark
152	Malurus cyanocephalus Quoy & Gaimard, 1830	Cikrak-peri kaisar		\checkmark	\checkmark	\checkmark
	Melar	ocharitidae				
153	Melanocharis nigra Lesson, 1830	Burung-buah hitam	\checkmark	\checkmark		
154	Oedistoma iliolophum Salvadori, 1876	Cucuk-panjang kate	\checkmark			
155	Oedistoma pygmaeum Salvadori, 1876	Cucuk-panjang kerdil		\checkmark		
	Mel	iphagidae				
156	Conopophila albogularis Gould, 1843	Isapmadu kalung- coklat				\checkmark
157	Lichenostomus versicolor Gould, 1843	Isapmadu kepodang		\checkmark		\checkmark
158	Melilestes megarhynchus Gray, 1858	Isapmadu paruhpanjang		\checkmark	\checkmark	\checkmark
159	Meliphaga albonotata Salvadori, 1876	Meliphaga semak	\checkmark			
160	Meliphaga aruensis Sharpe, 1884	Meliphaga aru			\checkmark	\checkmark
161	Meliphaga gracilis Gould, 1866	Meliphaga anggun			\checkmark	\checkmark
162	Meliphaga mimikae Ogilvie-Grant, 1911	Meliphaga mimika	\checkmark			
163	Meliphaga montana Salvadori, 1880	Meliphaga rimba				\checkmark
164	Meliphaga orientalis Meyer, 1894	Meliphaga gunung	\checkmark			
165	Myzomela eques Lesson & Garnot, 1827	Burung-madu myzomela eques		\checkmark		
166	Myzomela obscura Gould, 1843	Myzomela remang		\checkmark	\checkmark	\checkmark
167	Philemon buceroides Swainson, 1838	Cikukua tanduk			\checkmark	\checkmark
168	Philemon meyeri Salvadori, 1875	Cikukua kerdil	\checkmark	\checkmark		
169	Philemon novaeguineae Müller, 1843	Burung-madu besar irian	\checkmark	\checkmark		
170	Pycnopygius ixoides Salvadori, 1878	Isap-madu polos	\checkmark			
171	Pycnopygius stictocephalus Salvadori, 1876	Isap-madu kepala- coreng	\checkmark			
172	Timeliopsis griseigula Schlegel, 1871	Cucuklurus coklat				\checkmark
173	Toxorhamphus novaeguineae Lesson, 1827	Cucukpanjang perut- kuning		\checkmark		
174	Xanthotis chrysotis Lesson & Garnot, 1828	Isap-madu dada- coklat		\checkmark		
175	Xanthotis flaviventer Lesson, 1828	Isapmadu dada- coklat			\checkmark	\checkmark

No	Order/Family/Species	Order/Family/Species Indonesian Name Existing Species	Existing Species in `			donesian Name Existing Spe			ear:
INO.			2001	2002	2007	2011			
Monarchidae									
176	Arses telescophthalmus Garnot, 1827	Kehicap biku-biku	\checkmark	\checkmark					
177	Monarcha chrysomela Garnot, 1827	Kehicap emas		\checkmark		\checkmark			
178	Monarcha guttulus Garnot, 1829	Kehicap tutul				\checkmark			
179	Monarcha manadensis Quoy & Gaimard, 1830	Kehicap bertopi				\checkmark			
180	Myiagra alecto Temminck, 1827	Sikatan kilap	\checkmark	\checkmark					
	Mo	tacillidae							
181	Anthus novaeseelandiae Gmelin, 1789	Apung tanah	\checkmark						
182	Motacilla flava Linnaeus, 1758	Kicuit kerbau				\checkmark			
	Nec	tariniidae							
183	Cinnyris jugularis Linnaeus, 1766	Burungmadu sriganti							
184	Nectarinia aspasia Lesson & Garnot, 1828	Burung-madu hitam	\checkmark	\checkmark	\checkmark	\checkmark			
185	Nectarinia jugularis Linnaeus, 1766	Burung-madu sriganti	\checkmark	\checkmark	\checkmark				
	0:	riolidae							
186	Oriolus szalayi Madarász, 1900	Kepudang coklat	\checkmark	\checkmark	\checkmark	\checkmark			
	Orthonychidae								
187	Ptilorrhoa caerulescens Temminck, 1835	Tepuspermata biru	\checkmark			\checkmark			
	Pachy	cephalidae		•					
188	Pachycephala simplex Gould, 1843	Kancilan kelabu		\checkmark		\checkmark			
189	Pitohui ferrugineus Bonaparte, 1850	Pitohui karat	\checkmark	\checkmark	\checkmark	\checkmark			
190	Pitohui kirhocephalus Lesson & Garnot, 1827	Pitohui belang	\checkmark	\checkmark	\checkmark	\checkmark			
191	Pitohui sp.	Pitohui			\checkmark				
	Para	disaeidae							
192	Cicinnurus regius Linnaeus, 1758	Cenderawasih raja		\checkmark					
193	Manucodia ater Lesson, 1830	Manucodia kilap		\checkmark	\checkmark				
194	Manucodia keraudrenii Lesson & Garnot, 1826	Manukodia terompet			\checkmark				
195	Paradisaea minor Shaw, 1809	Cenderawasih kecil	\checkmark	\checkmark	\checkmark	\checkmark			
196	Ptiloris magnificus Vieillot, 1819	Toowa cemerlang		\checkmark					
197	Seleucidis melanoleucus Daudin, 1800	Cendrawasih duabelas kawat		\checkmark					
	Pet	troicidae							
198	Microeca flavigaster Gould, 1843	Sikatan perut-kuning				\checkmark			
199	Microeca flavovirescens Gray, 1858	Sikatan zaitun		\checkmark		\checkmark			
200	Monachella muelleriana Schlegel, 1871	Sikatan sungai	\checkmark						
201	Peneoenanthe pulverulenta Bonaparte, 1850	Robin bakau				\checkmark			
202	Poecilodryas hypoleuca Gray, 1859	Robin belang		\checkmark					
	Р	ittidae							
203	Pitta erythrogaster Temminck, 1823	Paok mopo		\checkmark		\checkmark			
204	Pitta sordida Müller, 1776	Paok hijau		\checkmark	\checkmark	\checkmark			

NI-	Order/Family/Species	Indonesian Name	Exis	sting Spe	ear:				
NO.			2001	2002	2007	2011			
	PI	loceidae							
205	Passer domesticus Linnaeus, 1758	Burung-gereja rumah				\checkmark			
	Poma	tostomidae							
206	Pomatostomus isidorei Lesson, 1827	Cicapapua merah		\checkmark	\checkmark	\checkmark			
	Ptilon	orhynchidae							
207	Ailuroedus buccoides Temminck, 1835	Burung-kucing telinga putih	\checkmark		\checkmark				
208	Chlamydera cerviniventris Gould, 1850	Namdur coklat	\checkmark						
	Rhipiduridae								
209	Rhipidura albolimbata Salvadori, 1874	Kipasan dagu-putih			\checkmark				
210	Rhipidura hyperythra Gray, 1858	Kipasan perut-coklat			\checkmark	\checkmark			
211	Rhipidura leucophrys Latham, 1801	Kipasan kebun	\checkmark	\checkmark	\checkmark	\checkmark			
212	Rhipidura leucothorax Salvadori, 1874	Kipasan-semak perut-putih	\checkmark	\checkmark					
213	Rhipidura maculipectus Gray, 1858	Kipasan-semak hitam		\checkmark	\checkmark	\checkmark			
214	Rhipidura rufidorsa Meyer, 1874	Kipasan tunggir- merah		\checkmark					
215	Rhipidura rufifrons Latham, 1801	Kipasan dada-hitam	\checkmark						
216	Rhipidura rufiventris Vieillot, 1818	Kipasan dada-lurik		\checkmark	\checkmark	\checkmark			
217	Rhipidura threnothorax Müller, 1843	Kipasan-semak bayan		\checkmark		\checkmark			
	St	rurnidae							
218	Aplonis cantoroides Gray, 1862	Perling kicau	\checkmark			\checkmark			
219	Aplonis metallica Temminck, 1824	Perling ungu	\checkmark		\checkmark				
220	Mino anais Lesson, 1839	Mino emas	\checkmark	\checkmark	\checkmark				
221	Mino dumontii Lesson, 1827	Mino muka-kuning	\checkmark	\checkmark	\checkmark				
	Sı	Iviidae							
222	Acrocephalus orientalis Temminck & Schlegel, 1847	Kerakbasi besar	\checkmark						
223	Acrocephalus stentoreus Ehrenberg, 1833	Kerakbasi ramai	\checkmark						
224	Cisticola exilis Vigors & Horsfield, 1827	Cici merah	\checkmark						
	PELECA	ANIFORMES							
	Fre	egatidae	-						
225	Fregata ariel Gray, 1845	Cikalang kecil	\checkmark		\checkmark				
226	Fregata minor Gmelin, 1789	Cikalang besar	\checkmark						
227	Phalacrocorax melanoleucos Vieillot, 1817	Pecuk padi belang							
	PSITT	ACIFORMES							
	Psi	ittacidae	1						
228	Alisterus amboinensis Linnaeus, 1766	Nuri-raja ambon	\checkmark	\checkmark					
229	Cacatua galerita Latham, 1790	Kakatua koki	\checkmark	\checkmark	\checkmark	\checkmark			
230	Chalcopsitta atra Scopoli, 1786	Nuri hitam	\checkmark	\checkmark	\checkmark	\checkmark			
231	Chalcopsitta sintillata Temminck, 1835	Nuri aru			\checkmark	\checkmark			

No	Order/Family/Species	Indonesian Name	Exis	sting Spe	cies in Y	ear:
10.			2001	2002	2007	2011
232	Charmosyna josefinae Finsch, 1873	Perkici josephina			\checkmark	\checkmark
233	Charmosyna placentis Temminck, 1834	Perkici dagu-merah	\checkmark	\checkmark		\checkmark
234	Charmosyna rubronotata Wallace, 1862	Perkici kepala-merah	\checkmark		\checkmark	\checkmark
235	Eclectus roratus Müller, 1776	Nuri bayan	\checkmark	\checkmark	\checkmark	\checkmark
236	Geoffroyus geoffroyi Bechstein, 1811	Nuri pipi-merah	\checkmark	\checkmark	\checkmark	\checkmark
237	Geoffroyus simplex Meyer, 1874	Nuri kalung-biru	\checkmark	\checkmark		
238	Loriculus aurantiifrons Schlegel, 1873	Serindit papua			\checkmark	\checkmark
239	Lorius lory Linnaeus, 1758	Kasturi kepala-hitam	\checkmark	\checkmark	\checkmark	\checkmark
240	Micropsitta keiensis Salvadori, 1875	Nurikate topi-kuning				\checkmark
241	Oreopsittacus arfaki Meyer, 1874	Perkici arfak			\checkmark	
242	Probosciger aterrimus Gmelin, 1788	Kakatua raja	\checkmark	\checkmark	\checkmark	\checkmark
243	Pseudeos fuscata Blyth, 1858	Nuri kelam		\checkmark		\checkmark
244	Psittaculirostris desmarestii Desmarest, 1826	Nuriara besar				\checkmark
245	Psittrichas fulgidus Lesson, 1830	Kasturi raja		\checkmark		
246	Tanygnathus megalorynchos Boddaert, 1783	Betetkelapa paruh- besar			\checkmark	
247	Trichoglossus haematodus Linnaeus, 1771	Perkici pelangi	\checkmark	\checkmark	\checkmark	\checkmark
	STRI	GIFORMES				
	Si	trigidae				
248	Uroglaux dimorpha Salvadori, 1874	Beluk papua	\checkmark		\checkmark	\checkmark
	STRUTH	IONIFORMES				
	Cas	suariidae				
249	Casuarius casuarius Linnaeus, 1758	Kasuari gelambir- ganda	\checkmark		\checkmark	\checkmark
250	Casuarius unappendiculatus Blyth, 1860	Kasuari gelambir- tunggal	\checkmark			
	Total Species		120	122	108	142

Source : Flora and Fauna Survey Result Report in the Tangguh LNG Project Site Year 2011

Based on the last survey in 2011, 142 bird species were found, with details of 63 species were found in lowland forest in Transect-1, 88 species in lowland forest in Transect-2, 86 species in lowland forest in Transect-3, 22 species in the mangrove ecosystem, 28 species in coastal forest, and 24 species in savanna and the Tangguh LNG Project Areas. The list of bird species found based on survey in 2011 presented in **Table II-85**.

Table II-83List of Bird Species in the Tangguh LNG Areas Based on Survey in
2011

No	Order/Family/Species	Indonesian Name		S	urvey i	in Year 2	011			
INO.			Tr1	Tr2	Tr3	HMR	HPT	SVN		
		ANSERIFORMES								
		Anatidae								
1	Tadorna radjah Lesson, 1828	Umukia raja					\checkmark			
		APODIFORMES								
		Apodidae								
2	Collocalia esculenta Linnaeus, 1758	Walet sapi	\checkmark			\checkmark	\checkmark	\checkmark		
3	Mearnsia novaeguineae D'Albertis & Salvadori, 1879	Kapinisjarum papua					\checkmark			
		Hemiprocnidae								
4	Hemiprocne mystacea Lesson, 1827	Tepekong jambul					\checkmark			
	C.	APRIMULGIFORMES								
		Podargidae	n	1	r	r.		[
5	Podargus ocellatus Quoy & Gaimard, 1830	Paruhkodok pualam			\checkmark					
6	Podargus papuensis Quoy & Gaimard, 1830	Paruhkodok papua			\checkmark					
	CHARADRIIFORMES									
		Charadriidae		1						
7	Charadrius leschenaultii Lesson, 1826	Cerekpasir besar				\checkmark				
8	Charadrius mongolus Pallas, 1776	Cerekpasir mongolia				\checkmark				
9	Pluvialis squatorola Linnaeus, 1758	Cerek besar				\checkmark				
		Laridae								
10	Chlidonias leucopterus Temminck, 1815	Dara-laut sayap- putih					\checkmark			
11	Sterna bergii Lichtenstein, 1823	Dara-laut jambul					\checkmark			
12	Sterna fuscata Linnaeus, 1766	Dara-laut sayap- hitam					\checkmark			
13	Sterna hirundo Linnaeus, 1758	Dara-laut biasa					\checkmark			
		Scolopacidae								
14	Actitis hypoleucos Linnaeus, 1758	Trinil pantai				\checkmark				
15	Calidris tenuirostris Horsfield, 1821	Kedidi besar					\checkmark			
16	Numenius phaeopus Linnaeus, 1758	Gajahan penggala				\checkmark				
		CICONIIFORMES	-		-	-	-			
17	Butorides striatus Linnaeus, 1758	Kokokan laut				\checkmark				
18	Egretta garzetta Linnaeus, 1766	Kuntul kecil				\checkmark				
19	Ixobrychus flavicollis Latham, 1790	Bambangan hitam					\checkmark			
20	Nycticorax caledonicus Gmelin, 1789	Kowakmalam merah				\checkmark				
		COLUMBIFORMES								
		Columbidae								
21	Chalcophaps indica Linnaeus, 1758	Delimukan zamrud		\checkmark	\checkmark					
22	Chalcophaps stephani Pucheran, 1853	Delimukan timur	\checkmark	\checkmark	\checkmark					

ЪT	Order/Family/Species	Indonesian Name	me Survey in Year 2011					
N0.			Tr1	Tr2	Tr3	HMR	HPT	SVN
23	Columba vitiensis Quoy & Gaimard, 1830	Merpatihutan metalik		\checkmark				
24	Ducula mullerii Temminck, 1835	Pergam kalung		\checkmark				
25	Ducula pinon Quoy & Gaimard, 1824	Pergam pinon	\checkmark	\checkmark	\checkmark			
26	Ducula rufigaster Quoy & Gaimard, 1830	Pergam ekor-ungu		\checkmark				
27	Ducula zoeae Lesson, 1826	Pergam zoe		\checkmark	\checkmark			
28	Macropygia amboinensis Linnaeus, 1766	Uncal amban		\checkmark				
29	Macropygia nigrirostris Salvadori, 1875	Uncal paruh-hitam	\checkmark	\checkmark	\checkmark			
30	Ptilinopus aurantiifrons Gray, 1858	Walik dahi-jingga	\checkmark	\checkmark	\checkmark		\checkmark	
31	Ptilinopus coronulatus Gray, 1858	Walik lunggung		\checkmark				
32	Ptilinopus iozonus Gray, 1858	Walik perut-jingga	\checkmark	\checkmark	\checkmark			
33	Ptilinopus magnificus Temminck, 1821	Walik wompu		\checkmark				
		CORACIIFORMES						
		Alcedinidae	r	[T	r		
34	Alcedo azurea Latham, 1801	Rajaudang biru- langit				\checkmark		
35	Alcedo pusilla Temminck, 1836	Rajaudang kecil				\checkmark		
36	Ceyx lepidus Temminck, 1836	Udangmerah kerdil	\checkmark	\checkmark	\checkmark			
37	Clytoceyx rex Sharpe, 1880	Rajaudang paruh- sekop	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
38	Dacelo gaudichaud Quoy & Gaimard, 1824	Kukabura perut- merah	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
39	Dacelo leachii Vigors & Horsfield, 1826	Kukabura sayap- biru			\checkmark			
40	Melidora macrorrhina Lesson, 1827	Rajaudang paruh- kait		\checkmark	\checkmark			
41	Syma torotoro Lesson, 1827	Cekakak torotoro	\checkmark	\checkmark				
42	Tanysiptera galatea Gray, 1859	Cekakakpita biasa	\checkmark	\checkmark	\checkmark			
43	Tanysiptera nympha Gray, 1840	Cekakakpita bidadari		\checkmark	\checkmark		\checkmark	
44	Todiramphus chloris Boddaert, 1783	Cekakak sungai				\checkmark		
45	Todiramphus macleayii Jardine & Selby, 1830	Cekakak rimba	\checkmark	\checkmark				
46	Todiramphus nigrocyaneus Wallace, 1862	Cekakak biru-hitam		\checkmark				
47	Todiramphus sanctus Vigors & Horsfeld, 1827	Cekakak australia		\checkmark		\checkmark	\checkmark	
48	Rhyticeros plicatus Forster, 1781	Julang papua	\checkmark	\checkmark	\checkmark			
		Coraciidae						
49	Eurystomus orientalis Linnaeus, 1766	Tionglampu biasa			\checkmark			
		Meropidae						
50	Merops ornatus Latham, 1801	Kirikkirik australia			\checkmark			
		CUCULIFORMES						
		Cuculidae						
51	Cacomantis variolosus Vigors & Horsfield, 1826	Wiwik rimba	\checkmark	\checkmark	\checkmark			

