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Abstract

This papet presents novel algorithms and applications for a partictiss of mixed-norm reg-
ularization based Multiple Kernel Learning (MKL) formuians. The formulations assume that
the given kernels are grouped and emplgyorm regularization for promoting sparsity within
RKHS norms of each group arig s > 2 norm regularization for promoting non-sparse combina-
tions across groups. Various sparsity levels in combiniregkernels can be achieved by varying
the grouping of kernels—hence we name the formulations aisbarSparsity Kernel Learning
(VSKL) formulations. While previous attempts have a nonvanformulation, here we present
a convex formulation which admits efficient Mirror-DescéMID) based solving techniques. The
proposed MD based algorithm optimizes over product of stepland has a computational com-
plexity of O (mzntotlog nmax/sz) wheremis no. training data pointsynax, Nyt are the maximum no.
kernels in any group, total no. kernels respectively aisthe error in approximating the objective.
A detailed proof of convergence of the algorithm is also enéad. Experimental results show that
the VSKL formulations are well-suited for multi-modal learg tasks like object categorization.
Results also show that the MD based algorithm outperforats-stf-the-art MKL solvers in terms
of computational efficiency.

Keywords: multiple kernel learning, mirror descent, mixed-norm,embjcategorization, scalabil-
ity
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1. Introduction

This paper studies the problem of Multiple Kernel Learning (MKL) (Lameket al., 2004; Bach
et al., 2004; Sonnenburg et al., 2006; Rakotomamonjy et al., 2008) whegiten kernels are
assumed to be grouped into distinct components. Further, the focus is @tehario where
prior/domain knowledge warrants that each component is crucial for dneitgy task at hand. One
of the key contributions of this paper is a highly efficient learning algoritomHis problem.

Recently Szafranski et al. (2008) extended the framework of MKL toctse where kernels
are partitioned into groups and introduced a generic mixed-norm (tf@sjsnorm;r,s > 0) regu-
larization based MKL formulation (refer (11) in Szafranski et al., 2008)rder to handle groups
of kernels. The idea is to employranorm regularization over RKHS norms for kernels belonging
to the same group andsanorm regularization across groups. Though a generic formulation was
presented, the focus of Szafranski et al. (2008) was on applicatibere it is known that most of
the groups of kernels are noisy/redundant and hence only those mixet promoting sparsity
among kernels within and across groups were employed, for examgle, O< 2 (following the
terminology of Szafranski et al. (2008) this class of mixed-norm MKlufolations are henceforth
called as “Composite Kernel Learning (CKL)” formulations). This papgespnts a complementary
study and focuses on applications where the domain knowledge guartmeevery group of ker-
nels is crucial. Needless to say, all the groups of kernels need noghally¥’ important and not
all kernels belonging to a group may be important. More specifically, thesfotthis paper is on
the cases whene= 1 ands > 2 (including the limiting cases = «). Here,p = 1 is employed for
promoting sparsity among kernels belonging to the same group ariifor promoting non-sparse
combinations of kernels across groups. Note that the extreme casdkpfatha kernels belong
to one group b) Each group consists of a single kernel; correspond &xtreme sparse and non-
sparse combinations of the given kernels. Since by varying the valuearaf the groupings of
kernels various levels of sparsity in combining the given kernels cantbewval, the formulations
studied here are henceforth called as “Variable Sparsity Kernel icegir(VSKL) formulations.
As mentioned earlier, VSKL formulations are not well-studied in literature aisdpidiper presents
novel algorithms and applications for these formulations.

The VSKL formulations are motivated by multi-modal learning applications likeablgjgtego-
rization where multiple feature representations need to be employed simulsinémuachieving
good generalization. For instance, in the case of flower categorizatitmréedescriptors for shape,
color and texture need to be employed in order to achieve good visuaindisation as well as
significant within-class variation (Nilsback and Zisserman, 2006). Compifgiature descriptors
for object categorization using the framework of MKL for object categiion has been a topic
of interest for many recent studies (Varma and Ray, 2007; NilsbackZasérman, 2008) and is
shown to achieve state-of-the-art performance. A key finding of Nilslad Zisserman (2006) is
the following: in object categorization tasks, employing few of the featuserifgors or employing
a canonical combination of them often leads to sub-optimal solutions. Hentlee framework
of MKL, employing a blockl; regularization, which is equivalent to selecting the “best” among
the given kernels, as well as employindpaegularization, which is equivalent to working with a
canonical combination of the given kernels, may lead to sub-optimality. Tlsiere#tion clearly
shows that state-of-the-art object categorization techniques (whédsaaed on block regularized
formulation) can further be improved. This paper proposes to employ tid V@& mulations for

2. This limiting case was discussed in an earlier version of this paper (Wath 2009).
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object categorization where the kernel are grouped based on thesfdascriptor generating them.
Thels(s > 2)-norm regularization leads to non-sparse combinations of kernelsajeddrom dif-
ferent feature descriptors and thenorm leads to sparse selection of non-redundant/noisy kernels
generated from a feature descriptor.

With this motivation, the key aspect investigated in this paper is an efficienthlgafor solving
the VSKL formulations which are instances of non-smooth convex optimizatmisigms. Except
in the cases wherg= 2 ors= o or no. groups is one, the formulations cannot be solved using
standard interior point based convex optimization software. Moreoven ia these special cases
the generic interior point algorithms do not scale well to large data sets. Tdgoer approach
presented in Szafranski et al. (2008) cannot be employed for salviny SKL formulations (that
is, with Is,s > 2 regularization across groups) efficiently as it solves a non-coragant of the
original convex formulation! The methods discussed in Szafranski €@08); Kloft et al. (2010)
are however efficient in the casecls < 2 (that is, sparse regularization across groups). In summary,
efficient techniques for solving VSKL formulations indeed need to be ddvighis paper adapts
the Mirror-Descent (MD) (Ben-Tal et al., 2001; Beck and Tebouldf)2 Ben-Tal and Nemirovski,
2001) procedure for solving a specific dual of VSKL leading to extrenseblable algorithms.
MD is similar in spirit to the steepest descent algorithm; however involvesafprection based
regularizer rather than Euclidean norm based regularizer in the geagtdiary problem solved
at each iteration. The prox-function is cleverly chosen based on theeggoof the feasibility set.
Here, the feasibility set for the optimization problem tackled by MD turns ou¢titect product of
simplices, which is not a standard set-up discussed in optimization literatuneroase to employ
the entropy function as the prox-function in the auxiliary problem solvetbyat each iteration
and justify its suitability for the case of direct product of simplices. The MBelolaprocedure for
solving the dual of VSKL is henceforth called msrorVSKL .

Apart from the derivation of thanirrorVSKL algorithm, we also provide a detailed proof of its
asymptotic convergencenirrorVSKL is also of independent interest to the MKL community as it
can solve the traditional MKL problem; namely the case when the number opgiie unity. The
key advantages aifirrorVSKL oversimpleMKL are:a)In case okimpleMKL in addition to gradient
computation, the reduced gradient and step-size need to be determinédreduiires substantial
computational effort; whereas in casenafrorVSKL , pre-dominant computation at each iteration
is that of calculating the gradient since the auxiliary problem has an andioicgion and the step-
size can be computed eashy It can be shown that the number of iterations witirorVSKL s
nearly-independent of the number of kernels whereas no such a statesgnebe made in case of
simpleMKL .

