Dentin

- Dentin is a hard tissue of the tooth that surrounds the pulp and makes up the bulk and general form of tooth
- Characterized by presence of tubules throughout its thickness
- Dentinal tubules contain process of odontoblasts within them → thus dentin is a living or vital tissue

Physical properties

Colour

- Young age \rightarrow light yellow
- With advancing age \rightarrow becomes darker

Consistency

- Elastic and resilient
- Harder than bone but softer than enamel

Chemical properties

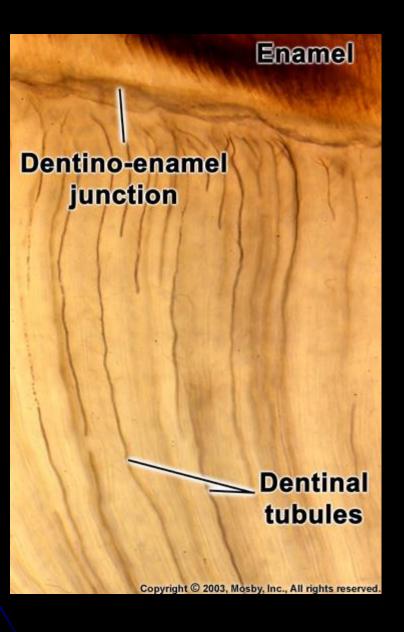
Composition

- Organic matter \rightarrow 35%
- Inorganic matter \rightarrow 65%
- Organic matrix
 - Collagen fibrils
 - Ground substance (mucopolysccharides)
 - Proteoglycans
 - Glycos aminoglycans

- Inorganic component
 - Calcium and phosphate in the form of Hydroxyapatite crystals
 - Each crystal has a basic chemical formula → 3Ca₃(PO₄)₂. Ca(OH)₂
 - Plate shaped
 - Smaller than the hydroxyapatite crystals of enamel

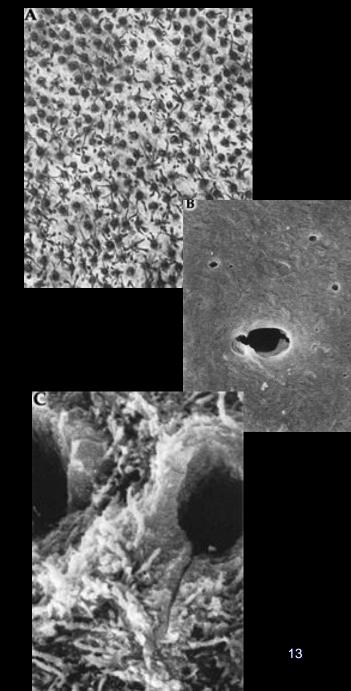
 Also contains small amounts of phosphates, carbonates and sulfates

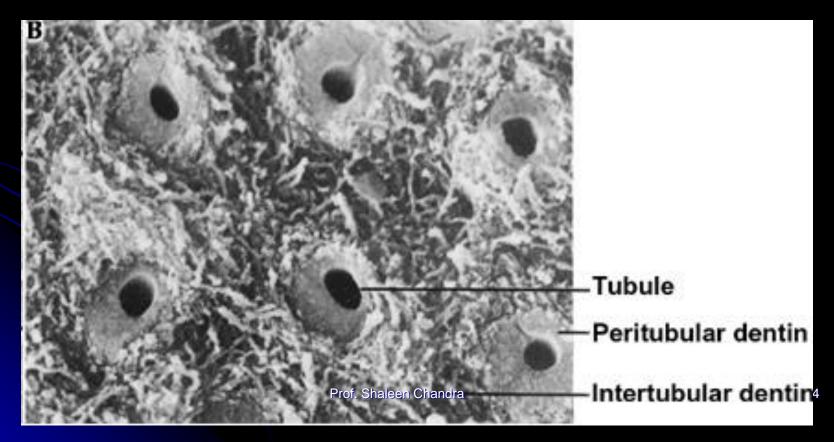
Structure


 Odontoblasts are present in the pulp and are arranged in a layer lining the pulpal surface of dentin

 Each cell gives out a long thin process which enters a hollow tube like structure within the dentin called as "dentinal tubule"

