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Abstract. We show that solvability of the abstract Dirichlet problem for

Baire–two functions on a simplex X cannot be characterized by topological

properties of the set of extreme points of X.

1. Introduction

Let X be a compact convex subset of a locally convex space, A(X) stand for

the space of all continuous affine functions on X and let extX denote the set of all

extreme points of X. If f is a bounded function on extX, we may ask under what

conditions f admits an affine extension that preserves as many properties of f as

possible. This question is called the abstract Dirichlet problem (cf. [5, Theorem

3.17]).

The question of solvability of the abstract Dirichlet problem naturally leads to a

geometric notion of a simplex (see [5, Section 3]). If X is a simplex, every bounded

continuous function defined on ext X can be extended to an affine continuous func-

tion on X if and only if ext X is closed (see [5, p. 615] or [1, Satz 2]).

An analogous problem for Baire–one functions on simplices was solved in [16,

Theorem 1], namely, every bounded Baire–one function defined on ext X is ex-

tendible to an affine Baire–one function on X if and only if ext X is a Lindelöf

H–set.

Both these conditions characterize solvability of the abstract Dirichlet problem

for certain classes of functions purely by a topological condition imposed on ext X.
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In particular, if X1, X2 are simplices whose sets of extreme points are homeo-

morphic, the abstract Dirichlet problem for continuous (or Baire–one) functions is

always solvable on X1 if and only if it is always solvable on X2.

These results prompt a natural question whether it is possible to provide such

a characterization for functions of higher Baire classes. Since affine functions of

Baire class two need not satisfy the barycentric formula, it is more reasonable to look

for Baire–two strongly affine extensions. (We recall that a universally measurable

function f ∈ U(X) on a compact convex set X satisfies the barycentric formula (or

is strongly affine), if µ(f) = f(r(µ)), µ ∈ M1(X), where r(µ) is the barycenter of

a probability measure µ on X. It is easy to see that any strongly affine function is

bounded, see, e.g., [8, Satz 2.1].)

The aim of our paper is to show that simplices, whose sets of extreme points are

homeomorphic, may behave quite differently from the point of view of the abstract

Dirichlet problem for Baire–two functions. We even get a stronger result in the

following theorem.

Theorem 1.1. There exist metrizable simplices X1, X2 and a homeomorphism

ϕ : ext X1 → ext X2 such that

(a) ϕ(ext X1) = ext X2;

(b) there exists a bounded Baire–two function on ext X1 that cannot be extended

to a Baire–two affine function on X1;

(c) if α ∈ [2, ω1), any bounded Baire–α function on ext X2 can be extended to

a function of affine class α on X2.

If F is a set of real–valued functions, we inductively define the following sets of

functions: we set F0 = F and having Fβ , β < α, already defined for an ordinal

number α ∈ (0, ω1), we define Fα to be the space of all pointwise limits of bounded

sequences of functions from
⋃

β<α Fβ . If X is a topological space, we write Bb
α(X) =

(C(X))α for the space of all bounded Baire functions of class α, α ∈ [0, ω1). If

F = A(X), the space Aα(X) = (A(X))α is called the functions of affine class α.

The proof of Theorem 1.1 is a modification of the construction used in [14],

where a simplex with peculiar properties was presented. The main tool was to find

a suitable function space and transfer its properties to a compact convex set. (By

a function space H on a compact space K we mean a linear subspace of the space
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C(K) of all continuous functions on K such that H contains constants and separates

points of K.) The idea of the construction used in [14] was to start with a simple

function space and inductively increase its complexity. At the end the projective

limit of the constructed function spaces was taken.

It has turned out that a variant of this construction can be used to produce

examples required by Theorem 1.1. The inductive construction goes as follows: we

start with a simple function space H0 on the unit interval [0, 1] and a set A ⊂ [0, 1]

and increase the complexity of H0 in two different ways. Roughly speaking, the first

modification ensures that points of A are split up infinitely many times, the second

modification splits the points up only once. But both procedures provide function

spaces with the same Choquet boundaries. At the end we take the projective limits

of constructed spaces to get a pair of function spaces on a compact space that give

rise to the required examples.

