Discussion on the hypertriton lifetime measurements

Jinhui Chen Shanghai Institute of Applied Physics, CAS

- Why we revisit the lifetime
- New measurement from STAR
 - Signal in separate bins
 - Updated results and world data
 - Discussions
- Conclusion and Outlook

Why hypernuclei?

★ QCD theory development

- Micro-lab. with proton, neutron and hyperons;
- YN & YY interaction (strangeness sector of hadronic EOS)

- ★ Astrophysics
 - Hyperons are important for cosmology, physics of neutron stars...
- 🛧 Nuclear Physics
 - Phenomenology: extension of nuclear charts into strangeness, exotic nuclei...
 - Structure theory: nuclear dof for investigating interaction of baryons in nuclei (hyperons – w/o Pauli blocking)
 - Reaction theory: new probe for fragmentation of nuclei, phase transition and EOS in hypermatter and finite hypernuclei

The first hypernucleus?

The 1st hypernucleus was observed in a stack of photographic emulsions exposed to cosmic rays at about 26 km above the ground.

- Incoming high energy proton from cosmic ray, colliding with a nucleus of the emulsion, breaks it in several fragments forming a star.
- All nuclear fragments stop in the emulsion after a short path
- From the 1st star, 21 tracks \rightarrow 9 α + 11H + 1 $_{\Lambda}X$
- The fragment $_{\Lambda}X$ disintegrates later, makes the bottom star. Time takes~10⁻¹² sec (typical for weak decay)
- This particular nuclear fragment, and the others obtained afterwards in similar conditions, were called hyperfragments or hypernuclei

Hypernuclei production in HI Collisions

★ Production of hypermatter in relativistic HI and hadron collisions

- Production of strange particles and hyperons by "participants",
- Rescattering and absorption of hyperons by excited "spectators"
- Will focus on the hypertriton in this talk

$${}^{3}_{\Lambda}H(n+p+\Lambda)$$
$${}^{3}_{\overline{\Lambda}}\overline{H}(\overline{n}+\overline{p}+\overline{\Lambda})$$

The STAR detector

STAR: a complex set of various detectors, a wide range of measurements and a broad coverage of different physics topics. STAR-TPC: <u>NIMA 499 (2003) 659</u> STAR-detector: <u>NIMA 499 (2003) 624</u>

Event display

★ A beautiful event in the STAR TPC that includes the production and decay of a antihypertriton candidate. (Data taken from Run4 Au+Au 200GeV MB collision)

The mesonic decay of hypertriton

Kamada et al., PRC 57, 1595(1998)

TABLE I. Partial and total mesonic and nonmesonic decay rates and corresponding lifetimes.

Channel	$\Gamma [\text{sec}^{-1}]$	Γ/Γ_{Λ}	$\tau = \Gamma^{-1} [\text{sec}]$
³ He $+\pi^-$ and ³ H $+\pi^0$	0.146×10^{10}	0.384	0.684×10^{-9}
$d+p + \pi^-$ and $d+n+\pi^0$	0.235×10^{10}	0.619	0.425×10^{-9}
$p + p + n + \pi^{-}$ and $p + n + n + \pi^{0}$	0.368×10^{8}	0.0097	0.271×10^{-7}
All mesonic channels	0.385×10^{10}	1.01	0.260×10^{-9}
d + n	0.67×10^{7}	0.0018	0.15×10^{-6}
p + n + n	0.57×10^{8}	0.015	0.18×10^{-7}
All nonmesonic channels	0.64×10^{8}	0.017	0.16×10^{-7}
All channels	0.391×10^{10}	1.03	2.56×10^{-10}
Expt. [6]			$2.64 + 0.92 - 0.54 \times 10^{-10}$
Expt. (averaged) [11]			$2.44 + 0.26 - 0.22 \times 10^{-10}$

 $\frac{1}{\tau} = \sum_i \frac{1}{\tau_i}$

Though the mesonic decays are Pauli blocked in heavier hypernuclei, they are the dominant channels in hypertriton.

In experiment, the 2-body helium3 channel and the 3-body deuteron channel are more easy to access.

Focus on the hypertriton lifetime (1)

The lifetime measurements are interest especially in view of the short values from early experiments :

The 1st measurements is $(0.95^{+0.19}_{-0.15})^*10^{-10}$ s from helium bubble chamber, by Block et al., presented in the proceeding of Conference on Hyperfragments at St, Cergue, 1963, p.62

Results from AGS nuclear-emulsion experiments: $(0.9^{+2.2}_{-0.4})^*10^{-10}$ s,
Phys. Rev.136 (1964) B1803,
Phys. Rev.136 (1964) B1803,
Phys. Rev.139 (1965) B401
2-body (3 in flight, 4 at rest) $(0.8^{+1.9}_{-0.3})^*10^{-10}$ s
2-body combined with 3-body (5 in flight, 18 at rest) $(3.4^{+8.2}_{-1.4})^*10^{-10}$ s

Nuclear-emulsion with maximum likelihood procedure, Nucl. Phys. B 16 (1970) 46, (1.28^{+0.35}-0.26</sub>)*10⁻¹⁰s,

★ But NEW measurements gave different values:

Helium bubble chamber from Argonne ZGS: $(2.32^{+0.45}_{-0.34})^*10^{-10}$ s, PRL 20(1968)819 $(2.64^{+0.84}_{-0.52})^*10^{-10}$ s, PRD 1(1970)66 $(2.46^{+0.62}_{-0.41})^*10^{-10}$ s, NPB 67(1973)269

Nuclear-emulsion from Bevatron: 2-body is $(2.00^{+1.10}_{-0.64})^*10^{-10}$ s and 3-body $(3.84^{+2.40}_{-1.32})^*10^{-10}$ s, and a combined of $(2.74^{+1.10}_{-0.72})^*10^{-10}$ s PRL20(1968)1383

 \star How about the theoretical understanding of these experimental results?