Simulations were performed on three real-world object categorizationetataGaltech-101 (Fei-
Fei et al., 2004), Caltech-256 (Griffin et al., 2007) and Oxford flen@filsback and Zisserman,
2006) for comparing the generalization ability of the VSKL and existing MKinfalations. The
results show that the proposed formulation are well-suited for multi-modad tdskobject cate-
gorization. In the special case of number of groups unitynmerVSKL andsimpleMKL algo-
rithms were compared in terms of computational effort and scalability. THatslity experiments
were performed on few UCI data sets (Blake and Merz, 1998) followiegettperimental set-up
of Szafranski et al. (2008). Results showed thatorVSKL scales well to large data sets with
large no. kernels and in some cases was eight times fastesithaeMKL .

The remainder of this paper is organized as follows: in Section 2, the V3idlrelated MKL
formulations are presented. The section also presents a specific & bfwhich admits efficient
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MD based solving techniques. The main contribution of the paperVSKL is presented in
Section 3. A detailed proof of convergencenofrorVSKL is also presented. Section 4 presents a
summary of the numerical experiments carried for verifying the major claim&qfaper. Section 5
concludes the paper with a brief summary and discussion.

2. Variable Sparsity Kernel Learning Formulation

This section presents the VSKL formulation and a specific dual of it. Tholgliormalism can
be extended to various learning tasks we focus on the task of binaryficktssn in the rest of
the paper. We begin by introducing some notation: let the training data setnmted by?D =
{(xi,¥i), i=1,...,m|x € X, yi € {-1,1}}. Here,x; represents thé" training data point with
labely;. LetY denote the diagonal matrix with entriesyasSuppose the given kernels are divided
into n groups and thg'!" group has; number of kernels. Let the feature-space mapping induced
by thek!" kernel of thejt" component b@j«(-) and the corresponding gram-matrix of training data
points beK jx.2 Also, letQj = YK Y.

For now, to keep things simple, let us assume that each of the kernels ithatithe induced
feature mapping is finite dimensional; later on we will generalize and removesthisgtion. Each
individual example can now be described by a concatenation of all theaéezctors:

= 0110000 -Gy (9]

Consider the problem of learning a linear discriminant function of the form

n nj

= Zlkzlel%k(x) -
j=1k=

Given a training set the idea is to learmva= [w;Wy,...w,, |" andb which generalizes well. This
could be achieved by minimizing an objective of the form (Vapnik, 1998):

J(w) = Q(w) + C (D),

whereQ is a suitable regularizing functioh,is a loss function which penalizes errors on the training
set andC is a regularization parameter. SVMs (Vapnik, 1998) usually Qé&) = 1|lw||3 and
L=y, max1-yi(w'x —b),0). Itis easy to see that this formulation corresponds to employing a
kernel which is essentially the sum of all the given kernels. Hence;fadttdenote this formulation
by SVM and use it as a baseline for comparison in the experiments.

The regularization term can be an extremely useful tool for modelling vaudlifterent kinds
of data. The choice of2 should be such that this is tractable and yet flexible enough to enforce
different relationships between groups dictated by modelling requirem&etsently (Szafranski
et al., 2008) employed a regularization of the form

1
éHWHESOS r<20<s<2,

where

s\
n n; T s
‘WH r,s) Z {z ‘Wik‘rz} .

k=

3. The gram-matrices are unit-trace normalized.
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Since the primary goal of Szafranski et al. (2008) is to achieve spattsitfocus was only on the
cases (< r < 2,0 < s < 2 making most of the individual normjwvi || zero at optimality. Hence-
forth, this formulation is denoted KL s wherer, s represent the within and across group norms
respectively.

However as discussed above in case of multi-modal tasks like object dasggm, it is often
desirable that there is sparsity within the group but all the groups neettibe.dn view of this we
begin by defining .

q

1 n nj ) %
Qpg (W) = > Zl kleijuzp
= —

This can be interpreted as a mixed norm operatingwp ||> and the following relationship holds

1
Q(pg (W) = §||W|!§sa r=2p,s=2q.

In this paper we analyze the cage- % andqg > 1 which is equivalent to considering &n(sparse)
norm regularization within kernels of each group &td > 2) (non-sparse) norm across groups. In
other words, we consider the following regularization:

110 (N 20)
Qw) =3 J; klelekllz ,

whereq > 1. By varying the groupings of kernels various levels of sparsity caachéved: no.
of groups is unity corresponds to extreme sparse selection of kerrielsoargroups equal to no.
kernels corresponds to non-sparse combinations of kernels. Tligilifgxn choice of q offers
different modelling perspectives and correspond to various wayacieving non-sparse combi-
nations across groups. Since this formulation allows for flexibility from sipato non-sparsity,
it is called as the Variable Sparsity Kernel Learning (VSKL) formulation dedoted byWSKL g,
whereq > 1:

fmin 33 (S widle) ] " +C 3
S.t. (Z?:lzﬂjzleTk(pjk(Xi) —b) >1-¢, & >0Vi. Q)

In the extreme casg— oo, the regularization term is to be written &max; (31, |wjk|l2)°. Note
that the traditional MKL formulation using the blotknorm regularization (Rakotomamonjy et al.,
2008) is a special case of VSKL when the number of groups is unity. \Watdéhis special case by
MKL and as mentioned earlier, state-of-the-art object categorization perfoerrsmachieved using
this methodology.

Existing wrapper approaches (Szafranski et al., 2008; Rakotomaretaljy 2008) are useful in
solving (1) only for the caseap< 1. For 1< g < o, the wrapper approaches solve a non-convex vari-
ant of the convex formulation and hence are not well-suited. Moreoesettwvrapper approaches
cannot be easily extended to handle the important gasec. In this paper we describe a first
order method based on mirror descent procedure which efficientlyssthige/SKL formulation for
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all values ofq > 1 (includingg — ) and provably converges to the global optimum. The mirror
descent procedure solves a specific dual of the VSKL formulation-Hslefavhich are presented
in the following.

2.1 Dual of VSKL
This section presents a dual¥SKL which admits efficient MD solving techniques. In the rest of

the papeq* = % g>1(if q=1theng* = o and ifq= o theng* = 1). If 1 <r < o, the following

setsAyr = {y=[v1...va]" | 31V <1y >0,i=1,...,d} are convex. As — oo one obtains a
d-dimensional boX\g =Bg ={y|0<y; <1li=1,...,d}. If r = 1 we get back @-dimensional

simplex, and to lighten notation we will denatg 1 = Aq. At this point it would be useful to recall
the following lemma (see Boyd and Vandenberghe, 2004, Section A.1.6):

Lemma 2.1 Let a be a d-dimensional vector with non-negative components, that is,0a =
1,....d. Then

allr = SUBen,,-Y' &,
where r> 1 and r* verifies? + 1 = 1.
A specialization of this lemma far— oo is:
miax{a} = SUReaY' &

We also note the following result which will be used in later derivations (sieetlli and Pontil,
2005):

Lemma2.2Letg >0,i=1,...,d andl <r < . Then, forAq, defined as before,

d 1+
: a; -
min § — = a ,
N€lar T ni =

air%1 -
(Z?:l ai#l) '

Here, by convention,/® is O if a= 0 and isc otherwise. In the limit r— o the following holds

and the minimum is attained at

ni=

a d
miny — = i
n€By 4- N i;\ai

where B is defined as before and equality is is attainetjat= 1V g > 0.