Since a rather detailed survey of function spaces and their properties is presented

in [14], for the sake of brevity we will follow the notation and definitions from [14].

We just recall that Ub(K) stand for the space of all bounded universally measur-

able functions on a compact space K (i.e., functions that are µ–measurable with

respect to the completion µ of any Radon measure µ ∈ M+(K)). If F ⊂ Ub(K),

we write F⊥ for the space of all measures µ ∈M(K) with µ(f) = 0 for each f ∈ F ,

and F⊥⊥ for the space of all bounded universally measurable functions f satisfying

µ(f) = 0 for each µ ∈ F⊥.

2. Auxiliary results

The following notion will be useful in the main construction.

Definition 2.1. We say that a function spaceH on a compact space K is Baire–one

complemented if there exists a mapping x 7→ µx, x ∈ K, such that

• µx ∈M(K) and sup{‖µx‖ : x ∈ K} <∞;

• µx(h) = h(x) for each x ∈ K and h ∈ H;

• if f ∈ Bb
1(K) and h(x) = µx(f), x ∈ K, then h ∈ Bb

1(K) ∩H⊥⊥.

Remark 2.2. If x 7→ µx, x ∈ K, is the mapping from Definition 2.1, the mapping

P : B1(K) → Bb
1(K) ∩ H⊥⊥ defined as Pf(x) = µx(f), x ∈ K, f ∈ Bb

1(K), is a
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projection of Bb
1(K) onto Bb

1(K)∩H⊥⊥. Since it follows from [9, Theorem 5.1] that

Bb
1(K) ∩H⊥⊥ = H1, the projection P maps Bb

1(K) onto H1.

As in [14, Lemma 3.3], we start with the following classical family of sets (see

[11, pp. 82–86] or [6, Lemma 2.3]).

2.1. Family of sets. Let {Fs : s ∈ N
<N} be a family of subsets of [0, 1] such that

(a) F∅ = [0, 1];

(b) {Fs∧n : n ∈ N} is a disjoint family of nonempty nowhere dense perfect

subsets of Fs;

(c)
⋃
{Fs∧n : n ∈ N} is dense in Fs;

(d) diam Fs < 2−(s1+···+s|s|), s ∈ N
<N.

We remark that the set
⋂∞

n=1

⋃
|s|=n Fs ∈ Π0

3([0, 1])\Σ0
3([0, 1]) (we refer the reader

to [7, Chapter II, Section 11.a] for the notation concerning Borel classes of sets).

Lemma 2.3. Let H be a Baire–one complemented function space on a compact

space K. Then Bb
2(K) ∩H⊥⊥ = H2.

Proof. Assume that P : Bb
1(K)→ H1 is the projection given by a mapping x 7→ µx,

x ∈ K, that satisfies the properties from Definition 2.1.

Given f ∈ Bb
2(K) ∩ H⊥⊥, let {fn} be a bounded sequence of functions from

Bb
1(K) pointwise converging to f . Then Pfn ∈ H1, n ∈ N, and Pfn → Pf by the

Lebesgue dominated convergence theorem. Thus f = Pf ∈ H2. �

Before proceeding, we recall that a probability measure µ on a compact space

K is termed discrete if µ =
∑∞

n=1 anεxn
, where the sum is either finite or infinite,

numbers an are positive,
∑∞

n=1 an = 1 and points xn lie in K. We mention the

following well known easy observation.

Lemma 2.4. Let f be an affine bounded function on a compact convex set X and

µ ∈M1(X) be discrete. Then µ(f) = f(r(µ)).

3. Construction of function spaces

The construction of suitable simplicial function spaces will be done by a modi-

fication of the method used in [14].
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Assume that H is a simplicial function space on a metrizable compact space K

such that Ac(H) = H. Let T be the kernel associated with the mapping x 7→ δx,

x ∈ K. (We recall that δx is the unique H–maximal measure H–representing a

point x ∈ K. We refer the reader to [2, p. 38] for the definition of a kernel.)

Assume that Tf ∈ B2(K) for each bounded Baire–two function f on K.

Let {Fk : k ∈ N} be a pairwise disjoint family of compact subsets of ChHK and

let η ∈ (0, 1).

