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ABSTRACT

This chapter attempts to assess the distribution patterns of three selected groups of fungi, namely polypores, ectomycorrhizal 
fungi (EcM), and lichenised fungi in Colombia. Assessing the biogeography of fungi is difficult because of two key issues: 
1. information gaps on their distribution and biology in biodiversity-rich countries, such as Colombia, and 2. the traditional,
phenotype-based species concepts, which make it difficult to recognise cryptic species or species complexes. This latter 
aspect is very frequent in fungi, as currently revealed by advanced molecular biology and phylogenetic analysis techniques. For 
instance, Polyporus is a widespread genus, commonly found in Colombia with numerous species recorded as cosmopolitan. 
However, detailed studies in some Polyporus sensu lato in Brazil and Argentina showed a hidden diversity now accommodated in 
different genera such as Atroporus, Neodictyopus, and Bresadolia. On the other hand, the various fungal lineages show different 
distribution patterns depending on their biology. This fact evidences how the biogeographic distribution of ectomycorrhizal 
symbiont fungi (EcM) is closely linked with the distribution patterns of their host plants, but due to information gaps, their 
real distribution ranges are unknown. It has been observed that the EcM fungi associated with Fagaceae in the Andean 
region belong to Holarctic lineages, while the species associated with the Fabaceae or Dipterocarpaceae in the Colombian 
Amazonia Region come from tropical lineages of Gondwanan origin. Finally, for lichenised fungi, we looked at eight genera 
in four families and two classes and phyla: Bunodophoron (Sphaerophoraceae), Neoprotoparmelia (Parmeliaceae), Crocodia, 
Lobariella, Podostictina, Pseudocyphellaria, Sticta (Peltigeraceae, all Ascomycota), and Cora (Hygrophoraceae, Basidiomycota). 
Comparing traditional taxonomy with modern taxon concepts derived from integrative approaches using molecular and 
phenotype data revealed that the proportion of distribution types assessed from the data changed substantially. When using 
a traditional taxon concept, 45% of the species were inferred to have a broad, intercontinental distribution, 39% neotropical, 
and 12% endemic. On the other hand, using the modern taxon concept indicated that only 4% of them were widespread, 20% 
neotropical, and 76% potentially endemic. These findings underline the importance of accurate taxon concepts and proper 
knowledge of evolutionary relationships when performing biogeographical analyses of Colombian fungi. As mycologists, 
we must then continue to generating information that allows us to understand the historical processes responsible for the 
geographical distributions of the different lineages of fungi present in the national territory.

RESUMEN 

La biogeografía se encarga de los patrones de distribución global de los organismos, dilucidando los factores y procesos 
que conducen a estos patrones. Los estudios en esta área se han centrado en organismos macroscópicos, como plantas 
vasculares y vertebrados, dejando de lado microorganismos como bacterias, protistas, algas, plantas no vasculares y hongos. 
Por mucho tiempo se consideró que los microorganismos suponían rangos de distribución amplios e intercontinentales para 
muchas especies. El «todo está en todas partes» se aplicó durante décadas al pensar en la distribución de la mayoría de 
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los hongos. Sin embargo, los enfoques filogenéticos moleculares, combinados con el estudio de distribuciones y de las 
comunidades de hongos, han dejado ver que la biogeografía de los hongos es compleja. Estos procesos dependen tanto de 
la biología de las especies como de modelos de dispersión (expansión de las distribuciones) y vicarianza (fragmentación de 
las distribuciones), así como de la historia geológica de los continentes, i.e., migración de los hongos a través de puentes 
continentales, y la disyunción relictual continental. Muchas especies consideradas de distribución cosmopolita representan 
complejos de especies difíciles de diferenciar con caracteres morfológicos, pero visibles en análisis filogenéticos. Este es el 
caso del basidiolíquen Cora y de las especies del grupo neotropical Polyporus. Como se ha explicado en capítulos anteriores, el 
conocimiento que tenemos hoy en día acerca de la diversidad, ecología, distribución, asociaciones y estado de conservación de 
los hongos en Colombia es aún incipiente, y esto dificulta entender y definir patrones de distribución de las diferentes especies 
presentes en el país. En este capítulo hacemos un primer acercamiento para evaluar los patrones de distribución de los hongos 
poliporoides comparando la riqueza y composición de las especies. Por ejemplo, en el genero Polyporus son evidentes los 
sesgos existentes por la falta de estudios en el género Polyporus muestra los sesgos existentes por la falta de estudios que 
integren datos moleculares y análisis filogenéticos, este es el caso de especies que se pensaban ampliamente distribuidas 
como Polyporus udus y Polyporus dictyopus, las cuales se consideran complejos de especies e incluso representan géneros 
nuevos neotropicales, como es el caso de Neodictyopus. Por otro lado, diversos linajes de hongos muestran diferentes patrones 
de distribución. Así es como la distribución biogeográfica de los hongos simbiontes ectomicorrízicos (EcM) está íntimamente 
ligada con los patrones de distribución de sus plantas hospederas, sin embargo, debido a los vacíos de información no se 
conocen los rangos reales de distribución. Se han reportado un total de 202 especies de hongos EcM en Colombia, de ellas, 
56 son especies nuevas descritas a partir de especímenes colombianos y 36 son endémicas, lo que representa una tasa de 
endemismo de cerca del 20%. Sin embargo, hay que confirmar la distribución de muchas especies con registros antiguos que 
se conocen de pocos o de un único espécimen. En general se ha observado que los hongos EcM asociados a Fagaceae en la 
región Andina pertenecen a linajes holárticos, mientras que las especies asociadas a las familias Fabaceae o Dipterocarpaceae 
en la Amazonía Colombiana provienen de linajes tropicales de origen Gondwanico. Por último, se realizó un análisis con ocho 
géneros de líquenes y comparando conceptos de la taxonomía tradicional con conceptos de taxón modernos; i.e. derivados de 
enfoques integradores con datos moleculares y fenotípicos. Encontramos que la proporción de tipos de distribución evaluados 
a partir de los datos cambió sustancialmente. Al utilizar un concepto tradicional, se infirió un concepto tradicional, se infirió 
que el 45% de las especies tienen una amplia distribución intercontinental, 39% neotropical y 12% endémica. Mientras 
que, siguiendo un concepto moderno, solo el 4% tiene distribución amplia, el 20% neotropical y 76 % son potencialmente 
endémicas. Estos hallazgos subrayan la importancia de conceptos taxonómicos precisos y un conocimiento adecuado de las 
relaciones evolutivas al realizar análisis biogeográficos de hongos colombianos. Como micólogos, debemos seguir generando 
información que nos permita comprender los procesos históricos responsables de las distribuciones geográficas del pasado 
al presente de los diferentes linajes de hongos en el territorio nacional.

