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Abstract

Fires are ubiquitous features of many terrestrial ecosystems and can greatly impact the 

structure and evolution of plant communities. However, much less is known about how ire 

history impacts higher trophic levels. Using detailed records on the history and intensity of 

ires at the Archbold Biological Station (ABS) in central Florida, USA, we examined how 

time-since-ire afects the cynipid gall wasp assemblage (Hymenoptera: Cynipidae) associ-

ated with four oak species (Quercus) that are dominant components of the plant commu-

nity in this region. Cynipid abundance, richness and diversity were quantiied from 1249 

oak trees/shrubs in 20 sites that varied in time-since-ire from 1.5 to 91 years. Among all 

sites and oaks, we found 24 species of cynipids and there was very little species overlap 

among oak species, even within the same site. Gall abundance increased with time-since-

ire and was correlated with tree height, suggesting that available host material or plant 

architecture may be a primary driver of cynipid recovery. Within 3 years of a ire, 14 of 

the 23 cynipid species were detected among the sites, and by seven years since ire, all but 

two species could be detected. Overall, species richness and diversity reached an asymptote 

within ≈ 7 years. Given how quickly the cynipid assemblage recovers after a ire, frequent 

ires at ABS are unlikely to negatively impact these insects. However, in smaller or more 

isolated scrub-oak fragments, recovery could be much slower.
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Introduction

Understanding how communities assemble and the factors that afect community structure 

have been central issues in the ield of ecology. Natural and anthropogenic disturbances 

such as ires, droughts and hurricanes are ubiquitous features of terrestrial communities 

that can profoundly inluence community structure (Dayton 1971; Connell 1978; Sousa 

1984; Petraitis et  al. 1989; Collins 1992). Fire is a particularly important disturbance to 

plant communities because it removes biomass, afects the quality and quantity of soil 

nutrients and water, and can be a key selective agent in the evolution of natural communi-

ties (Bond and Keeley 2005; Certini 2005; Keeley et al. 2011; Pausas and Keeley 2019). 

To date, much less attention has been paid to the impacts of ire on higher trophic levels, 

such as insect herbivores (Kim and Holt 2012). Depending on the scale and intensity of 

ires, the impacts on herbivore populations and higher trophic levels can range from mini-

mal to complete local extirpation; at least in the short term (Swengel 2001; Knight and 

Holt 2005). Less mobile species such as lightless insects or species in a sedentary life 

stage (e.g., egg and pupal stages, leaf miners and galls) are particularly vulnerable to ires.

Insect populations may recover from ires by in situ survival of individuals or through 

recolonization from nearby unburned areas or refugia (Harper et al. 2000; Panzer 2003). 

Following an intense ire, herbivore abundances and species richness are expected to 

be low in early successional stands and then increase over time (Kim and Holt 2012). If 

recruitment is primarily by recolonization, early successional stands may be dominated by 

highly mobile taxa or those with strong refuge-seeking strategies (Kim and Holt 2012). 

Later successional stages should have a greater proportion of herbivore species that are less 

mobile or more ire sensitive (Swengel 2001; Joern 2005; Knight and Holt 2005; Kim and 

Holt 2012). For example, Mutz et al. (2017) found that the abundance of a tortoise beetle 

of saw palmetto (Hemisphaerota cyanea) generally increased with time-since ire. Simi-

larly, Garcia et al. (2016) found that specialist herbivores (seed-feeding weevil and myrid 

bug), but not generalist herbivores, were less abundant on their host plants in recently 

burned compared to unburned sites. Interestingly, Kaynaş and Gürkan (2008) found the 

opposite relationship between time-since-ire and abundance for herbivores of pine forest 

of the Mediterranean (see also Uehara-Prado et al. 2010). Clearly, more studies are needed 

that examine the relationship between ire histories and how herbivore communities are 

assembled following ires.

Prescribed ires are increasingly being used to manage ire-dependent systems. In addi-

tion to reducing fuel loads to mitigate threats to urban areas (North et al. 2015), the prior-

ity of ire management plans is usually to improve plant biodiversity or provide habitat 

for game animals, endangered species or other charismatic species (Parr and Andersen 

2006; Clarke 2008). Promoting insect herbivore or higher trophic level diversity may be an 

implicit goal of ire-management programs but it is rarely explicitly considered (Parr and 

Andersen 2006; but see Martinez-Torres et al. 2015). Given the immeasurable importance 

of arthropod herbivores and their natural enemies to ecosystem function (Price et al. 2011), 

it is essential that they be more carefully considered in the development and evaluation of 

ire management plans.

The Lake Wales Ridge in Peninsular Florida is composed of relict sand dunes within 

which the plant communities are highly ire dependent (Abrahamson 1984a; Myers 1990; 

Platt et al. 1991) and at the Archbold Biological Station (ABS) at the southern end of the 

Lake Wales Ridge, prescribed ires have been implemented since 1977. Although much 

research has been conducted on the impact of ires on components of the plant community 
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(e.g., Abrahamson 1984b; Menges and Hawkes 1998; Weekley and Menges 2003; Ketten-

ring et al. 2009; Evans et al. 2010; Dee and Menges 2014) and with regard to some ver-

tebrate species (e.g., Ashton et  al. 2008; Ashton and Knipps 2011; Schrey et  al. 2011; 

Fitzpatrick and Bowman 2016), very little is known about its impact on the arthropods (but 

see Menges and Deyrup 2001; Carrel 2008; Kim and Holt 2012).

Here, we take advantage of ABS’s detailed records on the history and intensity of ires 

to examine how time-since-ire afects the cynipid gall wasp assemblage associated with 

oaks (Quercus) that are dominant components of the plant community in this region. 