Let H be Baire–one complemented by a projection P with ‖P‖ ≤ 3 such that

Pf = f on
⋃∞

k=1 Fk.

We define sets L1, L2, L ⊂ K × R as

L1 =

∞⋃

k=1

(Fk × {1/k}) ∪ (Fk × {−1/k}) ,

L2 =

∞⋃

k=1

(Fk × {2/k}) ∪ (Fk × {−2/k}) ,

L =(K × {0}) ∪ L1 ∪ L2 .

Let p : L→ K denote the natural projection. Then L is a metrizable compact space

with the topology inherited from K ×R and K can be considered as a subspace of

L via the mapping x 7→ (x, 0), x ∈ L. Let

H1 = {f ∈ C(L) : f |K ∈ H and

f(x, 0) = cf(x, 1/k) + (1− c)f(x,−1/k), x ∈ Fk, k ∈ N} ,
(1)

H2 = {f ∈ C(L) : f |K ∈ H and

2f(x, 0) = f(x, 2/k) + f(x,−2/k), x ∈ Fk, k ∈ N} .
(2)

Let S denote the kernel on L associated with the mapping

x 7→






εx , x ∈ L \
⋃∞

k=1 Fk ,

1
2 (ε(u,2/k) + ε(u,−2/k)) , x = (u, 0), u ∈ Fk, k ∈ N ,

x ∈ L .

Lemma 3.1. The following assertions hold:

(a) both H1 and H2 are simplicial function spaces (for i = 1, 2, let δi
x denote the

unique Hi–maximal measure for x ∈ L and let T i be the kernel associated

with the mapping x 7→ δi
x, x ∈ L);

(b) Hi = Ac(H
i), i = 1, 2;
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(c) ChH1 L = ChH2 L = (L \K) ∪ (ChHK \
⋃∞

k=1 Fk);

(d) the mapping h 7→ h ◦ p, h ∈ H, provides an isometric embedding of H into

H1 ∩H2;

(e) Sδx = δ2
x, x ∈ K;

(f) T 2f ∈ Bb
2(L) for each f ∈ Bb

2(L);

(g) if f ∈ Ub(L) satisfies equations (2) and f |K ∈ A(H), then f ∈ A(H2);

(h) H2 is Baire–one complemented by a projection Q with ‖Q‖ ≤ 3 such that,

for each f ∈ Bb
1(L),

(h1) (Qf)|K = P (f |K), and

(h2) (Qf)|L1
= f |L1

.

Proof. Since the proof is a slight modification of [14, Lemma 5.1], we point out only

the differences that have to be made.

First we notice that (a), (b), (c) and (d) can be proved in exactly the same way

as in [14, Lemma 5.1].

If x ∈ K, then Sδx is carried by ChH2 L and Sδx ∈Mx(H2). Thus

Sδx = δ2
x .

This proves (e).

Next we verify (f). Assuming that Tf ∈ Bb
2(K) for each f ∈ Bb

2(K), let f be a

bounded Baire–two function on L. We need to show that T 2f ∈ Bb
2(L). We notice

that Sf ∈ Bb
2(L).

By (e), for each x ∈ K we get

(T 2f)(x) = δ2
x(f) = (Sδx)(f)

= δx(Sf) = T ((Sf)|K)(x) .

Since Tf ∈ Bb
2(K) for each f ∈ Bb

2(K) by our assumption, T 2f is a Baire–two

function on K. Since T 2f = f on the open set L \K, T 2f ∈ Bb
2(L).

For the verification of (g), let f ∈ Ub(L) satisfy the hypothesis. Given x ∈ K,

(e) implies

δ2
x(f) = (Sδx)(f) = δx(Sf) = δx(f) = f(x) .

Obviously, δ2
x(f) = f(x) for every x ∈ L \K. Using [14, Lemma 2.7] we conclude

that f ∈ A(H2).
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For the proof of (h), let x 7→ µx, x ∈ K, be the mapping that generates the

projection P guaranteed by the assumption. By our hypothesis, µx = εx for every

x ∈
⋃∞

k=1 Fk.

We extend this mapping on the whole space L by setting

(3) µ2
x =






µx , x ∈ K ,

εx , x ∈ L1 ∪ (L2 ∩ (K × (−∞, 0))) ,

2ε(u,0) − ε(u,−2/k) , x = (u, 2/k), u ∈ Fk, k ∈ N .