INTRODUCTION 

Biogeography deals with the global distribution patterns 
of organisms and the factors and processes that underlie 
and lead to these patterns (Lomolino et al., 2017). In the 
history of biogeographical studies, there usually has been 
a sharp distinction between macroorganisms, such as 
vascular plants and vertebrates, and microorganisms, such 
as bacteria, protists, fungi (including lichenised fungi) and 
even bryophytes. While macroorganisms were assumed to 
exhibit specific distribution patterns, allowing elaborate 
detailed classifications of biogeographic regions (Takhtajan 
et al., 1986; Olson et al., 2001), for microorganisms, it 
was generally assumed that “everything is everywhere” 
(Baas Becking, 1934; De Wit & Bouvier, 2006; O’Malley, 
2007). The latter paradigm has frequently been applied 
for the biogeography of fungi by assuming broad and 
intercontinental distribution ranges for many species (e.g. 
Wicklow, 1981; Lücking, 2003; Feuerer & Hawksworth, 
2007; Galloway, 2008; Werth, 2011; Ramírez-Camejo et 
al., 2012; Aguilar et al., 2014; Allen & Lendemer, 2015; 
Yang et al., 2016). However, the more recent studies 
among these have pointed out that the biogeography of 
fungi is much more complex than that implied by such a 
simplified paradigm.

Molecular phylogenetic approaches, combined with the 
analysis of distribution patterns and community ecology, 
have made it possible to derive much more refined 
distribution patterns for species of fungi, resulting in many 
variations depending on which lineage and ecological 
traits are considered (Peay et al., 2010; Summerell et al., 
2010; Tedersoo et al., 2014; Song & Cui, 2017). In wood-
decomposing polypores, cosmopolitan distributions are 
not rare, possibly explained by human dispersal through 
the global wood trade (Mueller et al., 2006). However, 
this depends on individual cases and the methodological 
approaches, and on which genetic marker was sequenced. 
For example, when employing the fungal barcoding marker 
ITS (Schoch et al., 2012), the widespread split gill fungus, 
Schizophyllum commune (Figure 1a–b), is considered a 
single species. Still, it shows a distinct geographic structure 
when employing the intergenic spacer (IGS), demonstrating 
that the global distribution of these fungi was originally 
not caused by humans (James et al., 2001). A complex 
example in lichenised fungi is Sticta fuliginosa, a presumably 
cosmopolitan species forming conspicuous thalli. Molecular 
data revealed that what has been identified with this name 
for the past two centuries corresponds to at least 15 often 
distantly related species, many with restricted distributions 
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(Moncada et al., 2014, 2020; Magain & Sérusiaux, 2015). 
Yet, the true S. fuliginosa remains a subcosmopolitan 
taxon, and a newly recognised taxon within this complex, 
Sticta fuliginoides, is also subcosmopolitan (Figure 1c–d). In 
microfungi, the situation is challenging: human-pathogenic 
fungi and those attacking widely utilised crops tend to 
become widespread following human-induced expansions of 
the host range and usually evolve into new regional lineages 
(Summerell et al., 2010).

These issues make it extremely difficult to assess the 
overall biogeographical patterns of fungi in a biodiversity-
rich country, such as Colombia, when relying primarily on 
phenotype-based or other taxonomic concepts, besides the 
fact that we do not know the total diversity of the Colombian 
funga and the distribution of these species within and 
outside the country. This chapter refrains from deriving 
biogeographical patterns from the entire list of known fungal 
species. Instead, we focus on selected groups and specific 
examples to assess the realistic distribution patterns of 
species present in Colombia.
 

BIOGEOGRAPHY OF THE POLYPORES OF COLOMBIA

Polypores are a highly diverse group of fungi characterised 
by their growth form and ecology (Figure 2a–f), representing 
2,300 species from the 21,000 species of Agaricomycetes 
within Basidiomycota (Kirk et al., 2008). Species of 
polypores are found in various orders but are concentrated 
mainly in Polyporales and Hymenochaetales, which together 
contain around 80–90% of all polypores. These fungi are 
most diverse in forest ecosystems on all continents and 
are morphologically characterised by a typically poroid 
hymenophore and bracket-shaped to resupinate basidiomata. 
They almost exclusively occur as saprotrophs or parasites on 
dead or living trees, not rarely first attacking living trees and 
then continuing as saprotrophs on the dead trees. Only a few 
species grow on humus or mineral soil, and even fewer are 
mycorrhizal (Väisänen et al., 1992; Tedersoo et al., 2007). 
Polypores are the most critical wood decomposers, playing 
a pivotal role in forest ecosystems and their food webs by 
recycling wood, the most critical reservoir of organic carbon 
in the living world (Watkinson et al., 2006, Krah et al., 2018).

