
THE DIRICHLET PROBLEM ON COMPACT CONVEX SETS

JAKUB RONDOŠ AND JIŘÍ SPURNÝ

Abstract. Let X be a compact convex set with the set extX of extreme

points being Lindelöf and f : extX → F be a bounded Baire mapping with

values in a Fréchet space F . We present a necessary and sufficient condition
for f to be extended to a strongly affine Baire function on the whole set X.

1. Introduction

If X is a compact convex set in a locally convex (Hausdorff) space and extX is
the set of all extreme points of X, the Dirichlet problem deals with the question of
extending a function f defined on extX to an affine function h on X. The aim of
this extension, provided it exists, is to preserve as many properties of f as possible.
The characterization of the possibility of an affine continuous extension was given
by [1, Theorem II.4.5] (see also [2, Theorem], [4, Theorem 2.4] or [12, Theorem
2.2]). For functions of higher Baire classes, the necessary and sufficient condition
was presented in [20, Theorem 3.3].

The aim of this paper is to generalize these results to the context of vector-valued
Baire functions and to get rid in the characterization theorem of the assumption
on envelopes, which was essential both in [1] and [20]. So our main result (see
Theorem 2.1) asserts that, under some mild topological assumption imposed on
the set extX, a bounded Baire function f defined on extX is extendable to a so-
called strongly affine Baire mapping on X if and only if f is annihilated by any
boundary measure perpendicular to the space of affine continuous real functions on
X. It is easy to see that this condition is necessary and thus the most important
part of the proof is concerned with the sufficiency of this condition.

The paper is organized as follows. After introducing the necessary notions and
definitions, we present our main theorems in Section 2. The next section is devoted
to the proofs, and the examples witnessing the sharpness of our results are collected
in the last section.

1.1. Compact convex sets. We will deal both with real and complex spaces. To
shorten the notation we will use the symbol F to denote the respective field R or
C.

If X is a compact (Hausdorff) topological space, we denote by C(X,F) the Ba-
nach space of all F-valued continuous functions on X equipped with the sup-norm.
The dual of C(X,F) will be identified (by the Riesz representation theorem) with
M(X,F), the space of F-valued (complete) Radon measures on X equipped with
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the total variation norm and the respective weak∗ topology. Let M1(X) stand for
the set of all probability Radon measures on X. A set B ⊂ X is universally mea-
surable if it is measurable with respect to any probability Radon measure on X. If
B ⊂ X is universally measurable, we write M1(B) for the set of all µ ∈ M1(X)
with µ(X \B) = 0.

Let X be a convex subset of a (real or complex) vector space E and F be another
(real or complex) vector space. Recall that a mapping f : X → F is said to be affine
if f(tx+ (1− t)y) = tf(x) + (1− t)f(y) whenever x, y ∈ X and t ∈ [0, 1]. We stress
that the notion of an affine function uses only the underlying structure of real vector
spaces.

Let X be a compact convex set in a locally convex (Hausdorff) topological vector
space. We write A(X,F) for the space of all F-valued continuous affine functions
on X. This space is equipped with the inherited sup-norm from C(X,F) and it is
its closed subspace. Given a Radon probability measure µ on X, we write r(µ) for
the barycenter of µ, i.e., the unique point x ∈ X satisfying a(x) =

∫
X
adµ for each

affine continuous function on X (see [1, Proposition I.2.1] or [11, Chapter 7, § 20];
note that it does not matter whether we consider real or complex affine functions).
Conversely, for a point x ∈ X, we denote byMx(X) the set of all Radon probability
measures on X with the barycenter x (i.e., the set of all probabilities representing
x).

The usual dilation order ≺ on the set M1(X) of Radon probability measures
on X is defined as µ ≺ ν if and only if µ(f) ≤ ν(f) for any real-valued convex
continuous function f on X. (Recall that µ(f) is a shortcut for

∫
f dµ.) A measure

µ ∈ M1(X) is said to be maximal if it is maximal with respect to the dilation
order. In case X is metrizable, maximal measures are exactly the probabilities
carried by the Gδ set extX of extreme points of X (see, e.g., [1, p. 35] or [14,
Corollary 3.62]). Further, if B ⊃ extX is a Baire set, then µ(B) = 1 for any
maximal measure µ ∈M1(X) (this follows from [1, Corollary I.4.12]).

By the Choquet representation theorem, for any x ∈ X there exists a maximal
representing measure (see [11, p. 192, Corollary] or [1, Theorem I.4.8]). A compact
convex set X is termed simplex if this maximal measure is uniquely determined for
each x ∈ X.

1.2. Vector integration. We will deal with vector-valued strongly affine map-
pings. To be able to do that we need some vector integral. We will use the Pettis
approach.

Let µ be an F-valued σ-additive measure defined on an abstract measurable space
(X,A) (i.e., X is a set and A is a σ-algebra of subsets of X) and F a locally convex
(Hausdorff) space over F. (To avoid confusion we stress that we will consider only
finite measures.) A mapping f : X → F is said to be µ-measurable if f−1(U) is
µ-measurable for any U ⊂ F open. The map f is called weakly µ-measurable if τ ◦f
is µ-measurable for each τ ∈ F ∗.

A mapping f : X → F is said to be µ-integrable over a µ-measurable set A ⊂ X
if

• τ ◦ f ∈ L1(|µ|) for each τ ∈ F ∗,
• for each B ⊂ A µ-measurable there exists an element xB ∈ F such that

τ(xB) =

∫
B

τ ◦ f dµ, τ ∈ F ∗.
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It is clear that the element xB is uniquely determined, we denote it as
∫
B
f dµ. If

µ is clearly determined, we say only that f is integrable.

Lemma 1.1. Let µ be an F-valued measure defined on a measurable space (X,A)
and F be a Fréchet space over F. Suppose that f : X → F is a bounded weakly
µ-measurable mapping with (essentially) separable range. Then the following asser-
tions hold.