Then

Qf(x) = µ2
x(f) , x ∈ L, f ∈ Bb

1(L) ,

is the required projection.

Indeed, it is easy to verify that Qf ∈ Bb
1(L) for f ∈ Bb

1(L) and ‖Q‖ ≤ 3. Also

conditions (h1) and (h2) are satisfied.

To show that Qf ∈ A(H2), we realize that Qf satisfies the assumptions of (g).

Indeed, Qf |K ∈ A(H) by (h1) and (3) yields validity of equations (2) for Qf . As

H2 is simplicial and H2 = Ac(H
2), [14, Theorem 2.6(b2)] yields Qf ∈ (H2)⊥⊥.

This concludes the proof. �

3.1. Inductive construction. Let {Fs : s ∈ N
<N} be the family of perfect sets in

[0, 1] provided by Lemma 2.1 and let A =
⋂∞

n=1

⋃
|s|=n Fs. Let {ηn} be a sequence

of numbers in (0, 1) such that

(4)
∞∑

i=1

(1− ηi) <∞ .

For every n ≥ 0, we construct by induction

• simplicial function spaces H1
n, H2

n on a metrizable compact space Kn ⊂

R
n+1 such that ChH1

n
Kn = ChH2

n
Kn and H2

n is Baire–one complemented

by a projection Pn of norm at most 3;

• closed subsets L1
n, L2

n of Kn;

• a countable family Fn = {Fn(k) : k ∈ N} of pairwise disjoint compact sets

in ChH1
n

Kn; and

• a continuous surjection pn+1 : Kn+1 → Kn as follows.

In the first step, let K0 = L1
0 = L2

0 = [0, 1], H1
0 = H2

0 = C([0, 1]), P0 be the

identity mapping and F0 = {Fs : |s| = 1}.
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Assume that the objects have been defined for each k = 0, . . . , n. To construct

H2
n+1, we use Lemma 3.1 for Kn, Fn, ηn and H1

n to get Kn+1, L1
n+1, L2

n+1, pn+1 :

Kn+1 → Kn and new simplicial function spaces Ĥ1, Ĥ2 on Kn+1. We set H1
n+1 =

Ĥ1.

Since ChH1
n

Kn = ChH2
n

Kn, we can use Lemma 3.1 again for the same objects,

we only replace H1
n by H2

n and get another pair of simplicial function spaces H̃1,

H̃2 on Kn+1. In this case we set H2
n+1 = H̃2.

If the family Fn was enumerated as Fn = {F (k) : k ∈ N}, for each k ∈ N and a

sequence s ∈ N
n+2 of length n + 2 we consider the following couple of sets

(5)

F (s, k,+) = {x = (x(0), . . . , x(n + 1)) ∈ Kn+1 :

pn+1(x) = (x(0), . . . , x(n)) ∈ F (k), x(0) ∈ Fs, x(n + 1) = 1/k} ,

F (s, k,−) = {x = (x(0), . . . , x(n + 1)) ∈ Kn+1 :

pn+1(x) = (x(0), . . . , x(n)) ∈ F (k), x(0) ∈ Fs, x(n + 1) = −1/k} .

We set

Fn+1 = {F (s, k,+), F (s, k,−) : s ∈ N
n+2, k ∈ N}.

Let

Pn+1 : Bb
1(Kn+1)→ B

b
1(Kn+1) ∩ (H2

n+1)
⊥⊥

be the projection from Lemma 3.1(h). This finishes the inductive step.

3.2. Definition of function spaces. We define the function spaces similarly as

in [14, Section 5.2]. We have obtained sequences {Hi
n}, i = 1, 2, of simplicial spaces

on compact metrizable spaces {Kn} together with surjective mappings pn, shortly

(6) K0
p1

←− K1
p2

←− K2 ← · · · .

