Vol. 98
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-27
Comparison of High Impedance Textured Substrates for Suppression of Surface Waves in Microstrip Antennas with Solid and Hollow Metallic Pins
By
Progress In Electromagnetics Research M, Vol. 98, 21-34, 2020
Abstract
High Impedance Textured Substrate is presented for suppression of Surface Waves in Microstrip Antennas. Surface wave propagation limits the radiation efficiency, bandwidth, gain, alters the main beam radiation pattern and increases side lobe levels as well as the back lobes. A novel technique to suppress the surface waves with periodic arrangement of metallic cylindrical pins embedded in the substrate except the area underneath the radiating microstrip patch is presented here. Two structures with solid as well as hollow cylindrical pins are analysed with Spectral Domain Analysis. The textured pin bed structure creates negative permittivity and high capacitive impedance and thus suppresses the propagation of TM-surface waves. The gain of 11.83 dB with an enhancement of 6dB over normal microstrip patch antenna is achieved. Further an increase of 1.61 dB gain with 12.27% improvement in radiation bandwidth is observed in the antenna structure with hollow cylindrical pins as compared to that of solid cylindrical pins. A uniform gain of more than 11 dB is achieved with a percentage bandwidth of 17.43%.
Citation
Manidipa Roy, and Ashok Mittal, "Comparison of High Impedance Textured Substrates for Suppression of Surface Waves in Microstrip Antennas with Solid and Hollow Metallic Pins," Progress In Electromagnetics Research M, Vol. 98, 21-34, 2020.
doi:10.2528/PIERM20081902
References

1. Garg, R. and P. Bhartia, Microstrip Antenna Design Handbook, 43-48, Artech House, London, 2001.

2. James, J. R. and P. S. Hall, Handbook of Microstrip Antenna, 116-118, Peter Peregrinus, London, 1989.

3. Emhemmed, A. S. and A. A. Aburwein, "Surface waves reduction in microstrip antennas," Proc. 5th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 438-442, Chengdu, China, 2013.

4. Brown, J. M. A., "Artificial dielectrics having refractive indices less than unity," Proc. IEE, Radio Section, Monograph, Vol. 62, 11-23, 1953.

5. Rotman, W., "Plasma simulation by artificial dielectrics and parallel plate media," IRE Transactions on Antennas and Propagation, 81-96, January 1961.

6. King, R. J., D. V. Thiel, and K. S. Park, "The synthesis of surface reactance using an artificial dielectric," IEEE Transactions on Antennas and propagation, Vol. 31, No. 3, 471-476, May 1983.
doi:10.1109/TAP.1983.1143071

7. Seivenpiper, D. and B. Zhang, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 11, 2059-2074, November 1999.

8. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Transactions on Antennas and Propagation, Vol. 1, 10-13, October 2002.

9. Fallah-Rad, M. and L. Shafai, "Gain enhancement in linear and circularly polarised microstrip patches antennas using shorted metallic patches," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 152, No. 3, 138-148, June 2005.
doi:10.1049/ip-map:20045055

10. Buell, K., H. Mosallaei, and K. Sarabandi, "Electromagnetic metamaterial insulator to eliminate substrate surface waves," Proc. of IEEE Antennas and Propagation Society International Symposium, 574-577, 2005.

11. Silveirinha, M., G. Carlos A. Fernandes, and J. R. Costa, "Electromagnetic characterization of textured surfaces using textured pins," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 2, 405-415, February 2008.
doi:10.1109/TAP.2007.915442

12. Komanduri, V. R., D. R. Jackson, J. T. Williams, and A. R. Mehrotra, "A general method for designing reduced surface wave microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 2887-2894, June 2013.
doi:10.1109/TAP.2013.2254441

13. Gera, A. E., "The radiation resistance of a microstrip element," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 4, 568-570, April 1990.
doi:10.1109/8.52277

14. Silveirinha, M. G., "Nonlocal homogenization model for a periodic array of ε-negative rods," Phys. Rev. E, Vol. 73, No. 4, 046612 1-046612 10, April 2006.

15. Pozar, D. M., "Rigorous closed form expressions for the surface wave loss of printed antennas," Electronic Letters, Vol. 26, No. 13, 954-956, June 1990.
doi:10.1049/el:19900622

16. Roy, M. and A. Mittal, "Surface wave suppression in LHCP microstrip patch antenna embedded on textured pin substrate," Progress In Electromagnetic Research C, Vol. 89, 171-180, 2019.
doi:10.2528/PIERC18072802

17. Qu, D., L. Shafai, and A. Foroozesh, "Improving microstrip patch antenna performance using EBG substrates," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 153, No. 6, 558-563, December 2006.
doi:10.1049/ip-map:20060015

18. Ghosh, A., B. Sarkar, and A. De, "High gain compact rectangular microstrip patch antenna using substrate integrated artificial," 2012 International Conference on Communications, Devices and Intelligent Systems (CODIS), 224-227, Kolkata, 2012.

19. Mukherjee, B., et al., "A novel hemispherical dielectric resonator antenna on an electromagnetic band gap substrate for broadband and high gain systems," Int. J. Electron. Commun. (AEU), Vol. 68, No. 12, 1185-1190, 2014.
doi:10.1016/j.aeue.2014.06.007

20. Han, Z.-J., W. Song, W.-J. Li, and X.-Q. Sheng, "High-gain and low-profile EBG patch antenna design," 2016 Progress In Electromagnetic Research Symposium (PIERS), 1676-1679, Shanghai, China, 2016.