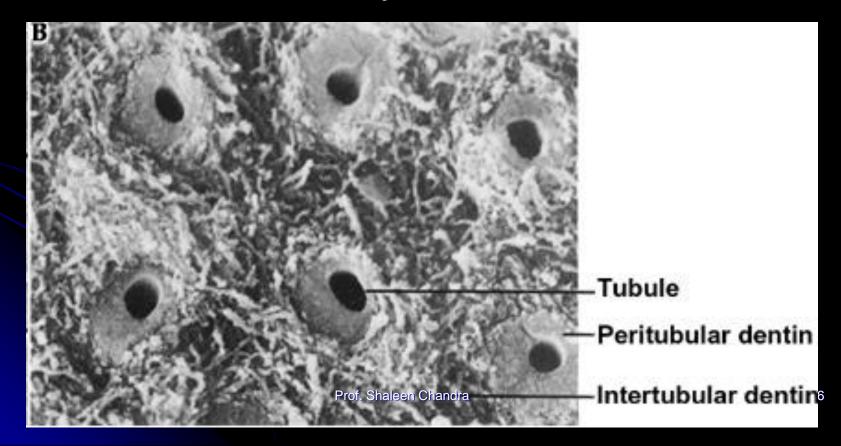
Dentinal tubules


- Traverse throughout the thickness of dentin
- Follows a gentle curvature in the crown which resembles "Sshape"
- Starting from the pulpal surface the first convexity of the curvature is towards the root
- Curvature is less prominent in the root portion


- The tubules are perpendicular to the dentinoenamel junction and the dentino-cemental junction
- Near the root tips and incisal edges the tubules are almost straight
- Surface area of dentin is greater at enamel surface than pulpal surface → dentinal tubules are further apart at enamel surface of dentin
- Tubules are larger in diameter at the pulpal end (3-4µm) as compared to enamel end (1µm)

- No. of tubules per unit area at the pulpal surface is about 4 times that of enamel surface
- More tubules per unit area in the crown portion as compared to root
- Lateral branches of dentinal tubules are called "canaliculi" or "microtubules" (1µm in diameter)
- Few dentinal tubules extend through the DEJ into enamel → enamel spindles

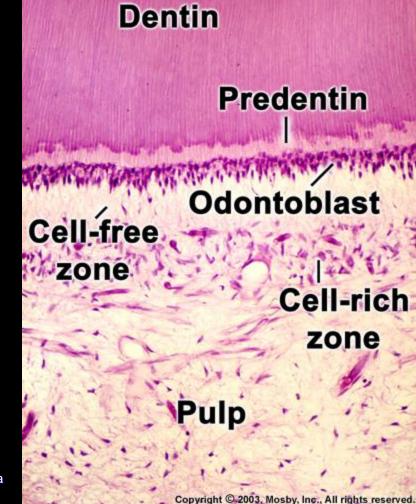
Peritubular dentin


Dentin that immediately surrounds the dentinal tubules

- Found throughout the thickness of dentin except near the pulp
- More highly mineralized (9% more) than intertubular dentin
- Twice as thick in outer dentin than in inner dentin
- Thin organic membrane rich in glycos aminoglycans on the inner side → lamina limitans

Intertubular dentin

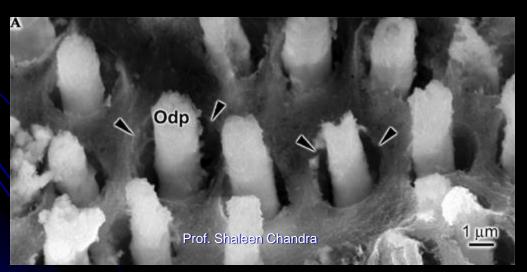
 Located between the dentinal tubules and forms the main body of dentin



• Less mineralized than peritubular dentin

- About one half of the volume is organic matrix made up of collagen fibers oriented around the dentinal tubules
- Fibers are 0.2µm 0.5µm in diameter and exhibit 64µm crossbanding
- Hydroxyapatite crystals (0.1µm in length) are present with long axis parallel to collagen fibers

Predentin


- 2µm 6µm wide layer of unmineralized dentin matrix located adjacent to pulp tissue
- First formed dentin
- Thickness depends on the activity of odontoblasts

Odontoblastic process

 Cytoplasmic extensions of odontoblasts into the dentinal tubules

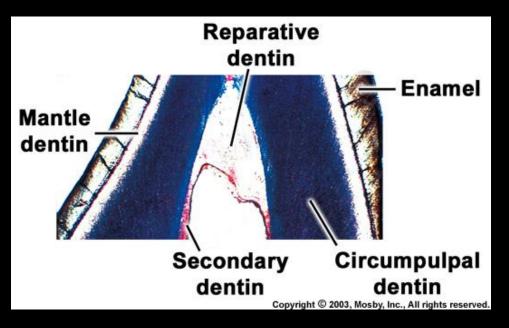
 Greatest diameter is near the pulp (3µm -4µm) and taper further in dentin (1µm)

Extent of odontoblastic process into the dentin → still debatable ???

