OSciMedCentral

Research Article

Fish Fauna Diversity and Conservation Status of Pulicat Lagoon in Tamil Nadu

Sivalingam Govindan and Ramanibai Ravichandran*

Department of Zoology, University of Madras, India

Abstract

Fish fauna is considered as a good indicator of water quality. The aim of this study was to assess the influence of environmental factors on the fish distribution and conservation status in Pulicat Lagoon. Bimonthly surveys were conducted from September 2013 to August 2015 in which 83 fish species were recovered, belonging to 14 orders and 50 families. The dominant order was Perciformes which were represented by 44 species. Various physico-chemical parameters and nutrients were found to be suitable for growth of plankton and stocking of fish species. Hence, the present study there are only few fish species were near threatened and endangered of in the Pulicat therefore serious conservation action and renovation is required to prevent the loss of biodiversity.

INTRODUCTION

Fishes are an important vertebrate group of the animal world and contribute overwhelmingly to global biodiversity. Fishes are used as a food source and contain many vital vitamins and fatty acids. The study of fish and their stability is important because fish populations very significantly from year to year. They play an important role, as they are not only useful for food and recreation, but also act as a tool for biological control by feeding upon the planktonic population and aquatic vegetation [1]. Worldwide 27,977 valid species of fishes under 62 orders, 515 families and 1,494 genera [2]. Indian species represent about 8.9 % of the known fish species in the world. Venkatraman [3] estimated 4,000 species of fish belonging to 969 genera, 254 families and 40 orders in the Indian region. The coastal region is a place of hectic human activity owing to urbanization and industrialization resulting in human interference of rapid development. In recent years, the coastal ecosystems have become highly disturbed and very much threatened and attributed to problems like pollution, siltation, erosion, flooding, salt water intrusion and storm surges [4]. Pulicat Lagoon, which is located in the North Chennai coastal region, is a typical brackish water ecosystem of great importance with regard to its biodiversity and aesthetic value. Due to its morphological and brackish water characteristics, it is the most suitable breeding and nursing ground habitat for fishes in the North Chennai coastal region. It runs parallel to the coast of the Bay of Bengal, being separated from it by an extensive sand-strip called the Sriharikota Island, on which the Sriharikota High Altitude Range (SHAR) of the Indian Space Research Organization (ISRO) is located [5]. Water is the natural habitat of fishes and other aquatic animals, it is therefore of great

Annals of Aquaculture and Research

*Corresponding author

Ramanibai Ravichandran, Department of Zoology, University of Madras, Unit of Aquatic biodiversity, Guindy Campus, Chennai-25, Email: rramani8@hotmail.com

Submitted: 06 August 2016

Accepted: 31 August 2016

Published: 02 September 2016

ISSN: 2379-0881

Copyright

© 2016 Ravichandran et al.

Keywords

- Pulicat lagoon
- Physico- chemical properties
- Biodiversity

importance to study water quality while studying fish production especially when done in an artificial setting [6]. In particular, fish populations are highly dependent upon the variations of physicochemical characteristics of their aquatic habitat which supports their biological functions [7]. The present study was conducted to determine the physico-chemical parameters of water, icthyofaunal diversity and conservation status of Pulicat Lagoon.

MATERIALS AND METHODS

Study area

The fishes were collected from the Pulicat Lagoon during the period of Sept 2013 - Aug 2015 from the following locations Barmouth (S1), Kunankuppam (S2), Light house kuppm (S3) Sattankuppam (S4) and Jameelabad (S5).

Collection and analysis

The water quality parameters like temperature, pH, dissolved oxygen etc., must be watched commonly, individually or synergistically to keep the aquatic habitat positive for existence of fish. Water samples were collected early in the morning in sterilized sampling bottles and physico-chemical parameters like pH, (Figure 1), temperatures were analysed at site. Dissolved oxygen (DO), phosphate were analyzed in accordance with American Public Health Association [8].

Fish samples were collected from different stations during the study period from September 2013 to August 2015 with the help of local fishermen using different types of nets namely gill nets, cast nets and dragnets [9]. Fish specimen were collected

Cite this article: Govindan S, Ravichandran R (2016) Fish Fauna Diversity and Conservation Status of Pulicat Lagoon in Tamil Nadu. Ann Aquac Res 3(2): 1018.