Although cynipids have been the subject of numerous community-ecology studies (e.g., 

Cornell 1985a, b, 1986; Abrahamson et al. 1998b; Price et al. 2004; Williams and Cronin 

2004; Maldonado-López et  al. 2015), no studies to date have examined how their com-

munities assemble following a disturbance. Using replicated forest/scrub sites that were 

subjected to high-intensity burns ranging from 1.5 to 91 years ago, we determined cynipid 

gall abundance, species richness and diversity on four oak species. We tested the prediction 

that abundance, richness and Shannon–Wiener diversity increased with time-since-ire. We 

also examined whether members of the cynipid assemblage were ire sensitive (i.e., limited 

to sites with a long time-since-ire) or were specialists of particular post-ire successional 

stages.

Materials and methods

Study area

The research was conducted at the ABS, 12 km south of Lake Placid, Florida (27.183° N, 

81.350° W). Soils are typically comprised of xeric white or yellow sands that are exces-

sively well drained, acidic and nutrient poor. Three common habitats in this region are 

scrubby latwoods (also known as oak scrub), sand pine scrub and ridge sandhills (Abra-

hamson et al. 1984). Scrubby latwoods are dominated by the evergreen, xeromorphic oaks 

Quercus inopina (scrub oak), Quercus chapmanii (Chapman’s oak), and Quercus gemi-

nata (sand live oak), as well as Serenoa repens (saw palmetto) and Sabal etonia (scrub 

palmetto). The oak Quercus myrtifolia (myrtle oak) is relatively rare and the pines, Pinus 

clausa (sand pine) and Pinus elliottii (slash pine), are also present but widely scattered. 

In contrast, sand pine scrub has an overstory of P. clausa and an intermediate canopy of 

shrubby oaks including Q. geminata, Q. chapmanii, Q. myrtifolia and less commonly 

Quercus laevis (turkey oak). Finally, southern ridge sandhills are open woodlands with 

a slash pine overstory and mid-canopy of Q. geminata, Q. chapmanii, Q. myrtifolia, Q. 

laevis, and Carya floridana (scrub hickory). Details of the vegetation in these habitats 

are available in Abrahamson et  al. (1984), Abrahamson and Hartnett (1990) and Myers 

(1990). Today, only remnants of these habitats exist (approximately 85% has been lost due 

to human activities) and this region is of signiicant conservation concern (Abrahamson 

1984a; Myers 1990; Deyrup and Eisner 1993; Stap 1994; Weekley et al. 2008).

Historically, lightning-ignited ire has been a natural and common phenomenon in 

Florida and has played an integral role in shaping the landscape (Myers 1990; Platt et al. 

1991; Glitzenstein et al. 1995). Periodically burned scrubby latwoods are resilient to ire 

and within a few years can return compositionally and structurally to their pre-burn states 

(Abrahamson 1984a; Schmalzer and Hinkle 1992; Abrahamson and Abrahamson 1996a, 

b). Sand pine scrub becomes ignited only rarely and under natural conditions ire frequency 
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is likely on the order of every 20–100 years (Webber 1935; Abrahamson 1984a; Menges 

et al. 2017). Scrubby latwoods and southern ridge sandhill burn more frequently, with ire-

return intervals of 6–19 years for the former and 2–5 years for the latter habitat (Harper 

1927; Abrahamson 1984a; Menges et al. 2017).

At ABS, active ire suppression began in the late 1920s and continued until 1977 (Main 

and Menges 1997). Beginning in 1977, prescribed ires have been used at ABS and in 

1997, ABS implemented a formal ire-management plan with the goals of mimicking natu-

ral processes (ire-return intervals, ire intensity), enhancing biodiversity and reducing ire 

hazards through the reduction of fuel levels (Main and Menges 1997; Menges et al. 2017). 

ABS maintains an extensive GIS database for the station property that includes detailed 

maps of vegetation composition, and the location and intensity of ires dating back to early 

1990s. Records of ires predating this period are available but not part of the current data-

base. Overall, these detailed records of ire history, intensity and vegetation composition 

provide an ideal opportunity to assess how ire inluences community assembly in oak-gall 

wasps.

Oak–cynipid system

The oak-gall wasps in the Cynipini Tribe (Hymenoptera: Cynipidae) are comprised of 

750–800 species worldwide (Melika and Abrahamson 2000a). The host range of these 

cynipines is generally restricted to one or a few closely related oak species in the genus 

Quercus (Abrahamson and Weis 1997; Abrahamson et al. 1998a, b, 2003) and the wasp 

attacks a speciic plant part; e.g., a leaf vein, stem node, dormant bud, lower part, or fruit. 

Upon hatching, the wasp larva initiates the production of a morphologically complex gall 

structure (Askew 1980) which provides the developing wasp with nutrition and a degree of 

protection from the elements and natural enemies (Askew 1975, 1980; Washburn and Cor-

nell 1981, 1983; Abrahamson and Weis 1987; Stone et al. 2002). Gall structure is highly 

distinctive and, in most cases, can be used for accurate species identiication (Cornell 1983, 

1985a; Abrahamson et al. 2003; Maldonado-López et al. 2015).

Experimental plan

Using archived ABS ire-history data, we selected 20 sites that varied in time-since-ire 

from 1.5 to 91 years (Fig. 1, Appendix 1). Sites were also limited to three habitat types: 

scrubby latwoods, southern ridge sandhill and sand pine scrub. With the exception of 

our oldest time-since-ire sites (> 19 years), we selected sites that were standardized with 

regard to ire severity—choosing sites classiied in the highest severity burn category, cat-

egory four. Fire severity was determined from ground and aerial surveys conducted shortly 

after a burn with a precision of ca. 3 m (Menges et al. 2017). According to Menges et al. 