Two theories

- 1. Odontoblastic process extends throughout the thickness of dentin
 - Organic matrix within the dentinal tubules is found even at DEJ

 Odontoblastic process is present only upto partial extent in dentin


 Structure interpreted as odontoblastic process is actually almina limitans

Odontoblastic process is composed of

- Microtubules
- Mitochondria
- Lysosomes
- Microvesiceles

Types of dentin

- Primary Dentin
- Secondary Dentin
- Tertiary Dentin

Primary Dentin:

- Dentin formed before root completion
- Major part of dentin
 - Mantle dentin outer layer
 - Circumpulpal dentin

Mantle dentin

- First formed dentin in the crown
- Seen just below the DEJ
- 20µm in thickness
- Organic matrix is formed by collagen fibrils arranged perpendicular to the DEJ
- Linear mechanism of calcification

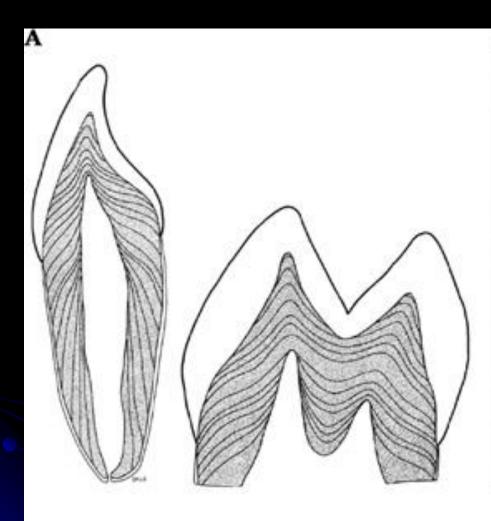
Circumpulpal dentin

- Remaining portion of primary dentin which forms the bulk of the tooth
- Collagen fibrils are much smaller in diameter (0.05µm) and are more closely packed together
- May be slightly more mineralized than mantle dentin
- Globular mechanism of calcification

<u>Secondary Dentin:</u>

- Develops after root formation
- Slower rate of deposition
- Tubules \rightarrow less regular

Greater deposition on the roof and floor

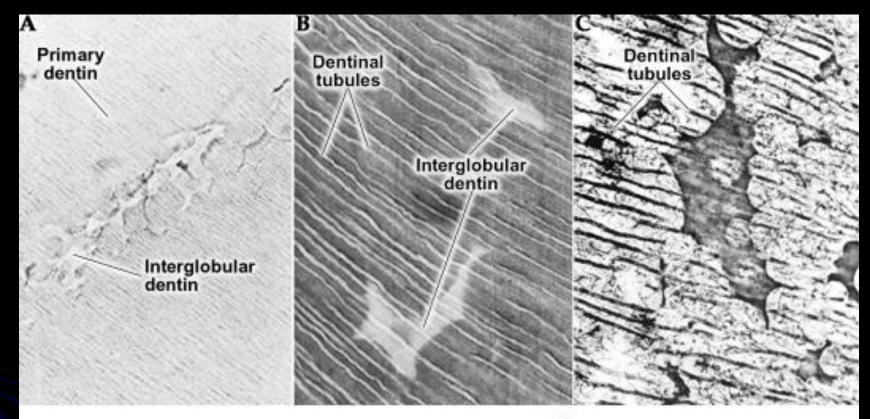

Pulp recession

Tertiary Dentin

- Produced in reaction to various stimuli
 - Attrition, caries, or a restorative dental procedure
- May have tubules
 - continuous with those of secondary dentin
 - sparse in number and irregularly arranged
- Osteodentin cells entrapped in tertiary dentin
- **Reactionary dentin** preexisting Odontoblasts
- Reparative dentin newly differentiated odontoblastlike cells

Incremental lines

- Represent daily rhythmic deposition of dentin
- Run at right angles to dentinal tubules
- Separated by 4µm → represent daily deposition of dentin
 → no name
- Accentuated incremental lines separated by 20µm → represent 5 day deposition → "incremental lines of von Ebner"
- Lines caused by accentuated deficiencies in mineralization → "contour lines of Owen"