Let K = lim
←

Kn be the limit of the inverse system (6) (see [4, Chapter 2.5]) of

the sequence {Kn}, i.e.,

K = {x = {xn} ∈

∞∏

n=0

Kn : pn+1(xn+1) = xn, n ≥ 0}

with the product topology.
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Then K is a metrizable compact space and we can consider each compact space

Kn homeomorphically embedded in K via the mapping

en : Kn → K ,

x 7→ ((p1 ◦ · · · ◦ pn)(x), . . . , (pn−1 ◦ pn)(x), pn(x),
n–th

x , x, . . . ) .

Conversely, we can define retractions of K onto Kn as

rn : K → Kn ,

{xn} 7→ (x0, . . . , xn−1, xn, xn, xn . . . ) .

Using these mappings we can regard each function space Hi
n, i = 1, 2, to be a

subspace of C(K), more precisely we use the mapping

h 7→ h ◦ rn , h ∈ Hi
n , i = 1, 2 .

In the sequel we will use these identifications without explicit mentioning.

We fix n ≥ 0. For x = (x0, x1, x2, . . . ) ∈ K, we write xn ∈ Kn ⊂ R
n+1 in

coordinates as

xn = (xn(0), xn(1), . . . , xn(n)) .

We define a “coordinate” function cn : K → R as

(7) cn(x) = xn(n) , x ∈ K .

We define function spaces Hi, i = 1, 2, on K as

Hi =

∞⋃

n=1

Hi
n , i = 1, 2 .

As in [14, Lemma 6.1], we get the following properties.

Lemma 3.2. Let H1, H2 be the spaces defined above. Then

(a) Hi, i = 1, 2 are well–defined simplicial function spaces on K;

(b) Hi = Ac(H
i), i = 1, 2;

(c) ChH1 K = ChH2 K = K \
⋃∞

n=0

⋃
Fn.

3.3. Maximal measures. Given n ≥ 0, x ∈ Kn and i = 0, 1, let δi
x,n denote the

unique Hi
n–maximal measure representing x. For x ∈ K and i = 1, 2, let δi

x denote

the Hi–maximal measure representing x.
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3.4. Cantor set. As in [14, Section 6.1, Lemmata 6.2 and 6.3], for every point

a ∈ A we get a homeomorphic copy

Ca = {x = (x0, x1, x2, . . . ) ∈ K \

∞⋃

n=0

Kn : x0 = a}

of the Cantor set {0, 1}N. The homeomorphism ϕa : {0, 1}N → Ca is provided by

the mapping

ϕa : {0, 1}N → Ca ,

(τ1, τ2, . . . , ) 7→ x = (a, x1, x2, . . . ) ,

defined as

cn(x) = xn(n)






> 0 , τn = 1 ,

< 0 , τn = 0 ,

n ∈ N .

For any n ∈ N, a ∈
⋃
{Fs : |s| = n} and t ∈ {0, 1}n we define a point

xa,t = (xa,t(0), xa,t(1), . . . , xa,t(n)) ∈ Kn ⊂ R
n+1

by setting

xa,t(0) = a and xa,t(i)






> 0 , ti = 1 ,

< 0 , ti = 0 ,

i = 1, . . . , n .

Let S be a countable subset of {0, 1}N defined as

S = {τ ∈ {0, 1}N : τn = 0 for at most finitely many natural numbers n} .

Let µn, n ∈ N, be measures on {0, 1} defined as

µn({0}) = 1− ηn and µn({1}) = ηn , n ∈ N .

Let µ ∈M1({0, 1}N) denote the product measure Π∞n=1µn.

For each t ∈ {0, 1}n, let

at = Πn
i=1bi , where bi =






ηi , if ti = 1 ,

1− ηi , if ti = 0 .

If t ∈ {0, 1}n, let

Ut = {τ ∈ {0, 1}N : τ ||t| = t}

denotes the standard clopen set in {0, 1}N determined by t. Then µ(Ut) = at.

Lemma 3.3. Let a be a point in A. Then
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(a) ϕaµ = δ1
a (here ϕaµ denotes the image of the measure µ);

(b) δ1
a(ϕa(S)) = 1.

Proof. For the proof of (a), we notice that the measure ϕaµ is carried by ChH1 K

(see Lemma 3.2(c)). We claim that ϕaµ ∈Ma(H1).