Proof The proof follows by employing the Karush-Kuhn-Tucker conditionsicllare here neces-
sary and sufficient for optimality. |

Using Lemma 2.1, the objective in (1), for agy> 1, becomes:

1

2
n N

— max ) v Wik +CHY & 2

2, J;,(kzlu ,H> S&
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For the casg — o the set), ¢ reduces to a simpled,. Further, by Lemma 2.2 (with =n,r = 1):

n 2 n .
(5va) ~moss

so (2) can be written equivalently as:

max min s %V‘ HijHZJrC &i
¥Eh g Aj€ln, ZJZ“(:]_ J 7\jk IZ !
f(WAY,€)

The equivalent primal formulation we arrive at is finally

Problem (P)
i in f(w,A
gmin [&?:ﬁ Afgg:j (w, ,v,E)]
n nj
s.t. Yi <Z > Wka(ij(Xi)—b> >1-§, Vi, 3)
j=1k=1
& >0, Vi 4)

Note that at optimality, the following relations hold
)\jk =0 = Wik = 0,
if q# oo, thenyj =0 & wi=0Vk

In caseq = o, Wjx =0V k= y; = 0 unlesswj, = 0V j,k, which is an un-interesting case. Let us
fix the variables,, b andw in problem (P) and consider the mamin, part in the square brackets:

m\;’;lxrr]\in{f(w,)\,y,i) IANe Q) yE An,q"} :
]

The objective function is concave (linear)yiand convex in\, and the feasible se@; An;, An g
are convex and compact. Hence, by the Sion-Kakutani minmax theorem (Si68), the maxmin
can be interchanged, and when this is done, problem (P) becomes

min  min  max f(w,A,y,&), s.t. (3), (4
min min | max £(w.A, .8 (3), (4)
or similarly
min min max f(w,A,y,§), s.t. (3), 4* 5
an Li’b’wjky%* (WA, Y,€) 3), ( (5)

Now, f is convexin(§,b,w) and concave (linear) in The set for feasiblé, b,w), expressed in (3),
(4) is closed and convex, a@; An, is convex compact. Hence, by a minmax theorem (Rockafellar,
1964), the minmax in the square brackets in (5) can be interchanged aardivecat

min - max < min f(w,A,y, s.t. (3), (4); . 6
A€®]Anj yeAn‘q* {Eivb,ij ( YE)‘ ( ) ( )} ( )
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Replacing the convex problem in the curly brackets in (6) by its dual thewoltp theorem is
immediate:

Theorem 2.3 LetQjx be the mx m matrix
(Qik) iy = YnYi@ik(Xi) " @y (Xn) Lbh=1....m

The dual problem of (P) w.r.t. the variablés, b, ) is the following*

- o JKQJk
i aesTyiﬁn\q*{Z“' (Z 2 ) }

Problem (D) m
where S, = {aeRm| Zlonyi =0, 0<a;<C, i:l,...,m}.
i=

The relation between the primal and dual variables is giver\/]o‘}i'i]ffk =5M, aiyi@jk(xi). Note that
(D) is only a partial dual (wrt. variables,b,&) of (P) and is not the joint dual. Interestingly the
partial dual can be efficiently solved using a non-Euclidean gradiesteaé based approach (see
Section 3) and hence is explored here. In the following, we generalizeliddassion using the
functional framework and remove the restriction that the induced featups @ finite dimen-
sional.

2.1.1 THE FUNCTIONAL FRAMEWORK

We first consider the case<lq < . LetKj be positive kernel functions defined over the same input
spaceX. EachKj. defines a Reproducing Kernel Hilbert Space (RKH) with the inner product

(-1-) 3. An elementh € 7 has the normjh|,, =, /(h,h) s, . Now for anyAjc non-negative,
define a new Hilbert space
h||
_’]—[jlk:{h‘hEij, H H}[Jk <00}
with inner product as.,.) ", = A,k< ), \We use the convention that Afy = 0 then the only

member ofﬂ-fjk ish=0. Itis easy to see tha?ti;k is an RKHS with kernel ag kK« (see Rako-
tomamonjy et al., 2008). A direct sum of such RKHE;, = @kﬂ;k is also an RKHS with the
kernel asKj = S¢AjkKjk. Now again, for a givery; non-negative, consider Hilbert spacﬁ$

derived from#; as follows: a) ify; =0 thenﬂ-fj contains only the zero element andyjf> 0

then elements inﬁq as same as those i however(.,.>ﬂ]g =Yj(-s-)s- Again ﬂ{; are RKHS
with kernels asyle,- = y—ljzk)\ijjk and their direct sum is in-turn an RKH& with kernel as
K= Z?:ly*ljzrk]jzl)\ijjk- With this functional framework in mind we now letj be an element of

Hic with the norm||wi|,, = \/<ij,ij>}4k and letw € #H where# is as defined above. The
primal (P) in this case reads as follows:

4. Only for the case = «, we make an additional assumption that all the base kernels are stricitiygas order to
write the dual in the form of problem (D) above.
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min max min f(w,A,y,&
&ibwikeHjk | Vi€hngr A€l ( ) @

St Y (W, Xi)gr—b) >1-§,& >0,

Iw H}[k

wheref (w,A,y,§) = 221 1zk 1Yi +C3;é&i.
Following the usual procedure for generalizing linear SVMs to RKHS viar&senter theorem
one obtains the following generalization of Theorem 2.3:

Theorem 2.4 LetQj« be the mx m matrix
(Qik) i, = YnYiKik (i, Xn) ibh=1,...,m
The dual problem of (7) with respect {a, b, &} is the following optimization problem:
f)\((],y)

min max 1'a-:= (izj ’kQJk> (D)

Aj S 0ESn,YeL g

G(A)
where &= {a e R"0< a < C,y"a =0}.

We omit the proof as it is straightforward. To be noted tﬁg\tvjk(.) =5 aiyiKi(.,x) and all other

conditions remain sante.
We will refer (D) as the dual problem. The dual (D) problem providesaniosight into the
formulation: Ajx can be viewed as a weight given to the kerkgl andy—lj can be thought of as

an additional weight factor for the entifg group/descriptor. Sinck; € Ay, (that is,Ajs arel;
regularized), most of th&;s will be zero at optimality and singe< Ay o, it amounts to combining
kernels across descriptors in a non-trivial (and in @gise 2 in a non-sparse) fashion. Indeed, this is
in-sync with findings of Nilsback and Zisserman (2006): kernels frofediht feature descriptors
(components) are combined using non-trivial weights (tha\t})smoreover, only the “best” kernels
from each feature descriptor (component) are employed by the modekdrisity feature leads to
better interpretability as well as computational benefits during the predictige.tote that in the
case optimal weights\(y) are known/fixed, then the problem is equivalent to solving an SVM with
an effective kernelK g = Z?:l ZKJ:%JJKKJK . This observation leads to an efficient algorithm for
solving the dual which is described in the subsequent section.