FIGURE 1. A–B Schizophyllum commune (split gill fungus) photographed in Colombia (A) and Germany (B). C–D Sticta fuliginoides, 
photographed in Colombia (C) and New Zealand (D). (Photographs by Robert Lücking.)
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FIGURE 2. Fresh basidiomes of polypores. A–B Polyporaceae family. A Polyporus tricholoma. B Polyporus 
dictyopus species complex. C Hydnopolyporus fimbriatus (Irpicaceae). D Ganoderma resinaceum 
(Ganodermataceae). E Flaviporus liebmanii (Steccherinaceae). F Hymenochaete iodina (Hymenochaetaceae). 
(Photographs A, D by Melissa Palacio; B–C, E–F by Viviana Motato-Vásquez).
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The species richness and composition of polypores 
are influenced by climate and tree species composition in 
forest ecosystems. Higher tree species diversity may result 
in higher polypore species richness (Hattori, 2017), and 
tropical forests are recognised for their high diversity of tree 
species – commonly hundreds of species within 50 ha areas 
(Condit et al., 2000). However, assessing host specificity 
can become a challenge in such settings because it may 
be difficult to identify host species reliably, mainly when the 
basidiomata are produced on dead trees, fallen trunks, or 
high up in mature trees. Most polypore species are rare in 
species-rich tropical forests, whereas there is little evidence 
for host specificity in more common species (Lindblad, 2000; 
Gilbert et al., 2002). Preferences for distinctive habitat types 
may be more important than host specificity in determining 
the distribution of polypores (Lindblad, 2001).

Despite significant efforts to characterise the richness 
of Neotropical funga, resulting in essential checklists and 
inventories of Neotropical polypores (e.g. Carranza & Ruiz-
Boyer, 2005; Silveira & Wright, 2005; Robledo & Rajchenberg, 
2007; Baltazar & Gibertoni, 2009; Vasco-Palacios & Franco-
Molano, 2013), the distribution patterns of polypores 
remain poorly known. Biogeographic studies on Neotropical 
polypores are scarce. For instance, De Lima et al. (2018) used 
polypores growing in the Brazilian rainforests to reconstruct 
biogeographical relationships between the Amazon Forest, 
Atlantic Forest, and Caatinga domains. Their results showed 
that polypores have distribution patterns similar to those of 
woody plants present in Brazilian rainforests. Another study 
was done with Phellinotus piptadeniae in the Neotropics 
(Salvador-Montoya et al., 2015). This species is a parasitic 
polypore, causing heart-rot in some Fabaceae, with a disjunct 
distribution in moist and dry forests, including Argentina, 
Brazil, and Peru (Elias et al., 2020). The study emphasised 
the importance of using host distributions in biogeographical 
analyses of parasitic polypores to assess distribution 
patterns. This fact illustrates another knowledge gap in 
Neotropical polypores, namely species biology, as it is often 
not known whether a species is parasitic or saprotrophic (or 
both), whether it causes white or brown rot, and whether it is 
a specialist or a generalist.

Based on accurate taxon concepts, the geographic 
distribution of species provides the data for biogeography, 
macroecology, and conservation science assessments. 
Species distributions are typically assessed through point 
records, either through human observation or ideally 
accompanied by voucher specimens that are permanently 
stored in scientific collections. Unfortunately, data about 
the geographic distribution of most fungi species known 
from Colombia are still insufficient, generating the so-called 
Wallacean knowledge shortfall, defined by the fact that 
geographical distribution for the majority of taxa is poorly 
understood and contains many gaps (Hortal et al., 2015). This 
situation is particularly difficult for species less well-known 
than more charismatic species. Consequently, any effort 
to compile and analyse distributional data for Colombian 
polypores must be considered preliminary at this point.

We used a large, recently compiled database containing 

all polypores recorded from Colombia, published through 
the ColFungi project (Gaya et al., 2021; https://colfungi.org), 
assembling all (reliable) fungi species records for Colombia 
available in the taxonomic and biodiversity literature. With 
this dataset, we tried to answer accurately questions such 
as “where does this polypores species occur in Colombia?” 
Or even “how many polypore species are known to occur in 
this specific part (department, region, etc.) of Colombia?” 
Although we are still far from completing this goal, we hope 
to show the potential of our initiative in this case study.

A total of 84 genera and 223 polypore species have 
been recorded from different Colombian biomes (Figure 3a). 
However, the representation of data in this kind of map is 
limited as a tool to represent the distribution of species 
records (instead of representing species distribution per se). 
Each dot on this map can represent either a single record 
of a species or many records of several species collected at 
the same locality. Our data showed a high number of species 
with a single record (35.7% of the records, 80 species), 
which could be understood more as an index of sampling 
bias rather than as an indicator of the level of endemism.

FIGURE 3. A Distribution and occurrence of records of polypore 
fungi in Colombia. Each dot represents at least one record of a 
single species. B Main areas of the geographical distribution of the 
223 species of polyporoid fungi registered in Colombia. Blue tones 
indicate species distributed at the American continent,whereas 
species distributed in two continents are represented by red tones, 
and those distributed in more than two continental areas in green.