Indeed, let h be a function inH1
m for some m ≥ 0. If t ∈ {0, 1}m, then h = h(xa,t)

on ϕa(Ut), and thus

(ϕaµ)(h) = µ(h ◦ ϕa)

=
∑

t∈{0,1}m

∫

Ut

h ◦ ϕa dµ

=
∑

t∈{0,1}m

∫

Ut

h(xa,t) d(Πm
i=1µi)

=
∑

t∈{0,1}m

µ(Ut)h(xa,t)

=
∑

t∈{0,1}m

ath(xa,t)

= h(a) ,

where the last equality follows from the construction (see equations (1)). Thus

ϕaµ ∈Ma(H1). Since ϕaµ is carried by ChH1 K and H1 is simplicial, ϕaµ = δ1
a.

To verify (b), we notice that (a) yields

δ1
a(ϕa(S)) = (ϕaµ)(ϕa(S)) = µ(S) .

Hence it is enough to show that µ({0, 1}N \S) = 0. But this follows from (4), since

µ({0, 1}N \ S) = µ

(
∞⋂

n=1

∞⋃

k=n

{τ ∈ {0, 1}N : τn = 0}

)

= lim
n→∞

µ

(
∞⋃

k=n

{τ ∈ {0, 1}N : τn = 0}

)

≤ lim
n→∞

∞∑

k=n

µ
(
{τ ∈ {0, 1}N : τn = 0}

)

= lim
n→∞

∞∑

k=n

(1− ηk)

= 0 .

This finishes the proof. �
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Lemma 3.4. Let x be a point of Kn. Then

(a) δ2
x,n+1 = δ2

x;

(b) if f ∈ Ub(K) satisfies f |Kn
∈ A(H2

n), n ≥ 0, then f ∈ A(H2).

Proof. It is easy to see that δ2
x,n+1 is an H2–representing measure for x.

Further, by virtue of Lemma 3.1(c) and Lemma 3.2(c), δ2
x,n+1 is supported by

L2
n+1 ∪ (ChH2

n
Kn \

⋃
Fn) ⊂ ChH2 K .

Hence δ2
x,n+1 is H2–maximal and δ2

x,n+1 = δ2
x. This proves (a).

For the proof of (b), let f ∈ Ub(K) be as in the premise. By (a),

(8) δ2
x(f) = f(x) for each x ∈

∞⋃

n=1

Kn .

As K \
⋃∞

n=1 Kn ⊂ ChH2 K, (8) holds for every x ∈ K \
⋃∞

n=1 Kn as well. By

[14, Lemma 2.7], f ∈ A(H2). �

Lemma 3.5. For any f ∈ Bb
2(K), the function

x 7→ δ2
x(f) , x ∈ K ,

is a Baire–two function on K.

Proof. Let f be a bounded Baire–two function on K. By Lemma 3.4(a),

δ2
x(f) = δ2

x,n+1(f) , x ∈ Kn .

Thus the function x 7→ δ2
x(f), x ∈ K, is Baire–two on each Kn by virtue of

Lemma 3.1(f).

By Lemma 3.2(c), f(x) = δ2
x(f) for x ∈ K\

⋃∞
n=1 Kn. It follows from [14, Lemma

3.4] that f is a Baire–two function on K. �

Lemma 3.6. The space H2 is Baire–one complemented by a projection of norm at

most 3.

Proof. According to the inductive construction, for each n ∈ N,

(9) (Pnf)|Kn−1
= Pn−1(f |Kn−1

) and (Pnf)|L1
n

= f |L1
n

, f ∈ Bb
1(Kn) .

Further, L̂ =
⋃∞

n=1 L2
n is an open subset of K.
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By (9), the mapping

Pf(x) =






Pn(f |Kn
)(x) , x ∈ Kn, n ≥ 0 ,

f(x) , x ∈ K \
⋃∞

n=0 Kn ,

f ∈ Bb
1(K) ,

is well defined and Pf ∈ Bb
1(K) for each f ∈ Bb

1(K).

Indeed, it follows from Lemma 3.1(h) that Pf |L2
n
∈ Bb

1(L
2
n), n ∈ N. Thus Pf is

a Baire–one function on L̂. As Pf = f on K \ L̂, Pf ∈ Bb
1(K).