Focus on the hypertriton lifetime (3)

The hypertriton being a loosely-bound nuclear system, its mean lifetime should not be significantly different from that of the free Lambda

Theoretical calculations from Dalitz et al., initially gave a short value and updated later on a larger value close to the free Lambda's Phys. Lett. 1 (1962) 58 and Nuovo Cimento A 46,786 (1986)

The calculations based on modern 3-body interaction force, the total lifetime is predicted to be 2.56*10⁻¹⁰s, Phys. Rev. C 57 (1998) 1595

★ The hypertriton lifetime data are not sufficiently accurate to distinguish between model, more precise measurements are needed.

 Previous measurement (before 1973)
Use nuclear emulsion or bubble chamber Accepted events: less than 80

🛧 STAR 2010 measurement

Run4 200GeV	MB	22M
Run4 200GeV	Central	23M
Run7 200GeV	MB	68M

★ STAR 2012 measurement

Run10 200GeV	MB	~223M
Run10 200GeV	Central	~199M
Run10&11 low energies	MB	~213M

Previous measurement STAR Collaboration, Science 328 (2010)58

World data

It is promising to obtain an improved lifetime measurement using the new data

Datasets and track selection

Datasets and event statistics

Run10	7.7GeV	MB	~4M
Run10	11.5GeV	MB	~11M
Run11	19.6GeV	MB	~31M
Run11	27GeV	MB	~49M
Run10	39GeV	MB	~118M
Run10	200GeV	MB	~223M
Run10	200GeV	Central	~199M
Run7	200GeV	MB	~56M

 $_{A}^{3}H \rightarrow {}^{3}He + \pi^{-}$

- Analysis method: secondary vertex finding technique
 - Identify ³He and π candidate
 - Find the V0 position from daughters pairing
 - Plot the invariant mass dis. of daughters
 - Combinatorial background analysis

The largest hypertriton sample

★ Statistics: Run7+Run10+Run11 MB+Central, ~610M events

Signal observed from the data (bin-by-bin counting [2.986,2.996]GeV): 602±63, the largest hypertriton sample ever created

Background estimation: rotated background

Signal in separate bins

 $\bigstar N(t) = N(0) \times e^{-t/\tau} = N(0) \times e^{-t/\beta \gamma c\tau}$

 $M_{inv}(He3+\pi^{-})(GeV)$

New hypertriton lifetime result

SINAP

Measurement from HpyHl project

★ Hypernuclear spectroscopy at GSI: ⁶Li projectiles on ¹²C target at 2 A GeV presents the hypertriton lifetime measurement from 2-body channel:

Nucl. Phys. A 913(2013)170

 $\tau = 183 \pm_{32}^{42} \pm 37 ps$

Measurement from LHC-ALICE

 \star Revisit the previous theoretical calculation:

A statistical combination analysis of the experimental lifetime data give average of 216⁺¹⁹-18 ps for hypertriton, indicated that the lifetime of light hypernuclei can be shorter than the free Lambda's

Rappold, Saito et al., PLB 728 (2013) 543

Revisit binding energy (130 ± 50 kev), STAR exp. 3-body analysis have significant progress.

Physics implication:

(nn Λ) signal in HI reaction?

HypHI exp. observed a signal in the invariant mass distribution of d+pi and t+pi channel.

PRC 88,041001R(2013)

Data from HIRES Col. Excluded the (Lp) candidates PLB 687, 31(2010)

PRD 84, 032002(2011)

A possible interpretation might be the two- and three-body decays of an unknown bound state of 2 neutrons associated with a Lambda:

via ${}^{3}_{\Lambda}n \rightarrow t + \pi^{-}$ and ${}^{3}_{\Lambda}n \rightarrow t^{*} + \pi^{-} \rightarrow d + n + \pi^{-}$,

- Measurements of hypertriton lifetime have be interesting project in the field. Independent exp. present different results.
- ★ Several theoretical interpretations have achieved in the field and tent to conclude a value close to the free Lambda's
- New and precise measurements (>600 signals) from STAR Col. in the Relativistic Heavy-Ion Collider give a short value:

$$\tau = 123 \pm \frac{26}{22} \pm 10 \, ps$$

★ Data from HypHI from GSI fixed target exp. and from LHC-ALICE exp. show the short lifetime value:

$$\tau = 183 \pm_{32}^{42} \pm 37 ps$$
 $\tau = 181 \pm_{39}^{54} \pm 33 ps$

The discrepancy among different exp. is still there, the hypertriton lifetime is still a puzzle. New measurements from STAR Col. should shed new light on the puzzle.

Outlook

Primary Vertex

 $^{3}_{\Lambda}H \rightarrow d + p + \pi^{-}$

- v012 : Mid-point of DCA 1 to 2
- v012 : Mid-point of DCA 1 to 3
- v012 : Mid-point of DCA 2 to 3
- v0123 : Centre of gravity of the triangle
- I. Yifei Xu (SINAP/BNL) : ongoing effort of reconstructing hypertriton via 3-body decay, lifetime, branching ratio etc.
- II. Topical sessions on "Hypertriton lifetime" will be held during the 12th HYP (Sep. 7th -12th, 2015, Tohoku Uni. Japan)