A

B
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In addition, we provide a first quantitative approach 
to determining the distribution patterns of Colombian 
polypores based on the assessment of 223 species (Figure 
3b). Our results showed that most species are currently 
reported with a Neotropical distribution (34.1%), followed by 
Pantropical (27.1%) and Cosmopolitan (25.1%) distributions, 
whereas endemic species represent only 4%. However, this 
information may not be accurate because the taxonomic 
and phylogenetic concepts of many species in the group 
are still debated. In many cases, it has been shown that 
species believed to be widely distributed represent species 
complexes, which is a factor that contributes to substantial 
gaps and bias in the assessment of fungal biogeography. 
For instance, in recent decades, phylogenetic studies 
have shown that traditional genera, such as Polyporus, are 
polyphyletic, and several new genera have been segregated 
or reinstated since then. For example, Polyporus udus, 
originally described from Indonesia, has been widely 
recorded in the Neotropics. Motato-Vásquez et al. (2018) 
investigated the phylogenetic relationship of P. udus and 
its purported taxonomic synonyms in South America. This 
study showed that specimens from Argentina, Brazil, and 
Paraguay are not conspecific with Paleotropical specimens 
of P. udus. The Neotropical records are now recognised as 
Bresadolia paradoxa. There are several records of P. udus 
in Colombia, and future studies should attempt to untangle 
these specimens’ true identity, especially because it is 
a species of importance as a food source for Amazonian 
indigenous tribes (Sanuma et al., 2016).

In the same way, Polyporus dictyopus is a species that 
has been recorded as Cosmopolitan and presents a large 
number of heterotypic synonyms (with at least 16 known 
from tropical and subtropical America). Palacio et al. (2017) 
showed that at least five distinct species were hidden under 
P. dictyopus. The authors accommodated these species 
in two different genera, Atroporus and Neodictyopus. The 
study only included samples from Brazil, but P. dictyopus 
has been widely recorded from the Amazonian, Andean, and 
Pacific regions in Colombia. However, the identity of these 
specimens remains unknown. 

Our compiled data show that the highest concentration of 
recorded polypores is in the Andes region within Colombia. 
This fact is not surprising since taxonomists tend to collect 
more intensively in the vicinity of their workplace. So, areas 
near important research institutions tend to show a higher 
concentration of species distribution records (Sobral & 
Stehmann, 2009). Most of the undercollected regions 
contain diverse habitats that are suitable for polypores, 
so the absence of records indicates strong sampling bias 
(Figure 3a). Nonetheless, sampling bias may not be the 
only explanation for the high diversity of polypores in the 
Andean region. This biome is known for its high diversity 
and endemism for many animals and plant taxa (Mutke et 
al., 2014, and references therein). The high biodiversity 
of this biome is possibly related to its topographic and 
hydrologic heterogeneity, which resulted in species with 
narrow distribution ranges and the differentiation of small 
areas of endemism. Thus, the high diversity of polypores in 

the Andes biome, compared with that in other Colombian 
biomes, may also result from the evolutionary history and 
geo-climatic characteristics of this biome. Currently, in 
Colombia, nine species of polyporoid fungi are recognised 
as endemic: three of them are described from the Andean 
region, three from the Pacific, two from the Amazon, and one 
from the Caribbean. It is very premature to assess which 
region supports the greatest richness of endemic species 
with our data. For this reason, although logic indicates 
that we should focus on sampling poorly known places, it 
is important to consider that better-sampled and species-
rich areas, such as the Andes biome, may still hold many 
undescribed and narrowly distributed species.

BIOGEOGRAPHY OF ECTOMYCORRHIZAL FUNGI IN COLOMBIA

Ectomycorrhizal (EcM) fungi present different patterns of 
symbiotic associations with diverse families of Angiosperms 
and Gymnosperms (Brundett & Tedersoo, 2018; Corrales et 
al. 2018). Owing to the obligate nature of these relationships, 
the occurrence of EcM fungi generally coincides with 
the distribution of their associated plant families, which 
renders plant distributions critical to understanding the 
the biogeography and abundance of EcM fungi. However, 
processes of dispersal and migration in EcM fungi are 
not always known. Recent studies have provided data to 
help to elucidate apparent disjunct distribution patterns, 
with possible scenarios including long-distance dispersal, 
community migration across land bridges (with possible 
symbiont exchange), relictual continental disjunction and 
multi-hosts (Moser & Horak, 1975; Halling, 1996; Halling 
et al., 2008; Hosaka et al., 2008; Lumbsch et al., 2008; 
Matheny et al., 2009; Hackel et al., in press).

In Colombia, the best - studied ectomycorrhizal systems 
are those associated with the dominant tree in Andean 
Mountain ranges, Quercus humboldtii (Fagaceae) (Vargas & 
Restrepo, 2020; Peña-Vanegas & Vasco-Palacios, 2019). 
There is another Fagaceae that forms monodominant EcM 
systems, Trigonobalanus excelsa, but this species is poorly 
studied (Peña-Vanegas & Vasco-Palacios, 2019). In the 
Amazonian region in Colombia, studies have been carried 
out on the diversity of EcM fungi associated with the host 
tree Pseudomonotes tropenbosii (Dipterocarpaceae) and 
the Fabaceae hosts Aldina sp. and Dicymbe uaiparuensis 
(Vasco-Palacios et al., 2018; Peña-Vanegas & Vasco-
Palacios, 2019). Most of the research on EcM fungi in 
Colombia has focused on inventories in few localities in 
the Andean and Amazon regions, so we do not know the 
total distribution, biology, or ecology of EcM species in the 
country (Chapter 4).