N T	Order/Family/Species	Indonesian Name		S	urvey i	in Year 20	011	
No.	, ,, ,, ,		Tr1	Tr2	Tr3	HMR	HPT	SVN
52	Caliechthrus leucolophus Müller, 1840	Kedasi topi-putih		\checkmark				
53	Centropus bernsteini Schlegel, 1866	Bubut hitam		\checkmark				
54	Centropus menbeki Lesson & Garnot, 1828	Bubut pini		\checkmark				
55	Centropus phasianinus Latham, 1801	Bubut ayam						\checkmark
56	Eudynamys scolopaceus Linnaeus, 1758	Tuwur asia	\checkmark	\checkmark	\checkmark			
57	Microdynamis parva Salvadori, 1875	Tuwur kerdil	\checkmark	\checkmark	\checkmark			
58	Scythrops novaehollandiae Latham, 1790	Karakalo australia	\checkmark	\checkmark	\checkmark			
		FALCONIFORMES						
		Accipitridae	r		n	n		
59	Accipiter fasciatus Vigors & Horsfield, 1827	Elangalap coklat					\checkmark	
60	Accipiter novaehollandiae Gmelin, 1788	Elangalap kelabu		\checkmark				\checkmark
61	Accipiter poliocephalus Gray, 1858	Elangalap pucat- sosonokan					\checkmark	
62	Haliaeetus leucogaster Gmelin, 1788	Elanglaut perut- putih				\checkmark	\checkmark	
63	Haliastur indus Boddaert, 1783	Elang bondol	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
64	Pandion haliaetus Linnaeus, 1758	Elang tiram					\checkmark	
GALLIFORMES								
Megapodiidae								
65	Megapodius freycinet Gaimard, 1823	Gosong kelam		\checkmark	\checkmark			\checkmark
66	Talegalla fuscirostris Salvadori, 1877	Maleo paruh-hitam	\checkmark	\checkmark	\checkmark			
		Phasianidae	-		-			
67	Coturnix ypsilophora Bosc, 1792	Puyuh coklat	\checkmark	\checkmark	\checkmark			
		GRUIFORMES						
		Rallidae	1		1	r		
68	Eulabeornis castaneoventris Gould, 1844	Mandar bakau				\checkmark		
69	Gallirallus philippensis Linnaeus, 1766	Mandarpadi kalung- kuning			\checkmark			\checkmark
70	Porphyrio porphyrio Linnaeus, 1758	Mandar besar						\checkmark
71	Rallina tricolor Gray, 1858	Tikusan tukar			\checkmark			
72	Gerygone chloronota Gould, 1843	Remetuk tunggir- hijau		\checkmark				
73	Gerygone chrysogaster Gray, 1858	Remetuk perut- emas		\checkmark	\checkmark			
74	Gerygone levigaster Gould, 1843	Remetuk bakau		\checkmark				
75	Sericornis beccarii Salvadori, 1874	Sericornis kecil	\checkmark	\checkmark				
76	Sericornis rufescens Salvadori, 1876	Sericornis vogelkop	\checkmark					
		Campephagidae				•		
77	Coracina boyeri Gray, 1846	Kepudangsungu kelek-coklat	\checkmark	\checkmark	\checkmark			
78	Coracina melas Lesson, 1828	Kepudangsungu hitam		\checkmark	\checkmark			
79	Coracina tenuirostris Jardine,1831	Kepudangsungu miniak				\checkmark		

ЪT	Order/Family/Species	Indonesian Name	me Survey in Year 2011					
N0.			Tr1	Tr2	Tr3	HMR	HPT	SVN
80	Lalage atrovirens Gray, 1862	Kapasan alis-hitam	\checkmark	\checkmark	\checkmark			
81	Lalage leucomela Vigors & Horsfield, 1827	Kapasan alis-putih		\checkmark	\checkmark			
82	Lalage sueurii Vieillot, 1818	Kapasan sayap- putih			\checkmark			
		Corvidae						
83	Corvus orru Bonaparte, 1851	Gagak orru	\checkmark	\checkmark		\checkmark	\checkmark	
		PASSERIFORMES			•		•	
		Cracticidae						
84	Cracticus cassicus Boddaert, 1783	Jagal papua			\checkmark			
		Dicaeidae			-	-	-	
85	Dicaeum pectorale Müller, 1843	Cabai papua	\checkmark	\checkmark	\checkmark			
		Dicruridae						
86	Dicrurus hottentottus Linnaeus, 1766	Srigunting jambul- rambut	\checkmark	\checkmark	\checkmark			
		Hirundinidae			-	-	-	
87	Hirundo rustica Linnaeus, 1758	Layang-layang asia					\checkmark	
		Maluridae						
88	Malurus alboscapulatus Meyer, 1874	Cikrak-peri bahu- putih	\checkmark		\checkmark			\checkmark
89	Malurus cyanocephalus Quoy & Gaimard, 1830	Cikrak-peri kaisar	\checkmark	\checkmark	\checkmark			
		Meliphagidae						
90	Conopophila albogularis Gould, 1843	Isapmadu kalung- coklat	\checkmark	\checkmark	\checkmark			
91	Lichenostomus versicolor Gould, 1843	Isapmadu kepodang						
92	Melilestes megarhynchus Gray, 1858	Isapmadu paruhpanjang			\checkmark			
93	Meliphaga aruensis Sharpe, 1884	Meliphaga aru			\checkmark			
94	Meliphaga gracilis Gould, 1866	Meliphaga anggun	\checkmark	\checkmark	\checkmark		\checkmark	
95	Meliphaga montana Salvadori, 1880	Meliphaga rimba	\checkmark	\checkmark	\checkmark			
96	Myzomela obscura Gould, 1843	Myzomela remang	\checkmark		\checkmark			
97	Philemon buceroides Swainson, 1838	Cikukua tanduk	\checkmark	\checkmark	\checkmark		\checkmark	
98	Timeliopsis griseigula Schlegel, 1871	Cucuklurus coklat			\checkmark			
99	Toxorhamphus novaeguineae Lesson, 1827	Cucukpanjang perut-kuning	\checkmark	\checkmark	\checkmark			\checkmark
100	Xanthotis flaviventer Lesson, 1828	Isapmadu dada- coklat	\checkmark	\checkmark	\checkmark			
		Monarchidae						
101	Monarcha chrysomela Garnot, 1827	Kehicap emas		\checkmark				
102	Monarcha guttulus Garnot, 1829	Kehicap tutul	\checkmark	\checkmark	\checkmark			
103	Monarcha manadensis Quoy & Gaimard, 1830	Kehicap bertopi			\checkmark			
		Motacillidae						
104	Motacilla flava Linnaeus, 1758	Kicuit kerbau			\checkmark			

NT-	Order/Family/Species	Indonesian Name		S	urvey i	in Year 20	011	1		
N0.			Tr1	Tr2	Tr3	HMR	HPT	SVN		
		Nectariniidae		-	-					
105	Cinnyris jugularis Linnaeus, 1766	Burungmadu sriganti	\checkmark	\checkmark	\checkmark					
106	Nectarinia aspasia Lesson & Garnot, 1828	Burung-madu hitam	\checkmark	\checkmark	\checkmark	\checkmark				
		Oriolidae								
107	Oriolus szalayi Madarász, 1900	Kepudang coklat	\checkmark	\checkmark	\checkmark					
		Orthonychidae								
108	Ptilorrhoa caerulescens Temminck, 1835	Tepuspermata biru	\checkmark	\checkmark	\checkmark					
		Pachycephalidae								
109	Pachycephala simplex Gould, 1843	Kancilan kelabu		\checkmark	\checkmark					
110	Pitohui ferrugineus Bonaparte, 1850	Pitohui karat	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		
111	Pitohui kirhocephalus Lesson & Garnot, 1827	Pitohui belang	\checkmark	\checkmark	\checkmark					
		Paradisaeidae								
112	Paradisaea minor Shaw, 1809	Cenderawasih kecil	\checkmark	\checkmark	\checkmark					
	1	Petroicidae		1	1					
113	Microeca flavigaster Gould, 1843	Sikatan perut- kuning	\checkmark	\checkmark	\checkmark					
114	Microeca flavovirescens Gray, 1858	Sikatan zaitun		\checkmark	\checkmark					
115	Peneoenanthe pulverulenta Bonaparte, 1850	Robin bakau				\checkmark				
		Pittidae		-	-					
116	Pitta erythrogaster Temminck, 1823	Paok mopo		\checkmark	\checkmark					
117	Pitta sordida Müller, 1776	Paok hijau			\checkmark					
		Ploceidae								
118	Passer domesticus Linnaeus, 1758	Burung-gereja rumah						\checkmark		
		Pomatostomidae								
119	Pomatostomus isidorei Lesson, 1827	Cicapapua merah	\checkmark	\checkmark	\checkmark					
		Rhipiduridae								
120	Rhipidura hyperythra Gray, 1858	Kipasan perut- coklat	\checkmark	\checkmark	\checkmark					
121	Rhipidura leucophrys Latham, 1801	Kipasan kebun	\checkmark	\checkmark		\checkmark	\checkmark			
122	Rhipidura maculipectus Gray, 1858	Kipasan-semak hitam	\checkmark	\checkmark	\checkmark					
123	Rhipidura rufiventris Vieillot, 1818	Kipasan dada-lurik	\checkmark	\checkmark	\checkmark					
124	Rhipidura threnothorax Müller, 1843	Kipasan-semak bayan			\checkmark					
		Sturnidae			•					
125	Aplonis cantoroides Gray, 1862	Perling kicau				\checkmark	\checkmark			
		PSITTACIFORMES								
	Psittacidae									
126	Cacatua galerita Latham, 1790	Kakatua koki	\checkmark	\checkmark	\checkmark					
127	Chalcopsitta atra Scopoli, 1786	Nuri hitam		\checkmark	\checkmark					
128	Chalcopsitta sintillata Temminck, 1835	Nuri aru	\checkmark	\checkmark						
129	Charmosyna josefinae Finsch, 1873	Perkici josephina	\checkmark	\checkmark	\checkmark					

No	Order/Family/Species	Indonesian Name		S	urvey i	in Year 20	011	
INU.			Tr1	Tr2	Tr3	HMR	HPT	SVN
130	Charmosyna placentis Temminck, 1834	Perkici dagu-merah		\checkmark	\checkmark			
131 Charmosyna rubronotata Wallace, 1862		Perkici kepala- merah	\checkmark	\checkmark	\checkmark			
132	Eclectus roratus Müller, 1776	Nuri bayan	\checkmark	\checkmark	\checkmark			\checkmark
133	Geoffroyus geoffroyi Bechstein, 1811	Nuri pipi-merah	\checkmark	\checkmark	\checkmark			\checkmark
134	Loriculus aurantiifrons Schlegel, 1873	Serindit papua	\checkmark	\checkmark	\checkmark			
135	Lorius lory Linnaeus, 1758	Kasturi kepala- hitam	\checkmark	\checkmark	\checkmark			\checkmark
136	Micropsitta keiensis Salvadori, 1875	Nurikate topi- kuning	\checkmark	\checkmark	\checkmark			
137	Probosciger aterrimus Gmelin, 1788	Kakatua raja	\checkmark	\checkmark	\checkmark			
138	Pseudeos fuscata Blyth, 1858	Nuri kelam	\checkmark	\checkmark	\checkmark			
139	Psittaculirostris desmarestii Desmarest, 1826	Nuriara besar		\checkmark	\checkmark			
140	Trichoglossus haematodus Linnaeus, 1771	Perkici pelangi	\checkmark	\checkmark	\checkmark			\checkmark
		STRIGIFORMES						
		Strigidae						
141	Uroglaux dimorpha Salvadori, 1874	Beluk papua		\checkmark	\checkmark			
	SI	TRUTHIONIFORMES						
		Casuariidae						
142	Casuarius casuarius Linnaeus, 1758	Kasuari gelambir- ganda			\checkmark			
	Total Species		63	88	86	22	28	24

Source : Flora and Fauna Survey Result Report in Tangguh LNG Project Site Year 2011

Table II-84Richness of Bird Species in the Tangguh LNG Area Based on Its
Status

No	Scientific Name	Local Namo	Location	Status			
INU	Scientific Name	Local Maine	Location	UU	CITES	IUCN	
1	Casuarius casuarius	Kasuari gelambir muda	6	AB		VU ver 3.1	
2	Probosciger atterimus	Kakatua Raja	4,5,6	AB	Ι	LC ver 3.1	
3	Lorius lory	Kasturi Kepala-hitam	3,4,5,6	А	II	LC ver 3.1	
4	Accipiter fasciatus	Elang Alap Coklat	8	AB	II	LC ver 3.1	
5	Accipiter novaehollandiae	Elang Alap Kelabu	3.5	AB	II	LC ver 3.1	
6	Accipiter poliocephalus	Elang Alap Pucat-sosonokan	8	AB	II	LC ver 3.1	
7	Haliaeetus leucogaster	Elang Laut Perut-putih	7.8	AB	II	LC ver 3.1	
8	Haliastur indus	Elang Bondol	2,3,4,5,7,8	AB	II	LC ver 3.1	
9	Pandion haliaetus	Elang Tiram	8	AB	II	LC ver 3.1	
10	Cacatua galerita	Kakatua Koki	2,3,4,5,6	AB	II	LC ver 3.1	
11	Eclectus roratus	Nuri Bayan	3,4,5,6	AB	II	LC ver 3.1	
12	Rhyticeros plicatus	Julang Papua	2,3,4,5,6	AB	II	TT	
13	Paradisaea minor	Cenderawasih Kecil	4,5,6	ABC	II	LC ver 3.1	
14	Uroglaux dimorpha	Beluk Papua	5.6		II	DD ver 3.1	

Na	Crientifie Nome	Local Name	Leastian	Status		
NO	Scientific Name	Local Name	Location	UU	CITES	IUCN
15	Chalcopsitta atra	Nuri Hitam	4,5,6,8		II	LC ver 3.1
16	Chalcopsitta scintilata	Nuri Aru	4.5		II	LC ver 3.1
17	Charmosyna josephinae	Perkici Josephina	4,5,6		II	LC ver 3.1
18	Charmosyna placentis	Perkici Dagu-merah	5.6		II	LC ver 3.1
19	Charmosyna rubronotata	Perkici Kepala-merah	4,5,6		II	LC ver 3.1
20	Geoffroyus geoffroyi	Nuri Pipi-merah	6		II	LC ver 3.1
21	Loriculus aurantiifrons	Serindit Papua	4,5,6		II	LC ver 3.1
22	Micropsitta keiensis	Nurikate Topi-kuning	4,5,6		II	LC ver 3.1
23	Pseudeos fuscata	Nuri Kelam	4,5,6		II	LC ver 3.1
24	Psittaculirostris desmarestii	Nuriara Besar	5.6		II	LC ver 3.1
25	Trichoglossus haematodus	Perkici Pelangi	3,4,5,6	AB	II	LC ver 3.1
26	Halcyon macleayii	Cekakak Rimba	4.5	AB		DD ver 3.1
27	Halcyon nigrocyanea	Cekakak Biru-hitam	5	AB		DD ver 3.1
28	Alcedo azurea	Raja Udang Biru-langit	7	AB		LC ver 3.1
29	Alcedo pusilla	Raja Udang Kecil	7	AB		LC ver 3.1
30	Ceyx lepidus	Udang Merah Kerdil	4,5,6	AB		LC ver 3.1
31	Clytoceyx rex	Raja Udang Paruh-sekop	3,4,5,6,8	AB		LC ver 3.1
32	Dacelo gaudichaud	Kukabura Perut-merah	3,4,5,6,8	AB		LC ver 3.1
33	Dacelo leachii	Kukabura Sayap-biru	6	AB		LC ver 3.1
34	Melidorra macrorrhina	Raja Udang Paruh-kait	5.6	AB		LC ver 3.1
35	Tanysiptera galatea	Cekakak Pita Biasa	4,5,6	AB		LC ver 3.1
36	Tanysiptera nympha	Cekakak Pita Bidadari	5,6,8	AB		LC ver 3.1
37	Egretta garzetta	Kuntul Kecil	7	AB		LC ver 3.1
38	Nycticorax caledonicus	Kowak Malam Merah	7	AB		LC ver 3.1
39	Chlidonias lecopterus	Dara Laut Sayap-putih	8	AB		LC ver 3.1
40	Sterna bergii	Dara Laut Jambul	8	AB		LC ver 3.1
41	Sterna fuscata	Dara Laut Sayap-hitam	8	AB		LC ver 3.1
42	Sterna hirundo	Dara Laut Biasa	8	AB		LC ver 3.1
43	Megapodius freycinet	Gosong Kelam	3,5,6	AB		LC ver 3.1
44	Talegalla fuscirostris	Maleo Paruh-hitam	4,5,6	AB		LC ver 3.1
45	Conopophila albogularis	Isapmadu Kalung-coklat	4,5,6	AB		LC ver 3.1
46	Melilestes megarchyncus	Isap Madu Paruh Panjang	6	AB		LC ver 3.1
47	Meliphaga aruensis	Meliphaga Aru	6	AB		LC ver 3.1
48	Meliphaga gracilis	Meliphaga Anggun	4,5,6,8	AB		LC ver 3.1
49	Meliphaga montana	Meliphaga Rimba	4,5,6	AB		LC ver 3.1
50	Myzomela obscura	Myzomela Remang	4.6	AB		LC ver 3.1
51	Philemon buceroides	Cikukua Tanduk	3,4,5,6,8	AB		LC ver 3.1
52	Timeliopsis griseigula	Cucuk Lurus coklat	6	AB		LC ver 3.1
53	Toxorhamphus novaeguineae	Cucuk Panjang Perut-kuning	3,4,5,6	AB		LC ver 3.1
54	Pitta erythrogaster	Paok Mopo	5.6	AB		LC ver 3.1
55	Numenius phaeopus	Gajahan Penggala	7	AB		LC ver 3.1
56	Halcyon chloris	Cekakak Sungai	7	AB		TT

No	Scientific Name	Local Name	Location	Status			
INU	Scientific Name	Local Maine	Location	UU	CITES	IUCN	
57	Halcyon sancta	Cekakak Australia	5,7,8	AB		TT	
58	Cinnyris jugularis	Burung Madu Sriganti	4,5,6	AB		TT	
59	Leptocoma sericea	Burung Madu Hitam	4,5,6,7	AB		TT	
60	Lichenostomus versicolor	Isap Madu Kepodang	3	В		LC ver 3.1	
61	Xanthotis flaviventer [chrysotis]	Isap Madu dada-coklat	4,5,6	В		LC ver 3.1	
62	Halcyon torotoro	Cekakak Torotoro	4,5,6	В		TT	

Source: Flora and Fauna Survey Result Report in the Tangguh LNG Project Site Year 2011

Remarks:		
Distribution Location:	Cons	ervation Status :
1. Babo	DD	= Data Deficient
2. Bandara	LC	= Least Concern
3. Savanna & LNG Site	VU	= Vulnerable
4. Transect 1	TT	= Not Registered
5. Transect 2	Ι	= Appendix I
6. Transect 3	II	= Appendix II
7. Transect 4	А	= UU No. 5/1990 regarding the Conservation of Biological Natural
		Resources and its Ecosystem
8. Transect 5	В	= PP No. 7/1999 regarding the Preservation of Flora and Fauna Species
	С	= PP No. 8/1999 regarding the Utilization of Flora and Wild Fauna
		Species

One of the protected bird species is the Papuan Hornbill. The existence of the Papuan Hornbill (*Rhyticeros plicatus*) bird found during the survey indicates that the forest in Tangguh LNG areas are in a good condition for the development of fruiteating birds (*Frugivora*) and that there is still a mutuality relationship (mutually beneficial) which is relatively intact between the bird species of the tropical plant seed dispersers. The existence of the Papuan Hornbill can be used as bio-indicator of forest damage. In tropical forest, dispersal agents of fruit seed plants are generally conducted by fruit-eating fauna. The existence of this fauna is important to maintain the biodiversity and natural regeneration/rehabilitation of in tropical forest.