(a) The mapping f is µ-integrable.
(b) If µ is a probability measure and L ⊂ F is a closed convex set such that

f(X) ⊂ L, then µ(f) ∈ L.
(c) Let fn, g : X → F be mappings such that

– fn are weakly µ-measurable and have separable range,
– the sequence {fn} is bounded in F (i.e.,

⋃∞
n=1 fn(X) is bounded in F ),

– fn(x)→ g(x) in F for x ∈ X.
Then g is bounded and µ-measurable. Moreover, all the involved functions
are µ-integrable and

∫
X
fn dµ→

∫
X
g dµ in F .

Proof. See [9, Lemma 3.8 and Theorem 3.10]. �

An important class of integrable functions are Baire measurable functions. We
recall that if X is a topological space, a zero set in X is the inverse image of a
closed set in R under a continuous function f : X → R. The complement of a zero
set is a cozero set. If X is normal, it follows from Tietze’s theorem that a closed
set is a zero set if and only if it is also a Gδ set, i.e., a countable intersection of
open sets. The complement of a Gδ set is called an Fσ set. We recall that Borel
sets are members of the σ-algebra generated by the family of all open subset of X
and Baire sets are members of the σ-algebra generated by the family of all cozero
sets in X. Thus the Baire measurable mappings are the functions measurable with
respect to Baire sets (we recall that, given a family F of sets in a set X and a
topological space F , a mapping f : X → F is called F-measurable if f−1(U) ∈ F
for every U ⊂ F open).

Lemma 1.2. Let X be a compact space, µ ∈M(X,F) and f : X → F be a bounded
Baire measurable mapping from X to a Fréchet space F over F. Then the mapping
f is µ-integrable.

Proof. See [9, Lemma 3.9]. �

If X is a compact space, µ ∈ M(X,F) and f : B → F is a bounded Baire
measurable mapping from a Baire set B ⊂ X to a Fréchet space F over F, we may

integrate f with respect to µ simply by setting f̃(x) =

{
f(x), x ∈ B,
0, x ∈ X \B,

and∫
X
f dµ =

∫
X
f̃ dµ.

If ϕ : X → Y is a continuous mapping of a compact space X onto a compact
space Y and µ ∈M1(X), we denote by ϕ]µ ∈M1(Y ) the image of the measure µ.

1.3. Baire mappings. Given a set K, a topological space L and a family of map-
pings F from K to L, we define the Baire classes of mappings as follows. Let
(F)0 = F . Assuming that α ∈ [1, ω1) is given and that (F)β have been already



4 JAKUB RONDOŠ AND JIŘÍ SPURNÝ

defined for each β < α, we set

(F)α = {f : K → L; there exists a sequence (fn) in
⋃
β<α

(F)β

such that fn → f pointwise}.

Among other hierarchies (see Paragraph 1.5) we will use the following ones:

• IfK and L are topological spaces, by Cα(K,L) we denote the set (C(K,L))α,
where C(K,L) is the set of all continuous functions from K to L.
• If K is a compact convex set and L is a convex subset of a locally convex

space, by Aα(K,L) we denote (A(K,L))α, where A(K,L) is the set of all
affine continuous functions defined on K with values in L.

1.4. Strongly affine mappings. If X is a compact convex set and F is a Fréchet
space, a mapping f : X → F is called strongly affine if, for any measure µ ∈M1(X),
f is µ-integrable and

∫
X
f dµ = f(r(µ)). Note that this is a strengthening of the

notion of an affine mapping. Indeed, f is affine if and only if the formula holds for
any finitely supported probability µ.

By [9, Fact 1.2], the mapping f is strongly affine if and only if τ ◦ f is strongly
affine for each τ ∈ F ∗. It is known that any affine function f ∈ C1(X,F) is strongly
affine (see e.g., [1, Theorem I.2.6], [15, Section 14], [19] or [14, Corollary 4.22]) and,
moreover, f ∈ A1(X,F) by a result of Mokobodzki (see, e.g., [16, Théorème 80] or
[14, Theorem 4.24]).

If F is a Fréchet space and f ∈ C1(X,F ) is affine then it is strongly affine (see [9,
Theorem 2.1]). If F is a Banach space with the bounded approximation property,
any affine function f ∈ C1(X,F ) is in A1(X,F ). However, this does not hold in
general. Indeed, if F is a separable reflexive Banach space which fails the compact
approximation property, X = (BF ,weak) and f : X → F is the identity embedding,
then f is affine, f ∈ C1(X,F ) and f /∈

⋃
α<ω1

Aα(X,F ) (see [9, Example 2.3].)
For affine functions of higher Baire classes the situation is different even in the

scalar case. Firstly, an affine function of the second Baire class on a compact
convex set X need not be strongly affine even if X is simplex (the example is due
to Choquet, see, e.g., [1, Example I.2.10], [15, Section 14] or [14, Proposition 2.63]).
Further, by [23] there is a compact convex set X and a strongly affine function
f : X → R of the second Baire class which does not belong to

⋃
α<ω1

Aα(X,R).

1.5. Baire mappings and Baire measurable mappings. Further we need to
recall Baire classes of functions in topological spaces. We follow the notation of
[21]. If X is a set and F is a family of subsets of X, F is an algebra if ∅, X ∈ F
and F is closed with respect to complements and finite unions.

If X is a topological space, we write Bas(X) for the algebra generated by cozero
sets in X and Σ2(Bas(X)) for countable unions of sets from Bas(X). Let F be a
topological space and let

Baf1(X,F ) = {f : X → F ; f−1(U) ∈ Σ2(Bas(X)), U ⊂ F open}.