A total of 207 species of EcM fungi are known for Colombia. 
Of those, 56 are new species described from Colombian 
specimens, including 36 putative endemics, representing 
a rate of endemism of nearly 18% (Table 1, Figure 4 a–f). 
Most of these species are associated with Fagaceae in 
the Andean region of the country (43 species), and about 
55% of these new species are endemic (24 species) to the 
country. Most of these endemic species are known only from 
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the type specimen, or, in some cases, are known just from 
few collections from the type locality (e.g. Lactarius caucae 
Singer, Russula idroboi Singer, Boletus orquidianus Halling). 
Even though mycological expeditions have been conducted 
in Antioquia, Boyacá, Santander, and Tolima in the past 20 
years, those did not yield any additional specimens and 
localities for most of these endemic species (Vargas & 
Restrepo, 2020; Peña-Vanegas & Vasco-Palacios, 2019). It 
is important to consider that a large number of unidentified 
fungal specimens are deposited in fungal collections around 
of the country. For example, in the fungal collection of the 
Herbarium of the Universidad de Antioquia (HUA), which is the 
largest in the country, houses more than 12,500 specimens, 
of which only 49% are identified at the species level (David 
et al. 2019; Chapter 14). In addition, most of the endemic 
species have no associated barcode sequences that would 
allow corroboration of their inferred restricted distribution.

Based on the information on the distribution of the 
species available on GBIF (http://www.gbif.org), the 207 
EcM species have a primarily Neotropical distribution (44%), 
of those 21% occur in lowland forests in South America, and 
16% in mountain areas. Near one third of the species have 
nordic distribution (14% Nearctic-Neotropical and 12.6% 
holarctic-Neotropical). Regarding the EcM species hosted 
by Fagaceae, 18% are endemic, 37% have a Holarctic-
Neotropical (17.6%) or Nearctic-Neotropical (19.6%) 
distribution, and only 22% are Neotropical from mountain 
areas. In the case of EcM fungi from tropical lowland forests, 
11% are endemic, and 76.8% occur in Neotropical-South 
America (Figure 5A).

Quercus (Fagaceae) is an important EcM plant host with 
Holarctic distribution. In Costa Rica, Panama, and Colombia, 
oak forests are primarily found in tropical montane 
ecosystems. The presence of oak forests in Colombia 
represents the southernmost limit of the geographic 
distribution of Quercus in the Americas, with Quercus 

humboldtii being the only species present in South America, 
restricted to the Serranía del Darien, a small mountain 
range on the border with Panama, and the Andes Mountains 
in Colombia (Hooghiemstra, 2006; Rangel & Avella, 2011). 
Floristic studies in Neotropical Central and South America 
show patterns similar to that of the fauna concerning the 
Great American Biotic Interchange (GABI), which started with 
the closure of the Panama Isthmus approximately 3.0 Mya 
(Leigh et al., 2014; O’Dea et al., 2016). Plant communities in 
montane regions of Central America and the northern portion 
of South America are primarily composed of lineages of 
either Holarctic or Austral-Antarctic origin that subsequently 
dispersed south- or northwards. Phytogeographically, Costa 
Rica and Panama are more similar to Colombia than either 
are to Mexico (Kappelle, 2006). Quercus and its associated 
EcM fungi migrated southwards across the Panama Isthmus 
during the last glaciation. The remaining populations are now 
geographically isolated because of the absence of cooler 
environments, like those from high mountains, connecting 
Panama and Colombia (Halling 1996; Hooghiemstra, 2006; 
Halling et al., 2008). Regardless of the available research 
on Neotropical oak communities, much of the taxonomy, 
diversity, and biogeographic history of their associated 
EcM communities in Colombia remains to be explored in-
depth. This lack of knowledge is even more pronounced 
for Trigonobalanus excelsa. The other two known species 
of Trigonobalanus, are from SE Asia and this Neotropical 
species is an example of tropical Amphi-Pacific disjunctions 
(van der Hammen & Cleef, 1983). Therefore, it is very 
interesting to know the EcM fungi lineages associated with T. 
excelsa, which could also have a Pantropical origin, contrary 
to those lineages associated with Quercus humboldtii, which 
has Holactic origins. Studies of EcM agarics and boletes 
from Quercus forests in Costa Rica and Colombia indicate 
genus-level affinities with the Northern Hemisphere (59% of 
all EcM species) rather than those from tropical lowlands 

TABLE 1. Data about new species of EcM fungi described from Colombian specimens based on their hosts, including the total of endemic 
species. Biogeographic regions are based on biogeographic realms (https://ecoregions2017.appspot.com/)

 Plant hosts
Number of 

endemic species 
in Colombia

Neotropical 
South American 

species

Neotropical 
Central American 

species

Holarctic-
tropical

Global

Fabaceae (e.g. Dicymbe 
uaiparuensis)

3 37 0 0 2

Dipterocarpaceae 
(Pseudomonotes tropenbosii)

4 40 0 0 1

Fagaceae (Quercus spp.) 25 0 33 57 12

Fabaceae (Trigonobalanus 
excelsa)