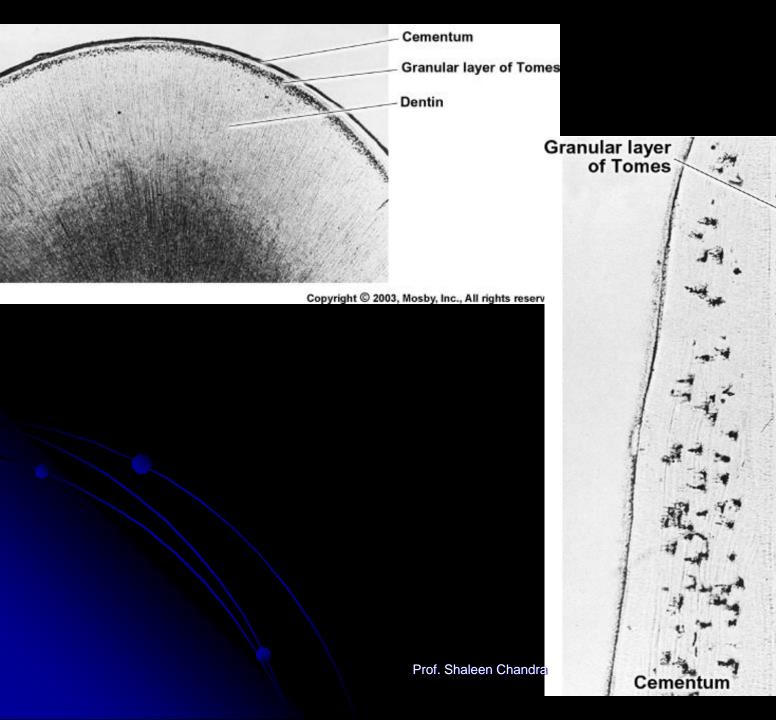


Copyright © 2003, Mosby, Inc., All rights reserved.

Interglobular dentin

- Unmineralized or hypomineralized dentin where globular zones of mineralization (calcospherites) have failed to fuse into a homogenous mass within mature dentin
- Vitamin D deficiency
- high level fluoride exposure
- Most frequently seen in Circumpulpal dentin just below the mantle dentin
- Normal dentinal tubular architecture is visible → defect of mineralization and not of matrix formation
- No Peritubular dentin exists around the tubules

Copyright © 2003, Mosby, Inc., All rights reserved.


Granular layer of Tomes

When dry ground sections of root dentin are visualized in transmitted light

A zone adjacent to cementum appears granular

More prominent towards the apical portion

 Caused by coalescing and looping of terminal portions of dentinal tubules

でのジナ

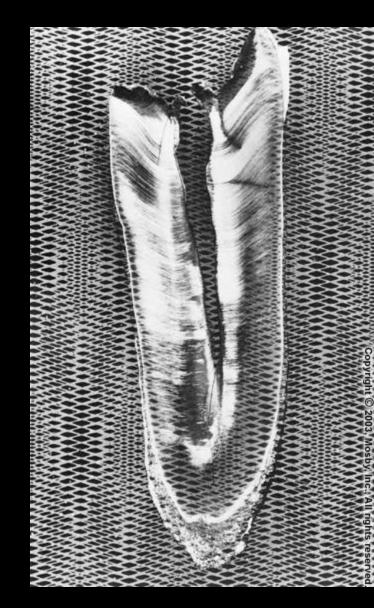
1

Sales of

の二十二、二十二

Dentin

Age changes in dentin


Sclerotic dentin

 Dentinal tubules that have become occluded with calcified material

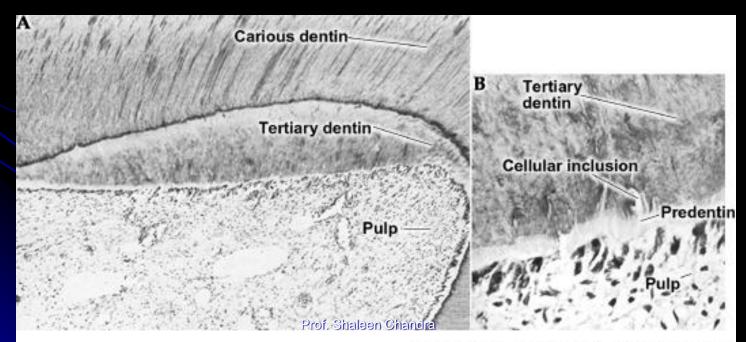
 Assume a glassy appearance and become translucent

Also called as transparent dentin

- More common in the apical third of the root
- Physiologic response to aging
- Thought to be due to
 Continued deposition of peritubular dentin
 - Deposition of mineral within the dentinal tubule
 - Mineralization of the odontoblastic process

Reparative dentin

• It is a form of tertiary dentin


Noxious stimulus on the pulp

Differentiation of odontoblasts from undifferentiated cells in the pulp

Odontoblasts lay down a layer of dentin in the exposed area to protect the pulp from damage

Fewer and more twisted tubules than normal dentin

 Dentin forming cells are usually trapped within the reparative dentin → osteodentin

Copyright © 2003, Mosby, Inc., All rights reserved.

Dead tracts

Due to death and loss of odontoblastic process

Dentinal tubules become empty

Become filled with air

Appear black in transmitted light as air does not allow the light to pass

Seen in areas of loss of odontoblastic process due to

- Caries
- Attrition
- Abrasion
- Erosion
- Cavity preparation