Now we use pointwise limits to create higher hierarchies of functions as in Sec-
tion 1.3. Starting the procedure with Baf1(X,F ) and creating higher families
Bafα(X,F ) as pointwise limits of sequences contained in

⋃
1≤β<α Bafβ(X,F ), we

obtain the hierarchy of Baire measurable functions.
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The algebra Bas(X) serves as a starting point of an inductive definition of de-
scriptive classes of sets. More precisely, Σ2(Bas(X)) consists of all countable unions
of sets from Bas(X) and Π2(Bas(X)) of all countable intersections of sets from
Bas(X). Proceeding inductively, for any α ∈ (2, ω1) we let Σα(Bas(X)) to be made
of all countable unions of sets from

⋃
1≤β<α Πβ(Bas(X)) and Πα(Bas(X)) is made

of all countable intersections of sets from
⋃

1≤β<α Σβ(Bas(X)). The union of all cre-

ated additive (or multiplicative) classes is then the σ-algebra generated by Bas(X).
These classes characterize in terms of measurability the classes Bafα(X,F ) defined
above. Precisely, the following proposition is proved in [21, Theorem 5.2].

Proposition 1.3. Let f : X → F be a function on a Tychonoff space X with values
in a separable metrizable space F and α ∈ [1, ω1). Then f ∈ Bafα(X) if and only
if f is Σα+1(Bas(X))-measurable.

If we take Φ0 = C(X,F ), i.e., the family of all continuous mapping from X to F ,
and create the hierarchy of functions using pointwise limits, we have the following
result (see [24, Theorem 3.7(i)]).

Proposition 1.4. If X is a normal topological space and L is a convex subset of a
separable Fréchet space, then C1(X,L) = Baf1(X,L). Thus Cα(X,L) = Bafα(X,L)
for each α ∈ [1, ω1).

A set A ⊂ X, where X is a topological space, is resolvable (or an H-set) if for
any nonempty B ⊂ X (equivalently, for any nonempty closed B ⊂ X) there exists
a relatively open U ⊂ B such that either U ⊂ A or U ∩A = ∅. By [14, Proposition
A.117], a subset of a completely metrizable space is resolvable if and only if it is of
type Fσ and Gδ.

We recall that a topological space is Lindelöf, if its any open cover has a countable
subcover.

2. Main results

Now we can formulate our main results which are vector-valued variant of the
mentioned result [1, Theorem II.4.5] due to E.M. Alfsen for continuous functions,
which reads as follows:

Let X be a compact convex set and f : extX → R be a bounded continuous
function. Then f can be extended to a function in A(X,R) if and only if the following
two conditions are satisfied:

(i) The upper and lower envelope of f coincide on extX.
(ii) The restriction g of the upper envelope of f to extX satisfies µ(g) = ν(g)

for every x ∈ X and any pair µ, ν of maximal measure in Mx(X).

Theorem 2.1 below gets rid of the condition (i) and deals only with the condition
(ii). Also, it generalizes known results on extension of functions on simplices (see
e.g. [9]) because when X is a simplex, the condition (ii) is vacuously satisfied (see
[1, p. 106]).

We mention that if X is a compact convex set with extX being Lindelöf, any
bounded Baire mapping on extX with values in a Fréchet space F admits a bounded
Baire extension to X (see [9, Lemma 7.1]).

Theorem 2.1. Let X be a compact convex set with extX being Lindelöf and let F
be a Fréchet space. Let f ∈ Cα(extX,F ) be a bounded function for some α ∈ [0, ω1).
Then the following conditions are equivalent:
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(i) There exists a strongly affine function h ∈ C1+α(X,F ) extending f .
(ii) For any x ∈ X, any pair of maximal measures µ, ν ∈ Mx(X) and any

bounded Baire extension g : X → F of f we have µ(g) = ν(g).

We hasten to add that a strongly affine Baire extension of f is unique.
Indeed, if g1, g2 are bounded Baire strongly affine extensions of f and x ∈ X,

let us assume that F is a real vector space. Then for each functional τ ∈ F ∗, the
functions τ ◦ g1 and τ ◦ g2 are bounded Baire strongly affine real functions, which
coincide on extX. Thus for a maximal measure µ ∈ Mx(X), the set B = {y ∈
X; τ(g1(y)) = τ(g2(y))} is Baire and contains extX. Thus µ(B) = 1, which implies

τ(g1(x)) = µ(τ ◦ g1) =

∫
B

τ ◦ g1 dµ =

∫
B

τ ◦ g2 dµ = µ(τ ◦ g2) = τ(g2(x)).

Since F ∗ separates points of F , g1(x) = g2(x).
In case X is metrizable, maximal measures are carried by extX, and thus we

obtain the following corollary.

Corollary 2.2. Let X be a metrizable compact convex set and let F be a Fréchet
space. Let f ∈ Cα(extX,F ) be a bounded function for some α ∈ [0, ω1). Then the
following conditions are equivalent:

(i) There exists a strongly affine function h ∈ C1+α(X,F ) extending f .
(ii) For any x ∈ X and any pair of maximal measures µ, ν ∈ Mx(X) we have

µ(f) = ν(f).

If extX is moreover a resolvable set, we can improve the shift of the class for
α ≥ 1 to be the best possible.

Theorem 2.3. Let X be a compact convex set with extX being a Lindelöf resolvable
set and let F be a Fréchet space. Let f ∈ Cα(extX,F ) be a bounded function for
some α ∈ [1, ω1). Then the following conditions are equivalent:

(i) There exists a strongly affine function h ∈ Cα(X,F ) extending f .
(ii) For any x ∈ X, any pair of maximal measures µ, ν ∈ Mx(X) and any

bounded Baire extension g : X → F of f we have µ(g) = ν(g).

Since extX is a Gδ subset of a compact convex set X provided X is metrizable, it
is resolvable if and only if it is of type Fσ. Hence Theorem 2.3 implies the following
corollary.