2 0 1 0 0

Non-data, tropical lowland 
forests

2 1 0 0 0

Total general 36 48 34 57 15
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FIGURE 4. Endemic species of EcM fungi. A Russula floriformis subsp. floriformis, symbiont with Quercus humboldtii.  
B Phylloporus fibulatus symbiont with Q. humboldtii. C Sarcodon rufobrunneus associated with Dicymbe uaiparuensis. 
D Gloeocantharellus uitotanus putatively associated with Pseudomonotes tropenbosii. E Austroboletus amazonicus 
associated with P. tropenbosii. G Ramaria chocoënsis without information about the possible plant host.
(Photographs A by Adriana Corrales; B–E by Aída Vasco-Palacios; and G by Danny Newman.)
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and temperate areas in South America (22%) (Halling et 
al., 2008) (Figure 5b). These groups also tend towards high 
endemism at the species level (Halling et al., 2008). In 
Russulaceae, a highly diverse family of EcM fungi, Andean 
species have different biogeographical patterns compared 
to those occurring in lowlands in tropical South America. 
The association of Andean Russulaceae with northern 
temperate plant lineages suggested recent co-immigration 
with Quercus when the latter colonised the rising Andes 
during the Pleistocene (Hackel et al., in press). For example, 
Russula floriformis subsp. floriformis and R. floriformis subsp. 
symphoniae were recently described as new from montane 
forest dominated by Quercus and/or Oreomunnea (Fagales) 
from Colombia and Panama, respectively (Vera et al., 2021) 
(Figure 4a). These two subspecies’ morphological and 
phylogenetic proximities supported their diversification due 
to a co-immigration, adaptation and geographic isolation of 
Quercus and their symbionts along the Isthmus of Panama 

during the Pleistocene (Vera et al., 2021). While there are 
some specific examples, in general there is a big gap in the 
knowledge of EcM fungi, particularly those associated with 
Fagaceae. For example, the EcM diversity associated with 
T. excelsa is almost unknown, and therefore we do not know 
whether this plant host share species of EcM fungi with Q. 
humboldtii or not, considering that they present different 
origins (Tropical Amphi-pacific vs Holartic). Other little-
known patterns that affect the distribution of the species is 
the arrival of invasive species, such as Amanita muscaria, 
which has been detected on roots of Q. humboldtii (Vargas 
et al., 2019).

In wet tropical lowland forests, Dipterocarpaceae and 
Fabaceae represent two distantly related plant lineages 
within the angiosperms that have separately evolved the 
ability to form EcM symbioses (Wang & Qiu, 2006). As 
mentioned before, these hosts occur in tropical rainforests in 
the Amazon region, supporting a surprising diversity of EcM 
fungi, with a total of 114 morphospecies. However, based 
on the available information (descriptions or keys), only 61 
of those morphospecies are correlated to species names, 
with 20 corresponding to speciesthat are to science, only 
some of which are in process of description (Vasco-Palacios 
2016; Vasco-Palacios et al., 2014, 2018). Of the 61 species, 
45 were associated with Pseudomonotes tropenbosii 
(Dipterocarpaceae) and 42 species with Fabaceae (Table 1). 
The discovery of the endemic tree P. tropenbosii emphasises 
a phytogeographical link between the Colombian Amazon and 
continental Africa and Madagascar (Morton et al., 1999). In 
addition, the EcM status of P. tropenbosii indicates that the 
EcM habit evolved before the continental separation, and 
that radiations of EcM fungi associated with dipterocarps 
across continents are explained by co-migrations of the 
fungus and host partners (Halling et al., 2008; Brearley 
et al., 2012; Moyersoen, 2012). In addition, several EcM 
fungal species that were previously restricted to the Guiana 
Shield were extended to Central Amazonia in Colombia. 
For example, Clavulina is a cosmopolitan genus, with many 
species recorded growing in Fabaceae- and Cistaceae-
dominated forests (Henkel et al., 2012; Smith et al., 2011, 
2013). Uehling et al. (2012) proposed the Guyana region 
as a diversification hotspot for Clavulina. Eighteen species 
of this genus were collected from P. tropenbosii forests 
in three years of sampling, representing 72% of the total 
species reported from Guyana (Vasco-Palacios & Boekhout, 
2022). Similarities in the EcM fungi community structure 
between P. tropenbosii, Fabaceae forests, and Pakaraimaea 
(Cistaceae) suggested a low level of host specificity. Nearly 
43% of the species associated with P. tropenbosii have also 
been reported from Fabaceae forests in the Neotropics 
(Vasco-Palacios, 2016). This scenario is the case for the 
rare ascomycete, Pseudotulostoma volvatum, whose type 
specimen was collected associated with ectomycorrhizal 
Dicymbe corymbosa (Fabaceae) trees and was also found 
associated with P. tropenbosii in Colombia. Species such as 
Amanita xerocybe, Craterellus atratus, Clavulina amazonensis, 
and Coltriciella oblectabilis are widely distributed in the 
Amazonian region and the Guyana plateau being associated 

FIGURE 5. A Proportions of distribution of EcM fungi species 
with occurrence in Colombia, Neotropical. Blue tones indicate 
species distributed on the American continent, whereas red 
species distributed in two continents, and green are species 
in more than two continental areas. B EcM fungi in neotropical 
oak communities belong to Holarctic lineages. By contrast, 
Gondwanan lineages are represented in the EcM fungi of tropical 
lowland forests in the Colombian Amazon, African Fabaceae and 
Asian Dipterocarpaceae.
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FIGURE 6. Lichenised fungi analysed in this chapter. A Bunodophoron melanocarpum. B Neoprotoparmelia multifera. C Crocodia 
aurata. D Lobariella sipmanii. E Sticta hirsuta. F Cora elephas. (Photographs by Robert Lücking.)
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with multiple hosts (Singer et al., 1983; Henkel et al., 2002, 
2012; Smith et al., 2013; Roy et al., 2016). These findings 
show that, although EcM symbioses seem rare in lowland 
tropical forests and host plants are often distributed in 
isolated patches, lowland forest EcM fungi may be abundant 
and may present broad distribution ranges. 