The flat topography and height difference with other low water surfaces causes the flooded swamp forest habitat species. Therefore, at the observation locations fisheating bird (*piscivora*) species are also found such as the White-ballied Sea-eagle (*Haliaeetus leucogaster*), the Paradise-kingfisher (*Tanysiptera nympha*) bird, Mangrove Gerygone (*Gerygone levigaster*), Striated Heron (*Butorides striata*) and Common Paradise-kingfisher (*Tanysiptera galatea*).

The fruit-eating and seed-eating bird species and the nectar-sucking have important ecological roles i.e. for the dispersal of seeds and pollination. The Papuan Hornbill (*Rhyticeros plicatus*) bird and Double Wattle Cassowary (*Casuarius casuarius*) play roles in the dispersion of seeds through their manure. Apart from that, the Olivebacked Sunbird (*Cinnyris jugularis*) bird, the Purple-rumped Sunbird (*Leptocoma sericea*) bird and Varied Honeyeater (*Lichenostomus versicolor*) are examples of birds that suck honey and assist in the pollination of plants.

<u>Herpetofauna</u>

Based on observations and interviews with the community during survey activities in 2011, 31 species of herpetic-fauna were recorded in the Tangguh LNG areas consisting of 12 amphibian species and 19 reptile species. This survey found 50 specimens consisting of 10 amphibian individuals and 40 reptile individuals that are preserved as *voucher* specimens. Apart from that, the team also recorded two specimens of herpetic-fauna based on interviews with workers in the concession area, namely the presence of Saltwater Crocodile (*Crocodylus porosus*) and Whitelipped Tree Frog (*Litoria infrafrenata*). Two reptile species namely Western Pacific Monitor Lizards (*Varanus indicus*) and Salvadori's Monitor (*Varanus salvadorii*) were found during the observations, however were not caught. A list of herpetofauna found in this survey can be observed in **Table II-87**.

Table II-85Herpetofauna Species in the Tangguh LNG Area Based on Survey
Results 2011 and its Conservation Status

			Collecti	Conservation Status			
Nr.	Name of Species	English Name	on Status	PP No. 7/99	IUCN	CITES	
		AMPHIBIANSA					
		Bufonidae					
1	Duttaphrynus melanostictus		NR	Np	ne	na	
		Dicroglossidae					
2	Fejervarya limnocharis		NR	Np	ne	Na	
		Hylidae					
3	Litoria infrafrenata	Australian Giant Tree frog	RIn	np	ne	na	
4	Litoria multicolor	Multi-colored Treefrog	NR	np	ne	na	
		Microhylidae					
5	Austrochaperina sp.		NR	np	ne	na	
6	Cophixalus biroi		NR	np	ne	na	
7	Hylophorbus sp.	-	PNR	np	ne	na	
		Ranidae					
8	Platymantis batantae	Wrinkled Ground Frog	PNR	np	ne	na	
9	Platymantis papuensis	Papua Wrinkled Ground Frog	R	np	ne	na	
10	Platymantis punctatus	Wrinkled Ground Frog	NR	np	ne	na	
11	Rana papua	Papuan Wood Frog	R	np	ne	na	
12	Rana daemeli	-	NR	np	ne	na	
		REPTILIA					
		Lizards					
		Agamidae					
13	Hypsilurus modestus	Modest Forest Dragon	NR	np	ne	na	
		Gekkonidae					
14	Cyrtodactylus marmoratus	Marbled Bow-fingered Gecko	R	np	ne	na	
15	Cyrtodactylus papuensis	Papua Bow- fingered Gecko	NR	np	ne	na	
16	Gehyra mutilata	tender-skinned house gecko	NR	np	ne	na	

			Collecti	Conserv	vation S	Status
Nr.	Name of Species	Name of Species English Name		PP No. 7/99	IUCN	CITES
		Scincidae	-			
17	Carlia fusca	Indonesian Brown Skink	R	np	ne	na
18	Crytoblepharus novaeguineae	New Guinea Snake-eyed Skink	PNR	np	ne	na
19	Emoia caeruleocauda	Pacific Bluetail Emo Skink	R	np	ne	na
20	Emoia jakati	Kopstein's Emo Skink	R	np	ne	na
21	Emoia pallidiceps	Pale-headed Skink	R	np	ne	na
22	Emoia physicae	Slender Emo Skink	R	np	ne	na
23	Lygisaurus macfarlani	Translucent litter Skink	R	np	ne	na
24	Sphenomorphus florence	-	NR	np	ne	na
25	Sphenomorphus simus	-	R	np	ne	na
		Varanidae				
26	Varanus jobiensis	The peach throat monitor	NR	Р	ne	II
27	Varanus salvadori	Crocodile Monitor	R	np	ne	II
		Snakes	-			
		Colubridae				
28	Boiga irregularis	Brown Cat Snake	R	np	ne	na
		Elapidae			•	•
29	Micropechis ikaheka	New guinean Small-eyed Snake	R	np	ne	na
		Turtles				
Chelidae						
30	Elseya novaguinea	New Guinea snapping turtle	R	np	ne	na
		Crocodiles				
		Crocodylidae				
31	Crocodylus porosus	Saltwater Crocodile	RIn	Р	ne	II

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

Remarks:

Based on the checklist of *de Rooij* (1915 & 1917), *Tyler* (1968); Brown (1991); *Cogger* (1994); *O'Shea* (1996); Iskandar & Ed Colijn (2000); *Menzies* (2006) and Uetz (2007).

NR=*New record*: New species Data/*Record* for Tangguh LNG, PNR=*Probably new record*: probably previously recorded in the survey of 2002 by another name (at least the same genus), however as there are no original species, it cannot be compared. R=*Recorded*: Previously recorded based on researches of Tangguh LNG (2002 and/or 2007). RIn=*recorded by interview, Unidentified*: not identified yet.

P=protected and np=not protected yet based on Government Regulations No. 7 year 1999, II=CITES *Appendix* II, na=not listed in CITES *Appendix*, ne=*not evaluated* based on IUCN

Based on the species found, nearly all are not protected by the Law of the Republic of Indonesia except the Saltwater Crocodile that is protected under the Government of Indonesia based on Government Regulation No. 7 year 1999 regarding the Preservation of Flora and Fauna. Although the Saltwater Crocodiles are included in CITES *Appendix* II, however, currently Indonesia agreed on a zero export quota of catches and exports can be conducted if the animal farms can meet the provided quota. Apart from that, there are six species of Monitor Lizards included in *Appendix*

II, one of which is the Salvadori's Monitor (*Varanus salvadori*) which export quota for 2007 are 200 each. There is no single species of herpetofauna in the Tangguh LNG area that is included in the IUCN Red List.

Almost all specimens are caught by hand. Glue traps produced only two individuals of one lizard species. The accumulative curve species provided to observe the relationship between search efforts and total number of species obtained produced a continued rising curve, in particular for amphibians **Figure II-144**. This indicates that the number of species in the Tangguh LNG are actually not all collected yet. With additional search time, it is expected that the number of species will increase. Information of the species obtained from interviews or caught by other team are not included in this graph.

Distribution and Species Relative Abundance

When observed based on the habitat type, the total species of herpetofauna are mostly obtained in lowland forest compared to mangrove forest, swamp forest or areas surrounding the Stinkul Camp, namely the base area. Amphibians are only found in lowland forest and the Stinkul Camp. Species that are lasting in the surroundings of the Camp are two migrant frog species, i.e. *Duttaphrynus melanostictus* and *Fejervarya limnocharis* that are mostly found around water puddles below trailers where the workers live. Reptiles are found in three habitats, namely lowland forest, mangrove forest and swamp forest. Two snake species are only found in the lowland forest.

Because of time shortage, the chances are small to find out more information on the existing populations in depth, however from the observations a number of species of sizeable relative abundance can be seen. Species found consisting of only one or less than five species do not mean that the abundance is low. There is the possibility that the low-caught species in fact have high populations, however due to its cryptic (hidden) nature, it is difficult to detect and caught. In addition, the high frequency

of male voices heard indication of indicated that there is a high abundance of the species.

Table II-86The Herpetofauna Species and Number of Individuals Found in
Four Habitat/Location Types in the Tangguh LNG Areas Based on
the Survey in 2011

	Location of Observation				
Таха	Lowland Forest	Mangrove Forest	Swamp Forest	Stinkul Camp	
	AMFIBIA				
Bufonidae					
Duttaphrynus melanostictus	0	0	0	2	
Dicroglossidae					
Fejervarya limnocharis	1	0	0	1	
Hylidae					
Litoria multicolor	2	0	0	0	
Microhylidae					
Austrochaperina sp	2	0	0	0	
Cophixalus biroi	1	0	0	0	
Hylophorbus sp	1	0	0	0	
	Ranidae				
Platymantis batantae	3	0	0	0	
Platymantis papuensis	7	0	0	0	
Platymantis punctatus	4	0	0	0	
Rana daemeli	5	0	0	0	
Rana papua	12	0	0	0	
	REPTILIA				
	Lizards				
	Agamidae				
Hypsilurus modestus	1	0	0	0	
Gekkonidae					
Cyrtodactylus marmoratus	5	0	0	0	
Cyrtodactylus papuensis	1	0	0	0	
Gehyra mutilata	1	0	0	0	
	Scincidae				
Carlia fusca	4	0	0	0	
Cryptoblepharus novaguinea	0	1	0	0	
Emoia caeruleocauda	4	0	0	0	
Emoia jakati	2	0	0	0	
Emoia palidiceps	15	0	0	0	
Emoia physicae	4	0	0	0	
Lygisaurus macfarlani	1	0	0	0	
Sphenomorphus florense	2	0	0	0	
Sphenomorphus simus	5	1	0	0	
Varanidae					

	Location of Observation				
Таха	Lowland Forest	Mangrove Forest	Swamp Forest	Stinkul Camp	
Varanus jobiensis	0	0	2	0	
Varanus salvadori	1	0	1	0	
	Snakes				
	Colubridae				
Boiga iregularis	1	0	0	0	
Elapidae					
Micropechis ikaheka	1	0	0	0	
Total Species	25	2	2	2	
Total Individuals	86	2	3	3	

Source : Flora and Fauna Survey Result Report at Tangguh LNG Project Site Year 2011

Frog species which were most often found in around the Stinkul Camp and with relatively the high species abundance are *Duttaphrynus melanostictus* and *Fejervarya limnocharis*. While in the lowland forest, species mostly found were from the genus of *Ranidae* such as *P. papuensis* and *R. daemeli*. The voices of these species are often heard and the offspring's are found in the forest. Only few tree frogs were found. The *L. infrafrenata* tree frogs that were found in the survey of 2007 in a relatively high amount were not found at all, although a worker of Tangguh LNG reported tree frogs could be found in a tree near the employees' mess.

As for lizards, the most abundant species is the *C. marmoratus* that found in the surroundings of the lowland forest during night observations. The skink lizard is very diverse and is often difficult to catch. The total individuals of lizards found are relatively few, however this less describes the actual condition because lizards are fauna that evade very fast and are difficult to catch. Likewise for the snakes in which only one is caught for each species. The *E. novaguineae* turtles are estimated to be many in calm slow-flowing rivers in lowland forest, considering that netting in one day produces two offspring specimens. Turtles are included in species that are difficult to find due to its shy nature, successful capture of these species are mostly by the installation of snares in the habitats of the species.

Map II-17 Location of Sampling in the Fauna Survey 2011

Dragronflies, Beetles and Ladybugs

Observation activities of dragonflies, beetles and ladybugs in 2011 resulted in the discovery of 272 insect specimens. Most of them (243 specimens) were caught in the morning-afternoon time, while 29 specimens caught at night time. Based on the results of identification, the survey activities accomplished to record 20 species of dragonflies, 8 species of beetles and 10 species of ladybugs.

On dry land habitats, 11 species of dragonflies , six species of beetles, and seven species of ladybugs were found. On lowland and creeks habitats, ten species of dragonflies, two species of beetles, and two species of ladybugs were found. Whereas for the mangrove habitats, only four species of dragonflies were found and there were no beetles and ladybug species. In coastal swamps, seven dragonflies species, five species of beetles, and three species of ladybugs were found. The species of dragonflies, beetles and ladybugs caught in the flora fauna survey in the morning time are presented in **Table II-89**, while the night catching results are presented in **Table II-90**.

Table II-87	Species of Dragonflies, Beetles and Ladybugs in the Tangguh LNG
	Area Based Survey Results Dated November 16th - 23rd, 2011
	Caught in the Morning

No	Smarian	Habitat				
10.	Species	Dry Soil	Lowlands & Creeks	Mangrove	Coastal Swamps	
		Odonat	a (Dragonflies)			
1	Agria emma	0	2	0	17	
2	Anax junius	0	1	0	0	
3	Brachydiplax chalybea	0	0	0	1	
4	Brachythemis contaminata	0	0	1	0	
5	Crocothemis servilia	2	27	0	0	
6	Diplacodes trivialis	0	0	0	7	
7	Ischura cervula	1	8	0	2	
8	Libellulidae Spesies 4	0	2	0	0	
9	Neurothemis decora	0	1	5	0	
10	Neurothemis stigmatizans	19	3	0	0	
11	Neurothemis terminata	33	6	1	2	
12	Orthetrum sabina	0	0	0	2	
13	Orthetrum testaceum	1	0	0	0	
14	Pantala flavescent	1	0	0	0	
15	Perithemis tenera	0	5	0	0	
16	Rhyothemis resplendens	2	0	0	0	
17	Rhyothemis sp.	1	0	6	2	
18	Rhyothemis sp. (2)	2	1	0	0	
19	Libellulidae Spesies 9	2	0	0	0	
20	Zyxomma obtusum	1	0	0	0	

No	Emorian		Habitat			
INO.	Species	Dry Soil	Lowlands & Creeks	Mangrove	Coastal Swamps	
		Coleop	otera (Beetles)			
1	Ceratia flavomargiata	5	0	0	3	
2	Chauliognathus pennsylvanicus	1	0	0	1	
3	Chrysolina sp	5	0	0	1	
4	Coccinela arquata	2	0	0	0	
5	Corigetus isabellinus	5	3	0	1	
6	Metriona cetenata	0	0	0	10	
7	Scarabaedae1	2	0	0	0	
8	Xylotrupes gideon	0	8	0	0	
		Hemipt	era (Ladybugs)			
1	Acanthocephala femorata	2	1	0	0	
2	Anasa tristis	10	0	0	0	
3	Coptosoma siamicum	2	0	0	2	
4	Gelatocoris aculatus	1	0	0	0	
5	Jalysus wichami	0	0	0	2	
6	Lygidae mendax	0	0	0	1	
8	Podisus maculiventris	0	1	0	0	
9	Riptortus linearis	3	0	0	0	
10	Triatoma sanguisuga	2	0	0	0	
	Number of Species	21	2	0	5	
Total Species		106	69	13	54	

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

At night only six species were found consisting of four beetles species and two ladybugs species. This number is less compared to daytime surveys. Beetle and ladybug species found at night are presented in **Table II-90**.

Table II-88Species of Insects (Dragonflies, Beetles and Ladybugs) at the
Tangguh LNG Area Based on Survey Results Dated November 16th
- 23rd, 2011 Caught at Night

No	Spacies	Total Species in the Habitat Type		
INU.	Species	Dry Soil	Coastal Swamps	
Coleoptera (Beetles)				
1	Chauliognathus pennsylvanicus	16	0	
2	Ceratia flavomarginata	2	1	
3	Chrysolina sp.	3	1	
4	Xylotrupes gideon	0	2	
Total Species		21	4	

No	Service	Total Species in the Habitat Type		
INO.	Species	Dry Soil	Coastal Swamps	
Hemiptera (Ladybugs)				
1	Riptortus linearis	0	1	
2	Coptosoma siamicum	0	3	
	Number of Species	0	4	
Total Species		21	8	

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

All the species of dragonflies, beetles and ladybugs found during this survey, are not protected by the Law of the Republic of Indonesia and are not listed in the CITES Appendix. There are nine dragonflies species in the IUCN red list with the status of Least Concern. The List of dragonflies, beetles and ladybugs species found in the Tangguh LNG areas and its conservation status presented in **Table II-91**.