Corollary 2.4. Let X be a metrizable compact convex set with extX being an Fσ
set and let F be a Fréchet space. Let f ∈ Cα(extX,F ) be a bounded function for
some α ∈ [1, ω1). Then the following conditions are equivalent:

(i) There exists a strongly affine function h ∈ Cα(X,F ) extending f .
(ii) For any x ∈ X and any pair of maximal measures µ, ν ∈ Mx(X) we have

µ(f) = ν(f).

Extending continuous mappings requires the set extX to be closed. In this case,
maximal measures are carried by extX and thus we obtain the following result.

Theorem 2.5. Let X be a compact convex set with extX being a closed set and
let F be a Fréchet space. Let f ∈ C(extX,F ) be a bounded function. Then the
following conditions are equivalent:

(i) There exists a continuous affine function h ∈ A(X,F ) extending f .
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(ii) For any x ∈ X and any pair of maximal measures µ, ν ∈ Mx(X) we have
µ(f) = ν(f).

If we consider the Fréchet space F to be a Banach space with the bounded
approximation property, we can improve the class of the extension in the following
way. (This generalizes the result from [7]. Recall that a Banach space F is said to
have the bounded approximation property if there exists λ ≥ 1 such that for every
ε > 0 and every compact set K ⊂ F there is a finite-rank operator L on F such
that supx∈K ‖Lx− x‖ ≤ ε and ‖L‖ ≤ λ.)

Theorem 2.6. Let X be a compact convex set with extX being Lindelöf. Let
f ∈ C(extX,F ) be a bounded mapping with values in a Banach space F with the
bounded approximation property. Then the following conditions are equivalent:

(i) There exists a function h ∈ A1(X,F ) extending f .
(ii) For any x ∈ X, any pair of maximal measures µ, ν ∈ Mx(X) and any

bounded Baire extension g : X → F of f we have µ(g) = ν(g).

3. Proofs

The strategy of the proofs is based on the ideas from [22]. The main idea is to
extend a given Baire function on extX to a Baire set B ⊃ extX in an “affine” way
and then to use the assumption to define the extension by the only possible way,
namely by the integral with respect to a maximal measure. The most difficult part
of the proof is to show that this extension is Baire and strongly affine.

Lemma 3.1. Let K be a compact Hausdorff topological space, F be a Fréchet
space and f : K → F be a bounded function in Cα(K,F ) for some α ∈ [0, ω1).

Let L = cof(K). Then the function f̃ : M1(K) → F defined as f̃(µ) = µ(f),
µ ∈ M1(K), is well defined and contained in Aα(M1(K), L). In particular, for

Λ ∈M1(M1(K)) with r(Λ) = λ ∈M1(K) we have Λ(f̃) = f̃(λ).

Proof. Lemma 1.2 implies that f̃ is well defined and, by Lemma 1.1(b), f̃(µ) ∈ L
for each µ ∈M1(K).

We consider first the case α = 0, i.e., the case when f is continuous. First we

want to show that f̃ is continuous. Since L is a compact convex subset of F , the
original topology coincides with the weak topology on L. For any τ ∈ F ∗, the
function τ ◦ f is continuous on K, and thus the mapping

µ 7→ µ(τ ◦ f) = τ(µ(f)) = (τ ◦ f̃)(µ), µ ∈M1(K),

is continuous. Hence f̃ : M1(K) → (L,weak) is continuous, and thus continuous
with respect to the original topology.

Secondly, the function f̃ is affine on M1(K), since for a convex combination
cµ1 + (1− c)µ2 (c ∈ [0, 1], µ1, µ2 ∈M1(K)) we have

f̃(cµ1 + (1− c)µ2) = (cµ1 + (1− c)µ2)(f) = cµ1(f) + (1− c)µ2(f) =

= cf̃(µ1) + (1− c)f̃(µ2).

Hence f̃ ∈ A(M1(K), L) ⊂ A(M1(K), F ), and thus it is strongly affine by [9, Fact

1.2]. Hence Λ(f̃) = f̃(r(Λ)) for each Λ ∈M1(M1(K)).
If α > 0, we can finish the proof by transfinite induction using Lemma 1.1(c).

Indeed, assume that the assertion is true for all β smaller then some α ∈ [1, ω1).
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Let f : K → F be a bounded function in Cα(K,F ). Then L = cof(K) is a bounded
separable closed subset of F and f is in Cα(K,L). Indeed, f is Σα+1(Bas(K))-
measurable as a mapping to F . Obviously, f is Σα+1(Bas(K))-measurable as a
mapping to L. By Proposition 1.3, f ∈ Bafα(K,L). Thus by Proposition 1.4,
f ∈ Cα(K,L). Hence there exist ordinals αn < α and functions fn ∈ Cαn

(K,L)

such that fn → f . Then f̃n ∈ Aαn
(M1(K), L) by the inductive assumption and

Lemma 1.1(b). Moreover, f̃ is well defined and f̃n → f̃ by Lemma 1.1(c). Thus

f̃ ∈ Aα(M1(K), L) and again by Lemma 1.1(c), Λ(f̃) = f̃(r(Λ)) for each Λ ∈
M1(M1(K)). �

We recall that a universally measurable subset F of a compact convex set X is
measure extremal, provided λ(F ) = 1 whenever λ ∈ M1(X) with r(λ) ∈ F . It is
measure convex if r(λ) ∈ F for any λ ∈ M1(F ). A convex subset F of X is a
face, if it is extremal, i.e. if cx+ (1− c)y ∈ F with x, y ∈ X and c ∈ (0, 1) implies
x, y ∈ F .

Lemma 3.2. Let K be a compact Hausdorff topological space and B ⊂ K be a
universally measurable set. Then the set M1(B) = {µ ∈ M1(K); µ(B) = 1} is a
measure extremal and measure convex face of M1(K).