3. Algorithm for Solving the Dual Problem

This section presents the mirror descent based algorithm for efficiertiingahe dual (D). A
detailed proof of convergence of the algorithm is also presented. W bgge-writing problem
(D) as a minimization problem, rather than a minimax problem:

min{G(Ag,A2,...,An) [Aj €An, j=1,...,n}, (8)

5. Again, for the casq = o, we make the assumption that all base kernels are strictly positive intbet@rheorem 2.4
is true.
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where the objective functio is the optimal value function of the following problem:

G(A1,A2,...,An) = max {1T0(—10(T§ <Zk)\‘kQ‘k> a}. 9)

YEDn g+ ,OE S 2 = Yij

f}\ (G,V)

The functionG is convexin A € R" since it is the point-wise maximize of functions which are
linear in A. The minimization problem (8) is then that of minimizing a convex (possibly non-
differentiable) function over a product of simplices. Problems with thestifes, even large-scale
ones, can be solved efficiently by a Mirror Descent (MD) type algoritBen¢Tal et al., 2001; Beck
and Teboulle, 2003) which is reviewed in the next subsection. An MD #figomeeds as input
in each iteration a sub-gradie@t(A) belonging to the sub-gradient s#6(A). Using Danskin’s
theorem (see Bertsekas, 1999, prop. B.25), these elements are seadléyple from the solution
of theconcave maximization problefim vector variablesy anda) in (9).8 A procedure for solving
this maximization problem efficiently is presented in Section 3.3. Note that the maxprabtem

is solved numerically and hence the approximate sub-gradient is only adhtdiheugh we provide
convergence analysis, it does not deal with the issue of approximatgradient. Analysis of such
situations is more involved and we postpone it to future work (see D’Aspa;r2008).

3.1 Introduction to Mirror Descent

Consider the following problem.
min f (X) xe X, (10)

where:
1. X C R"is convex and closed with nonempty interior.

2. The objective functiorf : X — R is a convex Lipschitz continuous function, with respect to
a fixed given nornj| - ||, that is:

3L f(x) — F(y)] <LIx—yl| vxyeintX.

3. There exists anraclewhich givenx € X computesf (x) and f’(x) € f(x).

For such problems a classical algorithm is the Sub-gradient Projectiomithigna(SPA), which
generates iteratively the sequer{c&} via:

XH—l — T[)((Xt _Sf/(xt))a

wheres is a step-size, anm (y) = argmin {||x—y||2} is the projection of on X. The SPA can be
xeX

rewritten equivalently as

t+1 - : Ix—x |3
X =argmin{ (x, s f' (X)) + ———"2 7.
xeX 2

6. If a*,y* represent the variables maximizirfgfor given A, then thejk" component of the sub-gradie®(A) is
_ l u*\ ija*

2 Y
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The main idea of Mirror Descent Algorithm(MDA) is to replace the distancetion 3 |x— x|
based on the Euclidean norm by a general distance-like funttjgn') (also referred to as prox-
function). The basic iteration step then becomes

X = argmin { (x,5 f'(X)) + D(x,xX)} . (11)

XeX

With the freedom to chood@ one can adapt it to the specific constrainbseThe minimal require-
ments on the “distance function” are

1. D is nonnegative,
2. D(u,v) =0ifand only ifu=v.

A possible way to construct such a distance-like function is as follows®Let — R be strongly
convex with parametes > 0 with respect to a norrfj ||, that is:

(00(x) — O®(y),x—y) > o[x=y[?, VxyeX.

Then

Bo(X,y) = P(X) — D(y) — (x—y,ID(y))
is a distance-like function (often called Bregman Divergences). With thisceh the iteration
scheme (11) is equivalent (see Beck and Teboulle, 2003) to the folldiviag step procedure

1. X 0oy,
2. Yl oo —sf'(d), (12)
3. Xl Oy = D" (Od(K) — s f/ (X)),

Here®*(y) = mr;t(x{(x, y) — ®(x)} is theconjugatefunction of ®.
Xe

This procedure yields efficient convergent algorithms for solving.(M¥re formally we state
the following theorem proved in Beck and Teboulle (2003)

Theorem 3.1 Let{x'} be the sequence generated from a starting poirat intX by the MD proce-
dure outlined in (12) with the D being the Bregman Divergenge,B. Let f* = minyx f(x), and
let X* € X be a point where the minimum is attained. Then for everyit

1. .
f Bo(x",x") +20 15t £ f'(x)|2

min f(x') — f* < :
1<t 2i-1S

)

—

whereo is the strong-convexity parameter ®f

2. In particular if the step size sequen{®} satisfies

t
§— 0,5 — 0,t — oo,
=1

then the method converges, that is:

t — o= min f(xf)—f*—>0,
1<t<t
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3. Moreover if the step-sizegsare chosen as

. P 2r(xt
min f(x') — f* <L¢ Q,
1<t ot
whererl (x}) = maxcx Bo (X, x}) measures the “width” of the feasible set X. O

L2r(xt), . . .
The above theorem shows that MD procedures requ(ré%) iterations for attaining am
accurate solution where each iteration is very cheap, requiring justi®gtaomputation.

3.2 Minimizing G by Mirror Descent Procedures

In the following we discuss the suitability of MD procedures outlined in (12)nfiinimizing G
givenin (9).

For an MD procedure to apply we first need to demonstrate Ghist convex and Lipschitz
continuous. We also need to devise a Distance generating function whigitaisls for a feasible
set comprised of a product of simplices. We begin with the proposition

Proposition 3.1 If there exists scalar@ < 1 < 1, u> 0 such that all eigenvalues of eaCGhx matrix
lie within an interval(ty, 1), then the function G given by

l n n; )\ .
G()\l,... ’)\n) = max 1qu,aT Z Z|(:171kQJk a
€S, YeL g 2 =1 yJ
is convex and Lipschitz continuous w.r.t. in th@brm for any ¢> 1.

Proof See Appendix for a proof. [ |

A suitable Distance generating function of the fdBg over product of simplices is given in the
following

Proposition 3.2 Let
nj
Dj(Aj) = Z AIn(Ajk), Aj €A Vj=1,...,n

The functior®(A) = 31_; ®j(Aj) =y 12 Ak In(Ajx) is strongly convex with parameterwith
respect to the;l norm. The correspondmg dlstance generating function is given by

1 o }\Jk
Bo(A",A7) = z Z)\*kln }\1

j=1k=1
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Proof The function®; is convex inA; as its Hessian is positive definite over the interior of its
domain. Sinceb is a sum of such functions it is also convex.

Recall that a necessary and sufficient condition (Rockafellar, 187 @) convex functior® to
be strongly convex with respect to a norjfl|, and parametes, is

(OD(A) —OP(A*), A —A") > oA =A%,

whered®(A) is an element in the sub-gradient setivévaluated ah.
The proof can now be constructed as follows

=}

(OBA) —ODA), A =A%) = 5 KL(A},A))
=1
L 2
> 5 [N =AjlIT
=1
1
> 2N = A2
> nH 11,

wherein the first equalitKL(p,q) = yipilogg . The first inequality is obtained by noting that
KL(p,q) > ||p—dl|? (see Cover and Thomas, 2006). The second inequality is valid sinceyor a
nonnegativea; one has by Cauchy-Schwartz inequalftyy 7, aj)? < 5]_, 2. This proves that
is strongly convex with parametﬁrin thel1 norm.
Finally, the functiorBe can be written as
Bo(A",A) = D(A*) —D(A) — (ODP(A), A" —A).