Long-distance dispersal combined with low host 
specificity may increase the possibility of gene flow 
between geographically distant populations of these EcM 
fungi (Roy et al., 2016; Tedersoo et al., 2010; Moyersoen, 
2012; Vasco-Palacios et al., 2018). Other important hosts 
of EcM fungi in tropical lowland forests are Nyctaginaceae 
(e.g., Neea, Guapira) and Polygonaceae (e.g., Coccoloba), 
but little is known about these ecosystems and the role 
of those plant hosts in species distribution throughout 
the vast territory of the Amazon region (Vasco-Palacios 
et al., 2020). Phylogenetic studies in tropical lowland 
EcM lineages are consistent with a Gondwanan origin, 
i.e., phylogeographic links between South America and 
Africa (Figure 5b) (Moyersoen, 2012; Hosaka et al., 2008; 
Matheny, 2009; Koch et al., 2019). Further studies will help 
us to identify distribution patterns of EcM fungi (dispersal 
vs vicariance), as well as host specificity and preferences.

BIOGEOGRAPHY OF COLOMBIAN LICHENS: TRADITIONAL 
TAXONOMY VERSUS MOLECULAR DATA

Chapter 6 presents an analysis of the distribution patterns 
of Colombian lichens, primarily relying on a phenotype-
based species concept but including published results from 
molecular data available for some groups. According to that 
analysis, more than half of the species (53%) are presumably 

widely distributed, including Gondwanan (American-African) 
and circumpacific (American-Asian) disjunctions, species 
found across the Northern or the Western Hemisphere, 
and pantropical and (sub-)cosmopolitan taxa. The largest 
proportion of a particular distribution type is provided 
by Neotropical species (35%), whereas endemic species 
presumably correspond only to 8.5% (Chapter 6).

To assess this pattern, we looked at eight genera for 
which a large amount of molecular data are available: 
Bunodophoron (Sphaerophoraceae), Neoprotoparmelia 
(Parmeliaceae), Crocodia, Lobariella, Podostictina, 
Pseudocyphellaria, Sticta (Peltigeraceae, all Ascomycota), and 
Cora (Hygrophoraceae, Basidiomycota). These lichens include 
crustose (Neoprotoparmelia), fruticose (Bunodophoron), and 
foliose lichens (all other genera; Figure 6a–f). We used the 
checklist published by Sipman et al. (2008) to assess the 
number of species corresponding to these eight genera 
in Colombia and their presumed distribution patterns 
before molecular studies. We then analysed published and 
unpublished molecular data to estimate the actual number 
of species in the corresponding trees and their distribution 
ranges (Moncada et al., 2013, 2014; Lücking et al., 2017a, 
b; Soto-Medina et al., 2018; Santos et al., 2019).

Based on Sipman et al. (2008), the eight genera 
correspond to 49 mostly phenotypically defined species 
(Table 2), with primarily broad distribution ranges: about 
20% (sub-)Cosmopolitan or in the Southern Hemisphere, 
10% pantropical, 12% circumpacific or in the Neotropics 
and Hawaii, and 2% Gondwanan (Figure 7a). By contrast, 
39% were inferred as Neotropical and 12% as endemic, 
somewhat higher than the overall proportions for all 

TABLE 2. Species corresponding to the lichenised fungal genera Bunodophoron, Cora, Crocodia, Lobariella, Neoprotoparmelia, Podostictina, 
Pseudocyphellaria, and Sticta in the checklist by Sipman et al. (2008).

Currently 
accepted genus

Original genus from 
Sipman et al. (2018)

Species/variety/form Family Distribution

Bunodophoron Bunodophoron insigne Sphaerophoraceae Southern Hemisphere

Bunodophoron Bunodophoron melanocarpum Sphaerophoraceae Cosmopolitan

Cora Dictyonema glabratum Hygrophoraceae Subcosmopolitan

Lobariella Lobariella crenulata Peltigeraceae Neotropical-Hawaii

Lobariella Lobariella exornata Peltigeraceae Neotropical

Lobariella Lobariella pallida Peltigeraceae Neotropical

Lobariella Lobariella subexornata Peltigeraceae Neotropical-Hawaii

Neoprotoparmelia Maronina multifera Parmeliaceae Circumpacific

Crocodia Pseudocyphellaria arvidssonii Peltigeraceae Neotropical

Crocodia Pseudocyphellaria aurata Peltigeraceae Pantropical

Crocodia Pseudocyphellaria clathrata Peltigeraceae Pantropical

Pseudocyphellaria Pseudocyphellaria crocata Peltigeraceae Subcosmopolitan
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Currently 
accepted genus

Original genus from 
Sipman et al. (2018)

Species/variety/form Family Distribution

Podostictina Pseudocyphellaria encoensis Peltigeraceae Southern Hemisphere

Pseudocyphellaria Pseudocyphellaria intricata Peltigeraceae Pantropical

Sticta Sticta ambavillaria Peltigeraceae Gondwanan

Sticta Sticta andensis Peltigeraceae Neotropical

Sticta Sticta andreana Peltigeraceae Neotropical

Sticta Sticta beauvoisii Peltigeraceae Neotropical-North American

Sticta Sticta brevior Peltigeraceae Endemic

Sticta Sticta canariensis Peltigeraceae Subcosmopolitan

Sticta Sticta cometia Peltigeraceae Neotropical

Sticta Sticta cordillerana Peltigeraceae Endemic

Sticta Sticta damicornis Peltigeraceae Subcosmopolitan

Sticta Sticta dilatata Peltigeraceae Neotropical

Sticta Sticta filicinella Peltigeraceae Neotropical

Sticta Sticta fuliginosa Peltigeraceae Subcosmopolitan

Sticta Sticta granatensis Peltigeraceae Endemic

Sticta Sticta gyalocarpa Peltigeraceae Neotropical

Sticta Sticta humboldtii Peltigeraceae Neotropical

Sticta Sticta impressula Peltigeraceae Endemic

Sticta Sticta kunthii Peltigeraceae Neotropical

Sticta Sticta kunthii var. pilosella Peltigeraceae ?