⊘SciMedCentral

and preserved in 10% formaldehyde solution. Fishes were keyed and identified using Day [10-11].

RESULT AND DISCUSSION

Eighty three species, 14 orders and 50 families were found during our survey. The Perciformes were dominant with 44 species, followed by Tetraodontiformes with 9 species, Pleuronectiformes with 7 species, Clupeiformes, Siluriformes Mugiliformes with 3 species each, Beloniformes with 5 species, Anguilliformes and Scorpaeniformes with 2 species each, Carcharhiniformes, Gonorynchiformes, Myliobatiformes, Torpediniformes and Syngnathiformes 1 species each (Figure 2) (Table 1). Regarding their conservation status 22 species were least concern, 2 species were data deficient, one species for vulnerable (*Epinephelus lanceolatus*), Endangered (*Thunnus thynnus*), Near Threatened (*Gymnura poecilura*) and 57 species were not assessed (IUCN-Version 2015) (Table 1).

Perciformes were the dominant order that were recovered from our surveys, a trend that is similar across various independent studies. Nath and Patra [12] reported 25 Perciformes species from Hooghly river of West Bengal India. Abu Hanif [13] investigated 35 Perciformes species from Southern coastal waters of Bangladesh and 27 Perciformes species of Nizampatnam coastal Andhra Pradesh [14]. Thirteen species were recorded from Cuddalore, located at the southeast coast of India by Asta Lakshmi [15]. Similarly, in the present study, 44 species were the dominant order (Table 1).

Temperature is an important factor for the growth of biodiversity and influences the biological, biochemical, chemical characteristics of aquatic systems [16]. In the present study, temperature minimum as 24.6°C and maximum was 32.2°C at study area (Figure 3). It varied as expected with seasonal climates and showed a great variation season wise. According to Food and Agriculture Organization (FAO) report [17], the increase of

temperature directly or indirectly impacts species distribution and the seasonality of production in fishes. Temperature is commonly considered the most important single ecological factor in the coastal and estuarine ecosystem which can influence the distribution of marine organisms [18].

recorded slightly alkaline рH was in Pulicat and Lagoon were lowest 7.6 highest 9 (Figure 4). According to the report of Northeastern Regional Aquaculture Centre (NRAC) by Fluctuations in pH values during different seasons of the year is attributed to factors like removal of carbondioxide by photosynthesis through bicarbonate poverty, dilution of sea water by fresh water influx, reduce of temperature and decomposition of organic matter as suggested by Zingde et al., [19]. In the present investigation pH an attention indicates the alkaline nature of water in the study area. Dissolve oxygen observed were minimum 0.6 mg/l and maximum 4.9 mg/l (Figure 5). Solubility of oxygen in water is inversely proportional to temperature [20]. The low dissolved oxygen concentration observed during summer may be attributed to the higher salinity of the water, higher temperature and less inflow of freshwater coupled with biological processes such as consumption of available oxygen by the organisms for respiration and active decomposition of organic matter during summer. It is well known that the temperature affect the dissolution of oxygen [21].

Additional the bulk of weathering of rocks and soluble alkali metal phosphates in the upstream area are approved into the estuaries [22]. The addition of super phosphates applied in the agricultural fields as fertilizers and alkyl phosphates used in households as detergents can be other sources of inorganic phosphate throughout the monsoon season [23]. The variation may also be due to the processes like adsorption and desorption of phosphates and buffering action of sediment under varying environmental conditions [24]. In the present study, the phosphate lowest was 3.29 mg/ml during at summer and highest 5.44 was observed in monsoon (Figure 6).

Figure 1 Satellite map of Pulicat lagoon (Source: Google Earth).