(2017), high-severity burn sites exhibited consumption of litter, leaves, twigs, and palmetto 

leaf blades and it is unlikely that the oak–cynipid community could have survived. This 

conclusion is supported by our own observations that there are no live cynipids in galls 

shortly after a high-intensity burn (Cronin and Abrahamson personal observation). Con-

sequently, we conclude that our sites with a time-since-ire of < 19 years must have been 

recolonized by cynipids following the burn. This was important because we wanted our 

younger sites to begin cynipid community assembly from a clean slate. For sites burned 

prior to 1989, we do not have information on burn severity. Oaks in these latter sites were 

substantially more mature (19–91 years since ire) than those in which burn severity was 
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Scrubby flatwoods

Sand pine scrub

Sandhill

Permanent water

Time-since fire sites
< 3 years

3 – 7 years

> 19 years

0 2 4 1 

Kilometers

Fig. 1  Map of ield sites at Archbold Biological Station, Highlands County, Florida, USA
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known. We assumed with these older sites that the signal remaining from the ire’s severity 

would be weak and have little impact on cynipid community metrics. Based on the above 

criteria, maps of candidate sites were produced from the ABS GIS database and the suit-

ability of these sites was conirmed via brief on-site inspection. Except in the case of sites 

#1 and #5 (ABS section 2B, Appendix 1), each burned site represented a diferent burn. 

Section 2B represented a large burn and the two sites were 800 m apart.

We conducted our surveys in two diferent years, late January to early February, 2018 

and late January, 2019. Because of time constraints, surveys in two diferent years were 

necessary to achieve suicient replication of sites for the study. We acknowledge here that, 

although the oaks we sampled are evergreen, galls are more ephemeral and seasonal plant 

parts (e.g., catkins or acorns) with galls would be missed in our samples. For example, 

a multiple-year, year-round sampling at ABS found 12 cynipid gallers on Q. geminata 

(Price et al. 2004) whereas our winter sampling found only 7 species. Therefore, our sur-

veys relect the abundance and richness of persistent galls, not the entire cynipid gall-wasp 

community.

At each site, we walked transects perpendicular to the adjacent ire road or jeep trail. 

Every ive paces, the nearest oak (in front or to the side of the investigator), for each spe-

cies present at the site, was selected for inspection. Quercus chapmanii and Q. geminata 

occurred in abundance at all 20 sites but Q. inopina was often scarce in ridge sandhill 

and sand pine scrub and Q. myrtifolia was rarely found in scrubby latwoods. As a result, 

only three sites were represented by all four oak species. The remainder of sites had three 

oak species each. We measured stem height with a tape measure or measuring pole (to the 

nearest cm) and stem diameter at the base of the plant with Vernier calipers (to the near-

est mm). Oaks in the Florida scrub are dwarf trees and heights in our study sites rarely 

exceeded 6 m. For oaks less than ca. 3 m tall, we carefully inspected every bud, leaf, twig 

and stem for the presence of a gall and counted the number of individual galls for each spe-

cies. For taller trees, we inspected plant parts within reach and did the same for branches 

cut from the middle and crown of the tree using a pole trimmer. In these cases, we also 

estimated the proportion of the tree/shrub that was inspected. Only for the older sites 

(> 19 years since burned) did we need to subsample oaks. However, 86% of all oaks in 

those sites were fully sampled and of those that were subsampled, an average of 55% of the 

tree was inspected. To account for this incomplete sampling of larger trees at some sites, 

we obtained a corrected gall abundance per tree by dividing gall counts per tree by the pro-

portion of the tree sampled. At each site, we continued walking a transect (or parallel ones 

at least 5 m away) until we inspected 20 trees per oak species.

The oak cynipids present at ABS have been studied extensively by Abrahamson and 

colleagues (Melika and Abrahamson 1997a, b, 2000a, b, 2007; Abrahamson et al. 1998a, 

b, 2003; Price et al. 2004). Seventy-four species have been identiied from ive species of 

oaks at ABS and a pinned reference collection of wasps and their galls is available in the 

Arthropod Collection. We consulted this collection in developing a pictorial guide to cyn-

ipid species found on each oak species during the period when we conducted our census 

(see Appendix 2).

Statistical analyses

Our primary interests focus on how time-since ire inluences oak cynipid abundance, rich-

ness, diversity and composition at the scale of the burned plot. As there were many indi-

vidual oaks with zero galls, particularly in the recently burned sites, we opted to combine 
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the 20 trees/shrubs per oak species at each site to compute gall abundance, richness and 

Shannon–Wiener diversity. We note here that analyses conducted at the tree scale or the 

site scale yielded nearly identical results.

We used the Vegan package in R (version 3.4.3; R Core Team 2013) to compute the 

Shannon–Wiener diversity index. Also, to assess whether our richness estimates were 

asymptotic, we computed Chao 1 for each oak species and site (Gotelli and Colwell 2010). 

In only one of 63 cases did we obtain an estimate of asymptotic richness that was greater 

than our actual count (Site 16, 4.5 years since burned, Q. chapmanii, 7.5 versus 7 species). 

We conclude that our surveys were suiciently extensive to relect the asymptotic richness 

of these sites and we therefore use our raw data on species richness. Moreover, this inding 

suggests that incomplete sampling of larger trees in sites with long time-since-ires had no 

efect on our estimates of richness.

We used separate generalized linear mixed models (GLMMs) to test whether gall abun-

dance, cynipid species richness or cynipid diversity per site was related to oak species, 

time-since-ire, oak species × time-since-ire interaction and mean tree/shrub height. To 

test for the possibility that the above response variables were asymptotic with regard to 

time-since-ire, we also included time-since-ire2 as a predictor in the model. Site and year 

of data collection were treated as random efects in the model to account for the poten-

tial nonindependence among oak species within a site and interannual variation in cynipid 

community metrics, respectively. Because stem diameter was strongly correlated with tree 

height (R = 0.87, P < 0.001, n = 1249), we excluded diameter from the analysis. Although 

our site surveys were conducted in three distinct vegetation types (scrubby latwoods, sand-

pine scrub or ridge sandhill), we did not have suicient statistical power to include this as 

a ixed efect in our model. Tree height and time-since-ire were ln-transformed to satisfy 

model assumptions about normality and homogeneity of variances. Also, for the mixed-

efects model for gall abundance, the error term was deined as Poisson. For all other 

response variables, the error terms were deined as normally distributed. Finally, the data 

were analyzed using Proc GLIMMIX in SAS® version 9.4 (SAS Institute, Inc., Cary, NC, 

USA).