Proof. By [14, Proposition 5.30], the function f̃(µ) = µ(B), µ ∈ M1(K), is

a strongly affine function on M1(K) with values in [0, 1]. Thus B̃ = {µ ∈
M1(K); f̃(µ) = 1} is a universally measurable face ofM1(K). Let Λ ∈M1(M1(K))

satisfy Λ(B̃) = 1. Then

1 =

∫
B̃

f̃ d Λ = Λ(f̃) = f̃(r(Λ)) = (r(Λ))(B).

Hence r(Λ) ∈ B̃ and B̃ is measure convex.

If Λ ∈M1(M1(K)) satisfies r(Λ) ∈ B̃, then we have

1 = r(Λ)(B) = f̃(r(Λ)) =

∫
M1(K)

f̃ d Λ =

∫
B̃

f̃ d Λ +

∫
M1(K)\B̃

f̃ d Λ

=

∫
B̃

1 d Λ +

∫
M1(K)\B̃

f̃ d Λ = Λ(B̃) +

∫
M1(K)\B̃

f̃ d Λ.

Thus if Λ(B̃) < 1, we get Λ(M1(K) \ B̃) > 0, and hence the following inequality

1 = Λ(B̃) +

∫
M1(K)\B̃

f̃ d Λ < Λ(B̃) + Λ(M1(K) \ B̃) = 1

gives a contradiction. Thus Λ(B̃) = 1 and B̃ is measure extremal. �

Lemma 3.3. Let ϕ : X → Y be an affine continuous surjection of a compact convex
set X onto a compact convex set Y . If λ ∈M1(X), then r(ϕ](λ)) = ϕ(r(λ)).

Proof. For each h ∈ A(Y,R) we have

h(r(ϕ](λ))) = (ϕ](λ))(h) = λ(h ◦ ϕ) = (h ◦ ϕ)(r(λ)) = h(ϕ(r(λ))).

Thus r(ϕ](λ)) = ϕ(r(λ)). �

Lemma 3.4. For i = 1, 2, let Fi be a measure extremal subset of a compact convex
set Xi. Then F1 × F2 is a measure extremal subset of X1 ×X2.
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Proof. First we observe that F1 × F2 is λ-measurable for each λ ∈ M1(X1 ×X2).
To this end, it is enough to verify that F1 ×X2 is λ-measurable, since

F1 × F2 = (F1 ×X2) ∩ (X1 × F2).

If ε > 0 and π1 : X1×X2 → X1 is the projection, let K ⊂ F1 ⊂ G be sets such that
K is compact, G open and (π1)](λ)(G\K) < ε. Then K×X2 ⊂ F1×X2 ⊂ G×X2

and

λ((G×X2) \ (K ×X2)) = λ((G \K)×X2) = (π1)](λ)(G \K) < ε.

Hence F1 ×X2 is λ-measurable.
Let now λ ∈ M1(X1 × X2) with r(λ) = (x1, x2) ∈ F1 × F2 be given. By

Lemma 3.3, r((π1)](λ)) = π1(r(λ)) = π1((x1, x2)) = x1 ∈ F1. By the measure
extremality of F1, (π1)](λ)(F1) = 1. Hence

λ(F1 ×X2) = λ(π−1
1 (F1)) = (π1)](λ)(F1) = 1.

Similarly we obtain λ(X1 × F2) = 1, and thus λ(F1 × F2) = 1. �

The next Lemma 3.5 is a preliminary version of Lemma 3.6.

Lemma 3.5. Let X be a compact convex set with extX being Lindelöf, F be a
Fréchet space and let f : extX → F be a bounded mapping in Cα(extX,F ) for
some α ∈ [1, ω1). Let L = cof(extX). Then there exists a Baire set B ⊃ extX
and a bounded mapping g ∈ Cα(B,L) such that

• g = f on extX ,
• the function g̃ : M1(B) → F defined g̃(µ) = µ(g), µ ∈ M1(B), is in
Cα(M1(B), L),
• for each Λ ∈ M1(M1(X)) with Λ(M1(B)) = 1 we have Λ(g̃) = g̃(r(Λ))

(we remark that r(Λ) ∈M1(B) by Lemma 3.2).

Proof. We will prove the result by transfinite induction on α. Suppose first that
α = 1, i.e., that f ∈ C1(extX,F ). Since L is separable and completely metrizable
(indeed, if f is continuous, the range f(extX) is Lindelöf, and thus separable. For
functions of higher Baire classes the assertion easily follows by transfinite induc-
tion), by [8, Theorem 30 and Proposition 28] there is an extension g : X → L which
is Σ2(Bas(X))-measurable. Proposition 1.4 now implies that g ∈ C1(X,L). By
setting B = X we obtain from Lemma 3.1 that g̃ ∈ A1(M1(X), L). Thus for each
Λ ∈M1(M1(X)) we have Λ(g̃) = g̃(r(Λ)).

Assume now that α > 1 and the assertion is valid for all β ∈ [1, α). Suppose that
f ∈ Cα(extX,F ) is a bounded mapping. Then f ∈ Cα(extX,L) by Proposition 1.4
(note that extX is normal, being Lindelöf and regular), and thus there exist map-
pings fn ∈

⋃
β<α Cβ(extX,L), n ∈ N, converging pointwise to f on extX. For each

n ∈ N, let Bn ⊃ extX be a Baire set and

gn ∈ Cβn
(Bn, cofn(extX)) ⊂ Cβn

(Bn, L)

for some βn < α be such that

• gn = fn on extX,
• the function g̃n : M1(Bn) → F defined by g̃n(µ) = µ(gn), µ ∈ M1(Bn), is

in Cβn(M1(Bn), L),
• for each Λ ∈ M1(M1(X)) with Λ(M1(Bn)) = 1 we have r(Λ) ∈ M1(Bn)

and Λ(g̃n) = g̃n(r(Λ)).
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Let

B = {x ∈
∞⋂
n=1

Bn; (gn(x)) converges}.