Table II-89Species of Dragonflies, Beetles and Ladybugs in the Tangguh LNG
Area Based on Survey Results in 2011 and its Conservation Status

		Conservation Status			
No.	Species	UU/PP No.7 Year 1999	IUCN Red List	CITES	
		Odonata (Dragonfl	ies)		
1	Agria emma	-	-	-	
2	Anax junius	-	Least Concern (2009)	-	
3	Brachydiplax chalybea	-	Least Concern (2010)	-	
4	Brachythemis contaminata	-	Least Concern (2010)	-	
5	Crocothemis servilia	-	Least Concern (2009)	-	
6	Diplacodes trivialis	-	Least Concern (2010)	-	
7	Ischura cervula	-	-	-	
8	Libellulidae Species 4	-	-	-	
9	Neurothemis decora	-	-	-	
10	Neurothemis stigmatizans	-	-	-	
11	Neurothemis terminata	-	Least Concern (2009)	-	
12	Orthetrum sabina	-	Least Concern (2010)	-	
13	Orthetrum testaceum	-	Least Concern (2011)	-	
14	Pantala flavescens	-	Least Concern (2009)	-	
15	Perithemis tenera	-	-	-	
16	Rhyothemis resplendens	-	-	-	
17	Rhyothemis sp.	-	-	-	
18	Rhyothemis sp. (2)	-	-	-	
19	Libellulidae Species 9	-	-	-	
20	Zyxomma obtusum	-	-	-	
		Coleoptera (Beetle	25)		
1	Ceratia flavomargiata	-	-	-	
2	Chauliognathus pennsylvanicus	-	-	-	

		Conservation Status			
No.	Species	UU/PP No.7 Year 1999	IUCN Red List	CITES	
3	Chrysolina sp	-	-	-	
4	Coccinela arquata	-	-	-	
5	Corigetus isabellinus	-	-	-	
6	Metriona cetenata	-	-	-	
7	Scarabaedae1	-	-	-	
8	Xylotrupes gideon	-	-	-	
		Hemiptera (Ladybu	gs)		
1	Acanthocephala femorata	-	-	-	
2	Anasa tristis	-	-	-	
3	Coptosoma siamicum	-	-	-	
4	Gelatocoris aculatus	-	-	-	
5	Jalysus wichami	-	-	-	
6	Lygidae mendax	-	-	-	
7	Murgantia histrioniaa	-	-	-	
8	Podisus maculiventris	-	-	-	
9	Riptortus linearis	-	-	-	
10	Triatoma sanguisuga	-	-	-	

Source : Flora and Fauna Survey Result Report at Tangguh LNG Project Site Year 2011

Based on data of **Table II-90** and **Table II-91**, it can be observed that the highest abundance of insects are in dry-land and lowland habitats, while there are not many insects in mangrove habitats. This is due to the vegetation in dry-land habitats are larger number and more diverse than other habitats. In addition, there are also possibilities of less time and repetition during the data sampling in the mangrove habitat and the use of data sampling technique with insect nets which is less effective in the insect data collection. It is recommended that insect data sampling use a combination of various techniques or collection methods. Several species of dragonflies, beetles and ladybugs are only found in particular habitats, while in other habitats the insects are not found.

In the dry-land and lowland habitats relatively more species in larger numbers are found. A number of insects are dominant species in a habitat. The dragonfly species *Neurothemis terminata* is dominant in dry-land habitats, while *Crocothemis servilia* dominates the lowland and creek habitats. The dragonfly species *Agria Emma* is mostly found in the coastal swamp habitat.

Anasa tritis ladybug species was found only in dry-land habitats and has a huge population number. Likewise is the beetle *Metriona cetenata* that was only found in the swampy coastal habitat with huge population number. The existence of particular insects species found in a habitat lead to a possibility that they are endemic insects in the habitat area and could be used as habitat indicator.

Soil Organism

Specimens collected in the study of soil organism were obtained by catching by hand with a support of pinset (hand sorting method). Therefore only certain animals could be caught, those who moves slowly and slow to react to the catching effort..

In addition, by hand sorting method, another issue is that the specimens are tend to be damaged on their body part (due to the strong pinset grip). This caused some difficulties in conducting identification on the specimen. Another issue in identification of these soil organism species are also caused by the size of soil organism that tends to be small (less than 1 cm). Data that were obtained then could indicated which organism groups that tend to occupy under the soil; on the soil litter; or on soil litter surface. Soil organism species found in the Buffer zone of the Tangguh LNG area include 18 ordo as presented in **Table II-92**.

No plot (soil or soil litter)	Soil Organism Species	Total of Individuals
	Larva <i>Coleoptera</i> (kumbang)	1
	Order Dermaptera (Family: Forficulidae)	2
1 soil litter	Order Diplopoda	2
	Order Orthoptera (Family: Acrididae)	1
	Order Opiliones	2
1 soil	Order Diplopoda	3
1 501	<i>Pheretima sp</i> (cacing merah/cacing tanah)	4
	Order Opiliones 2	1
	Order Araneae	1
2 soil littor	Order Opiliones 3	1
2 son inter	Order Coleoptera (Family: Staphylinidae)	1
	Order Isoptera (Family: Termitidae)	1
	Order Hemiptera (Family: Coreidae)	1
	Order Dermaptera (Family: Forficulidae)	2
	Order Coleoptera (Family: Staphylinidae 2)	1
2 soil	<i>Pheretima sp</i> (cacing merah/cacing tanah)	5
	Metaphire sp (Cacing hitam/cacing tanah)	1
	Larva Order Coleoptera	1
	Semut merah besar (Family: Formicidae)	2
	Arachnida, Order Phalangida (nama populer: harvestman)	1
3 soil litter	Semut merah kecil (Family: Formicidae 1)	1
	Order Dermaptera (Family: Forficulidae)	1
	Order Opiliones	2
	Rayap (Family: Termitidae)	1
4 soil litter	Class Crustaceaea, Order Isopoda (Family: Oniscoidea)	1
	Arachnida, Order Phalangida (nama populer: harvestman)	1
4 soil	Pheretima sp (cacing merah / cacing tanah)	3

Table II-90Soil Organism Species Found in the Buffer Zone of the Tangguh
LNG

No plot (soil or soil litter)	Soil Organism Species	Total of Individuals
	Order Dermaptera (Family: Forficulidae)	1
	Chilopoda (lipan), Order Geophilomorpha	2
	Semut, Family: Formicidae	4
	Order Dermaptera (Family: Forficulidae)	1
5 soil litter	Class Crustaceaea, Order Isopoda (Family: Oniscoidea)	1
	Arachnida,Order Phalangida (nama populer: harvestman)	1
	Orthoptera (jangkrik) (Family: Gryllidae)	
	Larva Coleoptera (kumbang) (Family: Tenebrionidae)	1
	Chilopoda (lipan), Order Geophilomorpha	1
E 11	Order Isoptera (Family: Termitidae)	1
5 SO11	Pheretima sp (cacing merah/cacing tanah)	5
	Order Coleoptera (kumbang) (Family: Staphylinidae)	2
	Order Coleoptera (kumbang) (Family: Staphylinidae 2)	1
	Arachnidae, Order Scorpiones	1
	Coleoptera (kumbang), Order Tenebrionidae	1
<	Order Opiliones	1
6 soil litter	Order Sphaerotherida (Family: Sphaeropocidae)	2
	Semut hitam besar (Family: Formicidae, subFamily: Ponerineae)	1
	Kumbang, Order: Coleoptera (Family: Scarabaeidae)	1
	Order Opiliones 5 (laba-laba)	3
<i>.</i>	Pheretima sp (cacing merah/cacing tanah)	4
6 so1l	Chilopoda (lipan), Order Geophilomorpha	1
	Order Sphaerotherida (Family: Sphaeropocidae)	1
	Hemiptera (Family: Coreidae)	1
	Class Crustaceaea, Order Isopoda; (Family: Oniscoidea)	4
7 soil litter	Order A <i>raneae</i> (golongan laba-laba)	1
	Order Dermaptera (Family: Forficulidae)	2
	Uret (larva kumbang) (Family: Scarabaeidae)	1
	Kumbang, Order Coleoptera	1
7 soil	Chilopoda (lipan), Order Geophilomorpha	1
	Pheretima sp (cacing merah/cacing tanah)	3
	Arachnida, Order Phalangida (nama populer: harvestman)	2
	Rayap , Macrotermes sp	1
0 1111	Semut merah biasa (Family: <i>Formicidae,</i> subFamily: <i>Dolichoderinae</i>)	2
8 soil litter	Orthoptera (Family: Blattaria)	1
	Semut hitam kecil	1
	Order Dermaptera (Family: Forficulidae)	1
	Chilopoda, Order: Lithobiomorpha	1
	Uret (larva kumbang) (Family: Scarabaeidae)	1
	Pheretima sp (cacing merah/cacing tanah)	3
8 soil	Diplopoda	1
	Laba-laba , Order <i>Opiliones</i>	1
	Semut merah biasa	1

No plot (soil or soil litter)	Soil Organism Species	Total of Individuals
	Larva <i>Diptera</i>	1

Source : Flora and Fauna Survey Result Report at the Tangguh LNG Project Site Year 2011

2.2.2 Aquatic Biology

The environmental baseline data collection of Aquatic biota within the study area boundaries was performed in three types of waters i.e. rivers, nearshore and offshore. Sampling of water biota in the dry season (July - August 2012) and wet season (March - April 2013) were conducted in the same location with the sampling location for water and sediment quality.

2.2.2.1 River Water Biota

The sampling of river water biota including phytoplankton, zooplankton and benthos were performed in Saengga River on the western boundary of the Tangguh LNG (SW 01) at coordinate of 02°27′59.8″ S - 133°06′16.2" E and in Senindara River in the eastern of the Tangguh LNG site (SW 03) at coordinate of 02°31′54.8″ S - 132°16′29.3" E (see **Map II-11** in Sub-Chapter of Water Quality).

Phytoplankton

Based on the results of identification, there are four classes, however only *Cyanophyceae* and *Bacillariophyceae* are dominant, while the percentage of *Chrysophyceae* and *Dinophyceae* are very small (Figure II-145). *Cyanophyceae* is represented by only one genus, namely the *Trichodesmium*. This genus is excessively found in seawaters and play an important role in the nitrogen fixation process for improving water fertilization. *Bacillariophyceae* is the producer that is required by many early phase of water organism as food sources.

Based on a recorded genera, most of them are similar to the genera found in the sea, although the sampling locations were conducted in river. This is likely affected by the sampling position within a distance that still allows the effects of sea tides. When high tide, seawater flows far into the river channels taking along all particles including phytoplankton that are motionless organisms.

Figure II-145Abundance Proportion of Phytoplankton Class (%) at Each River
Water Observation Location in the Study Area Comparing the
Dry Season and Wet Season Conditions

The high tidal conditions cause SW-01 located near the sea to have more balanced composition of the two classes in the dry season, however not in the wet season as all are dominated by *Bacillariophyceae*. This condition is unlike SW-03, in which the two classes are still found, even with a different percentage between the two seasons (**Figure II-145**). This is confirmed by water quality analysis result that indicates that the water quality in the SW-01 sampling location in the dry season as well as SW-03 in the dry season and the wet season have a water quality nature that is similar with seawater quality, whereas SW-01 location in the wet season indicates a freshwater quality. Accordingly, in this location almost 100% of phytoplankton is dominated by *Bacillariophyceae* class.

Figure II-146 Taxa Amount and Abundance of Phytoplankton at Each Observation Location of River Water at Study Area Comparing the Dry Season and Wet Season Conditions

Taxa amount of phytoplankton in river waters range between 18 – 22 (in dry seasons) and 21 – 22 taxa (in wet seasons). The difference in the taxa range number is not much between two seasons and is not directly proportional to abundance. Phytoplankton abundance in dry seasons are three to four times than the abundance in wet seasons. Contrast Abundance occurring from different sampling results is due to the extreme abundance of *Trichodesmium* (*Cyanophyceae*) genus. The phenomenon of the phytoplankton abundance was higher in dry season than in wet season is not exactly known the cause since in terms of the nutrients content and other water quality parameters to support phytoplankton growth, there were no noticeable differences were observed.

At the time of plankton sampling at SW-01 in the wet season, the tidal condition was at the lowest ebb. This condition can be observed from the TDS content at SW-01 of 70 mg/L which is freshwater. *Trichodesmium* is not a freshwater phytoplankton so it was not found at the time of the sampling.

The analysis results of phytoplankton community structure illustrated that there are no real differences between SW-01 and SW-03 in wet season. Similarly, with SW-01 in wet season and dry season. Season differences implicating the index value difference is found at SW-03 (**Figure II-147**). In wet season, either SW-01 as well as SW-03 have Diversity Index values (H') of more than 2, with a uniform distribution pattern (E>0.6) and moderate dominance (0.5 < < 0.1). This condition also occurs at SW-01 during the dry season, however does not occur at SW-03 which diversity is very low (H' < 1) and with a very high dominance (c>0.5). This condition can be affected by extreme abundance of *Trichodesmium* as previously described.

Figure II-147 Diversity Index (H'), Uniformity (E) and Dominance (c) of Phytoplankton Community at Each River Water Observation Location in the Study Area Comparing the Dry Season and Wet Season Conditions

Zooplankton

Zooplankton communities in two rivers with sampling location code of SW-01 and SW-03 can be observed in **Figure II-148**. During dry season, either at SW-01 or SW-03, only two classes of zooplankton are found, namely the *Crustacea* and *Protozoa*. *Crustacea* is more dominant than *Protozoa*. In wet season, in addition to above dominating two classes, other six classes are found, i.e. *Nematoda, Gastropoda, Pelecypoda* and *Urochirdata*.

Figure II-148Proportion of Zooplankton Class Abundance (%) at Each River
Water Observation Location in the Study Area Comparing the
Dry Season and Wet Season Conditions

The number of zooplankton taxa in rivers ranges between 5 – 7 in dry season, less than in wet season, which ranges from 10 – 13 taxa. Besides the number of taxa, zooplankton abundance also differs between dry season and wet season (**Figure II-149**). In wet season, the zooplankton abundance at SW-01 is almost four times higher than at SW-03. This difference originates from two *Protozoa* (*Leprotintinnus* and *Tintinnopsis*) genera and two taxa of *Crustacea* namely *Acartia* and *Nauplius*. *Crustacea*, particularly the stadia of *Nauplius* and *Copepod* genus *Acartia* are the first consumers level to be subsequent food source for fish offspring and other early stadia.

The zooplankton community structure at the study area shows Diversity Index (H') as moderate ($1 \le H' < 2$), with a uniform distribution pattern (E > 0.6) and low dominance level (c < 0.5), except at SW-01 in dry season (**Figure II-150**). The ecosystem stability is observed to be higher in wet season than in the dry season. The low diversity and high dominance at SW-01 in dry season is due to the dominant abundance of *Nauplius*.

Wet

Sampling Location

SW-01

Benthos

0.00

Figure II-150

Dry

There are only two dominant ommunity of benthos organism found namely *Crustacea* and *Polychaeta* (Figure II-151). *Crustacea* is organism that lives on the bed of waters, while *Polychaeta* organism lives in the base substrate, in particular the soft substrate and have high organic materials. Both are important components for the benthic waters environment.

Dry

Dry Season and Wet Season Conditions

Wet

SW-03

Diversity Index (H'), Uniformity (E) and Dominance (c) of Zooplankton Community at Each River Water Observation Location (SW = Surface Water) at the Study Area Comparing the

Figure II-151Abundance Proportion of the Benthos Organisms Class (%) at
Each Observation Location at River Waters in the Study Area
Comparing the Dry Season and Wet Season Conditions

Based on the number of taxa and abundance, the benthos composition at SW-01 and SW-03 differ between the dry seasons and wet seasons (**Figure II-152**). During the dry season, benthos organisms were not found at the SW-03 point. In the wet season, the abundance at SW-01 and SW-03 are much lower compared to benthos abundance at SW-01 in dry season.

The difference in the number of taxa and abundance are presumably related to the substrate type and texture. As in common, a substrate that tends to be soft (in particular organisms in holes such as worms), with high organic matter and oxygen concentration is a decisive factor in the presence and distribution pattern of organisms. The substrate type and characteristic of the SW-01 differs from SW-03. At SW-01 the waters' bed is a muddy sand substrates, while at SW-03 it is a mixture of clay mud (silty-clay substrates) (**Figure II-153**). Substrates with clay textures are less suitable habitats for benthos, therefore the genus found in SW-03 are less.

Figure II-152 Number of Taxa and Benthos Abundance at Each River Water Observation Location at the Study Area Comparing the Dry **Season and Wet Season Conditions**

Substrate Type of Muddy Sand (SW-01/left) and Clay Mud (SW-Figure II-153 03/right) Cause Differences in the Number of Taxa and Benthos Abundance at the Study Area

Based on abundance and number of taxa, the benthos community at the study area indicates low diversity (H' < 1) and a high dominance level (c > 0.5) (Figure II-154). This condition is presumably more affected by substrate physical condition and water mass movements at the bottom due to high tidal differences. The substrate condition was previously described, while the high tide condition are presumably less possible for a stable benthos colonization at the sampling location which position is relatively near the sea.

Diversity Index (H'), Uniformity (E), and Dominance (c) of Figure II-154 Benthos Community at Each River Water Observation Location at the Study Area Comparing the Dry Season and Wet Season Conditions

2.2.2.2 Seawater Biota

Sampling of sea water biota (consists of phytoplankton, zooplankton, and benthos) were conducted at nearshore and offshore during the dry season (July – August 2012) and wet season (March – April 2013). Sampling locations cover almost the entire Bintuni Bay area on the same sampling location with sampling location for Water and sediment quality (**Map II 13**). Tidal conditions during sampling of water biota can be observed at **Figure II-39** for the dry season and **Figure II-40** for wet seasons (at the Sub-chapter of Water Quality).

Phytoplankton

Based on phytoplankton identification result until genus level, phytoplankton can be grouped into four class namely *Cyanophyceae*, *Bacillariophyceae*, *Chrysophyceae* and *Dinophyceae*. The first two class are more dominant in abundance compared to last two classes either at nearshore or offshore locations. There are no real differences between nearshore (NS) and offshore (OS) locations (**Figure II-155**).

Figure II-155 Abundance Proportion of the Phytoplankton Class (%) at Each Seawater Observation Location (NS=nearshore; OS=offshore) at the Study Area Comparing the Dry Season and Wet Season Conditions

In dry season the abundance of *Cyanophyceae* was observed to be higher than other classes, except at the OS-02, OS-03, OS-10 and OS-14 points (offshore). The *Cyanophyceae* class is only represented by one genus, namely *Trichodesmium*. *Trichodesmium* is a member of filamentous *Cyanobacteria* class and is much found in the seawaters that are poor nutrient. Therefore, according to Rubin *et al.* (2011), its existence is very important in nitrogen fixation to increase the water productivity, nutrient flow, organic and inorganic matter cycles. In this case *Trichodesmium* provides pseudo basic substrates for many micro-organism in the sea including bacteria, diatom, dinoflagellata, protozoa and copepod.

Figure II-156Trichodesmium Genus, One of the Cyanophyceae Class members
(Source: http://www.whoi.edu/sbl/liteSite)

In wet season, *Bacillariophyceae* is more dominant, except at NS-01, NS-05 (nearshore), OS-06, OS-07 and OS-09 (offshore). A number of dominant genus (found at all observation points) in the *Bacillariophyceae* class, are among others *Chaetoceros, Coscinodiscus, Nitzschia, Pleurosigma, Thalassionema dan Thalassiothrix* (**Figure II-157**). The genus is an important element for food chain in the sea, because it provides food for many early stadia including fishes and shrimps.