Pairwise diferences among oak species in response variables were assessed using 

Tukey–Kramer tests. Diferences among oak species in the slopes of the relationship 

between time-since-ire and our response variables were assessed with t-statistics using the 

Estimate command in SAS Proc PLM. To control for type I errors associated with multiple 

comparisons, P-values for diferences among slopes were Bonferroni corrected.

Results

During the course of this study, we inspected 1249 oak tree/shrubs divided among 20 sites 

and four oak species common at ABS: Q. geminata (n = 406), Q. chapmanii (n = 411), 

Q. inopina (n = 224) and Q. myrtifolia (n = 208). As expected, mean oak height was 

the shortest in sites that had burned recently and increased linearly with time-since-ire 

(Fig.  2a; Table  1). Independent of time-since-ire, Q. chapmanii and Q. myrtifolia were 

similar in height, with least-squares means of 122 ± 7  cm and 115 ± 7  cm, respectively 

(Tukey–Kramer test, t37 = 1.18, P = 0.24). Both of these oaks were signiicantly taller than 

Q. geminata (93 ± 5 cm) and Q. inopina (87 ± 6 cm) (Tukey–Kramer test for all compari-

sons, P < 0.006). The increase in height with time-since-ire also difered among oak spe-

cies (Table 1): Q. chapmanii and Q. geminata had similarly steep slopes (0.49 ± 0.15 and 
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0.45 ± 0.15, respectively; t37 = 1.41, P = 0.99), averaging 26% higher than the slopes for 

the other two oaks (Q. myrtifolia: 0.34 ± 0.16, Q. inopina: 0.36 ± 0.15; all comparisons, 

P < 0.05).

Gall abundance per site (summed over 20 trees) was strongly dependent on oak spe-

cies (Table  1; Fig.  2b). There was also a strong oak species × time-since-ire interaction 

in the GLMM indicating that the oak species have signiicantly diferent slopes in the 

relationship between gall abundance and time-since-ire (Table 1; Fig. 2b). Quercus chap-

manii had the greatest overall abundance, averaging 386 ± 36 galls per site (± SE) in sites 

burned < 2 years ago and increasing by an average of 73% from the most recent to the old-

est time-since-ire sites (based on a least-squares regression model; Fig. 2b). Interestingly, 

one of the youngest and oldest time-since-ire sites had the highest gall abundance on Q. 

chapmanii, 1220 ± 308 and 1266 ± 416 galls, respectively. Quercus geminata had the sec-

ond highest gall abundance, with 64 ± 34 galls per 20 trees for sites burned < 2 years ago 

and a predicted 5.8-fold increase across the entire range of time-since-ire (1.5 = 91 years; 

Fig. 2b). Quercus myrtifolia had fewer galls on average with gall abundances rising from 

a predicted 22 galls per 20 trees in sites burned just < 2 years ago to 170 galls per 20 trees 

in the oldest burn sites, a 7.8-fold increase. In contrast, Q. inopina had very few galls 

regardless of time-since-ire (2.8 ± 1.2; Fig.  2b). All pairwise comparisons of gall abun-

dance between oak species were statistically signiicant based on a Tukey–Kramer test 

(P ≤ 0.02 in all cases). There was no evidence that the relationship between time-since-ire 

and gall abundance was nonlinear (i.e., the quadratic term in the model was not signiicant; 
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Fig. 2  The relationship between time-since-ire and oak species on a mean tree height (ln-transformed), 
b mean gall abundance (20 trees combined), c species richness and d Shannon–Wiener diversity per site. 
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els for species richness and diversity. Signiicance of the relationship between each response variable and 
time-since-ire can be found in Table 2
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Table 1). The slope of the linear relationship between time-since-ire and gall abundance 

was 1.9 and 2.5 times lower for Q. chapmanii than Q. geminata (t36 = 5.89, P < 0.001) and 

Q. myrtifolia (t36 = 3.32, P = 0.012), respectively. All other comparisons among slopes 

were not signiicant. Finally, there was also a signiicant positive efect of mean tree/

shrub height on gall abundance (F1,36 = 5.99, P = 0.019; Table 1; Fig. 3). Time-since-ire 

and mean tree/shrub height are necessarily confounded variables. With mean tree height 

included as a predictor variable in the GLMM, time-since-ire category on its own was 

not a signiicant factor (Table  1). However, if tree height is removed from the analysis, 

time-since-ire (F1,37 = 7.49, P = 0.010) and its interaction with oak species (F3,37 = 10.88, 

P < 0.001) are signiicant factors afecting gall abundance. Speciically, the slope of the 

relationship between time-since-ire and gall abundance was signiicantly positive for all 

four oak species (all cases, t37 ≥ 2.18, P ≤ 0.035).

Cynipid species richness was also strongly afected by oak species and ire his-

tory (Table  1; Fig.  2c). For all four oak species, richness increased with time-since-

ire (F1,36 = 17.62, P < 0.001) but tended to level of after ≈ 7  years (time-since-ire2: 

F1,36 = 13.02, P < 0.001). Least-squares mean number of cynipid species among 20 oak 

trees/shrubs was 4.88 ± 0.26 for Q. chapmanii, 4.00 ± 0.25 for Q. geminata, 3.01 ± 0.34 for 

Q. myrtifolia and 0.84 ± 0.32 for Q. inopina. All possible pairwise comparisons were sig-

niicantly diferent (Tukey–Kramer test, P ≤ 0.002). Maximum species richness for a site 

Table 1  Results from separate GLMMs for the efects of time-since-ire, time-since-ire2, oak species and 
the interaction of time-since-ire and oak species (Fire × Oak) on mean tree height, mean gall abundance per 
tree, species richness and Shannon–Wiener diversity per site