Let ρ be a compatible complete metric on F . Then

B = {x ∈
∞⋂
n=1

Bn; ∀k ∈ N ∃l ∈ N ∀m1,m2 ≥ l : ρ(gm1
(x), gm2

(x)) <
1

k
},

which gives that B is a Baire subset of X. Obviously, B ⊃ extX and the function
g(x) = lim gn(x), x ∈ B, satisfies g = f on extX. Let µ ∈ M1(B) be arbitrary.
Since gn → g on B, from Lemma 1.1(c) we obtain g̃(µ) = lim g̃n(µ). By the
inductive assumption, g̃n ∈ Cβn

(M1(Bn), L). Thus g̃ ∈ Cα(M1(B), L). If Λ ∈
M1(M1(K)) with Λ(M1(B)) = 1, then r(Λ) ∈ M1(B) by Lemma 3.2. Thus by
the inductive assumption and Lemma 1.1(c) we obtain

Λ(g̃) =

∫
M1(B)

g̃ d Λ = lim
n→∞

∫
M1(B)

g̃n d Λ = lim
n→∞

∫
M1(Bn)

g̃n d Λ

= lim
n→∞

g̃n(r(Λ)) = g̃(r(Λ)).

�

The following “affine partial extension” result is the decisive step to the proof of
Theorem 2.1.

Lemma 3.6. Let X be a compact convex set with extX being Lindelöf, F be a
Fréchet space and f be a bounded function in Cα(extX,F ) for some α ∈ [1, ω1).
Let L = cof(extX). Then there exist a Baire set B ⊃ extX and a mapping
g : B → L such that

• g ∈ Cα(B,L),
• g = f on extX,
• for each µ ∈M1(B) with r(µ) ∈ B holds g(r(µ)) = µ(g),
• the function g̃ : M1(B) → F defined as g̃(µ) = µ(g), µ ∈ M1(B), is in
Cα(M1(B), L),
• for each Λ ∈ M1(M1(X)) with Λ(M1(B)) = 1 we have Λ(g̃) = g̃(r(Λ))

(we remark that r(Λ) ∈M1(B) by Lemma 3.2).

Proof. Without loss of generality we may assume that F is real because otherwise
we would consider on F only multiplication by real numbers.

Since f ∈ Cα(extX,F ) and extX is Lindelöf, f(extX) is separable. Thus we
may assume that F itself is separable. Let (τn) in F ∗ be a sequence separating
points of F (see [18, Chapter 3, Exercise 28]).

By [13, Lemma 4.6], for each n ∈ N there exist a Baire set Bn ⊃ extX and a
bounded Baire function fn : Bn → R such that

• fn = τn ◦ f on extX,
• for each µ ∈M1(Bn) with r(µ) ∈ Bn it holds fn(r(µ)) = µ(fn).

By Lemma 3.5 there exist a Baire set C ⊃ extX and a Baire function h ∈ Cα(C,L)
extending f such that

• the function h̃ : M1(C) → F defined by h̃(µ) = µ(h), µ ∈ M1(C), is in
Cα(M1(C), L),

• for each Λ ∈ M1(M1(X)) with Λ(M1(C)) = 1 we have r(Λ) ∈ M1(C)

and Λ(h̃) = h̃(r(Λ)).
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Set

B = {x ∈ C ∩
∞⋂
n=1

Bn; τn(h(x)) = fn(x), n ∈ N} and g = h|B .

Then B is a Baire set containing extX. Let µ ∈ M1(B) with r(µ) ∈ B be given.
Then for each n ∈ N we have

τn(µ(g)) =

∫
B

τn(h(x)) dµ(x) =

∫
B

fn(x) dµ(x) = fn(r(µ))

= τn(h(r(µ))) = τn(g(r(µ))).

Thus µ(g) = g(r(µ)). Since g̃(µ) = h̃(µ) for µ ∈ M1(B), we obtain that g̃ ∈
Cα(M1(B), L).

Finally, let Λ ∈M1(M1(X)) with Λ(M1(B)) = 1 be given. Then r(Λ) ∈M1(B)
by Lemma 3.2 and

Λ(g̃) =

∫
M1(B)

g̃ d Λ =

∫
M1(B)

h̃d Λ =

∫
M1(C)

h̃d Λ = h̃(r(Λ)) = g̃(r(Λ)).

This finishes the proof. �

Before the proof of Theorem 2.1 we recall that a topological space is K-analytic
if it is an image of a Polish space under an upper semicontinuous compact-valued
mapping (see [17, Section 2.1]).

Proof of Theorem 2.1. (ii) =⇒ (i) Let f : extX → F be a bounded mapping in
Cα′(extX,F ) for some α′ ∈ [0, ω1) satisfying that µ(g) = ν(g) for any pair of
maximal measures µ, ν with the same barycenter and any bounded Baire mapping
g : X → F extending f . Our aim is to find a strongly affine function h : X → F
extending f . Let L = cof(extX) and α = max{1, α′}. Then f ∈ Cα(extX,F ) and
α ≥ 1.

Using Lemma 3.6 we find a Baire set B ⊃ extX along with a mapping g : B → L
such that

• g ∈ Cα(B,L),
• g = f on extX,
• for each µ ∈M1(B) with r(µ) ∈ B holds g(r(µ)) = µ(g),
• the function g̃ : M1(B) → F defined as g̃(µ) = µ(g), µ ∈ M1(B), is in
Cα(M1(B), L),
• for each Λ ∈ M1(M1(X)) with Λ(M1(B)) = 1 we have r(Λ) ∈ M1(B)

and Λ(g̃) = g̃(r(Λ)).

We consider g to be extended by 0 on X \B and define

h(x) = µ(g), µ ∈Mx(X) maximal, x ∈ X.
By our assumption (ii), the definition is correct. We aim to prove that h is a Baire
function on X. To this end we show that

(3.1) h(r(µ)) = g̃(µ), µ ∈M1(B).