Hence, it is indeed a Bregman-type distance generating function |

3.2.1 THE CHOICE OF STEP-SIZE

By Theorem 3.1 the choice of step-size is guided by the tefht), whereA! is in the interior
of the product of simplices. If one chooskﬁ = ﬁl, then one can obtain an estimateldi') as
follows:

n
Bq,()\*,)\l) < Y logn; < nlognmax wWhere nmax= maxn;.
ZJ_ i
Jf

The firstinequality follows from the fact thg A jk logAjx <0, VA € ®; An, and the second inequal-
ity follows from the definition offmax. This upper bound immediately yieldi§A!) < nlognmax.
The candidate step-size (refer Theorem 3.1 ) now writes as

B Le Vi e WU

wherelLg is the Lipschitz constant db. However this step-size estimate is impracticaLgswill
not be known a priori. A more pragmatic choice could be

1 1 1 1

s=A/TAYo———+—— =AVIogNmax——— —,
IOAGAY) [l vE " IOGAY [l VE

whereAis a constant. It can be shown (Ben-Tal et al., 2001) that even fortdyissize an efficiency

estimate, similar to the one given in Theorem 3.1, is valid.
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3.2.2 A XETCH OF MD-BASED ALGORITHM

We are now ready to state an MD procedure for compuBng@siven a sub-gradient by the oracle,
and a suitably chosen step-size, one needs to compute a projection (stgj2) to complete one
iteration of MD. Owing to the clever choice of prox-function, the projectiapsn our case is very
easy to calculate and has an analytical expression given by:

|:|CD()\)jk = (In()\jk) + l) ,

OP* (N jk = njeMi
> €
I=1

The final MD procedure for minimizing now reads:

Algorithm 1:
Require: )\16{ X Anj}
1<jgn
repeat

(0*,y*) argmaXycs, ven, fa(a,y) (Oracle computation)
th‘ltl — (ODAY) — stG’()\))jk = (ln()\tjk) + 1) +sta*T%a* (Descent Direction)
J

- L
At O ()\“1) - (e’\tjkl/ S e”ﬁl> (Projection step)
=

until convergence

By virtue of Theorem 3.1 (and using bound on Lipschitz constant diliiveAppendix) this

algorithm obtains am accurate minimizer o6 in O(n2+q% lognmax/€%) steps. Note that in practice
the number of groups (intuitively, the number of feature descriptors) is never high (typicall0)
and infact one can assume it to ©¢1); in which case the number of iterations will be nearly-
independent of the number of kernels! The cost of each iteration depemhow efficiently one
can maximizefy (a,y) as a function ofx,y for a fixedA. Note that gradient computation (that is,
maximizing f) is the predominant computation in the mirror-descent based algorithm aojae-p
tion and step-size can be computed very easily from the analytical expregsesented above. On
passing, we also note that there exist efficient projection algorithms-farregularization (Quat-
toni et al., 2009). In the next section we show that maximiirmgin be achieved by solving a series
of SVMs.

Again note that in the special case= 1, whereVSKL q (for any q) is equivalent toMKL ,
maximizing f is nothing but solving an SVM problem (with effective kernel computed wiih ¢
rent weights). Since the per-step computation, in this special case, npireghtly that of solving
an SVM (the projection and step-size computations are negligible) and theenwiterations is
nearly-independent of the number of kernels, the proposed MD ladgedthm is expected to per-
form far better than traditional reduced (projected) gradient based BtHvers likesimpleMKL .
Also, in this case, the no. iterationsG)s(IognmmJaz) andnmax = Nt Wheren is the total num-
ber of kernels. Cost of computing the effective kernel at each stppndis on the sparsity f;
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however a conservative estimate gi@s’ny) and projection, step size computations @(@)
(negligible). Assuming the SVM problem can be solve®im?) time, we have the following com-
plexity bound in case = 1: O(mzntotlog ntot/sz). Also, in the casg = 1, the optimal value of;

is 1 for all j and hence maximizind again corresponding to solving an SVM with effective kernel
as canonical (equal-weight) sum of all the active kernels in each gréggin, in this case, the
overall complexity iO (mzntotlog nmax/ez). The next section presents an efficient iterative scheme
for maximizingf in a general case (thatis,> 1,q > 1).

3.3 Computing the Oracle

The joint maximization if(a, y) of f, in the case& = « can be posed as a Quadratically Constrained
Quadratic Program (QCQP):

n nj 0.
max, f(v.0) =1Ta— 2a” [Z <zk_1MkQJk>] )
J

a€Sm,YEAn = Yi

n
= max 1'a— S v

GESTHVEAWV ]Zl :
(13)

N
s.t. Zjvj > a’ [z Aijjk] o Vj
k=1

Using the identity
2

1 1
2yjvj = E(Vj +vj)? - Q(Vj —Vj)*,

the constraint in problem (13) becomes

of [Z)\ijjk

and consequently problem (13) iganic quadratiqCQ) problem

A CQ problem can be solved with efficient solvers lIKéMosek. However for an arbitrary
norm,q > 1, such a formulation may not be possible and, even fero, very large-scale problems
may require a more efficient algorithm. To this end we consider leveragimg $\Wers. Note that
for each fixed value of one needs to solve an SVM problerminMoreover there existlosed form
solutionswhen f is maximized ovey for fixed a. Such a Block Coordinate Ascent (BCA) (Tseng,
2001) procedure in general may not lead to convergence, but farofsbem at hand we will show
that the algorithm does indeed converge to a global maximum.

1 1
0‘+§(Vj —vj)? < E(Vj +vj)2,

3.3.1 B.ock COORDINATE ASCENT

In this section we describe a convergent and efficient algorithm basekdeoBlock Coordinate
Ascent (BCA) method. As a consequence of Lemma 2.2 the following is true

Proposition 3.3 For a fixedA, a the problem
maxea, q. fr(a,y)
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is optimized at

1
DS L
i

0 )"
g*+

If g =1 (thatis, g = o), optimality is achieved af = 1iff D; > Owhere D = ZEj:l)\jkaTija.

yi:

Proof Recall that
max f(a,y)=maxa ' e— = min —,
OESn,YEL ¢ aeSn 2 yeh, g =R

whereD; = 5./ A\jxa " Qjkar. For a fixeda, the optimaly is obtained by

The claim follows from Lemma 2.2. [ |

This Proposition shows that one can use analytical expressiopsvftgn maximizingf, for a fixed
a. Alternatively for a fixedy, maximizing f, is equivalent to solving an SVM. These observations
motivate the following algorithm for Oracle computation:

Algorithm 2:
Require: y! € Ang:
repeat
Computea®** = argmax{ f, (a,y¥)} using SVM solver
acSy
Computey*! = argmax{ f, (a***,y)} by Proposition 3.3
YED, g+

until convergence

In the following subsection we establish the convergence of this algorithm.

3.3.2 MONVERGENCE OFBCA ALGORITHM
We begin by introducing some propositions.

Definition 3.1 We say that z (a,y) is a strict coordinate-wise maximum point of f ovexA if
ze AxT and

f(a,y)<f(zg Vd' eA

fla,y)< f(zg Werl.

Lemma 3.2 Assume that A anfl are convex sets, and f is a continuously differentiable function
over Ax T, If zis a strict coordinate-wise maximum point of f over B, then z is a local maximum
point of f over A< T .