For the latter three response variables, height was included as a covariate in the model. Time-since-ire and 
height were ln-transformed prior to the analyses. Random factors in each model included the survey site 
and year of survey. Reported are the numerator and denominator degrees of freedom (Num DF and Den DF, 
respectively), F statistic and P-value

Response variable Efect Num DF Den DF F P

Tree height ln Time-since-ire 1 37 6.69 0.0138

ln Time-since-ire2 1 37 1.54 0.2223

Oak species 3 37 7.43 0.0005

Fire × Oak 3 37 9.64  < 0.0001

ln Time-since-ire 1 36 1.77 0.1912

ln Time-since-ire2 1 36 0.62 0.4345

Gall abundance Oak species 3 36 41.4  < 0.0001

Fire × Oak 3 36 12.55  < 0.0001

ln Height 1 36 5.99 0.0194

ln Time-since-ire 1 36 17.62 0.0002

ln Time-since-ire2 1 36 13.03 0.0009

Richness Oak species 3 36 8.19 0.0003

Fire × Oak 3 36 1.87 0.1524

ln Height 1 36 0.66 0.4226

ln Time-since-ire 1 36 5.59 0.0236

Shannon diversity ln Time-since-ire2 1 36 4.51 0.0406

Oak species 3 36 4.62 0.0078

Fire × Oak 3 36 1.59 0.2091

ln Height 1 36 0.59 0.4476
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was 9 (time-since-ire = 91 years), 6 (19 and 91 years since ire), 5 (≥ 52 years since ire) 

and 2 (91 years since ire) for Q. chapmanii, Q. geminata, Q. myrtifolia and Q. inopina, 

respectively. Unlike for gall abundance, there was no signiicant interaction between oak 

species and ire history or efect of mean tree/shrub height on species richness (Table 1).

Finally, Shannon–Wiener diversity mostly followed the same pattern as that for species 

richness. Independent of oak species, diversity was generally lowest in the most recently 

burned sites and increased asymptotically with time-since-ire (Table  1; Fig.  2d). This 

relationship was driven primarily by the cynipids on Q. geminata and Q. myrtifolia. Sepa-

rate tests for each species revealed signiicant time-since-ire and time-since-ire2 efects 

for Q. geminata and Q. myrtifolia [Q. geminata: time-since-ire (F1,15 = 6.69, P = 0.021), 

time-since-ire2 (F1,15 = 5.20, P = 0.037)]; Q. myrtifolia: time-since-ire (F1,6 = 18.68, 

P = 0.005), time-since-ire2 (F1,6 = 16.12, P = 0.007) but not for the other two species (all 

tests, P > 0.15). Pairwise-comparison’s tests based on least-squares means yielded the fol-

lowing rankings of diversity (highest to lowest): Q. geminata (0.81 ± 0.07) > Q. myrtifolia 

(0.66 ± 0.09) > Q. chapmanii (0.50 ± 0.07) > Q. inopina (0.08 ± 0.09). However, the only 

statistically signiicant diferences were between Q. geminata and Q. chapmanii (t36 = 3.21, 

P = 0.003) and between Q. inopina and all other oak species (all comparisons, P < 0.001).

To better visualize the compositional change in cynipid communities as time-since-

ire increases, we divided our sites into burn categories. Sites were divided according to 

natural breaks in the distribution of times-since-ire: < 3  years (n = 7), 3–7  years (n = 7) 

and ≥ 19 years (n = 6) (Appendix 3). Compositionally, the change in the cynipid assemblage 

as time-since-ire increased was only the result of new species being added to the assem-

blage. No species dropped out of the assemblage as the shrub/forest community matured. 

For Q. chapmanii, 3 of the 10 cynipid species found on this oak species were not detected 

until the time-since-ire was greater than three years: Sphaeroterus melleum, Disholcaspis 

quercusomnivora and Bassettia pallida (Appendix 3). These cynipid species were present 

in at least one site in each of the older two ire categories. All but one of the seven cynipid 

species found on Q. geminata were present in sites from each ire category. The excep-

tion was Belonocnema quercusvirens which only appeared in sites burned ≥ 19 years ago. 

Quercus myrtifolia had a total of six cynipid species, four of which were not detected in 

the most recently burned sites: Callirhytis quercusclavigera, C. difficilis, C. sp. 1 (rough 

stem gall) and C. sp. 2 (leaf cigar). Quercus inopina had very low gall abundance and only 

Fig. 3  The relationship between 
mean gall abundance per site (20 
trees combined) and mean tree 
height for each oak species. Each 
point represents a diferent site 
and lines are it by least-squares 
regression

ln Tree height

ln
g
a

ll
 a

b
u

n
d

a
n

ce
 p

e
r 

si
te

 (
2

0
 t

re
e

s)

Q. geminata

Q. chapmanii

Q. inopina 

Q. myrtifolia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

A
u

th
o

r
 P

r
o

o
f



U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : SmallCondensed 10531 Article No : 1930 Pages : 27 MS Code : 1930 Dispatch : 11-1-2020

Biodiversity and Conservation 

1 3

a total of two cynipid species. Finally, because there was almost no overlap in gall species 

among the four oaks (only one case: Amphibolips murata on the red oaks Q. myrtifolia and 

Q. inopina), an analysis of compositional diferences among oaks was unnecessary.

Discussion

Fires are a common occurrence in oak-dominated communities (Abrams 1992; Callaway 

and Davis 1993; Peterson and Reich 2001) and in the face of predicted climate change, 

ire frequency is likely to increase in many of these areas (Flannigan et  al. 2000, 2009; 

Abatzoglou and Williams 2016). This study is the irst to demonstrate how ire history can 

afect one of the most important and diverse herbivore assemblages of oaks, the cynipid 

gall wasps. For oaks in xeric scrub/forest habitats in central Florida, we ind that although 

gall number steadily increases with time-since-ire, richness and diversity tend to asymp-

tote within 7 years. The ire-return intervals employed in the ABS ire-management plan 

are within this time frame (Main and Menges 1997; Menges et  al. 2017) and, thus, are 

likely near optimal for the conservation of cynipid biodiversity (see below).

