Learning objectives

GASTROINTESTINAL TRACTS

- Introduction of GIT
- Neural innervation of GIT
- Salivary glands-secretion, regulation & function
- Gastric secretion and applied
- Pancreatic secretion-composition, function
- & its applied
- Liver, Gallbladder & its applied
- Carbohydrates & its applied
- Protein & its applied
- Fats & its applied
- Large intestine & its applied
- GI motility I
- GI motility II

Gastrointestinal physiology

INTRODUCTION:-

- gastrointestinal (GI) tract, also known as the alimentary canal, commences at the buccal cavity of the mouth and terminates at the anus.
- It can be divided into an upper GI tract
- mouth,
- pharynx,
- esophagus
- stomach

lower GI tract

- small instines
- large intestines

General Principles

The **alimentary tract** provides the body with a **continual supply** of water, electrolytes, and nutrients

Functions of alimentary tract:

- (1) **movement of food** through the alimentary tract;
- (2) secretion of digestive juices and digestion of the food;
- (3) **absorption** of water, various electrolytes, and digestive products;
- (4) **circulation of blood** through the gastrointestinal organs to carry away the absorbed substances;
- (5) **control** of all these functions by <u>local</u>, <u>nervous</u>, <u>and hormonal</u> <u>systems</u>

Physiologic Anatomy

- typical **cross section** of the intestinal wall layers <u>from outer</u> <u>surface inward:</u>
- (1) the **serosa**,
- (2) outer <u>longitudinal</u> muscle layer,
- (3) inner <u>circular</u> muscle layer,
- (4) the **submucosa**,
- (5) the mucosa
- The motor functions of the gut are performed by the different layers of smooth muscle
- the muscle fibers are **electrically connected** with one another through large numbers of **gap junctions** that allow <u>low</u> resistance movement of ions from one muscle cell to the next.
- each muscle layer functions as a **syncytium**

Electrical Activity

- an **action potential** is elicited anywhere within the muscle mass, it generally <u>travels</u> in all <u>directions</u> in the muscle
- smooth muscle of the gastrointestinal tract is excited by almost continual slow, intrinsic electrical activity
 - (1) slow waves and
 - (2) spikes
- Most gastrointestinal contractions occur **rhythmically**, and this rhythm is determined mainly by the <u>frequency of so</u> called "slow waves" of smooth muscle membrane potential <u>not action potentials</u>
- slow, rising and falling changes in the RMP intensity usually varies between 5 and 15 millivolts

Electrical Activity

- *frequency ranges* in different parts of the human GIT from 3 to 12 per minute
- the **rhythm of contraction** of the
- **body of the stomach** usually is about 3 per minute,
- of **the duodenum** about 12 per minute,
- of **the ileum** about 8 to 9 per minute
- interstitial cells of Cajal electrical pacemakers for smooth muscle cells
- These cells form a <u>network with each other and are interposed</u> between the smooth muscle layers, with **synaptic like contacts to smooth muscle cells**.

Electrical Activity

- The interstitial cells of Cajal undergo cyclic changes in membrane potential due to unique ion channels that periodically open and produce inward (pacemaker) currents that may generate slow wave activity
- The slow waves usually do <u>not</u> by themselves cause muscle contraction in most parts of the gastrointestinal tract, **except in the stomach**.
- Instead, they mainly **excite the appearance of intermittent spike potentials**, and the spike potentials in turn actually excite the muscle contraction.

Spike Potentials

- **true** action potentials
- They occur automatically when the RMP of the GIT smooth muscle becomes **more positive than about -40 millivolts**
- the normal RMP in the smooth muscle fibers of the gut is between **50 and -60 millivolts**
- each time the peaks of the **slow waves** temporarily become more positive than -40 millivolts, **spike potentials** appear on these peaks
- The **higher** the <u>slow wave</u> potential rises, the **greater** the <u>frequency</u> of the spike potentials ranging between **1 and 10 spikes / second.**

Spike Potentials

- The spike potentials last **10 to 40 times as long** in GIT muscle as that in large nerve fibers, each spike lasting as long as **10 to 20** milliseconds
- Influx of <u>large numbers of Ca</u> ions to enter along with <u>smaller</u> numbers of Na ions and therefore are called <u>Ca-Na channels</u>
- slower to open and close remained open for long time
- long duration of the action potentials
- baseline voltage level (about -56 millivolts) of the smooth muscle RMP can change.

Spike Potentials

- When the potential becomes **less negative depolarization** of the membrane, the muscle fibers become **more excitable.**
- When the potential becomes **more negative hyperpolarization**, the fibers become **less excitable**
- Factors that <u>depolarize</u> the membrane
- (1) **stretching** of the muscle,
- (2) stimulation by **acetylcholine**,
- (3) stimulation by **parasympathetic nerves** that secrete acetylcholine at their endings,
- (4) stimulation by several specific **gastrointestinal hormones**.
- Important factors that <u>hyperpolarize</u> the membrane
- (1) the effect of **norepinephrine or epinephrine** on the fiber membrane
- (2) stimulation of the **sympathetic nerves** that secrete mainly **norepinephrine** at their endings.

Muscle Contraction

- Ca influx during spike potential Ca Calmodulin MLCK Contraction
- The <u>slow waves do not cause</u> calcium ions to enter the smooth muscle fiber (<u>only sodium ions</u>) <u>no</u> muscle contraction
- during the <u>spike potentials</u> significant quantities of calcium ions enter the fibers and cause <u>most of the contraction</u>
- <u>Tonic contraction</u> is continuous lasting <u>several minutes or even</u> <u>hours</u> increases or decreases in intensity but continues.

TONIC Contraction

- <u>Continuous repetitive spike potentials</u>—the greater the **frequency**, the greater the **degree of contraction**.
- Hormones or other factors that bring about **continuous partial depolarization** of the smooth muscle membrane **without causing action potentials.**
- continuous entry of calcium ions into the interior of the cell

References

- Lippincott's Illustrated Reviews: Physiology (2013)
- Medical Physiology, Updated second edition (walter F. Boron, MD, phd)
- Berne & levy, physiology, sixth edition, updated edition
- Ganong's Review of Medical Physiology, 26 th edition