The shift between this two classes is presumably related to the difference of sea water quality. The relatively low salinity and sea water temperature at the sampling of plankton is presumably the increasing factor of *Bacillariophycea* during the wet season. *Trichodesmium* from *Cyanophyceae* class is much found in the sea with a salinity above 30 psu, while the salinity condition at the time of plankton sampling in the wet season ranges between 21.9 – 30.9 psu and the high temperature 29.5 -31.3 °C results in decrease of the *Trichodesmium* abundance, so that it is dominated by other classes such as *Bacillariophyceae* and *Dinophyceae*.

Chaetoceros (www.vattenkikaren.gu.se)

Pleurosigma

(www.commons.wikimedia.org)

Coscinodiscus (www.smhi.se)

Nitschia (www.antarctica.gov.au)

Thalassiothrix (oceandatacenter.ucsc.edu)

Figure II-157 A Number of Dominant Genera, Members of the Bacillariophyceae Class

Thalassionema

(oceandatacenter.ucsc.edu)

Figure II-158 Number of Phytoplankton Taxa at Each Seawater Observation Location (NS=nearshore, OS=offshore) at the Study Area Comparing the Dry Season and Wet Season Conditions

The number of phytoplankton taxa indicates a low fluctuation at all observation points (**Figure II-158**). A number of exceptions are NS-02, NS-03 and NS-06 (nearshore) and OS-03, OS-05, OS-09, OS-12 and OS-14 (offshore). In dry season, the number of taxa ranges between 18 to 27 (nearshore) and 17 to 31 (offshore), while in wet season the number of taxa ranges between 15 to 28 (nearshore) and 16 to 31 (offshore). It can be observed that in wet season the range of phytoplankton genus number at nearshore tend to be more than offshore.

Figure II-159PhytoplanktonAbundanceatEachSeawaterObservationLocation(NS=nearshore,OS=offshore)intheStudyAreaComparing the DrySeason and WetSeason Conditions

In all observation locations, phytoplankton abundance in dry season are higher than in wet season (**Figure II-159**). Phytoplankton abundance is not directly proportional to the number of taxa. This is presumably due to the presence of very extreme *Trichodesmium* in dry season, in particular at OS-12. The abundance range in the dry season are 1×10^7 to almost 16×10^7 cell/m³, while in wet season almost all are <2 x 10^7 sel/m³. The component of the taxa number and above abundance will affect the analysis results against the biotic indexes.

The Diversity (H'), Uniformity (E) and Dominance (c) index are the functions of the taxa number and abundance. In normal conditions, the H' index is directly proportional to the E index, but reversely proportional to the c Index. In dry season conditions, the abundance of *Trichodesmium* genus is very high and indicates a taxa dominance compared to others. These conditions indicate that the distribution pattern is not uniform, but more patchy which means irregular. Therefore, in dry seasons the range of the H' value is almost entirely included in 'Low' and 'Moderate (H'< 2) category, except OS-14. The 'Moderate' Diversity Index indicates that the productivity is sufficiently high, with a balanced ecosystem condition and moderate ecological pressures. Meanwhile, the 'Low' Diversity Index indicates that the location is poor, a low productivity, heavy ecological pressure and instable ecosystem. However, in a number of locations in wet seasons such as at NS-02, NS-03, NS-04, NS-07, NS-08, OS-01 and OS-13 indicate a 'High' Diversity Index.

Figure II-160 Diversity Index (H') of Phytoplankton Community at Each Seawater Observation Location (NS = nearshore; OS = offshore) at the Study Area Comparing the Dry Season and Wet Season Conditions

A number of locations that have a 'High" Diversity Index (H' > 2.5) as mentioned above, also indicate that the Uniformity Index is also 'High' (E > 0.60). The 'High" Uniformity Index is also indicated at a number of other locations, such as OS-04, OS-07 and OS-14 during dry seasons, OS-05, OS-08 and OS-11 during wet seasons and OS-03 and OS-06 during dry and wet seasons. The 'high' Uniformity Index means that every species have a relatively same amount. If the Uniformity Index is higher, then more same amount of the every species. If the Uniformity Index is lower, then a number of species have a higher amount compared to other species.

Figure II-161 Uniformity Index (E) of the Phytoplankton Community at Every Seawater Observation Location (NS = Nearshore; OS = Offshore) in the Study Area Comparing the Dry Season and Wet Season Conditions

In the dry season, most of the sampling locations (14 stations) have a 'High' Dominance Index, while in the wet season, only NS-01 and NS-05 have a 'High' Dominance Index. This condition causes that the phytoplankton distribution pattern in the dry season is not uniform (**Figure II-162**).

Interpretation of the three indexes is frequently used to observe the ecosystem stability level. The ecosystem tends to be stable if the community is characterized by H' > 2.0; $E \ge 0.6$ and c < 0.5. Therefore, in general based on phytoplankton community, the water condition in wet seasons tends to be more stable compared to dry seasons.

Figure II-162 Dominance Index (c) of Phytoplankton Community at Each Seawater Observation Location (NS = Nearshore; OS = Offshore) in the Study Area Comparing the Dry Season and Wet Season Conditions

Zooplankton

The zooplankton community composition based on identification results are grouped into eight classes, namely *Protozoa, Crustacea, Urochordata, Chaetognatha, Nemertina, Polychaeta, Pelecypoda and Gastropoda.* Overall only *Crustacea* and *Protozoa* are dominant in which *Crustacea* has a percentage of 30-90% and *Protozoa* 5-55%. There are no specific tendencies between the composition and location, but observation results indicate that there are no significant differences between the dry seasons and wet seasons. The proportion of the six classes of other zooplankton fluctuate relatively narrow (**Figure II-163**).

Figure II-163 Proportion of the Zooplankton Class Abundance (%) at Each Seawater Observation Location (NS = Nearshore; OS = Offshore) in at the Study Area Comparing the Dry Season and Wet Season Conditions

The existence of zooplankton in waters, in particular *crustacea* and various other microscopic organism is very important to ensure the continuity and balance of the ecosystem through the food chain mechanism. The zooplankton group as the first level consumers is very necessary for small fish and fish larvae, that in turn will provide food for the subsequent tropic level.

In general, the amount of zooplankton taxa in wet seasons tends to be more than in dry seasons. The range of taxa amount for the nearshore and offshore locations in the dry seasons are respectively 5 to 9 (nearshore) and 5 to 13 (offshore). For the same category, in the wet season a range of 6 to 13 (nearshore) and 7 and 20 (offshore) is obtained. It can be observed that the offshore location has a wider range with a taxa amount that tends to be more compared to the nearshore location (**Figure II-164** and **Figure II-165**).

Figure II-164 Amount of Zooplankton Taxa at Each Seawater Observation Location (NS=Nearshore; OS=Offshore) in the Study Area Comparing the Dry Season and Wet Season Conditions

Figure II-165Zooplankton Abundance at Each Seawater Observation Location
(NS=Nearshore; OS= Offshore) in the Study Area Comparing
the Dry Season and Wet Season Conditions

At all locations, the zooplankton abundance is not directly proportional to the taxa amount (**Figure II-164** and **Figure II-165**). The observation location with the highest zooplankton abundance is O-S14 (offshore, dry season), caused by the abundance domination of *Nauplia* early stadia from *copepod/crustacea* (**Figure II-166**). the zooplankton abundance in general is < 100,000 cell/m³, then between 100,000 – 200,000 cell/m³ (NS-02, NS-05, NS-06, NS-08, OS-08, and OS-11) and > 200,000 cell/m³ (OS-14).

Based on the type and amount, the zooplankton Diversity Index in the Bintuni Bay waters are in the range of 0.5 < H' < 2.0 (dry seasons) and 1.3 < H' < 2.4 (wet seasons) which is the 'Moderate' category. Either spatial or temporal, there are no significant differences between the observation locations for the H' value. The zooplankton distribution pattern tends to be uniform with a number of exceptions i.e. at points with the E index of < 0.6 (NS-04, OS-06 and OS-12) (**Figure II-168**).

Figure II-166Nauplius larvae Prior to Become Copepod, One of the Food
Sources of Small Fishes and Early Stadia in the Sea Ecosystem
(Source: http://commons.wikimedia.org)

Figure II-167 Diversity Index (H') of Zooplankton Community at Each Seawater Observation Location (NS=Nearshore; OS=Offshore) in the Study Area Comparing the Dry Season and Wet Season Conditions

Figure II-168 Uniformity Index (E) of Zooplankton Community at Each Seawater Observation Location (NS=Nearshore; OS=Offshore) in the Study Area Comparing the Dry Season and Wet Season Conditions

On the Sampling points with a higher H' Index value, have a lower c Index value. This condition means that the zooplankton community that have a low diversity have a high dominance index and vice versa. A number of locations have a c index of > 0.5 including NS-03, NS-04, NS-06 (nearshore), OS-05, OS-08, OS-13, OS-14 (offshore). Most of the high c value occurs during the dry seasons. Through data of the three indexes, it can be concluded that the water ecosystem condition based on the zooplankton community structure tends to be more stable during the wet season compared to dry season. This condition is similar to the case of phytoplankton community.

Figure II-169 Dominance Index (c) of Zooplankton Community at Each Seawater Observation Location (NS=Nearshore; OS=Offshore) at the Study Area

Abundance of Phytoplankton versus Zooplankton

The existence of phytoplankton (species, abundance and distribution) is apart from being controlled by physical factors such as currents and waves, are also affected or controlled by the existence of organism predator. Although not all phytoplankton are edible by zooplankton, but the domination of the *Protozoa* and *Bacillariophyceae* class indicate that the first link, namely the primary producers of the ecosystem are available. **Figure II-170** indicates the up and down of the abundance of phytoplankton and zooplankton that in general are observed tending to be directly proportional, with a few exceptions at a number of points. This can be the initial assumption for the consume-consuming process (grazing mechanisms) of phytoplankton by zooplankton. Nevertheless an in-depth study related to this phenomenon needs to be conducted.

Benthos

Benthos are organisms that live on or in the substrate base. In general, these basic organism occupy water habitats with soft substrates, that are suitable to their holing habits and the availability of high organic matters as a source of food. Observation results of the benthos organism, 12 benthos organism classes were obtained, which in general are dominated by *Polychaeta* and *Crustacea* (Figure II-171).

Polychaeta is a class of the *Annelida* worms that commonly live in the sea environment. Its body is of joints. On every joint are flesh bulges called *Parapodia*. *Parapodia* contains *chetae* that is made of *chitin* material. These worms are frequently called as bristle worms. A number of genera commonly found are *Lumbrineris*, *Nephthys*, *Notomastus* and *Prionospio* (**Figure II-172**). While genera found from the *Crustacea* class are the *Mysis* and *Metafoxus* (**Figure II-171**). The frequency found for other classes are very low.

8

Proportion of Zooplankton Class

3

Proportion of Zooplankton Class

Figure II-171Abundance Proportion of the Benthos Organism Class (%) at
Each Seawater Observation Location (NS = Nearshore; OS =
Offshore) in the Study Area Comparing the Dry Season and Wet
Season Conditions

Figure II-172 Various Benthos Genera Found in the Study Area

Variability of the benthos taxa show differences between the nearshore and offshore locations, indicating fluctuations occurring at the offshore location that are higher compared to the nearshore. Temporally it is similar, the difference at the offshore location in dry seasons and wet seasons are more clear (**Figure II-174**). The number of benthos organism taxa in dry season range between 1 to 7 (nearshore) and 2 to 9 (offshore). In wet season, the number of taxa range for the two similar locations are 1 to 11 and 1 to 18. It is observed that the number of taxa in wet season has a wider range and the taxa number tends to be more (**Figure II-173** and **Figure II-174**)

Figure II-173 Number of Benthos Organism Taxa at Each Seawater Observation Location (NS=Nearshore; OS= Offshore) in the Study Area Comparing the Dry Season and Wet Season Conditions

Figure II-174 Benthos Animal Abundance at Each Seawater Observation Location (NS=Nearshore; OS= Offshore) in the Study Area Comparing the Dry Season and Wet Season Conditions

Based **Figure II-173** and **Figure II-174** the benthos abundance condition between the dry seasons and wet seasons is not directly proportional to the taxa number. Stations with fewer numbers of taxa have a higher abundance. The difference of the taxa existence and its abundance depends on the substrate condition. In general, benthos organism are found in soft substrates i.e. muddy substrates. If the water oxygen still meet the minimum benthos physiological needs and the organic material content is available, then the benthos organism in particular the sea worms are widely found. A number of substrate types found in the study location are presented in **Figure II-175**.

Figure II-175 Various Substrate Types in Study Location

In muddy substrate that has a high abundance of benthos organisms in comparison to the rocky or muddy substrate type that is almost anoxic (very low oxygen) due to the decay of organic matter with very low or even non-existence of the benthos abundance.

The benthos Diversity Index indicates a high spatial and temporal fluctuation. In the dry seasons, the H' value is at range of 0.5 to 2.0 (nearshore) and 0.3 to 3.2 (offshore). In wet seasons, the similar location grouping is consecutively 0.6 to 3.2 (nearshore) and 1.0 to 3.8 (offshore) (**Figure II-176**) The H' value is a function of the number of species and its abundance, accordingly in natural conditions, the H' value depends on the substrate factor. Due to the existence of varying substrate types as presented in **Figure II-175**, it is considered that the condition represents its natural condition. The benthos organism distribution pattern is in general evenly, which indicates that the value of E > 0.5 is more often found in all observation points. Inversely proportional with H' is the dominance value, i.e. a low c value at a high H'.

Figure II-176 Diversity Index (H') of the Benthos Community at Each Seawater Observation Location (NS=Nearshore; OS= Offshore) in the Study Area Comparing the Dry Season and Wet Season Conditions

Figure II-177 Uniformity Index (E) of the Benthos Community at Each Seawater Observation Location (NS=Nearshore; OS= Offshore) in the Study Area Comparing the Dry Season and Wet Season Conditions

Based on assessments by using above biotic indexes, the benthos community structure tends to be less stable, affected by the substrate condition and seasonal factors. The low stability of benthos community is not due to disturbances to the ecological function of basic substrate but is presumably due to the natural conditions in study areas.

2.2.2.3 Fisheries Resources

Data on fishery resources in the study area was compiled from secondary data of the Tangguh LNG fishery study reports in 2004, 2007 and 2009 and primary data through direct sampling that was performed in February – May 2103 by IPB (*Institut Pertanian Bogor*) team and UNIPA (*Universitas Negeri Papua*) team as part of regular monitoring activities on Fishery Resources by the Tangguh LNG.

Fish Biodiversity

Based on data obtained from field survey results that conducted in February – May 2013, the amount of fish caught by fishing gear of gill nets, bottom trawl and pelagic trawl was 2,013 individuals. The number of species found are 82 species that are included in 33 families and 10 ordo.

Fish species that were caught are fish for consumption and are generally caught by local fishermen. In detail, the scientific names of the fish along with the families and ordo presented in **Table II-93**.

No.	Ordo	No.	Family	No.	Species
1	Carchariniformes	1	Carcharinidae	1	Carcharhinus macloti
				2	Carcharhinus sealei
2	Orectolobiformes	2	Stegostomatidae	3	Stegostoma fasciatum
3	Myliobatiformes	3	Dasyatidae	4	Himantura gerrardi
4	Clupeiformes	4	Engraulidae	5	Encrasicholina heteroloba
				6	Encrasicholina punctifer
				7	Encrasicolina sp.
				8	Setipinna taty
				9	Setipinna tenuifilis
				10	Stolephorus commersonii
				11	Stolephorus indicus
				12	Stolephorus waitei
				13	Thryssa baelama
				14	Thryssa encrasicholoides
				15	Thryssa hamiltonii
				16	Thryssa mystax
				17	Thryssa setirostris
		5	Pristigasteridae	18	Pellona ditchela
		6	Clupeidae	19	Amblygaster sirm
				20	Anodontostoma chacunda
				21	Escualosa thoracata
				22	Sardinella albella
5	Siluriformes	7	Ariidae	23	Arius argyropleuron
				24	Arius armiger
				25	Arius graeffei
				26	Arius leptaspis
				27	Netuma thalassina
		8	Plotossidae	28	Paraplotosus albilabris
				29	Plotosus lineatus
6	Aulopiformes	9	Synodontidae	30	Harpadon nehereus
				31	Saurida tumbil
7	Mugiliformes	10	Mugilidae	32	Moolgarda engeli
8	Perciformes	11	Ambassidae	33	Ambassis nalua
		12	Apogonidae	34	Apogon cyanosoma
		13	Sillaginidae	35	Sillago sihama

Table II-91	Fish Species	Caught at	Bintuni	Bav	Waters
14010 11 /1	1 ion opecies	Chagnet	Dintenin	znj	· · accio

No.	Ordo	No.	Family	No.	Species
		14	Carangidae	36	Alepes vari
				37	Carangoides chrysophrys
				38	Caranx bucculentus
				39	Caranx ignobilis
				40	Decapterus kurroides
				41	Megalaspis cordyla
				42	Parastromateus niger
				43	Scomberoides tol
				44	Selaroides leptolepis

Source: IPB, 2013

Figure II-179 Distribution of Species in Ordo

Based on **Figure II-179**, the *Perciformes* ordo has most families. This condition can be understood as this ordo has many families in the entire waters of the world.

Fish Distribution

Classification of study locations in fisheries studies conducted by IPB in 2013 indicates a number of survey zones, i.e. the inner zones, central zones and outer zones (**Figure II-180**).

Based on observations in the study zones, the number of fish species were mostly found in Inner Zone, Central Zone and Outer Zone (mouth of the bay). The number of species found in the Inner Zone were 46 species, and many species were found among others *Caranx ignobilis, Carcharhinus macloti, Himantura gerrardi, Megalaspis cordyla* and *Sphyraena barracuda*. The whole fishes found are sea fishes on average. The number of species in Central Zone and Inner Zone are 32 species and 35 species, which fish species frequently found are among others *Arius argyropleuron, Arius graeffei, Paraplotosus albilabris, Plotosus lineatus,* and *Scatophagus argus*. These species are sea fish and estuary fish species (**Table II-94**).