Twenty-four species of cynipid gall wasps were found in our winter surveys of the four 

most common Quercus species at ABS. The near complete absence of shared cynipid spe-

cies among oaks (the only exception was A. murata on the two red oaks, Q. myrtifolia and 

Q. inopina), even for oaks growing in physical contact with each other, is in accordance 

with the indings of Abrahamson et al. (1998b, 2003). In particular, red and white oaks are 

known to have suiciently diferent chemistry that they have unique cynipid assemblages 

(Abrahamson et al. 1998a, 2003). This high degree of host speciicity is common among 

gall-forming insects (Csoka et  al. 1998; Redfern 2011; Knuf et  al. 2019). After a ire, 

when oaks are resprouting, there should be an abundance of actively growing, undiferenti-

ated plant tissues that are ideal for gall induction (Price 1991). However, even under these 

circumstances, host-speciicity of the cynipid assemblages remained intact (Appendix 3).

Given the extreme oak species and plant organ specialization by the cynipids, we would 

expect that suitable host tissues would be a serious limiting factor immediately following 

a ire. Indeed, gall-forming herbivores are commonly limited by the abundance of their 

hosts (Cuevas-Reyes et al. 2014; Altamirano et al. 2016). Our more recently burned sites 

(time-since-ire < 19  years) were chosen because they experienced high-intensity ires. 

Under these circumstances, recovery of the cynipid wasp assemblage must have been initi-

ated from recruitment outside of the burned stand. As such, the immediate and short-term 

efects of ire on the cynipid assemblage are direct. Direct efects of ire on herbivores, 

which could include killing or injuring the herbivores or causing their starvation following 

the temporary elimination of suitable hosts, are particularly likely to be detrimental to sed-

entary species or life stages. Such direct efects have been generally overlooked (Vermeire 

et al. 2004; Knight and Holt 2005; Vogel et al. 2010; Kim and Holt 2012). Fires are widely 

reported to have signiicant long-term efects on plant abundance, distribution, chem-

istry and vegetation structure (e.g., branching, seed production) which can subsequently 

impact herbivore assemblages (Evans 1984; Bock and Bock 1991; Kerstyn and Stiling 

1999; Swengel 2001). Following the recolonization of a burned site by herbivores, these 

ire efects on plants are likely to have strong indirect efects on structuring the herbivore 

assemblage (Knight and Holt 2005; Kim and Holt 2012).

Accumulation of cynipid species and an increase in their abundances are expected 

to be concomitant with the regrowth of the oaks, both in terms of increased biomass 
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and architectural complexity. For all four oak species, we found that cynipid abundance 

increased with plant height (Fig. 3). It was also the case that the small-statured Q. inopina 

had the fewest galls and the tallest of our four species, Q. chapmanii, had the most galls 

per tree (Fig. 2b). Although a positive host-size–herbivore abundance relationship has been 

commonly reported for other herbivore taxa (e.g., Garcia et al. 2016; Mutz et al. 2017), our 

results are in the opposite direction of that reported by Price et al. (2004) for their survey of 

cynipids at ABS. This latter study was limited to sites with no recent ire history but even 

if we constrain our analysis to mature sites (i.e., time-since-ire > 19 years), we still ind a 

positive linear relationship between tree height and gall abundance (least-squares regres-

sion: R2 = 0.33, P = 0.006, n = 21; all oak species combined). One possible explanation for 

the diference between our two studies is that Price et al. (2004) conducted their surveys in 

October when less persistent galls (e.g., on acorns) were present.

Naturally, time-since-ire and plant biomass or height should be positively correlated. 

In our analyses, time-since-ire was only related to cynipid abundance when oak height 

was excluded from the analysis. This result suggests that cynipid abundance in our system 

may be driven primarily by availability of host material or complexity of tree architecture 

(Denno 1983; Lawton 1983; Campos et  al. 2006; Neves et  al. 2014). In fact, for many 

gall-forming species, plant architecture (e.g., height, number of shoots, leaves, branching 

structure) is strongly related to gall abundance (Quiring et al. 2006; Lara et al. 2008; Spaw-

ton and Wetzel 2015). In future studies with the oak cynipids at ABS, it would be inform-

ative to investigate what architectural aspects associated with plant height are primarily 

responsible for the strong plant height–gall abundance correlation. In contrast with gall 

abundance, time-since-ire but not oak height was an important predictor of richness and 

diversity. We suggest that recruitment of cynipid species proceeds at relatively fast rate, 

saturating within seven years. With shrub/tree heights steadily increasing with time-since-

ire, height and cynipid richness become decoupled. The presence of a plant architecture 

efect on gall species richness has been reported in some (Espírito-Santo et al. 2007; Spaw-

ton and Wetzel 2015) but not all cases (de Araújo et al. 2013).

Our study of oak cynipids provides support for the prediction that herbivore abundance 

and species richness generally increase with time-since-ire (Swengel 2001; Kim and Holt 

2012), regardless of whether or not it is mediated through changes in resource availability 

or architectural complexity. This result appears consistent regardless of the oak species at 

ABS. The very low gall abundance and cynipid species richness on Q. inopina is likely 

related to its small stature and architectural simplicity (see above) as well as the fact that it 

is a Florida endemic (Christman and Judd 1990) and has the smallest distributional range 

of our four oak species (Price 1980; Strong et al. 1984; Price et al. 2004). In fact, Cornell 

(1985a) concluded that at the regional scale, a primary determinant of cynipid species rich-

ness was the range of its host.