Proof Leta’ € A, thenVu € [0,1],ua + (1—u)a’ € A since A is convex. Let us considgfu) =
f((1—u)a+ua',y). gis differentiable and, sinceis a strict coordinate-wise maximum point bf
overAx I, thenvu € (0,1],9(0) > g(u), and this implies thag(0) < O, that is:

g0)= (o' —a)"Ouf(a,y) <0 Vo' €A o #a.
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Following the same reasoning fgrthe following statement holds

O f ( y)T( a)<0 va'eA a' #a,

Oyf (@) (Y=y) <0 Wer,y#y. (1)
Now, by Taylor expansion,
f(ay) = f(a,y) +Oaf (0,y)" (@' =)+ Oyf (a,9) (Y —y) + O (fla—a'l| +[ly= Y1) -
Using (14) we see that {fo’,Y) is close enough t¢a,y), thenf(a’,y) < f(a,y). [ |

Proposition 3.4 The BCA procedure (alg. 2) when applied §gd,y) with respect to the blocks
andy converge to a coordinate-wise maximum point,of f

Proof We begin by arguing thatty is bounded wheQjk are p.d in the interior of simplex defined
byy, that is,y; > 0. Recall that at optimalityy always lie in the interior for ang > 1. Hence for
g > 1 we can as well restrict our search space to the interior of the simplexllRuchy we have

0(y<zl ——0(

whereld'= H(Z?:lvfl) andu > 0 is the greatest lower bound over all minimal eigenvalue®;af
matrices. Foig = 1 case one can apply the above upper bound with 1. Next, consider the
following result.

Lemma 3.3 f) is hemivariate over $x An.

Proof Recall that a functiorfy is called hemivariate if it is not constant on any line segment
of Sy x An. We proceed by contradiction. Let us assume that there (ﬁ(’rsvl) € Sy x Ay and
(G2,¥) € Sn x & such thatt € [0, 1], the following hold

g(t) = fita!+ (1—-t)a%ty* + (1 —t)y?) = a constant

Then,Vt € (0,1)

o d B,
ot)="D=Bo+y —b—=0, (15)
dt T (t+ Y, )2
7
where 1
~D ~ ~]~07 T ~D ~ ~] ~
B =~ [Wa'-¥jd*] Q[ya' -6’
7
n;j
Qj= > AikQik,
J kZl J J
and .
Bo— &' (62— ) — = (@) Z (G- &)

~—|—\
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g(t) is a rational function ot and is 0 on(0,1). This is possible if and only iBy = 0 and

Yi ijl = 0. To establish this recall that the higher order derivativeg afe also 0. This
(H‘ﬁ)z

leads in particular to:

B

2(t+ Ui )3 o

7o

Let us now consider the seB&= { s R |dj, < VJ{ =spandQs=4jeN]|: V"l~1 =s ;. We have
Vv V-
(t+ v2 CUNS

The family of {(t +s)3},s € R is linearly independent, thel's € © 'Y j€Qs gz t+s =0 by (15), and

sinces = % andvj,y; > 0, then, sigfiy — ;) is constant overj € Qs}. We know thatQ;

is positive definite, thus, sid) is constant ovefj € Qs}. This implies thatvj,B; = 0. The

posmveness oQJ implies that this is possible only ifj, y2a1 y1a2 0, which is equivalent to
), (a9 = (¥6#)9 and summing ovef, ¥ and¥* belonging toA, q:, we obtaind; = &

and then”/1 ={2. Hence,f, is hemivariate and, this proves as well ttigis strictly concave. B

We continue now the proof of Proposition 3.4. Let us consider a sequ@rsuch thatz?® =
(aP+1 yP) andZ2P! = (aP*L yP*+1). Since, by definition of our algorithnfy (z°+1) > f,(z°), and
f) is bounded ovef, x A, then f, (z°) converges. Moreove, x A, is compact inR™™", so by
passing to a subsequence if necessary, we can assunz&Pat converges to soma. Next we
show thaiz??** has a unique cluster point.

First we show that i2%P) converges to a cluster poiat of z°, so does?P)*1, |ndeed, if
not, thenzZ?P*1 has another cluster point than say+ z;). Therefore, we can assume thag, a
subsequence af( p) such that2®(P)+1 converges ta,. Sincef)(zP) converges, we have

;I)lnoo f}\(zﬂp(p)) — g)inw f)\(zz@(p)).
Fix anyu € [0,1] and denote” = Z2#P)  u(29P+1 _ 22¢P)), We notice that” € Sy x An. It is
obvious thatz? converges tq1 — u)z; + uz. Since,f, is jointly concave with regard t¢a,y), we
have ) 3
fA(Z°) = (L= H(Z¥P) +ufy (ZOPTD),
and by passing to the limit,
f(2) > (1-U)fy(z0) + ufy(22).

We cannot have € [0,1], f)(Z) = (1—u) fy(z1) + ufy(z) becausd is hemivariate. Hence,
N A\ (Z) > (1—u)fy(zs) +ufy(z2). (16)
Since: f (29P)1+1) = maXen, { f (@®P)+1 y A1, the following statement holds:

Wy € B, f(ZXPHL) > £, (@®PL )
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and sincez?®P) 3P and 229P+1 differ only in their second coordinate blogk we havefy () <
(1—u) f, (Z2%P)) +-ufy (2%P)+1), and by passing to the limify (Z) < (1—u)f\(z1) +ufy(z2) which
contradicts (16). Hencey = z. We showed that?®P)+1 has a unigue cluster poimt, hence it
converges ta;. We next prove that; is a coordinate-wise maximum point §f. Recall that

Wy € An, HOCUPHL) > £y (a@PHL y).

Passing to the limit, we have:

vy € Bn, fr(z1) = fa(a(z), ), 17
wherea(z;) = a®%*)*1, The same reasoning with regardotehows that
Va € Sy, f(xa) = fa(a,v(x)), (18)

wherey(z;) = y"*)*1, This shows that; is a coordinate-wise maximum point &f and, according
to (3.2),z is a local maximum off, over S, x A, and sincef, is strictly concave outside the
line wherealy? = a?y!, and sincef, is not constant on any of these lines,is the unique global
maximum off,|; hence strict inequalities hold in (17) and (18). |

Now that the mirror-descent as well as the block coordinate ascerdques are presented and the
respective convergences are proved, we now proceed to pteeamnerall algorithm for solving the
dual (D).

3.4 Themi rr or VSKL Procedure

This section presents t@rrorVSKL  algorithm for solving the dual (D):

Algorithm 3: mirrorVSKL

Require: )\16{ (09 AnJ}

1<j<n
repeat
(a*,y*) < argmax f(a,y,A')  (Use BCAin Alg. 2)
aESy,Yeh
thtl — (OP\) —sG'(N)j = (In()\‘jk) + 1> +&a*T%u* (Descent Direction)
J

. o M
Mpt e Do ()\”1> - (e”iﬁl /S e”J?1> (Projection step)
=]

until convergence

The algorithm converges to the optimal of (D) for arbitrary> 1. The per-step complexity
in the mirror-descent iterations now depends on the number of iterationg &G algorithm.
However it was observed in practice (see Section 4) that for the vafuesemcountered, the BCA
converges in 2-4 iterations and hence can be assumed to be a constantthi8viaksumption,
even in the general case £ 1,q > 1), the computational complexity afirrorVSKL remains to
beO(mZntotIognmaX/sz). We conclude this section with the following note: convergence of the
mirror descent algorithm is based on the fact that sub-gradients aryes@mputable. However in
mirrorVSKL , the sub-gradients are computed using an oracle numerically and heppedgieate.
Convergence analysis with such approximate sub-gradients is non-dridia research problem in
itself. The work by D’Aspermont (2008) is a good starting point for this.