⊘SciMedCentral

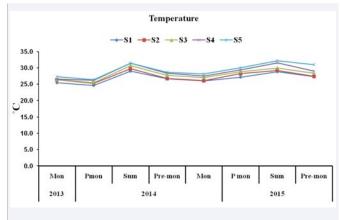
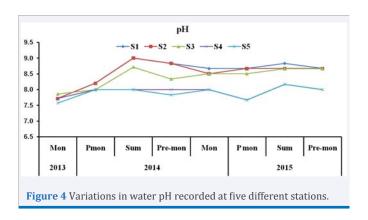
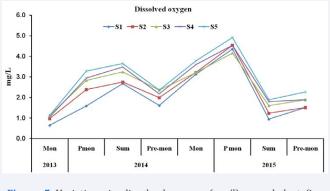


Table 1: List of fish fauna r	corded from Pulicat lagoon.
-------------------------------	-----------------------------


Noa	Order	Family	Scientific Name	IUCN Red list 2015
	Perciformes	Acanthuridae	Acanthurus mata	LC
	Perciformes	Carangidae	Alepes kleinii	NA
	Perciformes	Carangidae	Alectis indica	NA
	Perciformes	Carangidae	Alectis ciliaris	LC
	Perciformes	Lutjanidae	Aphareus rutilans	NA
	Siluriformes	Ariidae	Arius thalassinus	NA
	Tetraodontiformes	Balistidae	Balistes niger	LC
	Beloniformes	Belonidae	Belone strongylurus	NA
	Perciformes	Carangidae	Caranx heberi	NA
	Gonorhynchiformes	Chanidae	Chanos chanos	NA
	Tetraodontiformes	Tetraodontidae	Chelenodon patoca	NA
	Clupeiformes	Chirocentridae	Chirocentrus nudus	NA
	Siluriformes	Clariidae	Clarias batrachus	LC
	Pleuronectiformes	Cynoglossidae	Cynoglossus puncticeps	NA
	Pleuronectiformes	Cynoglossidae	Cynoglossus macrostomus	NA
	Perciformes	Haemulidae	Diagramma pictum	NA
	Tetraodontiformes	Diodontidae	Diodon hystrix	LC
	Perciformes	Echeneidae	Echeneis brachyptera	LC
	Perciformes	Serranidae	Epinephelus fasciatomaculosus	NA
	Perciformes	Ephippidae	Ephippus orbis	NA
	Perciformes	Serranidae	Epinephelus lanceolatus	V
	Perciformes	Serranidae	Epinephelus retouti	NA
	Perciformes	Cichlidae	Etroplus suratensis	LC
	Perciformes	Scombridae	Euthynnus affinis	LC
	Beloniformes	Exocoetidae	Exocoetus bahiensis	LC
	Beloniformes	Exocoetidae	Exocoetus poecilopterus	NA
	Syngnathiformes	Fistulariidae	Fistularia serrata	NA
	Perciformes	Carangidae	Formio niger	NA
	Perciformes	Gerreidae	Gerres lucidus	NA
	Pleuronectiformes	Pleuronectidae	Glyptocephalus cynoglossus	NA
	Myliobatiformes	Gymnuridae	Gymnura poecilura	NT
	Anguilliformes	Muraenidae	<i>Gymnothorax reticularis</i>	NA
	Beloniformes	Hemiramphidae	Hemiramphus limbatus	NA
	Pleuronectiformes	Paralichthyidae	Hippoglossina oblonga	LC
	Perciformes	Kyphosidae	Kyphosus vaigiensis	LC
	Perciformes	Leiognathidae	Leiognathus splendens	LC
	Perciformes	Trichiuridae	Lepturacanthus savala	NA
	Perciformes	Lutjanidae	Lutjanus ehrenbergii	NA
	Perciformes	Lutjanidae	Lutjanus jocu	NA
	Perciformes	Lutjanidae	Lutjanus Priacanthid	NA
	Mugiliformes	Mugilidae	Mugil cephalus	LC
	Anguilliformes	Muraenesocidae	Mugii cephalas Muraenesox cinereus	NA
	Carcharhiniformes	Triakidae	Mutuenesox cinereus Mustelus canis	NA
	Scorpaeniformes	Cottidae	Musterus curris Myoxocephalus octodecemspinosus	NA
	Torpediniformes	Narcinidae	Narcine timlei	DD
		Clupeidae	Nematalosa nasus	LC
	Clupeiformes			
	Perciformes	Nemipteridae	Nemipterus bipunctatus	NA
	Perciformes	Nemipteridae	Nemipterus metopias	NA
	Perciformes	Nemipteridae	Nemipterus randalli	NA
	Perciformes	Sciaenidae	Nibea maculata	NA
	Perciformes	Lutjanidae	Pinjalo pinjalo	NA
	Scorpaeniformes	Platycephalidae	Platycephalus indicus	DD
	Perciformes	Haemulidae	Plectorhynchus gibbosus	NA
	Siluriformes	Plotosidae	Plotosus canius	NA
	Perciformes	Polynemidae	Polydactylus quadrifilis	LC
	Perciformes	Haemulidae	Pomadasys maculatus	LC