So let µ ∈M1(B) be given. Let ν ∈M1(X) be a maximal measure with µ ≺ ν ([1,
Lemma I.4.7]). Then r(µ) = r(ν) and ν ∈ M1(B). By [14, Theorem 3.92], there
exists a measure Λ ∈ M1(M) ⊂ M1(M1(X) ×M1(X)) such that r(Λ) = (µ, ν)
where M ⊂M1(X)×M1(X) is a compact set defined as

M = {(εx, λ) ∈M1(X)×M1(X); εx ≺ λ}.
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Since r(Λ) = (µ, ν) ∈M1(B)×M1(B) and the latter set is measure extremal (see
Lemma 3.2 and 3.4), Λ is carried by M1(B)×M1(B).

Let (εx, λ) ∈ M ∩ (M1(B) ×M1(B)). Then r(λ) = x ∈ B and by the third
property of g we have

(3.2) g(x) = g(r(λ)) = λ(g).

Further, let f1, f2 : B → F be bounded Baire mappings. We extend f1, f2 by 0
on X \ B, denote them likewise, and let N = co(f1(X) ∪ f2(X)). We consider the
mapping F : M1(X)×M1(X)→ F defined as

F ((λ1, λ2)) = λ1(f1) + λ2(f2), (λ1, λ2) ∈M1(X)×M1(X).

We claim that F is Λ-integrable and Λ(F ) = F (r(Λ)). Firstly we realise that
F is a bounded Baire mapping on a compact set M1(X) ×M1(X), and thus it
is Λ-integrable by Lemma 1.2. Indeed, the extended mappings f1, f2 are Baire
measurable on X, and thus they are of some Baire class (see [9, Lemma 3.3]), i.e.,
there exists α ∈ [0, ω1) such that f1, f2 ∈ Cα(X,N). By Lemma 3.1, λ 7→ λ(fi),
i = 1, 2, is a bounded mapping in Aα(X,N). In particular, F is Baire measurable
and bounded, and thus Λ-integrable by Lemma 1.2.

Further, let τ ∈ F ∗ be arbitrary. Since we may assume that F is real, we get
using [14, Proposition 3.90] equalities

τ (Λ(F )) = Λ(τ ◦ F ) =

∫
M1(X)×M1(X)

(τ(λ1(f1)) + τ(λ2(f2))) d Λ =

=

∫
M1(X)×M1(X)

(λ1(τ ◦ f1) + λ2(τ ◦ f2)) d Λ

= µ(τ ◦ f1) + ν(τ ◦ f2) = τ(µ(f1) + ν(f2))

= τ(F (r(Λ))).

Hence Λ(F ) = F (r(Λ)).
Now we use this equality for G1, G2 defined by the pairs (g, 0) and (0, g), i.e.,

G1((λ1, λ2)) = λ1(g) and G2((λ1, λ2)) = λ2(g) for (λ1, λ2) ∈ M1(X) ×M1(X).
We obtain from (3.2)

g̃(µ) = µ(g) = G1(r(Λ)) = Λ(G1) =

∫
{(εx,λ)∈M1(B)×M1(B); εx≺λ}

εx(g) d Λ

=

∫
{(εx,λ)∈M1(B)×M1(B); εx≺λ}

λ(g) d Λ

= Λ(G2) = G2(r(Λ)) = ν(g) = h(r(ν)) = h(r(µ)).

Thus (3.1) holds.
From (3.1) we infer that h is a Baire mapping. Indeed, we consider the barycenter

mapping r : M1(B) → X. Then r is a continuous surjection onto X. We want to
show that h is Baire measurable. To this end, let U ⊂ F be an open set. By (3.1),
g̃ = h ◦ r. Hence

h−1(U) = r(g̃−1(U)) and h−1(F \ U) = r(g̃−1(F \ U)).

Since g̃ is Baire and M1(B) = {µ ∈ M1(K); µ(B) = 1}, as a Baire subset of a
K-analytic space, is a K-analytic space, both the sets g̃−1(U) and g̃−1(F \ U) are
K-analytic as well. Since r is continuous, both the sets h−1(U) and h−1(F \U) are
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K-analytic and thus, being disjoint, they are Baire (see [17, Theorem 3.3.1]). Thus
h is Baire measurable.

Next we verify that h is strongly measurable. Let λ ∈M1(X) with r(λ) = x be
given. Since r : M1(B)→ X is a continuous surjection andM1(B) is a K-analytic
space, by [6, Corollary 432G] there exists a Radon measure Λ ∈ M1(M1(X))
with Λ(M1(B)) = 1 and r]Λ = λ. Then the barycenter µ of Λ is in M1(B)
(see Lemma 3.2) and r(µ) = r(λ). Indeed, if a ∈ A(X,R) is arbitrary and ã ∈
A(M1(X),R) is defined as ã(ω) = ω(a), ω ∈M1(X), then ã = a ◦ r, and thus

a(x) = λ(a) = (r]Λ)(a) = Λ(a ◦ r) = Λ(ã) = ã(µ) = µ(a).

Hence by (3.1) we have

λ(h) = (r]Λ)(h) = Λ(h ◦ r) = Λ(g̃) = g̃(µ) = h(r(µ)) = h(x).

Thus h is a strongly affine Baire mapping of X into F extending f . Using
[22, Theorem 2.2] we infer that h ∈ C1+α′(X,F ). This concludes the proof of the
implication (ii) =⇒ (i).

(i) =⇒ (ii) Let h : X → F be a strongly affine Baire extension of f . Let g : X →
F be any bounded Baire extension of f and µ, ν ∈ M1(X) be a pair of maximal
measures with the same barycenter x ∈ X. Then the set B = {y ∈ X; h(y) = g(y)}
is a Baire subset of X and contains extX. Thus both µ, ν are carried by B and we
obtain

µ(g) =

∫
B

g dµ =

∫
B

hdµ = h(x) =

∫
B

hd ν =

∫
B

g d ν = ν(g).

