1125-05-2579 Stephen M. Gagola III* (gagolasm@miamioh.edu), Department of Mathematics, Miami University, Oxford, OH 45056. Multiplicative properties of partitions of integers.
Here we give a combinatorial proof of an inequality that was first proven by Christine Bessenrodt and Ken Ono. Bessenrodt and Ono proved that the number of partitions of n, say $p(n)$, satisfies $p(a) p(b)>p(a+b)$ for $a, b>1$ and $a+b>9$ by using a result of Lehmer and asked whether a combinatorial proof exists. Here we prove the inequality combinatorially and show that the proof can also be extended to prove the analogous inequality for k-regular partitions with $k \geq 2$. For $2 \leq k \leq 6$, these inequalities were first proven to hold for k-regular partitions by Olivia Beckwith and Christine Bessenrodt using similar methods to the $p(n)$ case. (Received September 20, 2016)