Interestingly, tree/shrub height and gall abundance per tree generally increased with 

time-since-ire but species richness and diversity appeared to asymptote within seven 

years after a ire. Although a number of studies have reported a similar increase in her-

bivore abundance and richness with time-since-ire, the opposite inding is also common 

(for review, see Swengel 2001). For example, insect species spanning a number of families 

are known to be attracted to recently burned sites; thus favoring a negative relationship 

between time-since-ire and community metrics (Swengel 2001; Kaynaş and Gürkan 2008; 

Uehara-Prado et al. 2010). Even studies in the same habitat have shown diferent relation-

ships for diferent tree species (Swengel 2001). For example, Kim and Holt (2012) work-

ing in the scrubby latwoods at ABS found a positive non-asymptotic relationship between 

time-since-ire and the abundance and species richness of free-living herbivores (caught in 

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

A
u

th
o

r
 P

r
o

o
f



U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : SmallCondensed 10531 Article No : 1930 Pages : 27 MS Code : 1930 Dispatch : 11-1-2020

Biodiversity and Conservation 

1 3

insect nets) associated with Q. inopina. No time-since-ire efects were observed for free-

living herbivores associated with Q. geminata or Q. chapmanii.

Our surveys suggest that within 3  years of a ire, 14 of the 23 cynipid species have 

recolonized the site (Appendix 3). By seven years since ire, all but two species were pre-

sent, B. quercusvirens on Q. geminata and Zapatella quercusmedullae on Q. inopina. All 

of our sites were embedded in a scrub/forest mosaic with diferent burn histories and, as 

such, sources of cynipid colonists were always nearby. So, it is not too surprising that these 

sites were colonized relatively quickly. Had the sites been discrete and isolated scrub habi-

tats, as are common along the Lake Wales Ridge (Abrahamson 1984a; Myers 1990), we 

would expect a much slower accumulation of cynipid species.

To our knowledge, there has never been an explicit study of cynipid dispersal. In a com-

parative study involving both gall-forming cecidomyid lies and cynipids on Florida oaks, 

Price et al. (2004) determined that the cynipids had more localized distributions than the 

cecidomyids and inferred from this that the former were more dispersal limited. In another 

large-scale study, Gilioli et  al. (2013) used a reaction–difusion model to show that the 

discontinuous spread of the chestnut gall wasp (Dryocosmus kuriphilus; Cynipidae) in 

Italy could be the result of both short and long-distance dispersal mechanisms. From a 

conservation perspective, smaller-scale dispersal experiments would be quite valuable in 

determining whether movement from nearby sources is gradual; e.g., difusive spread from 

neighboring unburned trees or through longer-distance dispersal. If it is only by the former, 

recolonization of intensively burned and isolated scrub fragments may occur at a pace far 

slower than the normal burn periodicity in this region (for scrubby latwoods and ridge 

sandhill, this can be as frequent as once every several years; Harper 1927; Abrahamson 

1984a).

Life-history traits such as the presence/absence of wings, wing size, body size, number 

of generations per year, mode of reproduction, and fecundity have been linked to dispersal 

ability or rate of population spread of a species (Denno 1994; Turchin 1998; Stevens et al. 

2012). All of our oak cynipids are winged and body sizes are comparably small. Fecundity 

is largely unknown for our species but mode of reproduction is available for most of the 

described species in Appendix 3. At present, we know that 11 species are parthenogenic, 

two reproduce only sexually and 5 species have both modes of reproduction and likely 

alternate generations of sexual and asexual reproduction (see Appendix 3). Asexual repro-

duction can mitigate Allee efects (i.e., the positive efects of increasing density on itness) 

and increase the likelihood of successful colonization because mate inding at low density 

is no longer a problem (Allee et al. 1949; Gascoigne et al. 2009; Castel et al. 2014). How-

ever, despite our limited data, we have no evidence to suggest that obligate asexual species 

more quickly colonize post-burn sites than species with sexual reproduction. 55% (6 of 11) 

of the asexual-only species recolonized sites within 3 years whereas 71% of the species (5 

of 7) that reproduce sexually, at least in some generations, recolonized sites within 3 years 

(χ2 = 0.51, P = 0.47). Clearly, more information is needed on the dispersal ability and life 

histories of cynipids for us to provide a mechanistic understanding of the reassembly of the 

cynipid communities following a burn. In general, this is a common limitation of the study 

of community assembly (Zalewski and Ulrich 2006).

Oak–cynipid conservation

ABS encompasses one of the largest and southernmost fragments of natural habitat on 

the Lake Wales Ridge and therefore is vital to the conservation of this unique region. The 
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ire-management plan at ABS (Main and Menges 1997) emphasizes frequent but varia-

ble ires, relective of historical patterns (Myers 1990; Platt et al. 1991; Glitzenstein et al. 

1995). As in most cases, the ire-management plan was designed with the plant community 

and several charismatic vertebrate species in mind (e.g., Abrahamson 1984b; Menges and 

Hawkes 1998; Weekley and Menges 2003; Ashton et al. 2008; Evans et al. 2010; Ashton 

and Knipps 2011; Schrey et  al. 2011; Dee and Menges 2014). We add to the small but 

growing database on the impact of ires on arthropod members of the scrub community 

(Menges and Deyrup 2001; Carrel 2008; Kim and Holt 2012). The cynipid assemblage we 

studied reaches asymptotic richness and diversity within ≈ 7 years, which for most habitats 

on the Lake Wales Ridge is a time period that is at or below historical ire-return levels 

(Harper 1927; Abrahamson 1984a; Menges et  al. 2017). Consequently, the ire-manage-

ment plan for ABS is well suited for the conservation of cynipid biodiversity. In the other 

remaining forest/scrub habitat reserves along the Lake Wales Ridge, the implementation of 

a similar ire-management strategy likely would not only secure the dominance of oaks in 

these areas but also promote high cynipid biodiversity (likely indirectly through an increase 

in availability of host material or complexity of tree architecture).

An important next step in our understanding of the ecology and conservation of this 

system would be an investigation of the role of fragment isolation and size and burn his-

tory and intensity on cynipid species richness, abundance and population-genetic structure. 