583



AFLALO, BEN-TAL, BHATTACHARYYA , NATH AND RAMAN

4. Numerical Experiments

This section presents results of simulations which prove the suitability of empldyinproposed
VSKL formulations for multi-modal tasks like object categorization. Experimaetsults which

demonstrate the scalability of tharrorVSKL algorithm in solving the traditional blodk regular-

ization based MKL formulation are also presented.

4.1 Performance on Object Categorization Data Sets

The experimental results summarized in this section aim at proving the suitabiitymbying the
proposed VSKL formulations for tasks like object categorization. Thewiatlg benchmark data
sets were used in our experiments:

Caltech-101 (Fei-Fei et al., 2004)Collection of 9144 imagésrom 102 categories of objects like
faces, watches, ants etc. The minimum, average and maximum number of ireagategory
are 31, 90, 800 respectively.

Caltech-256 (Griffin et al., 2007) Collection of 30607 imagésfrom 257 categories of objects.
The minimum, average and maximum number of images per category are 8@2Ir16s-
spectively.

Oxford flowers (Nilsback and Zisserman, 2006)Collection of images of 17 varieties of flowets.
The number of images per category is 80.

Following the strategy of Vedaldi et al. (2009), the following four featdescriptors® were em-
ployed in the case of the Caltech data sets:

1. Geometric blur (Zhang et al., 2006; Berg et al., 2005). These demwrigre initially com-
puted at representative points of the image. Later, the distance betweiemages is obtained
as the average distance of nearest descriptor pairs.

2. PHOW gray/color (Lazebnik et al., 2006). SIFT features are cordmlgasely on a regular
grid and quantized in 300 visual words. Spatial histogram with#dsubdivisions are then
formed. The color variant concatenates SIFT descriptors computee ¢t3¥ channels.

3. Self-similarity (Shechtman and Irani, 2007). Similar to the PHOW featuess;riptors are
guantized in 300 visual words, and a spatial histogram of sizd 4

In case of the Oxford flowers data set, the seven feature descriptgi®yed in Nilsback and
Zisserman (2006, 2008) are used here.

Each feature descriptor mentioned above, describes the image in terms fefatere values.
As mentioned previously, it was observed in the literature (see NilsbacKiasdrman, 2006) that
employing feature values obtained from various descriptors simultaneisustyeficial for object

7. Available athttp://www.vision.caltech.edu/Image_Datasets/Caltec h101.
8. Available athttp://www.vision.caltech.edu/Image_Datasets/Caltec h256.
9. Available athttp://www.robots.ox.ac.uk/ ~vgg/data/flowers/17/17flowers.tgz .
10. Software available &ttp://www.robots.ox.ac.uk/ ~ vgg/software/MKL/v1.0/index.html
11. Corresponding distance matrices are availablehtgt//www.robots.ox.ac.uk/ ~vgg/data/flowers/17/
index.html
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categorization; however not all of the features obtained using a fedés@iptor may be useful.
The state-of-the-art performance on these data sets is achieved by @dolefy which gener-
ates kernels using each of the feature descriptors and then choosestlanong them using the
framework of MKL (Varma and Ray, 2007; Nilsback and Zisserman, 2008¢ MKL formulation
employed in Varma and Ray (2007) Nilsback and Zisserman (2008) isadenfwto the traditional
block |1 regularization based MKL formulatida (henceforth denoted bylIKL ). Hence here we
compare the performance of VSKL formulations with thaM¥L . As a baseline we also compare
performance with an SVM classifier built using the kernel as sum of allittemdkernels (henceforth
denoted bySVM).

From each feature descriptor, five kernels were generated by gahgrwidth-parameter of the
Gaussian kernel (from 10 to 1 on a log-scale). Since the resulting kernels are naturally grouped
according to the descriptor they were generated from and also it is trueadtia feature descriptor
is critical (may not be equally critical) for good categorization, it is obviousnpley the proposed
VSKL formulations by assuming kernels are grouped according to déssigenerating them.
Thus, in case of the Caltech data sets; 4 andn; =5V j and in case of Oxford flowers data set,
n=7andn; =5V j. Note thatSVM andVSKL ; differ exactly in the way the kernels are grouped:
for VSKL ;1 the kernels are grouped by their generating feature descriptors aghiemsSVM each
group is characterized by a single kernel (thatis¥M n=20,n; = 1V j in case of Caltech data
setanch=35n; =1V j in case of Oxford flowers data set).

In order that the experimental results are comparable to others in literatarfmllowed the
usual practice of generating training and test sets, in case of eactetlataisg a fixed number of
images from each object category and repeating the experiments wittediffendom selections
of images. For the Caltech-101, Caltech-256 and Oxford flowers dastaveehave used 15, 25, 60
images per object category as training images and 15, 15, 20 images proaliggory as testing
images respectively. The hyper-parameters of the various formulatierestwned using suitable
cross-validation procedures. In case of the Caltech-101 data setcivaeies reported are the test-
set accuracies with the tuned set of hyper-parameters, averagetdoandomly sampled training
and test splits. Since the Caltech-256 data set has large number of edladgbe experiments are
computationally intensive, the results are reported only for a single splitada of Oxford flow-
ers data set, the accuracies are averaged over the 3 standard datareylitsd with the source
images'® Also, we employ the 1-vs-rest methodology in order to handle the multi-classggms
arising in these data sets. Table 1 reports the average testset accachdesd with the various
kernel learning techniques. The numbers in brackets appearing batbwaecuracy indicate the
total number of SVM calls made for solving the corresponding formul&tiand throw light on
the trade-off between accuracy and computation. In addition to compavigoi$VM andMKL ,
we also report results of comparison with the CKL formulations (Szafiaetsil., 2008), which
also assume kernels are grouped. Note that the CKL formulations wepawibusly applied to
object categorization and we wish to compare them here with VSKL in ordérdssson the need
for solving (1) for the caseg > 1. Recall that ifg < 1 then (1) can be solved using the wrapper

12. The formulation employed by Varma and Ray (2007) and NilsbadkZssserman (2008) also has additional con-
straints for including prior information regarding weights of kernels. &isach constraints lead to independent
improvements with all MKL formulations, the experiments here comparé.¥tmulations without the additional
constraints.