No.	Species	Outer Zone	Central Zone	Inner Zone	Ecological Category
1	Carcharhinus macloti	+	+	+	L
2	Carcharhinus sealei	-	-	+	L
3	Stegostoma fasciatum	-	+	-	Est. (L)
4	Himantura gerrardi	+	-	-	L
5	Encrasicholina heteroloba	+	-	-	L
6	Encrasicholina punctifer	-	+	-	L
7	Encrasicolina sp.	+	-	-	L
8	Setipinna taty	+	-	-	L
9	Setipinna tenuifilis	+	+	+	Est. (L)
10	Stolephorus commersonii	-	+	-	Est. (L)
11	Stolephorus indicus	+	-	-	L
12	Stolephorus waitei	+	+	-	Est. (L)
13	Thryssa baelama	+	+	-	Est. (L)
14	Thryssa encrasicholoides	-	-	+	Est. (L)
15	Thryssa hamiltonii	+	+	-	Est. (L)
16	Thryssa mystax	-	-	+	Est. (L)
17	Thryssa setirostris	+	+	+	Est. (L)

Table II-92	Distribution (of Fish in	Fach	Survey	Zone
1 abie 11-92	Distribution	01 1/1511 111	Lach	Survey	Lone

No.	Species	Outer Zone	Central Zone	Inner Zone	Ecological Category
18	Pellona ditchela	-	-	+	Est. (L)
19	Amblygaster sirm	+	-	-	L
20	Anodontostoma chacunda	-	+	-	Est. (L)
21	Escualosa thoracata	+	+	+	Est. (L)
22	Sardinella albella	-	-	+	Est.
23	Arius argyropleuron	-	+	+	Est.
24	Arius armiger	-	-	+	Est.
25	Arius graeffei	-	+	+	Est.
26	Arius leptaspis	-	-	+	Est.
27	Netuma thalassina	-	-	+	Est.
28	Paraplotosus albilabris	-	-	+	Est.
29	Plotosus lineatus	-	-	+	Est.
30	Harpadon nehereus	+	-	-	L
31	Saurida tumbil	+	-	+	Est. (L)
32	Moolgarda engeli	+	-	-	Est. (L)
33	Ambassis nalua	-	-	+	Est.
34	Apogon cyanosoma	+	-	+	Est.
35	Sillago sihama	-	+	+	Est. (L)
36	Alepes vari	-	-	+	L
37	Carangoides chrysophrys	+	+	-	L
38	Caranx bucculentus	-	+	-	L
39	Caranx ignobilis	+	-	-	L
40	Decapterus kurroides	-	+	-	L
41	Megalaspis cordyla	+	-	-	L
42	Parastromateus niger	-	+	-	L
43	Scomberoides tol	-	-	+	Est.
44	Selaroides leptolepis	+	-	-	L
45	Ulua mentalis	-	+	-	L
46	Eubleekeria splendens	+	+	+	Est. (L)
47	Leiognathus bindus	-	-	+	Est. (L)
48	Leiognathus decorus	-	-	+	Est. (L)
49	Leiognathus equulus	-	+	+	L
50	Secutor ruconius	+	+	+	Est. (L)
51	Lutjanus argentimaculatus	-	-	+	Est.
52	Lobotes surinamensis	-	+	-	Est. (L)
53	Pomadasys argyreus	-	-	+	Est.
54	Pomadasys kaakan	-	-	+	Est.
55	Eleutheronema tetradactylum	+	-	-	L
56	Johnius amblycephalus	-	-	+	Est.
57	Johnius australis	+	-	-	Est. (L)
58	Johnius belangerii	+	+	+	Est. (L)
59	Johnius sp.	-	+	-	Est. (L)
60	Nibea soldado	+	+	+	Est. (L)

No.	Species	Outer Zone	Central Zone	Inner Zone	Ecological Category
61	Protonibea diacantha	-	-	+	Est.
62	Upeneus moluccensis	-	-	+	Est. (L)
63	Upeneus sulphureus	-	-	+	Est. (L)
64	Drepane longimana	-	+	+	Est. (L)
65	Drepane punctata	-	+	+	Est. (L)
66	Terapon theraps	-	+	+	Est. (L)
67	Brachyamblyopus coecus	-	-	+	Est. (L)
68	Kurtus gulliveri	-	-	+	Est.
69	Scatophagus argus	-	-	+	Est.
70	Lepturacanthus savala	-	+	+	L
71	Scomberomorus commerson	-	+	-	L
72	Sphyraena barracuda	+	-	-	L
73	Psenopsis humerosa	-	-	+	Est. (L)
74	Aseraggodes klunzingeri	+	-	-	L
75	Zebrias zebra	-	-	+	Est. (L)
76	Cynoglossus cynoglossus	-	+	-	L
77	Cynoglossus lingua	-	-	+	Est. (L)
78	Cynoglossus puncticeps	-	+	-	L
79	Paraplagusia bilineata	+	+	-	Est. (L)
80	Triacanthus sp.	+	-	-	L
81	Tripodichthys blochii	-	+	-	L
82	Lagocephalus inermis	+	-	-	L
	Total	32	35	46	

Source: IPB, 2013 Remarks: Est. = Estuary L = Sea

Based on the ecological category, fishes found are classified into three groups. The first group is marine species group, then the groups that are able to live in the sea and estuaries (sea-estuary) and the third group is estuary species. Based on groups, the estuary (sea) fish groups are known to dominate the Bintuni Bay waters.

In the ecological groups, data obtained indicate that estuary fishes are more common found in Inner Zone compared to Central Zone. The estuary fishes in Central and Inner Zone are more affected by salinity of the zones. The salinity in Central and Inner Zones are relatively lower compared to Outer Zone allowing fishes that usually inhabit estuaries can be found in the two zones.

Figure II-181 Fish Species Distribution Based on Ecological Category

Potential Fish Resources

Calculation of potential fish resources was conducted by hydro-acoustic method. Hydro-acoustic is a set of sounder instruments and computer that operated by surveyors' team. The instrument recorded the existence of all organisms in water columns and bottom of waters that was passed. While to identify fish species recorded by acoustic instrument, trawl gear and gill-net are also simultaneously operated. The operation of the instrument is conducted at the predetermined survey track as presented in **Figure II-182**.

Figure II-182 Track of Fish Survey Conducted by IPB Team on April 30th – May 5th, 2013

The length of survey track is 343.52 km, starting from the mouth of the Bintuni Bay (towards the west) to the inner side of the bay, up to the Amutu Besar island water areas (towards the east).

A number of fish species found during the hydro-acoustic survey can be observed in **Figure II-183**.

Based on analysis results of acoustic data, a shoal of fish was found which it is categorized into two type, namely the pelagic fish (present in the water column) and demersal fish (present near the water floor). In the pelagic fish areas a strata division was conducted with interval of 10 m, so that six depth strata were obtained. Demersal fish is limited to the waters column at depth of 5 m from the water floor.

Analysis results in terms of fish density/abundance at survey track based on depth can be observed in **Figure II-184**. Density data of fish resources stock (ρ) at an area can be used to know the fish biomass (Bo) or Standing Stock based on the formula [Bo = A x ρ], wherein A is the total study area.

The Standing Stock of a certain biota can provide an estimate of the biota Potential yield (Py) in the waters. The Potential yield is the maximum catch estimation (ton/year) of certain waters without disturbing the existing resource sustainability. The equation used to calculate the Py value is as follows:

$$Py = Bo \ge 50\% \ge 80\%$$

The average of Potential yield fish resources per year in Bintuni Bay areas, can be calculated by identifying the extent of study area per depth strata. The depth strata is divided into seven depth strata with an interval of 10 meter, but the demersal layer is measured 5 meter from the water floor.

Figure II-183 Measurement Results of Fish Density by Hydro-acoustic and a Number of Fish Specimen Examples Caught in the Survey Track (IPB, 2013)

ANDAL KEGIATAN TERPADU PROYEK PENGEMBANGAN TANGGUH LNG

	-			
132.4 13	32.6 1 hrr 44	332 1336 134 53 km 88 06 km Longtitude		
Legend	Color Scale	Depth		
Daras / Long	Fish / 1000'm	Demersal		
Batas Dirak	21 to 50	Source		
Barrah Penengkapan Ban	0 81 10 50 0 91 10 5000	 Navigation Map of Diras Hidro-Oscianografi TNI-AL Result of Fishery Team Survey 2013 		

Figure II-184 Fish Abundance in the Survey Track Based on Depth (IPB, 2013)

ANDAL KEGIATAN TERPADU PROYEK PENGEMBANGAN TANGGUH LNG

-2.6

Based on digitized calculations to the bathymetry Map of Bintuni Bay, area of waters based on depth strata was obtained as presented in **Table II-95**. The fish Density (Stock Density), Standing Stock and Potential Yield were calculated from the total Bintuni Bay water areas at every depth strata as presented in **Table II-96**.

	1
Depth Strata (meter)	Area (km²)
0 - 10	2,553
10 - 20	2,301
20 - 30	1,838
30 - 40	1,277
40 - 50	839
50 - 60	421
Demersal	2,671
Total Area	11,900

Table II-93Area of Bintuni Bay Waters Based on the Depth Strata

Source: Processed from Bintuny Bay Hydro-acoustic Survey Data 2013 (IPB, 2013)

Depth Strata (meter)	Width (km²)	Density (ton/km²)	Standing Stock (ton)	Potential Yield (ton/yr)
0 - 10	2,553	0.237	605	242
10 - 20	2,301	0.765	1,760	704
20 - 30	1,838	0.465	855	342
30 - 40	1,277	0.078	100	40
40 - 50	839	0.042	35	14
50 - 60	421	0.020	8	3
Demersal	2,671	1.050	2,804	1,122
Total	11,900		6,167	2,467
Average		0.380		

 Table II-94
 Fish Density and Standing Stock in Bintuni Bay Based on Depth

Source: Processed from Bintuni Bay Hydro-acoustic Survey Data 2013 (IPB, 2013)

Based on survey results in 2013, the average stock density value (ton/km²) of fish in Bintuni Bay is 0.380 ton/km². When compared to potential fish in 2004 which averagely is 0.2468 ton/km² (UNIPA, 2004), hence there was a stock density increase of the average potential fish. The condition in 2004 is likely due to at the period, the number of trawling fishermen was quite high, however currently many trawl fishermen quitted so that it can increase the potential fish at the site. This condition can be observed from the survey results in 2013 stating that many fish regeneration that live in almost all types were found.

When observed from the potential yield value obtained in 2007 i.e. 1,190 (ton/year) and during the survey in 2013 namely 2,467 (ton/year), then it can be indicated that there was an increase which it is due to the extensive survey area covering almost the entire Bintuni Bay areas as well as the survey was conducted *insitu*.

Fishing Areas

Determination of the fishing areas in the Bintuni Bay can be obtained from analysis results between map of the fish shoal Distribution (from the survey results) and map of water depth as well as other supporting factors of field survey observation results.

Figure II-185 Map of Fishing Areas, Survey Results in 2013 (IPB, 2013)

The fishing areas in the Bintuni Bay are divided into five classes based on commodities that are present in the location, namely:

- Class 1: The red shading is fishing area for marine fish species. Located in the northern of Ogar Island and eastern of Arguni Island. Fish commodities in this class are among others, Giant Travelly, Pomfret, Mackerel, Tuna, Sharks, *Layang* Fish, Threadfin and *Kembung* Fish.
- **Class 2**: The orange shading is fishing areas of mixed fish between brackish and marine fishes. The fishing location is in the surroundings of Weriagar, Manunggal Jaya, Taroy, Kalitami, Saengga and Tanah Merah. Fish commodities in this class are among others, the Ponyfish, Croaker, Sardine, Veined Catfish, Anchovy, Terapon, travelly, estuarine lobsters and estuarine shrimp species.
- **Class 3**: The blue shading is fish areas living in water locations with greater fresh water affect. It is located in the areas of Amutu Besar Island, Sidomakmur and Irarutu III. Veined Catfish and Ponyfish are most commodities found in these areas.
- **Class 4**: Shrimp catching areas. Marked in green, the catching areas spread-out on the Bintuni Bay, covering the Tanah Merah, Saengga, Weriagar, Manunggal

Karya and Taroy areas. Shrimp species mostly found are among others, the *Sima* Shrimp, *Banana* Shrimp and *Ende* Shrimp (in the local language).

Class 5: Crab catching areas (yellow color). In general, it is located at river estuaries, such as Sidomakmur, Irarutu III, Bintuni and around estuary of Amutu Kecil Island

Based on survey results in 2007, fishing grounds for local fishermen cover almost all creeks/channels affected by tidal waters (estuaries).

Bed gillnets are operated along the coastal waters near local villages, in large rivers and large estuaries. The operations of bed gillnets in these areas are almost always performed during neap water, which occurs at the lowest tide. When the distance between high tide and low tide is low, the installation of bed gillnets are conducted at creeks.

Shark nets are frequently operated in waters up to a depth of 30 m, however it is not infrequently also operated in rivers. Drift gillnets such as mackerel nets and lema fish nets (I) are operated in open waters starting in the surroundings of the Karaka Island up till the waters near Weriagar-Mogotira.

Bed trawl (longline) at Mogotira-Weriagar is operated in a depth of around 10 m, close to river mouths. Fishermen from Manggarina are even capable to operate bed longlines to a depth of 30 m. Fishermen from East Bintuni operate this instrument up till waters in the surroundings of the Karaka Island, or in rivers in the eastern Bintuni Bay waters.

In 2013 an increase occurred in the demand for shrimp and mangrove crabs in the market so that many fishermen changed to catch shrimps or mangrove crabs. **Figure II-186.** Are some examples of non-fish resources such as shrimps, crabs and mollusks caught in IPB survey activities in 2013.

Figure II-186 A Number of Non-Fish Resources Species Identified from IPB Survey Results in 2013

Map II-18 Location of Spawning Grounds in Bintuni Bay

ŝ	PMW	Klien ; Client ;	Tangguh Expansion Project
8	AH	Revisi : Revision :	0
	Januari, 2014	No. Peta : Map. Numi	ber ;

2.2.2.4 Food Webs

The types of organisms as food for fishes in the Bintuni Bay are presented in **Table** II-97. In the table, it is indicated that existing all organisms groups have been consumed by the fish community. In terms of the comprehensive of trophic levels (food webs), fish community in Bintuni Bay is considered comprehensive, that means each trophic level is filled by an existing species. For example, Moolgarda engeli is a detritivore fish; Anodontostoma chacunda and Scatophagus argus is considered as phytoplankton eating fish; Apogon cyanosoma, Ambassis nalua, and Encrasicholina heteroloba are included in the zooplankton eating fish group. The benthivore group is populated by *Pomadasys kaakan* and *P. argyreus. Himantura* gerrardi, Netuma thalasina, and Lobotes surinamensis is a member of the mollusk eating group; Setipinna tenuifilis, Sillago sihama, and Johnius amblycephalus are in the crustacivore group; whereas members of the piscivore group among others include Carcharhinus macloti, Paraplotossus albilabris, and Ulua mentalis. Therefore, there are no empty trophic niches in the waters of Bintuni Bay.

Based on the food groups presented in Table II-97 hypothetical food webs of the fish community in the Bintuni Bay as illustrated in Figure II-187. The food web complexity reflects the wealth of habitat niches and food that supports the diversity of fish species in the Bintuni Bay.

No.	Species	Food Group	Trophic Category	Reproduction Type
1	Carcharhinus macloti	Fish, Shrimp	Piscivore	Viviparus
2	Carcharhinus sealei	Fish, Shrimp	Piscivore	Viviparus
3	Stegostoma fasciatum	Mollusk	Molluscivore	Oviparus
4	Himantura gerrardi	Mollusk	Molluscivore	Oviparus
5	Encrasicholina heteroloba	Zooplankton	Zooplanktivore	Oviparus
6	Encrasicholina punctifer	Zooplankton	Zooplanktivore	Oviparus
7	Encrasicolina sp.	Zooplankton	Zooplanktivore	Oviparus
8	Setipinna taty	Microcrustacean	Crustacivore	Oviparus
9	Setipinna tenuifilis	Microcrustacean	Crustacivore	Oviparus
10	Stolephorus commersonii	Phyto- & Zooplankton	Planktivore	Oviparus
11	Stolephorus indicus	Phyto- & Zooplankton	Planktivore	Oviparus
12	Stolephorus waitei	Phyto- & Zooplankton	Planktivore	Oviparus
13	Thryssa baelama	Microcrustacean	Crustacivore	Oviparus
14	Thryssa encrasicholoides	Microcrustacean	Crustacivore	Oviparus
15	Thryssa hamiltonii	Microcrustacean	Crustacivore	Oviparus
16	Thryssa mystax	Zooplankton, Microcrustacean	Zooplanktivore	Oviparus
17	Thryssa setirostris	Phyto- & Zooplankton	Planktivore	Oviparus
18	Pellona ditchela	Microcrustacean	Crustacivore	Oviparus
19	Amblygaster sirm	Phyto- & Zooplankton	Planktivore	Oviparus
20	Anodontostoma chacunda	Phytoplankton	Phytoplanktivore	Oviparus

Table II-97 Food Groups, Trophic Categories, Types Fishes and of **Reproduction in the Bintuni Bay**

No.	Species	Food Group	Trophic Category	Reproduction Type	
21	Escualosa thoracata	Phyto- & Zooplankton	Planktivore	Oviparus	
22	Sardinella albella	Phyto- & Zooplankton	Planktivore	Oviparous	
23	Arius argyropleuron	Fish, Shrimp	Piscivore	Oviparous	
24	Arius armiger	Fish	Piscivore	Oviparous	
25	Arius graeffei	Mollusc, Fish	Molluscivore	Oviparous	
26	Arius leptaspis	Mollusc, Fish	Molluscivore	Oviparous	
27	Netuma thalassina	Mollusc, Shrimp	Molluscivore	Oviparous	
28	Paraplotosus albilabris	Fish, Shrimp	Piscivore	Oviparous	
29	Plotosus lineatus	Fish, Shrimp	Piscivore	Oviparous	
30	Harpadon nehereus	Fish, Shrimp	Piscivore	Oviparous	
31	Saurida tumbil	Fish, Shrimp	Piscivore	Oviparous	
32	Moolgarda engeli	Detritus, Phytoplankton	Detritivore	Oviparous	
33	Ambassis nalua	Zooplankton	Zooplanktivore	Oviparous	
34	Apogon cyanosoma	Zooplankton	Zooplanktivore	Oviparous	
35	Sillago sihama	Crab, Shrimp	Crustacivore	Oviparous	
36	Alepes vari	Fish	Piscivore	Oviparous	
37	Carangoides chrysophrys	Fish	Piscivore	Oviparous	
38	Caranx bucculentus	Fish, Shrimp	Piscivore	Oviparous	
39	Caranx ignobilis	Fish, Shrimp	Piscivore	Oviparous	
40	Decapterus kurroides	Fish, Shrimp	Piscivore	Oviparous	
41	Megalaspis cordyla	Fish, Shrimp	Piscivore	Oviparous	
42	Parastromateus niger	Fish, Mollusc	Piscivore	Oviparous	
43	Scomberoides tol	Fish	Piscivore	Oviparous	
44	Selaroides leptolepis	Zooplankton	Zooplanktivore	Oviparous	
45	Ulua mentalis	Fish, Shrimp	Piscivore	Oviparous	
46	Eubleekeria splendens	Zooplankton, Microcrustacean	Zooplanktivore	Oviparous	
47	Photopectoralis bindus	Microcrustacean	Crustacivore	Oviparous	
48	Leiognathus decorus	Microcrustacean	Crustacivore	Oviparous	
49	Leiognathus equulus	Microcrustacean	Crustacivore	Oviparous	
50	Secutor ruconius	Microcrustacean	Crustacivore	Oviparous	
51	Lutjanus argentimaculatus	Fish, Shrimp	Piscivore	Oviparous	
52	Lobotes surinamensis	Mollusc, Fish	Molluscivore	Oviparous	
53	Pomadasys argyreus	Macrozoobenthos, fish	Benthivore	Oviparous	
54	Pomadasys kaakan	Macrozoobenthos, fish	Benthivore	Oviparous	
55	Eleutheronema tetradactylum	Shrimp, Fish	Crustacivore	Oviparous	
56	Johnius amblycephalus	Shrimp	Crustacivore	Oviparous	
57	Johnius australis	Shrimp	Crustacivore	Oviparous	
58	Johnius belangerii	Shrimp	Crustacivore	Oviparous	
59	Johnius sp.	Shrimp	Crustacivore	Oviparous	
60	Nibea soldado	Shrimp, Fish	Crustacivore	Oviparous	
61	Protonibea diacantha	Shrimp, Fish	Crustacivore	Oviparous	
62	Upeneus moluccensis	Mollusc, Polychaeta	Molluscivore	Oviparous	