Given a function f ∈ Bb
1(K), then Pf |Kn

is H2
n–affine for each n ≥ 0. By

Lemma 3.4(b), Pf ∈ A(H2).

Finally, as ‖Pn‖ ≤ 3, we get ‖P‖ ≤ 3 by the very definition. This concludes the

proof. �

4. Proof of Theorem 1.1

Now we can prove the main result. Let H1, H2 be the simplicial function spaces

on the metrizable space K constructed in Section 3. For i = 1, 2, let Xi be the state

space of Hi and φi : K → Xi be the standard homeomorphic embeddings from [14,

Section 2.5]. Then X1, X2 are metrizable simplices and φ2◦φ
−1
1 restricted to ext X1

is the homeomorphism required by Theorem 1.1(a).

If i = 1, 2 and s ∈ Xi, let δ̂i
s stand for the unique A(Xi)–maximal measure

A(Xi)–representing s.

For the proof of Theorem 1.1(b), let f = χK\
S∞

n=0
Kn

and

f̂(s) = f(φ−1
1 (s)) , s ∈ ext X1 .

Then f̂ ∈ Bb
2(ext X1) and there is no affine Baire–two function on X1 extending f̂ .

Indeed, assume that ĥ is such a function. By [12, Théorème 3] or [3, Proposition

9], ĥ is bounded. We pick a point a ∈ A. By [10, Proposition 3.2],

φ1δ
1
a = δ̂1

φ1(a) .

Thus δ̂1
φ1(a) is a discrete measure (see Lemma 3.3). According to Lemma 2.4 and

[15, Lemma 4.2],

ĥ(φ1(a)) = δ̂1
φ1(a)(ĥ) = (φ1δ

1
a)(ĥ)

= δ1
a(ĥ ◦ φ1) = δ1

a(f̂ ◦ φ1)

= δ1
a(f) .
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As δ1
a is carried by K \

⋃∞
n=0 Kn (see Lemma 3.3),

δ1
a(f) = 1 .

On the other hand, if a ∈ K0 \A, then

ĥ(φ1(a)) = f̂(φ1(a)) = f(a) = 0 .

Thus

ĥ =






0 , on φ1(K0 \A) ,

1 , on φ1(A) .

By choice of A, ĥ is not a Baire–two function.

For the proof of (c), let T 2 be the kernel on X2 associated with the mapping

s 7→ δ̂2
s , s ∈ X2. We remark that

(10) T 2g ∈ Abf(X2) , g ∈ Bb(ext X2) .

(Since any function from Bb(ext X2) is the restriction of some function from Bb(X2),

claim (10) follows from [9, Corollary 6.2].)

Let f̂ be a bounded Baire–two function on extX2. By extending f̂ by 0 on

X2 \ ext X2 we may assume that f̂ is defined on the whole X2. We claim that

(11) T 2f̂ ∈ A2(X2) .

To this end, we notice that

h(x) = δ2
x(f̂ ◦ φ2) , x ∈ K ,

is a Baire–two function on K (see Lemma 3.5). Using [9, Corollary 6.2], [14,

Theorem 2.6(c)] and Lemma 3.2(b) we get that h ∈ (H2)⊥⊥. As H2 is Baire–one

complemented, it follows from Lemma 3.6, Lemma 2.3 and Remark 2.2 that h is a

pointwise limit of a bounded sequence {hn} of functions from Bb
1(K) ∩ (H2)⊥⊥ =

(H2)1.

Let I : Ub(K) ∩ (H2)⊥⊥ → Abf(X2) be the isometry from [14, Section 2.6]. By

[14, Theorem 2.5(e)], Ihn → Ih and Ih ∈ A2(X2).

Since

T 2f̂ = Ih on extX2 ,
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T 2f̂ = Ih on X2 (we use the minimum principle [13, Proposition 3.6]). Hence

T 2f̂ ∈ A2(X2).

If α ∈ (2, ω1), we observe that T 2f̂n → T 2f̂ whenever {f̂n} is a bounded sequence

of Borel functions on extX2 pointwise converging to f and use (11) as the starting

point for a straightforward transfinite induction. Hence, given f̂ ∈ Bb
α(ext X2), the

function T 2f̂ is the required extension of affine class α.

This concludes the proof.
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