Hence (i) =⇒ (ii). �

Proof of Theorem 2.3. Let f ∈ Cα(extX,F ) be a bounded function with values in
a Fréchet space F for α ∈ [1, ω1). By Theorem 2.1, f admits a strongly affine Baire
extension h. By [22, Theorem 2.4], h ∈ Cα(X,F ). The reverse implication is the
same as in the proof of Theorem 2.1. �

Proof of Theorem 2.5. Let f ∈ C(extX,F ) be a continuous function with values in
a Fréchet space F . By Theorem 2.1, f admits a strongly affine Baire extension h.
By [22, Theorem 2.1(c)], h ∈ C(X,F ), i.e., h ∈ A(X,F ). The reverse implication is
the same as in the proof of Theorem 2.1. �

Proof of Theorem 2.6. Given a bounded function f ∈ C(extX,F ), where F is a
Banach space with the bounded approximation property, we extend f to a strongly
affine function h ∈ C1(X,F ). By [9, Theorem 2.2], h ∈ A1(X,F ). The reverse
implication is the same as in the proof of Theorem 2.1. �

4. Examples

The first example shows that, without the assumption of the Lindelöf property
of extX, the extension results do not hold in general.

Example 4.1. There exist a compact convex set X and a bounded function f ∈
C(extX,R) such that

• µ(g) = ν(g) for each pair µ, ν ∈ M1(X) of maximal measures on X with
the same barycenter and each bounded Borel extension g of f .

• there is no extension of f to an affine Borel function.
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Proof. Using the standard “porcupine” construction we consider the simplex X
constructed in [9, Example 5.4] (see also [1, Proposition I.4.15]). Then if we take
the set A used there to be the unit interval [0, 1], extX can be identified with
[0, 1]×{−1, 1}. Moreover, the restriction of the topology of X to extX is a discrete.
Let B ⊂ [0, 1] be a non-Borel set and a bounded f ∈ C(extX,R) be defined as

f(x) =

{
1, x ∈ B × {−1, 1},
0, x ∈ ([0, 1] \B)× {−1, 1}.

Then the assumption on boundary measures is vacuously satisfied since X is a
simplex and thus for each x ∈ X there is only one maximal measure in Mx(X).
Finally, any affine extension h of f satisfies

h(x) =

{
1, x ∈ B,
0, x ∈ [0, 1] \B,

x ∈ [0, 1],

which gives that h is non-Borel. �

The next example witnesses that the shift of classes in Theorem 2.1 may occur
for each finite α.

Example 4.2. There exists a metrizable compact convex set X such that for each
α ∈ [0, ω0) there exists a bounded function f ∈ Cα(extX,R) such that

• µ(f) = ν(f) for each pair µ, ν ∈ M1(X) of maximal measures on X with
the same barycenter,

• there is no extension of f to a strongly affine function h ∈ Cα(X,R).

Proof. Let X be a metrizable simplex constructed in [10, Theorem 1.1(b)]. Then
for each α ∈ [0, ω0) there exists a bounded function f ∈ Cα(extX,R) such that the
function h(x) = δx(f), x ∈ X (here δx stands for the unique maximal measure in
Mx(X)) is not in Cα(X,R). Since h is the only possible strongly affine extension
of f , the proof is finished. �

We may ask whether the strong affinity along with Baire class can be improved
to an affine class. This holds for first class, i.e., any affine Baire-one real function
on X is strongly affine and in A1(X,R). The following example shows that this is
not longer true for higher Baire classes.

Example 4.3. There exist a metrizable compact convex set X and a bounded func-
tion f ∈ C2(extX,R) such that

• µ(f) = ν(f) for each pair µ, ν ∈ M1(X) of maximal measures on X with
the same barycenter,

• there is no extension of f to a function h ∈
⋃
α<ω1

Aα(X,R).

Proof. Let X be a metrizable compact convex set constructed in [23] (see also [14,
Theorem 12.77]). Then there exists a strongly affine function h ∈ C2(X,R) that is
not in

⋃
α<ω1

Aα(X,R). Hence f = h|extX ∈ C2(extX,R), but the only possible

strongly affine extension of f , namely h, is not of any affine class. (To see this,
consider a strongly affine extension g of f . Then for each x ∈ X, let µ ∈ Mx(X)
be maximal. Then

g(x) = µ(g) =

∫
extX

g dµ =

∫
extX

f dµ =

∫
extX

hdµ = h(x).

�
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Example 4.4. There exist a metrizable compact convex set X, a Banach space F
and a function f ∈ C(extX,BF ) such that

• µ(f) = ν(f) for each pair µ, ν ∈ M1(X) of maximal measures on X with
the same barycenter,
• there is no extension of f to a function h ∈

⋃
α<ω1

Aα(X,F ).

Proof. Let F be a separable reflexive space which fails the compact approximation
property (see [3, Proposition 2.12]). By [5, Theorem 8.1], F admits an equivalent
locally uniformly rotund renorming. Let X = (BF , w) be the new unit ball with
the weak topology. Let h : X → F be the identity mapping. Then h is strongly
affine and in C1(X,F ), but h /∈

⋃
α<ω1

Aα(X,F ) (this follows from [9, Example

2.3]). Since h is strongly affine, f = h|extX satisfies the assumption µ(f) = ν(f)
for any pair of maximal measure on X with the same barycenter and clearly the
only strongly affine extension of f , namely h, is not of any affine class. Finally, since
F has a locally uniformly rotund norm, the weak and the norm topology coincide
on the sphere SF (see [5, Exercise 8.45]). But SF ⊃ extBF = extX, and thus f is
continuous on extX.

�
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of Mathematical Analysis, Sokolovská 83, 186 75, Praha 8, Czech Republic

Email address: spurny@karlin.mff.cuni.cz