No.	Species	Food Group	Trophic Category	Reproduction Type	
63	Upeneus sulphureus	Mollusc, Polychaeta	n Molluscivore		
64	Drepane longimana	Crustacean, Polychaeta	Crustacivore	Oviparous	
65	Drepane punctata	Crustacean, Polychaeta	Crustacivore	Oviparous	
66	Terapon theraps	Crustacean, Polychaeta	Crustacivore	Oviparous	
67	Brachyamblyopus coecus	Polychaeta, Bivalvia	Benthivore	Oviparous	
68	Kurtus gulliveri	Microcrustacean	Crustacivore	Oviparous	
69	Scatophagus argus	Phytoplankton	Phytoplanktivore	Oviparous	
70	Lepturacanthus savala	Crustacean, Fish	Crustacivore	Oviparous	
71	Scomberomorus commerson	Fish	Piscivore	Oviparous	
72	Sphyraena barracuda	Fish	Piscivore	Oviparous	
73	Psenopsis humerosa	Mollusc, Polychaeta	Molluscivore	Oviparous	
74	Aseraggodes klunzingeri	Crustacean, Mollusc	Crustacivore	Oviparous	
75	Zebrias zebra	Mollusc	Molluscivore	Oviparous	
76	Cynoglossus cynoglossus	Crustacean, Mollusc, Polychaeta	Crustacivore	Oviparous	
77	Cynoglossus lingua	Crustacean, Mollusc, Polychaeta	Crustacivore	Oviparous	
78	Cynoglossus puncticeps	Crustacean, Mollusc, Polychaeta	Crustacivore	Oviparous	
79	Paraplagusia bilineata	Crustacean, Mollusc, Polychaeta	Crustacivore	Oviparous	
80	Triacanthus sp.	Mollusc, Polychaeta	Molluscivore	Oviparous	
81	Tripodichthys blochii	Crustacean, Polychaeta	Crustacivore	Oviparous	
82	Lagocephalus inermis	Crustacean, Mollusc	Crustacivore	Oviparous	

Source: IPB, 2013

Figure II-187 Hypothetical Food Web of the Fish Community in the Bintuni Bay (IPB, 2013)

2.2.2.5 Bioecology

Based on the Fisheries Survey Report conducted in June and December 2007 (**Table II-98**), Simanjuntak *et al.* (2011) added the bioecology category of each species identified in the Bintuni Bay.

Table II-98	List of Fish Species Name Based on the Bioecology Category in the
	Bintuni Bay

No	Ordo	Family	Species	Common Name	KBE
1	Anguilliformes	Anguillidae	Anguilla marmorata		Со
		Chlopsidae	Boehlkenchelys longidentata		Мо
		Muraenesocidae	Muraenesox bagio		ME
2	Aulopiformes	Synodonthidae	Harpodon nehereus	Bombay-duck	ME
			Harpodon translucens		ME
			Saurida argentea		ME
			Saurida tumbil		ME

No	Ordo	Family	Species	Common Name	KBE
	D.L. K	Belonidae	Strongylura strongylura	Spottail needlefish	ME
3	Beloniformes	Hemirhamphidae	Hyporhamphus neglectissimus	Black-tipped garfish	ME
4	Carcharniformes	Hemigaleidae	Hemigaleus microstoma		Ma
			Anadontostoma chacunda	Chacunda gizzard shad	ME
			Anadontostoma selangkat		ME
		Clupeidae	Escualosa thoracata	White sardine	ME
			Herklotsichthys quadrimaculatus	Bluestripe herring	ME
			Encrasicholina heteroloba	Shorthead anchovy	Ma
			Encrasicholina devisi		Ma
			Setipinna melanochir	Dusky-hairfin anchovy	ME
5	Clupeiformes		Setipinna tenuifils	Common hairfin anchovy	Ma
			Stolephorus andhraensis	Andhra anchovy	Мо
		Engraulididae	Stolephorus commersonii	Commerson's anchovy	ME
			Stolephorus waitei		ME
			Thryssa baelama	Baelama anchovy	ME
			Thryssa cf. vtrirostris	Orangemouth anvhovy	ME
			Thryssa setirostris	Longjaw thryssa	ME
			Thryssa hamiltonii	Hamilton's thryssa	ME
		Pristigasteridae	Pellona ditchela		ME
6	Gasterosteiformes	Syngnathidae	Trachyrhamphus bicoarctatus		ME
		Mugilidae	Liza subviridis		Em
7	Mugiliformes		Valamugil engeli		Em
			Mugil cephalus		ME
			Ambassis interrupta	Long-spined glass perchlet	Es
		Ambassidae	Ambassis nalua	Scalloped perchlet	Es
			Ambassis buruensis	Buru glass perchlet	Es
		Caranoidae	Carangoides malabaricus	Malabar trevally	Мо
8	Percoformes	Curungiuuc	Caranx para	Razorbelly scad	Мо
0	1 creojornies	Centropomidae	Psammoperca vaigiensis		ME
		Drepanidae	Drepane punctata	Spotted sicklefish	ME
			Ophiocara porocephala		Ec
		Eleotridae	Butis amboinensis		Ec
			Butis butis		Ec
			Oxuderces dentatus		Es
		Gobiidae	Periophthalmus novemradiatus	Pearse's mudskipper	Es
			Pseudogobiopsis sp.		Es
		Hamulidae	Pomadasys kaakan	Javelin grunter	Em
8	Percoformes	Пистиниис	Pomadasys argenteus		Em
		Kraemeriidae	Kraemeria sp.		Es
		Kurtidae	Kurtus gulliveri	Nurseryfish	Es
		Leioonathidae	Leiognathus splendens	Splendid ponyfish	ME
		Leiognuiniuue	Secutor megalolepis		ME

No	Ordo	Family	Species	Common Name	KBE
			Secutor ruconius	Deep pugnose ponyfish	ME
			Leiognathus bindus		ME
			Leiognathus equulus		ME
		Lethrinidae	Lethrinus harak	Thumbprint emperor	ME
			Lutjanus johnii		ME
		Lutjanidae	Lutjanus fuscescens		Ec
			Lutjanus lemniscatus		Мо
	Monodactylidae N		Monodactylus argenteus		Es
			Mulloidichthys flavolineatus	Yellostripe goatfish	ME
		Niumuue	Mulloidichthys vanicolensis		ME
		Polynemidae	Euletheronema tetradactylum	Fourfinger threadfin	Em
		Scatophagidae	Scatophagus argus		Es
			Atrobuca (Nibea) nibe	Longfin kob	Мо
			Johnieops sina	Sin croaker	Es
			Johnius borneensis	Sharpnose hammer croaker	ME
			Johnius (Johnius) australis	Bottlenose jewfish	ME
			Johnius (Johnius) macropterus	Largefin croaker	ME
	S	Sciaenidae	Johnius (Johnius) amblycephalus	Bearded croaker	ME
			Johnius (Johnius) belangerii	Belanger's croaker	ME
			Nibea soldado	Soldier croaker	ME
			Otolithoides biauritus	Bronze croaker	ME
			Otolithes ruber		ME
		Siganidae	Siganus canaliculatus	White-spotted spinefoot	Мо
		Sillaginidae	Sillago sihama	Silver sillago	Em
		Sparidae	Acathopagrus berda		Em
		Torranovidao	Terapon theraps	Largescaled therapon	ME
		Тетиропише	Terapon puta		ME
		Toxotidae	Toxotes jaculatrix		ME
		Trichiuridae	Lepturacanthus savala	Savalani hairtail	ME
		Тистиниие	Trichiurus lepturus	Largehead hairtail	ME
		Cepolidae	Acathocepola limbata		ME
		Scombridae	Rastrelliger brachysoma		Мо
			Scomberomorus commerson		Мо
		Paralichthyidae	Pseudorhombus arsius	Largetooth flounder	ME
			Paraplagusia bilineata	Doublelined tonguesole	Es
9	Pleuronectiformes	Cynoglossidae	Cynoglossus bilineatus	Fourlined tonguesole	ME
			Cynoglossus punticeps	Speckled tonguesole	ME
		Soleidae	Aseraggodes klunzingeri	Tailed tonguesole	ME
10	Scorngeniformes	Platycephalidae	Cociela punctata		ME
10	scorpachijornies	Scorpaenidae	Centropogon australis		Es

No	Ordo	Family	Species	Common Name	KBE
		Ariidae	Arius (Cochlefelis) danielsi	Daniel's catfish	ME
			Arius (Nemapteryx) armiger	Threadfin catfish	ME
			Arius (Cinetodus) carinatus	Comb-spined catfish	ME
11	C'1		Arius (Neoarius) graeffei	Lesser salmon catfish	ME
11	Suuriformes		Plicofollis argyropleuron		ME
			Arius leptaspis		ME
		Plotosidae	Paraplotosus albilabris	Whitelipped eel catfish	ME
			Plotosus lineatus		ME
			Chelonodon patoca	Milkspotted puffer	ME
		ormes Tetraodontidae	Lagocephalus lunaris	Green rough-backed puffer	ME
			Arothron reticularis	Reticulated pufferfish	ME
10	T (1 ())		Tetraodon erythrotaenia	Red-striped toadfish	ME
12	Tetraodontiformes		Tetractenos glaber		ME
			Lagocephalus inermis		ME
			Lagocephalus sceleratus		ME
		Triacanthidae	Trixiphichthys weber	Blacktip tripodfish	ME

Remarks :

KBE (Bio-Ecological Category): **Co**: *continental species, occasional in estuaries;* **Ec**: *estuarine species from continental origin;* **Es**: *strictly estuarine species;* **Em**: *estuarine species from marine origin;* **ME**: *marine-estuarine species;* **Ma**: *marine species accessory in estuaries;* **Mo**: *marine species occasional in estuaries (Modification by Albareth et al., 2004).*

Based on **Table II-98**, the number of fish species recorded in the 2007 survey was 106 species, as part of 46 families and 12 ordos. The *Perciformes* ordo had the most species with 53 species or more than 50% of the total species, followed by *Clupeiformes* with 16 species (15.1%) and *Siluriformes* as well as *Tetraodontiformes* with eight species each (7.55%).

Based on the habitat characteristics and distribution patterns, Simanjuntak et al. (2011)categorized these fishes into several bioecological categories (Figure II-188 and Figure II-189). In general, the fishes found are native species of the sea (ME > 60%). There are some fish come from inland waters, but are able to adapt to the estuarine environment, or vice versa. Marbled Eel (Anguilla marmorata) are fish that utilize two types of habitats to complete their life cycle, starting from deep ocean waters, estuaries, then freshwaters. The diversity of fish, habitat and distribution patterns are an overview of the ecological integrity and ecological connectivity between various types of waters habitats in the Bintuni Bay and the surroundings.

Figure II-188 Grouping of Fishes Found in the Study Area Based on Ordo (Data: Fisheries Survey, 2007)

Figure II-189 Bio-Ecological Category of Fish Species Recorded in the Study Area

2.2.2.6 Marine Mammals and Reptiles

Data Source

Data and information regarding marine mammals and reptiles were derived from primary and secondary data. Primary data was obtained from survey activities conducted from April 30th –May 8th, 2013 in conjunction with fisheries survey activities. Secondary data was mainly obtained from:

- 1. The Report of Bintuni-Berau Bay Rapid Ecological Assessment (REA): Marine Mammals and Marine Reptiles (Kahn *et al.*, 2006) then was summarized in dual language as Guide Book on Marine Mammals and Sea Turtles in Berau and Bintuni *Bay* (Tangguh LNG Document);
- 2. The observation on marine mammals and reptiles during the 2D and 3D seismic survey activities in Berau/Bintuni Bay that was conducted between 2008 and 2011. The comprehensive report on the results of marine mammals and reptiles monitoring in this seismic activity is summarized in the UKL-UPL implementation report of these activities;
- 3. The observation on marine mammals and reptiles during TEAP (Tangguh Exploration and Appraisal Project) Exploration drilling was conducted since March-May 2013; and
- 4. The routine observation report on ships and platforms operating in the Tangguh LNG

Previous Observation and Research Data

Based on the visual observation conducted in September-November 2006 in the Study of Bintuni-Berau Bay Rapid Ecological Assessment (*REA*): Marine Mammals and Marine Reptiles, four dolphin and one whale species were discovered inhabiting the Bintuni Bay waters, which are:

- 1. Balaenoptera brydei (Bryde's Whale);
- 2. Sousa chinensis (Indo-Pacific humpback dolphin);
- 3. Stenella longirostris (Spinner Dolphin);
- 4. Tursiops aduncus (Indo-Pacific bottlenose dolphin); and
- 5. Tursiops truncatus (Common Bottlenose Dolphin).

In this report, visual observation was conducted on several areas predicted to represent the overall Berau/Bintuni Bay area. The observation was also conducted with the passive acoustic method using a Hydrophone capturing 12 locations covering two bay regions. Four points were in Bintuni Bay, seven points were in Berau Bay and one point in the outermost area of the waters (**Figure II-190**).

The study was conducted for 15 days with the total observation duration at approximately 79 hours and the tracking distance as far as 1,296 sea miles in all types of habitats. There was a total of 62 sightings and a total of 364 individuals were counted.

Figure II-190 Trajectory of the Visual and Acoustic Survey Conducted in the Bintuni Bay and Berau Bay to Identify the Existence and Distribution Patterns of Marine Mammals in this Region (Kahn *et al.*, 2006)

Based on the frequency of sightings and species found, the Chinese white dolphin/*Sousa chinensis* was the most common species found (> 75% sightings), while the most rare was the Bryde Whale/*Balaenoptera brydei* ((<5% or only one sighting). There were two other dolphin species with similar sighting percentages, Spinner Dolpin/*Stenella longirostris* and Indo-Pacific Bottlenose dolphin/*Tursiops aduncus* at 10 – 14%. Common Bottlenose Dolpin/*Tursiops truncatus* was the most rare dolphin species found (<5%).

Consistent with the existing percentage, the *Sousa chinensis* dolphin had the highest abundance compare to others. The results of the observation and records on marine mammal sightings are spatially mapped in the center, eastern, and western (**Figure II-191**).

Figure II-191 Map of Marine Mammal Sightings in the Bintuni Bay and Berau Bay, Covering the Center, East (Top), and West (Bottom) (Kahn *et al.*, 2006)

Apart from data on marine mammal species observed in the Bintuni Bay, information regarding marine reptiles particularly turtles was also obtained from this survey activity. The methods of observation conducted on turtles are the followings:

- In-water direct observation survey, in determined areas;
- Flotsam Survey, which is by observing the debris/remnants of objects or trees carried into the sea;

- Turtle head count/direct visual observation;
- Observation on the nesting area; and
- Community Interview

Based on the results of the visual observation and in-water survey, it was identified that there were at least two turtle species in the waters of Berau/Bintuni Bay, which are the Green Turtle (*Chelonia mydas*) and Hawskbill Turtle (*Eretmochelys imbricata*), whereas data that was obtained from community interviews indicated that there were other turtle species in the waters of Berau/Bintuni Bay covering the Leatherback Turtle (*Dermochelys coreacea*) and (Olive Ridley Turtle (*Lepidochelys olivacea*).

Apart from the observation on turtle species, observation was also conducted on nesting areas for turtles around the waters in the Berau/Bintuni Bay, where it was discovered that the sandy beaches of Ogar island and Pisang Island in the western of the bay are nesting areas, particularly for Green Turtle and Hawksbill Turtle.

Observation on Marine Mammals and Reptiles in the Tangguh Seismic Program (2008-2011)

In the period between 2008 – 2011, the Tangguh LNG conducted 3 seismic survey programs in the Berau/Bintuni Bay area, which were:

- 1. 3D ILX seismic survey activities from December 2008 August 2009;
- 2. 3D appraisal seismic survey activities from December 2009 June 2010; and
- 3. 3D WDR seismic survey activities from September 2010 March 2011.

The locations of the seismic survey area are illustrated in Figure II-192.

During these activities, the Tangguh LNG conducted a monitoring program on marine mammals and reptiles as one of the best practices in the effort to minimize the potential disruption of seismic activities to marine mammals and reptiles. The results of the observation indicated that the existence of several marine mammals and reptiles have been identified and were suspected to be in the waters of Berau/Bintuni Bay from the previous study (ref. REA, 2006).

Figure II-192 Locations of Seismic Survey Activities in the Berau/Bintuni Bay from 2008-2011

The observation on the three seismic activities recorded 116 sightings of marine mammals and reptiles (Figure II-193). The results are considered to strengthen the data on animal species distribution in the center up to the western of the bay. Some marine mammal and marine reptile species identified during this monitoring are:

- Indo-Pacific Bottlenose Dolphin(Tursiops aduncus); 1.
- 2. Indo-Pacific Humpback Dolphin(Sousa chinensis);
- 3. Spinner Dolphin (Stenella longirostris);
- Common Bottlenose Dolphin (*Tursiops truncatus*); 4.
- 5. Green Turtle (Chelonia mydas);
- 6. Hawksbill Turtle (*Eretmochelys imbricata*);
- Leatherback turtle Dermochelys coreacea); and 7.
- 8. Olive Ridley Turtle (Lepidochelys olivacea).