Landscape features, such as proximity to unburned habitat, the types of unburned habitat 

within the surrounding landscape, and the amount of edge, may all be important factors to 

consider as well (Swengel 2001; Panzer 2003; Saint-Germain et al. 2004; Knight and Holt 

2005; Maldonado-López et al. 2016). The maintenance of a viable metacommunity (Lei-

bold and Chase 2017) is also strongly dependent on an understanding of species dispersal 

among habitat fragments. Finally, we echo the recommendations of other ecologists that 

the study of disturbances such as ires should include multitrophic and broader food–web 

interactions (e.g., Swengel 2001; Vickery 2002; Alves-Silva and Del-Claro 2013; Cherry 

et al. 2016; Geary et al. 2018). For the oak–cynipids, this includes a diverse group of par-

asitoids, predators, parasites, inquilines and mutualists (e.g., Ronquist 1994; Schonrogge 

et al. 1996; Rokas et al. 2002; Stone et al. 2002; Inouye and Agrawal 2004).
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Appendix 1

See Table 2.

Time-since-ire is measured in years. Vegetation type is sand pine scrub (SS, n = 4), 

southern ridge sandhill (RS, n = 5) and scrubby latwoods (SF, n = 11).
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Table 2  Oak-gall wasp survey sites at Archbold Biological Station

Site Date sampled Burn unit Burn date Time since 
ire

Latitude Longitude Vegetation type

1 1/29/2018 2B North 4/20/2016 1.8 27.19344  − 81.33302 SS

2 1/30/2018 18 South 2/17/1999 19 27.19372  − 81.34268 SF

3 1/31/2018 15 Southwest 1927 91 27.19555  − 81.34202 SS

4 2/1/2018 41A South-
west

7/4/2016 1.6 27.19385  − 81.36411 SF

5 2/5/2018 2B Southeast 4/20/2016 1.8 27.18627  − 81.33424 RS

6 2/5/2018 36 5/12/2016 1.7 27.18166  − 81.34963 SF

7 2/5/2018 29A 1927 91 27.18495  − 81.34963 SF

8 2/6/2018 11 5/17/2013 4.7 27.19261  − 81.34028 SS

9 2/7/2018 48B West 7/11/2012 5.6 27.16996  − 81.36603 SF

10 2/8/2018 46 5/28/2014 3.7 27.18233  − 81.35349 SF

11 1/21/2019 61A 7/5/2017 1.5 27.13497  − 81.35513 SF

12 1/22/2019 51 1967 52 27.16465  − 81.35266 RS

13 1/23/2019 40B 1967 52 27.20117  − 81.35324 SF

14 1/23/2019 41A 5/11/2016 2.7 27.19852  − 81.35766 SF

15 1/25/2019 26 5/12/2015 3.7 27.19293  − 81.35025 SF

16 1/28/2019 4A 7/22/2014 4.5 27.18655  − 81.33633 RS

17 1/28/2019 4B 1927 91 27.18311  − 81.33900 RS

18 1/29/2019 5 8/9/2017 1.5 27.18279  − 81.33914 RS

19 1/30/2019 47A 7/10/2012 6.6 27.17857  − 81.36555 SF

20 1/30/2019 13 1/7/2015 4.1 27.19422  − 81.33536 SS
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Appendix 2

See Fig. 4.

Scrub oak (Quercus inopina [red oak])

Callirhy�s quercusclavigera

(Ashmead 1881)

Zapatella quercusmedullae

(Ashmead 1885)

Zapatella quercusphellos (=Callirhy�s q.similis)

(Osten Sacken 1861)

Amphibolips murata Weld 1957

Callirhy�s difficilis

(Ashmead 1887)
Callirhy�s quercusventricosa

(Basse� 1864)

Fig. 4  Pictorial guide to the cynipid galls present on four common oaks during the winter at Archbold Bio-
logical Station. Photographs were taken by J. T. Cronin, W. G. Abrahamson, J. Nicholls and G. Melika
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Myrtle oak (Quercus myr�folia [red oak])

Callirhy�s quercusclavigera

(Ashmead 1881)

Zapatella quercusphellos (=quercussimmilis)

(Osten Sacken 1861)

Amphibolips murata Weld 1957

Callirhy�s difficilis

(Ashmead 1887)

Callirhy�s sp. nova 1

Callirhy�s sp. nova 2

Fig. 4  (continued)

A
u

th
o

r
 P

r
o

o
f



U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : SmallCondensed 10531 Article No : 1930 Pages : 27 MS Code : 1930 Dispatch : 11-1-2020

 Biodiversity and Conservation

1 3

Sand-live oak (Quercus geminata [white oak]) 

Disholcaspis quercusvirens (=quercussuccinipes) (Ashmead 1881)

Callirhy	s quercusbatatoides

(Ashmead 1881)

Belonocnema quercusvirens

(Osten Sacken 1861)

Andricus quercusfoliatus

(Ashmead 1881)

Andricus quercuslanigera

(Ashmead 1881)

Neuroterus quercusminu	ssimus

(Ashmead 1885) 

Basse�a pallida 

Ashmead 1896

Fig. 4  (continued)
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Appendix 3

See Table 3.

Chapman’s oak (Quercus chapmanii [white oak])

Disholcaspis quercusomnivora

(Ashmead 1885)

Sphaeroterus melleum

(Ashmead 1887)

Sphaeroterus carolina

(Ashmead 1887)

Neuroterus quercusverrucarum

Osten Sacken 1861

Neuroterus sp. nova 1 Neuroterus weldi

Melika and Abrahamson 1997

Andricus stropus

Ashmead 1887
Andricus quercuspe�olicola

(Basse  1863)

Xystoterus sp. nova 1 

Basse�a pallida

Ashmead 1896

Andricus cinnamomeus

Ashmead 1887

Fig. 4  (continued)
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Generations relects the current knowledge about whether the species reproduces sexu-

ally, asexually or status unknown.
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