Sticta Sticta laciniata Peltigeraceae Neotropical

Sticta Sticta laciniata var. denudata Peltigeraceae ?

Sticta Sticta laciniata var. laeviuscula Peltigeraceae ?

Sticta Sticta laevis Peltigeraceae Neotropical

Sticta Sticta lenormandii Peltigeraceae Neotropical

Sticta Sticta leucoblepharis Peltigeraceae Neotropical

Sticta Sticta limbata Peltigeraceae Cosmopolitan

Sticta Sticta macrophylla Peltigeraceae Pantropical

Sticta Sticta neolinita Peltigeraceae Neotropical

Sticta Sticta neopulmonaria Peltigeraceae Endemic

Sticta Sticta obvoluta Peltigeraceae Neotropical-South American

Sticta Sticta orizabana Peltigeraceae Neotropical

Sticta Sticta peltigerella Peltigeraceae Endemic

Sticta Sticta peruviana Peltigeraceae Neotropical

Sticta Sticta rudiuscula Peltigeraceae ?

TABLE 2. (continued)
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lichen fungi (see Chapter 6). However, when analysing the 
same genera based on molecular data, the total number 
of species was estimated at 283, almost six times the 
previous number, demonstrating the high degree of 
hidden diversity in these taxa. The bulk of these additional 
species is found in the genera Cora and Sticta, where many 
of the phylogenetically defined clades still await formal 
description (Lücking et al., 2014, 2017a). When inferring the 
distribution of these lineages, the overwhelming majority 
(95%) was reconstructed as either endemic or Neotropical 
(Figure 7b). The exact proportion of truly endemic versus 
more widespread Neotropical species is difficult to assess 
due to the lack of dedicated inventories in many other 
Neotropical areas. However, it is to be expected that 
many of these species also occur in other South American 
countries, and some may extend to Central America and/
or the Caribbean, so the current 75% endemic versus 20% 

Neotropical species will likely shift in favour of the latter. 
However, the global data for these groups suggest that 
these species are not intercontinentally widespread.

The observed difference between traditional phenotypic 
and combined molecular-phenotypic species concepts in 
these groups is substantial, showing an entirely different 
picture of biogeographic patterns of Colombian lichens 
(Figure 7a, b). Nevertheless, it is not possible to extrapolate 
these results to all lichenised lineages in Colombia. The 
hyperdiversity of Cora in particular is distorting the picture 
due to the high degree of previously unrecognised, hidden 
diversity in this genus, from just one to currently 78 species 
recognised in Colombia. Even so, this exercise suggests 
that biogeographical distribution patterns derived from 
traditional, phenotype-based species concepts are not 
reliable.

CONCLUSIONS 

Phenoype-based texonomy Phylogeny-based texonomy

FIGURE 7. Proportions of distribution types among species of eight selected lichen-forming fungal genera in Colombia.

A B

Currently 
accepted genus

Original genus from 
Sipman et al. (2018)

Species/variety/form Family Distribution

Sticta Sticta sinuosa Peltigeraceae Circumpacific

Sticta Sticta subcaperata Peltigeraceae Circumpacific

Sticta Sticta subscrobiculata Peltigeraceae Neotropical

Sticta Sticta tomentella Peltigeraceae Circumpacific

Sticta Sticta tomentosa Peltigeraceae Pantropical

Sticta Sticta tomentosa f. latior Peltigeraceae ?

Sticta Sticta tomentosa f. ornata Peltigeraceae ?

Sticta Sticta tomentosa var. dilatata Peltigeraceae ?

Sticta Sticta weigelii Peltigeraceae Subcosmopolitan

TABLE 2. (continued)
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Our assessment of three selected groups of fungi in 
Colombia shows that various factors contribute to 
substantial gaps and bias in assessing fungal biogeography 
in species-rich tropical countries. One of these factors is 
the often poor knowledge on the ecology and distribution 
of species and their accurate delimitation. If these factors 
are not considered, biogeographical assessments can be 
significantly misleading, both for individual species and 
for fungi as a whole. This has implications for evaluating 
their status as potential endemics and their conservation 
assessment. Precise knowledge of species is one 
requirement to address this problem, and cataloguing all 
species on the planet should be the main goal of biodiversity 
research. However, discovering and naming species is just 
part of the challenge. Knowing their ecology and geographic 
distribution is equally important if we intend to fully 
understand and preserve Earth’s biota. Using polypores, 
ectomycorrhizal fungi, and lichenised fungi as examples, 
we have demonstrated that species in these groups are 
generally poorly known, and their biogeographical patterns 
are hard to assess.

Therefore, fungal distribution ranges are often 
misrepresented by available records within and outside 
Colombia. Targeted field explorations, particularly in 
remote habitats, and phylogeographic studies are needed 
to provide reliable data to correct these issues. This kind 
of study should complement important but undervalued, 
continuously updated species lists and distribution reports. 
The maintenance and improvement of collection databases, 
such as ColFungi (https://colfungi.org), GBIF (http://www.
gbif.org), and SIB (https://sibcolombia.net) will contribute 
to the broad distribution of knowledge about the Colombian 
funga. All of these efforts require the continued work of 
trained taxonomists, who continue to be essential assets 
in the mission to document and understand Colombia’s 
and the world’s biodiversity.
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