The above data has strengthened and conformed the outcome of the community interviews in Bintuni-Berau Bay Rapid Ecological Assessment (REA) study regarding

the existence of the Leatherback Turtle and Olive Ridley Turtle in the waters of the Berau/Bintuni Bay.

Figure II-193 Marine Mammal and Reptile Sightings Points during Seismic Activities

Marine Mammals and Reptiles Observation on Ships and Platforms Operating within the Tangguh LNG Area

The marine mammal and reptile observation program carried out by the Tangguh LNG on supporting vessels and LNG platforms has been assessed as quite helpful in providing information regarding the existence of marine mammals and reptiles in the Bintuni Bay waters, particularly in the operational area of the Tangguh LNG.

The data obtained from January to April 2012 recorded 44 marine mammals sighting and four turtles sighting. Llimited knowledge of observers, in this case were the vessel crews, has led to the data with incomplete information on the species of observed mammals and turtles. The sighting locations with marine mammals and turtles can be viewed in **Figure II-194**.

Figure II-194 Distribution of Marine Mammal and Reptile Sightings as the Observation Results of the Tangguh LNG's Vessels and Platforms (January-April 2012)

Observation on Marine Mammals and Reptiles During TEAP Drilling Activities

The same observation efforts on marine mammals and reptiles were made during TEAP (Tangguh Exploration and Appraisal Project) drilling activities that began since February 2013. The drilling activities are carried out in the eastern of the bay so the data obtained from this observation are expected to strengthen the information regarding the existence and species of marine mammals and reptiles spread across the eastern of Bintuni Bay. (Figure II-195).

Figure II-195 TEAP Drilling Operation Area

The observation data was collected from February to June 2013 indicated that there were 105 marine mammals and reptiles sightings with the following composition:

Marine Mammals:

- 1. Seven sightings of Indo-pacific humpback dolphin (Sousa chinensis);
- 2. Six sightings of Spinner Dolphins (Stenella longirostris);
- 3. One sighting of the Brdye Whale (Balaenoptera bydae); and
- 4. Seventy dolphin appearances which its species has not been or unable to be identified

Marine Reptiles:

- 1. Four sightings of Green turtle (Chelonia mydas);
- 2. Two sightings of Hawksbill turtle (*Eretmochelys imbricata*);
- 3. Two sightings of Olive ridley turtle (*Lepidochelys olivacea*);
- 4. One sighting of a Saltwater Crocodile;
- 5. One sighting of a marine snake; and
- 6. Twelve sightings of turtles which its species has not or unable to be identified.

Figure II-196 Total Appearances of Marine Mammals and Reptiles during TEAP Drilling Observation (February-June 2013) (Source: BP Wells Environmental Team)

Results of the Survey on Marine Mammals and Reptiles in April-May 2013

Primary data collection was conducted by carrying out a survey using the transect method with the same trajectory as the one in the fisheries survey as illustrated in **Figure II-196.** The observation was conducted using two methods, which were:

- 1. Observation on water with visual observation (head counts)
 - a. Recording the position of appearances with GPS;
 - b. Recording the bearing angle of the front, center, and back of marine mammal groups using a magnetic compass;
 - c. Recording photos using a 300mm lens camera, particularly for the purpose of identifying visible animals;
 - d. Recording the name of the area where the marine mammal and reptile species were seen;
 - e. Calculating the number of individuals appearing at the surface;
 - f. Position of mammals observed, then determined by the triangulation method.
- 2. Underwater observation using a hydrophone

Hydrophones are used to record sounds in the water. During recording, the vessel's engine was shut off and the vessel was put into drifting position and unanchored (speed of the vessel was nil against the movement of water mass). Through sound recording, a number of sounds were obtained to be used to differentiate the mammal species (if there is more than one species in an area); differentiate mammal activities (barking, calling, echo locating, homing and mating). The observation using this hydrophone was conducted in eight observation points in accordance with the gillnet stocking locations in the fisheries survey.

3. Community Interview

Based on marine mammal observation result during the survey conducted from April 30th –May 8th, 2013, there were 16 marine mammals sightings with the number of individuals spotted > 56 individuals. The range of the meeting time started at 06:51 WIT until 14:32 WIT. Details of visual contact data are found in **Table II-99** and **Figure II-197**. In this survey, the marine mammal species recorded are as follows:

- Indopacific Bottlenose Dolphin (*Tursiops sp.*);
- Spinner Dolphin (*Stenella sp.*); and
- Indo-pacific Humpback Dolphin (Sousa sp.)

Table II-99 Visual Contact Data with Mammals in the Bintuni Bay

No	Date	Time	East Longitude	South Latitude	Start	End	Contact Duration	Observed
1	01 May 2013	14:32:04	132° 44' 16.8"	-2° 19' 57.4"	14:32:04		00:09:37	Two Humpback dolphins (<i>Sousa</i> <i>chinensis</i>)
	01 May 2013	14:41:41	132° 44' 45.5"	-2° 20' 43.6"		14:41:41		
2	01 May 2013	14:47:28	132° 45' 2.3"	-2° 21' 12.8"	14:47:28		00:04:05	Suspicion of Whales because water blow was observed Or a group of Humpback dolphins (<i>Sousa</i> <i>chinensis</i>)
	01 May 2013	14:51:33	132° 45' 14.6"	-2° 21' 32.7"		14:51:33		
3	01 May 2013	16:50:37	133° 5' 34.3"	-2° 22' 40.3"	16:50:37		00:00:30	One <i>Stenella</i> and one <i>calve</i>
	01 May 2013	16:51:07	133° 5' 34.3"	-2° 22' 40.3"		16:51:07		
4	02 May 2013	10:25:10	133° 5' 34.3"	-2° 22' 40.3"	10:25:10		00:00:30	One Stenella
Т	02 May 2013	10:25:40	133° 5' 38.5"	-2° 22' 40.5"		10:25:40		
5	02 May 2013	11:02:01	133° 10' 24.7"	-2° 22' 29.7"	11:02:01		00:00:37	Humpback dolphin (Sousa chinensis)
	02 May 2013	11:02:38	133° 10' 29.1"	-2° 22' 30.4"		11:02:38		
6	04 May 2013	07:39:18	133° 14' 19.1"	-2° 22' 31.9"	07:39:18		00:02:48	One <i>Stenella;</i> or Bottlenose
	04 May 2013	07:42:06	133° 14' 30.3"	-2° 22' 34.6"		07:42:06		
7	04 May 2013	07:44:14	133° 14' 39.3"	-2° 22' 38.8"	07:44:14		00:18:51	Four Stenella Bow riding
	04 May 2013	07:44:24	133° 14' 41.7"	-2° 22' 39.9"		07:44:24		
8	04 May 2013	08:02:32	133° 16' 0.5"	-2° 23' 10.0"	08:02:32		00:00:33	One Humpback dolphin (Sousa chinensis) and calve
	04 May 2013	08:03:05	133° 16' 3.0"	-2° 23' 11.1"		08:03:05		
9	04 May 2013	08:08:20	133° 16' 27.6"	-2° 23' 19.2"	08:08:20		00:00:35	One Humpback dolphin (<i>Sousa</i> <i>chinensis</i>) and one <i>calve</i>
	04 May 2013	08:08:55	133° 16' 30.5"	-2° 23' 19.8"		08:08:55		
10	04 May 2013	08:45:00	133° 18' 29.6"	-2° 19' 27.4"	08:45:00		00:20:00	One <i>Stenella;</i> one bottlenose
	04 May 2013	09:05:00	133° 18' 29.6"	-2° 19' 27.4"		09:05:00		
11	04 May 2013	09:05:04	133° 18' 21.8"	-2° 20' 3.3"	09:05:04		00:07:54	Three groups of bottlenoses, each with 7-8
	04 May 2013	09:12:58	133° 18' 30.7"	-2° 19' 24.6"		09:12:58		
12	04 May 2013	09:27:09	133° 18' 47.3"	-2° 18' 16.6"	09:27:09		00:02:34	Three bottlenoses
12	04 May 2013	09:29:43	133° 18' 49.9"	-2° 18' 4.8"		09:29:43		

No	Date	Time	East Longitude	South Latitude	Start	End	Contact Duration	Observed
12	04 May 2013	09:55:00	133° 19' 23.8"	-2° 15' 39.1"	09:55:00		00:00:30	Two-three Sousa
15	04 May 2013	09:55:30	133° 19' 23.9"	-2° 15' 39.1"		09:55:30		
14	04 May 2013	10:55:00	133° 22' 8.8"	-2° 14' 30.4"	10:55:00		00:00:30	One <i>sousa</i> jumping
	04 May 2013	10:55:30	133° 22' 8.8"	-2° 14' 30.4"		10:55:30		
15	06 May 2013	06:51:08	133° 22' 48.8"	-2° 16' 12.3"	06:51:08		00:05:23	Three bottlenose dolphines, one <i>Stenella</i>
	06 May 2013	06:56:31	133° 22' 55.2"	-2° 16' 25.6"		06:56:31		
16	06 May 2013	14:06:03	133° 13' 21.8"	-2° 22' 25.8"	14:06:03		00:00:33	Two bottlenose dolphins, bow riding
	06 Mei 2013	14:06:36	133° 13' 18.5"	-2° 22' 25.5"		14:06:36		

Figure II-197 Plot of Sighting Positions with Marine Mammals (IPB, 2013)

The spotted dolphins forming large groups were from the Bottlenose species. The Spinner Dolphin was also often seen in groups with the bottlenose dolphin. A large group of bottlenose dolphins were found in the western area of Bintuni Bay, surrounding the most eastern of TEAP drilling wells. Meanwhile, more *Sousa chinensis* were encountered in coastal areas (intertidal areas) in the northern of the bay. Based on the observation results, there were dolphins nursing their offspring appeared (**Figure II-198**).

Marine mammals nursing their offspring were found in the Bintuni Bay indicating that the conditions of the Bintuni Bay are good enough for supporting/caring for their offspring, until they are strong enough to return to the open sea. The group of dolphins generally enters the Bintuni Bay as a group, particularly the bottlenose or *Tursiop truncates*. (Figure II-199).

Figure-198 Some Appearances of Marine Mammals Seen Together with Juveniles

Figure -199 Indo-Pacific Bottlenose Dolphin Group (*Tursiop truncatus*) in the Bintuni Bay

The results of this mammal observation strengthen the previous study results that at least there were several main dolphin species, which are the Indo-Pacific Humpback Dolphin (*Sousa chinensis*), Spinner Dolphin (*Stenella longirostris*), Common bottlenose Dolphin (*Tursiops truncatus*) and *Tursiops aduncus* bottlenose dolphin inhabiting the waters of Bintuni Bay. Meanwhile, the existence of whales expected to be seen from the survey results (May 1st, 2013) still need to be understood further.

Apart from visual observation data, acoustic observation data also indicated an interesting situation. From eight acoustic observation points proposed, two acoustic contact points with marine mammals were found, and some noises were also recorded to be suspected as the sounds of benthic organisms such as shrimps and small fishes. Acoustic data indicated clicking sounds recording that were suspected as the sound of dolphins echo locating to look for food (frequency 13 – 5 Khz).

If connected to the quite high level of water productivity that occurs almost throughout the year such as seen from the results of the chlorophyll-a analysis in **Figure II-201** and **Figure II-202**, then it is suspected that Berau/Bintuni Bay is a habitat appropriate for the living place for these aquatic animals. The quite abundant food supply, including planktons, will attract various fish species that eventually will provide food sources for predators higher up, including marine mammals and reptiles. The Berau/Bintuni Bay does not only supply food sources,

but the conditions of the bay waters are calm and relatively protected from strong ocean energy that will provide benefits for these animals to regenerate and raise their offspring (nursery ground).

Figure II-200 (a) Acoustic Contact Location, and (b) Sample of Dolphin Sound Sonogram

Figure II-202 Average Distribution of Chlorophyll -a (in mg/m³) from July-December in Bintuni Bay and Surrounding Waters

TANGGUH LNG DEVELOPMENT PROJECT INTEGRATED ACTIVITIES ANDAL

Meanwhile, many marine mammal species were found in the Berau/Bintuni Bay, but this wasnot the case for marine reptiles which they were not found during the survey. This did not indicate that there were no marine reptile species (particularly turtles) in the waters of the Berau/Bintuni Bay, but there were many factors that may cause the marine reptiles not be found during the survey, among others:

- 1. Direct observation time that was only conducted in one observation period; and
- 2. Limitations of observers to conduct visual observation, because turtles sighting at the surface usually occurs extremely briefly and difficult to be observed.

The collection of additional data regarding marine mammals and reptiles is still being done, one of the methods used is by conducting community interviews and also conducting an analysis on the by-catch results of the fishermen. In previous researches, turtles and dolphins were known to also often get caught in nets operated by local fishermen, thus to identify the definite species of an animal that is caught, this method is considered relevant enough. Apart from that, the location distribution of these animals can also be identified from the information of fishermen by identifying and mapping out their catch area.

Based on secondary data from research and observations made previously such as explained above, it was identified that there were at least four turtle species in the waters of Berau/Bintuni Bay, which were the Green Turtle, Hawksbill Sea Turtle, Olive Ridley Turtle, and Leatherback Sea Turtle, although their migration seasons and locations were not known for sure. Several locations with sandy beaches such as Ogar Island and Pisang Island located in the western of the Berau/Bintuni Bay have also been identified as nesting grounds for several turtle species. Therefore, the conclusion can be drawn that Bintuni Bay is also an important ecosystem for marine turtles.

Distribution and Protection Status of Marine Mammals and Reptiles in the Berau/Bintuni Bay

In general, all of the marine mammal and reptile species found have a wide distribution in the world and inhabit habitats in tropical to sub-tropical regions. In addition, these species are generally also protected animals because they play extremely significant roles for the marine environment (ocean regulator) with several of them declining in population.

Figure II-203 and **Figure II-204** is the distribution area and also the protection status of marine mammals and marine turtle species encountered in the Berau/Bintuni Bay.

Carry C Karrier (www.planet-mammifees.org)	Balaenoptera brydei whale distribution area (www.commons.wikimedia.org)	IUCN: Data Deficient Version 2013.1. CITES: -
(Kahn 2006)		
	and a second	IUCN: Near Threatened Version 2013.1. CITES: Appendix II
Sousa chinensis	Sousa chinensi distribution area	
(Wibowo N; Bintuni, 2011)	(<u>www.cms.int</u>)	
Stenella longirostris (Wibowo N; Bintuni, 2010)	Stenella longirostris Distribution Area (www.cms.int)	IUCN: /Data Deficient Version 2013.1. CITES: Appendix II
Tursiops aduncus (www.ryanphotographic.com)	Tursiops aduncus distribution area (www.itsnature.org)	IUCN: /Data Deficient Version 2013.1. CITES: Appendix II
		IUCN:
		Least Concern Version 2013.1. CITES: Appendix II
Tursions truncatus	Tuning to a start of the start of	**
(IPB: Bintuni, 2013)	<i>Turstops truncates</i> distribution area	
(2, Differing =010)	(www.commonswikimedia.org)	

Figure II-203 Marine Mammal Species and Distribution Area Also Found in Bintuni Bay

Eretmochelys imbricate (Wibowo N, Bintuni, 2010)	Hawksbill Sea Turtle/ Eretmochelys imbricate distribution area (www.wikipedia.org)	IUCN: Critically Endangered Version 2013.1 CITES: Appendix II
Lepidochelys olivacea (Wibowo N; Bintuni, 2009)	Olive Ridley Turtle/ Lepidochelys olivacea distribution area (www.wikipedia.org)	IUCN: Vulnerable Version 2013.1 CITES: Appendix II
Dermochelys coreacea (Wibowo N; Bintuni, 2010)	Leatherback Sea Turtle/Dermochelys coreacea distribution area (www. wikipedia.org)	IUCN: Critically Endangered Version 2013.1 CITES: Appendix II
Chelonia mydas (Kahn; Bintuni, 2006)	Green Turtle/Chelonia mydas distribution area (www.wikipedia.org)	IUCN: Endangered Version 2013.1 CITES: Appendix I

Figure II-204 Marine Reptile Species and Distribution Area Also Found in Bintuni Bay

Remarks:

Conservation status according to IUCN Red List are grouped into:

• *Extinct* (EX). Conservation status given to species and sub-species that are certainly no longer found in their natural habitat.

- *Extinct in The Wild* (EW). The EW conservation status states when a species or sub-species are certainly no longer found in their natural habitat. But the species still remain or are found in captivity outside their natural habitat.
- *Critically Endangered* (CR). This conservation status is given to flora and fauna facing the risk of extinction in the near future, difficult to find their existence in their natural habitat.
- *Endangered* (EN). This conservation status states the status of flora and fauna facing high risk of extinction in the wild or their natural habitat. This status is one level lower compared to CR. The difference lies in the indications on extinction criteria.
- *Vulnerable* (VU). This condition is the initial limit of the conservation status of flora and fauna stated to be on the brink of extinction. This means that the flora and fauna can be said to be facing the threat or risk of extinction in their natural habitat.
- *Near Threatened* (NT). Conservation status stating that the flora and fauna conditions are believed to be nearing the threat of extinction in the wild. NT is usually issued for flora and fauna groups expected to be included in the VU category.
- *Least Concern* (LC). The LC conservation status is given to flora and fauna identified having no signs of meeting the EX, EW, ER, VU or even NT criteria.
- *Data Deficient* (DD). A taxon stated in DD condition when it is known that there is insufficient information that is directly or indirectly required to issue an estimation on the extinction risk criteria based on the distribution and/or status of the population.
- *Not Evaluated* (NE). A condition stating that when a taxon is identified for its conservation status, it has not been evaluated based on meeting the applicable criterions of conservation status according to the IUCN Red List guidelines.

Animal and plant species under the supervision of CITES are categorized into three groups, which are:

- *Appendix* **I** is the list of all plant and wildlife species prohibited in all forms of international trade.
- *Appendix* **II** is the list of species that are not endangered, but may be endangered if trade continues without any regulations. *Appendix* **III** is the list of plant and wildlife species protected in certain countries within the boundaries of their habitat area, and at any given moment, their rating could be raised to Appendix II or Appendix I.

Map II-198 Sensitive Areas of the Bintuni Bay Waters

PMW	Klien : <i>Client :</i>	Tangguh Expansion Project
AH	Revisi : <i>Revision :</i>	0
Januari, 2014	No. Peta : Map. Numi	ber :