⊘SciMedCentral-

Perciformes	Gobiidae	Pseudapocryptes lanceolatus	LC
Perciformes	Monodactylidae	Psettus argenteus	NA
Pleuronectiformes	Psettodidae	Psettodese rumei	NA
Pleuronectiformes	Paralichthyidae	Pseudorhombus arsius	NA
Perciformes	Rachycentridae	Rachycentron canadum	LC
Perciformes	Scatophagidae	Scatophagus argus	LC
Perciformes	Scombridae	Scomberomorus guttatus	NA
Perciformes	Carangidae	Scomberoides tala	NA
Perciformes	Leiognathidae	Secutor insidiator	NA
Perciformes	Siganidae	Siganus javus	NA
Clupeiformes	Engraulidae	Stolephorus commersonii	NA
Beloniformes	Belonidae	Strongylura strongylura	NA
Perciformes	Terapontidae	Terapon jarbua	LC
Perciformes	Terapontidae	Terapon puta	NA
Tetraodontiformes	Tetraodontidae	Tetrodon inermis	NA
Tetraodontiformes	Tetraodontidae	Tetrodon lineatus	NA
Tetraodontiformes	Tetraodontidae	Tetrodon oblongus	LC
Tetraodontiformes	Tetraodontidae	Tetrodon reticularis	LC
Perciformes	Siganidae	Teuthis vermiculata	NA
Perciformes	Scombridae	Thunnus thynnus	Е
Perciformes	Carangidae	Trachinotus botla	NA
Tetraodontiformes	Triacanthidae	Triacanthus biaculeatus	NA
Perciformes	Carangidae	Trachurus novaezelandiae	NA
Tetraodontiformes	Triacanthidae	Triacanthus brevirostris	NA
Mugiliformes	Mugilidae	Valamugil cunnesius	NA
Mugiliformes	Mugilidae	Valamugil seheli	NA
Pleuronectiformes	Soleidae	Zebrias quagga	NA

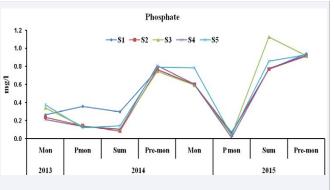


Figure 6 Variations in phosphate (mg/l) recorded at five different stations.

⊘SciMedCentral-

fauna of Pulicat lagoon in order to protract biodiversity and the balance of this aquatic ecosystem.

ACKNOWLEDGEMENT

The authors are thankful to DST (SERB), for providing financial assistance Ref: No SR/SO/AS-12/2012.