13. Available ahttp://www.robots.ox.ac.uk/ ~ vgg/data/flowers/17/datasplits.mat

14. Stopping criterion was choosen same across different methods.
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VSKL q MKL [ SVM CKL 12
q=1[g=2[g=3]qg= q=0.75| q=0.85] q=0.99
Caltech-101
66.44| 67.03| 67.06| 67.07 | 54.05| 64.61| 65.74 64.35 63.21
(50) (79) (70) (65) (24) 1) (36) (34) (36)
Caltech-256
32.06| 34.71| 35.39| 36.69 | 21.07 | 34.04 34.43 34.40 34.43
(100) (201) (188) (151) (21) 1) (33) (32) (34)
Oxford
85.59| 85.69| 85.69| 85.29 | 85.49| 85.98| 86.08 86.08 86.08
(41) (70) (68) (64) (121) 1) (54) (50) (51)

Table 1. Comparison of average testset accuracies achieved by ithgsviarmulations

approaches of Szafranski et al. (2008). Also recall the notationfahaiulation in (1) forg > 1
corresponds t&SKL 4 and forq < 1 corresponds t€KL 1 »q. The results clearly indicate that the
proposed methodology is suitable for object categorization tasks and ftsrpance better than
state-of-the-art in case of the Caltech data sets; whereas in caseoofl@ata set, the performance
is comparable to state-of-the-art. Also, in case of oxford flowers datahgeperformance of all
the methods is more or less the same. Another important observation, whigie@adly evident
in case of the Caltech-256 data set, is that the performance of VSKL depenthe parameter
and hence it is important to solve the VSKL formulation efficiently for varioakies ofg. This
demonstrates the usefulness of the proposiedrVSKL algorithm, which efficiently solves the
formulation at various values of > 1. Automatic tuning ofy is indeed an open question and calls
for further research. Lastly, we note that the accuracies 8Nt andVSKL 1, which differ in the
way the kernels are grouped, are noticeably different—which is exghecte

4.2 Scalability Experiments

This section presents results comparing scalabilitynioorVSKL ,1° SimpleMKL 16 and Hessian-
MKL " in solving theMKL formulation. Note that all these algorithms solve an SVM problem
at each step and hence are comparable. For fairness in comparis@\yNhproblem arising at
each step was solved using the same solver in case of all the three algorithenstopping cri-
teria employed in all cases was relative difference in objective value bessgthan 10* (that

is, (foid — frew)/fold < 1074 The evaluation was made on four data sets from the UCI reposi-
tory (Blake and Merz, 1998): Liver, Wpbc, lonosphere and Soranilowing the experimental
set-up of Rakotomamonjy et al. (2008), each data set was split into trainéhtgst sets using 70%
and 30% data points respectively. For each data set, kernels wematgehkbased on individual
features using different width parameters for the Gaussian kernelreFigagompares the average
time'® taken for solving the formulation (this excludes time taken for building kerrmisy 20
different random training-test splits as a function of the number of kerii&e value of regulariza-

15. Code available dittp://mllab.csa.iisc.ernet.infvskl.html
16. Code available dittp://asi.insa-rouen.fr/enseignants/
17. Code available dttp://www.chapelle.cc/olivier/ams/
18. The standard deviation in the time taken is also shown usmg verticataash point in the plot.

~ arakotom/code/mklindex.html
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Figure 1: Plots of average time (in secs) taken by various solvers

tion paramete€ was fixed at 1000 in all cases. The figure clearly showsrttrairVSKL scales
better tharsimpleMKL andHessianMKL . When large number of candidate kernels are available,
mirrorVSKL  outperforms them in terms of computational performance. In some cases|ire
time with the proposed method is as low as aroup@ df that withsimpleMKL and around 16 of

that with HessianMKL !
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The proposed algorithm scales better thiapleMKL primarily because of two reasons: firstly,
the per-step auxiliary problem in case of the proposed algorithm hasaytieal solution and
the step-size also can be chosen very easily. Hence the predominanttatiompat every step is
only that of computing the gradient (that is, solving the SVM). HoweveraseofsimpleMKL , the
reduced gradient needs to be computed and moreover the step-sigéaleedomputed using a 1-d
line search (which may further involve solving few SVMs). Also, in casélessianMKL , the per-
step cost is high mainly due to the second order computations. Secondlyrttenof iterations
in solving the formulation is nearly-independent of the number of kernelase of the proposed
MD based algorithm. However no such statement can be made in case ofseithiekKL or
HessianMKL .

In order to get a better insight, the number of SVM calls madsitbpleMKL andmirrorVSKL
(both of which are first order methods and hence comparable wrt. nushlterations/SVM calls)
are compared in Figure 2. Itis interesting to see that the number of SVM cailésontess remains
a low value in case ahirrorVSKL ; whereas it shoots up steeply in casesiogfpleMKL . The fact
that the number of SVMs calls is low also implies tiatrorVSKL scales better thasimpleMKL
even wrt. no. of examples and hence is ideal for applications with largesdttas well as large
number of candidate kernels.

Also, it was observed that the number of iterations required by the BCAitigoto converge
(with various values of)) was typically very small. In case of all data sets, the maximum number
of iterations for convergence of BCA was 4 iterations. Hence the nunibiéerations required
by the BCA algorithm can be assumed to be a constant and the computationaérity bound
O (MPniotlognmax/€?) indeed is valid.

5. Conclusions

This paper makes two important contributions to the MKL literature: a) a spenified-norm
regularization based MKL formulation which is well-suited for object categdion and other
multi-modal tasks is studied. b) An efficient mirror-descent based algomfidhrsolving the new
formulation is proposed. Since the traditional MKL formulation can be reakizea special of the
proposed formulation, the efficient algorithm is also of independent sttaréhe MKL community.
A detailed proof of convergence of the algorithm was also presentedirigatpesults show that the
new formulation achieves far better generalization than state-of-thdsjadtaategorization tech-
niques. Scaling experiments show that the mirror-descent based algottperforms traditional
gradient descent based approaches. In some cases the prododmsétl algorithm achieved a 8
times speed-up ovempleMKL !
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Appendix A.

In this section we prove proposition 3.1, which says & convex and Lipschitz continuous under
a mild regularity condition—all the eigenvalues of the given gram-matricesrate &nd non-zero:
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Proof The convexity ofG follows from the fact that it is point-wise maximum over functions of the

form !
n j )\ )
f(ayA)=1"a-~a" lekleW a,
2 i= Yj

which are linear w.r.A. A sufficient condition forG to be Lipschitz continuous is the sub-gradient
should be norm bounded. Defiyy, = a*Tija* wherea* andy* denote optimal values, that
maximizef,(a,y), for a givenA. From the definition of andp we immediately have the following
bound
(| < Djk < pjo 3.

The sub-gradient vector, evaluated at angan be obtained by differentiatifgata* andy*. The
strategy would be to exploit the above limits D to bound the norm of the sub-gradient. To this
end we eliminatg/ in G (using proposition 3.3) and then examine the sub-gradient:

Caseqg>1

s (SyNsyDy, )T
aG _ _lDJk ZJ (Zk Lk ]k) if zk/)\Jk/DJk/ >O,

0 otherwise.

O\ jk 0 otherwise.
From these equations, it is easy to see that:

.
a)\jk

g (gt +1)-1

1/n qi* 2\ “oF (G
< Z (= o* @+
<2 ()7 (Wia3)

In caseq =1, we have‘a‘;%‘ < ula*|[3. Now, we know thatt € Sy = 0 <C Vi = [[a*|je <
C= ||a*||2 < /M wherems, is the number of support vectors. These relationships shows that
I0AG||w < Lg Where

q*(qf+1)—1

1 g +1
Le = { 2(D)® (umyC?) @@ T if g> 1,

SHM,C? if g=1.
Now, since||0,G||» is bounded, we have th& is Lipschitz continuous with respect tp norm
with Lipschitz constankg. |
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