REFERENCES

- Rawal R, Deshmukh PS. Biodiversity of Fish Fauna In Lakhapura Reservoir, Bhikangaon Tehsil, Khargone District, M.P. International Journal of Innovative Research and Advanced Studies. 2016; 3: 75-77.
- Nelson JS. Fishes of the World. Forth Edition, John Wiley and Sons, Inc. 2006; 1-601.
- 3. Venkatraman K. Proceedings of Taal 2007P: the 12th World Lake Conference. 2008; 392-400.
- Ramesh R, Nammalwar P, Gowri VS. Database of coastal information of Tamil Nadu. Report submitted to environmental information system (ENVIS) Centre Department of Environment, Government of Tamil Nadu. 2008; 1-133.
- Sanjeeva Raj PJ. Strategies for conserving the macro fauna of Pulicat Lake - A case study. Natural aquatic ecosystems of India, thematic biodiversity strategy and action plan, The national biodiversity action plan, India. 2003; 228-238.
- Agbaire, Odafevejiri P, Akporido, Omorovie, S Onos EO. Determination of some physicochemical parameters of water from artificial concrete fish ponds in abraka and its environs, Delta State, Nigeria. International Journal of Plant, Animal and Environmental Sciences. 2015; 70-76.
- 7. Mushahida-Al-Noor1 S, Kamruzzaman SK. Spatial and temporal variations in physical and chemical parameters in water of Rupsha River and relationship with edaphic factors in Khulna South Western Bangladesh. International Journal of Science and Research. 2013; 460-467.
- 8. American Public Health Association. Standard methods for examination of Water and wastewater, 20th Edition, American Public Health Association, Washington D.C. 1985.
- 9. Talwar PK, Jhingran AG. Inland fisheries of India and adjacent countries. Oxford and IBH Publ. Com. New Delhi. 1991; 1-2.
- 10.Day F. The fishes of India, being a natural history of the fishes known to inhabit the seas and freshwaters of India, Burma and Ceylon, Quaritch, London. 1878.
- 11. Day F. The fishes in India: Being a natural history of the fishes known to inhabit the seas and freshwater of India, Burma, Ceylon. Jegmander Book Agency, New Delhi. 1994; 1: 778.
- 12. Nath AK, Patra A. Survey on the present status of fish species diversity

in a stretch of Hooghly River of West Bengal, India. International Journal of Fisheries and Aquatic Studies. 2015; 3: 244-250.

- 13. Abu Hanif MD, BakarSiddik MA, Reaz Chaklader MD, Nahar A, Mahmud S. Fish diversity in the southern coastal waters of Bangladesh: present status, threats and conservation perspectives. Croatian Journal of Fisheries. 2015; 73: 148-161.
- 14. Prabhavathi K, Krishna PV, Panchakshari V, Swapna CH. Fish resources in Nizampatnam coast, Andhra Pradesh. International Journal of Advanced Research. 2015; 3: 999-1004.
- 15. Asta Lakshmi S, Sundaramanickam A. Biodiversity of reef ichthyofauna in Cuddalore Coast, Southeast Coast of India. International Journal of Environmental Sciences. 2011; 1: 1- 2.
- 16. Khanna DR, Ishaq F. Impact of water quality attributes and comparative study of icthyofaunal diversity of Asan lake and River Asan. Journal of Applied and Natural Science. 2013; 5: 200-206.
- 17.FAO. Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations, Rome. The State of World Fisheries and Aquaculture. 2010; 115-116.
- 18. Kinne O. Physiology of estuarine organisms with special reference to salinity and temperature: general Teske and Wooldridge: Affinities of estuarine macroinvertebrates to salinity and sediment type 191 aspects. In: Estuaries, (ed.) G.H. Lauff. 1967; 525-540.
- 19.Zingde MD, Abidi SAH, Sarma P, Rokade MA. Base water quality off Thailand. Contributions in marine sciences. Qasim SZ, 16th birthday felicitation volume. 1987; 307-318
- 20. Carpenter JH. The oxygen content of air-saturated fresh waters over ranges of temperature and atmospheric pressure of limnological interest. Limnology and Oceanography. 1966; 11: 264-277.
- 21.Vijayakumar S, Rajan KM, Mridula Mendon R, Hariharan. Seasonal distribution and behavior of nutrients with reference to tidal rhythm in the Mulki estuary, Southwest coast of India. Journal of the Marine Biological Association of India. 2000; 42: 21-23.
- 22.Govindasamy C, Kannan L, Azariah J. Seasonal variation in physicochemical properties of primary production in the coastal water biotopes of coromandel coast Indian. Journal of Environmental Biology. 2000; 21: 1-7.
- 23.Bragadeeswaran S, Rajasegar M, Srinivasan M, Rajan UK. Sediment texture and nutrients of Arasalar estuary, Karaikkal, south-east coast of India. J Environ Biol. 2007; 28: 237-240.
- 24. Rajasegar M. Environmental inventory on Vellar estuary (Southeast coast of India) in relation to shrimp farming. Thesis, Annamalai University, India.1998; 110.

Cite this article

Govindan S, Ravichandran R (2016) Fish Fauna Diversity and Conservation Status of Pulicat Lagoon in Tamil Nadu. Ann Aquac Res 3(2): 1018.