ANALYSIS OF CHEROKEE GROUP COAL SAMPLES FOR GAS CONTENT AND CORE DESCRIPTION – KANSAS GEOLOGICAL SURVEY COOPER #CW-1 WELL (SE SW SW 11-T35S-R18E), LABETTE COUNTY, KANSAS

by
Jonathan P. Lange,
Troy A. Johnson,
and
K. David Newell

Kansas Geological Survey The University of Kansas 1930 Constant Avenue Lawrence, KS 66047-3726

August, 2003

Disclaimer

The Kansas Geological Survey does not guarantee this document to be free from errors or inaccuracies and disclaims any responsibility or liability for interpretations based on data used in the production of this document or decisions based thereon. This report is intended to make results of research available at the earliest possible date, but is not intended to constitute final or formal publication.

KANSAS GEOLOGICAL SURVEY OPEN-FILE REPORT 2003-43

SUMMARY

During July of 2002 the Kansas Geological Survey drilled a continuous 2-inch diameter core from the surface to 860 feet total depth with a wireline-core drilling rig. Samples of core were boxed on site and later transported to the core repository at the Kansas Geological Survey in Lawrence, KS. Following the completion of drilling, the Fort Scott and Cherokee Group portions of the core were described in detail and photographed (Appendix A and B).

Six core samples from the Pennsylvanian Cherokee Group were collected from the Kansas Geological Survey Cooper #CW-1 well in SE SW SW11-T35S-R18E, Labette Co., KS. Desorbed gas from these samples were measured with the following results:

•	Iron Post coal (382'-383')	[143.5 scf/ton]
•	Fleming coal (420'-421')	[49.0 scf/ton]*
•	Dry Wood coal (630.4'-631.4')	[87.4 scf/ton]
•	Rowe coal (695.9'-696.5')	[76.1 scf/ton]
•	Neutral coal (766.7'-767.7')	[69.3 scf/ton]
•	Riverton coal (840.2'-841.2')	[62.5 scf/ton]

^{*} Measurement suspect to due leak discovered in desorption canister.

BACKGROUND

The KGS Cooper #CW-1 well in SE SW SW 11-T35S-R18E, Labette Co., KS, was selected for core desorption tests in association with an on-going coalbed gas research project at the Kansas Geological Survey. The samples were gathered July 17-20, 2003 by Jonathan P. Lange and Troy Johnson of the Kansas Geological Survey. Samples were obtained in a wireline coring operation by the Kansas Geological Survey drilling rig. Time off bottom for every sample was noted, as well as time at surface and time in canister.

The samples were collected and inserted into desorption canisters at the well site. The canisters were then placed in temperature baths approximating formation temperature. The canistered samples were later transported to the Kansas Geological Survey and desorption measurements were continued. Desorption measurements were periodically made until the canisters produced no more gas.

DESORPTION MEASUREMENTS

The equipment and method for measuring desorption gas is that prescribed by McLennan and others (1995). The volumetric displacement apparatus is a set of connected dispensing burettes, one of which measures the gas evolved from the desorption canister. The other burette compensates for the compression that occurs when the desorbed gas displaces the water in the measuring burette. This compensation is performed by adjusting the cylinders so that their water levels are identical, then figuring the amount of

gas that evolved by simply reading the difference in water level using the volumetric scale on the side of the burette.

The desorption canisters were homemade using PVC pipe and fixtures available at plumbing supply shops. On average, the canisters were approximately 12 inches high, 4 inches in diameter, and enclosed a volume of approximately 150 cubic inches (2450 cm³).

The desorbed gas that collected in the desorption canisters was periodically released into the volumetric displacement apparatus and measured as a function of time, temperature and atmospheric pressure.

The atmospheric pressure was estimated in the field. More precise measurements were made back at the laboratory using a pressure transducer in the Petrophysics Laboratory in the Kansas Geological Survey in Lawrence, Kansas. A spreadsheet program written by K.D. Newell (Kansas Geological Survey) was used to convert all gas volumes at standard temperature and pressure. Conversion of gas volumes to standard temperature and pressure was by application of the perfect-gas equation, obtainable from basic college chemistry texts:

$$n = PV/RT$$

where n is moles of gas, T is degrees Kelvin (i.e., absolute temperature), V is in liters, and R is the universal gas constant, which has a numerical value depending on the units in which it is measured (for example, in the metric system R = 0.0820 liter atmosphere per degree mole). The number of moles of gas (i.e., the value n) is constant in a volumetric conversion, therefore the conversion equation, derived from the ideal gas equation, is:

$$(P_{stp}V_{stp})/(RT_{stp}) = (P_{rig}V_{rig})/(RT_{rig})$$

Customarily, standard temperature and pressure for gas volumetric measurements in the oil industry are 60 °F and 14.7 psi (see Dake, 1978, p. 13), therefore P_{stp} , V_{stp} , and T_{stp} , respectively, are pressure, volume and temperature at standard temperature and pressure, where standard temperature is degrees Rankine (°R = 460 + °F). P_{rig} , V_{rig} , and T_{rig} , respectively, are ambient pressure, volume and temperature measurements taken at the rig site or in the desorption laboratory.

The universal gas constant R drops out as this equation is simplified and the determination of V_{stp} becomes:

$$V_{\text{stp}} = (T_{\text{stp}}/T_{\text{rig}}) (P_{\text{rig}}/P_{\text{stp}}) V_{\text{rig}}$$

The conversion calculations in the spreadsheet were carried out in the English metric system, as this is the customary measure system used in American coal and oil industry. V is therefore converted to cubic feet; P is psia; T is *R.

The desorbed gas was summed over the time period for which the coal samples evolved all of their gas. The Fleming sample from the Cooper CW-1 well desorbed for almost 2 months before the detection of a leak. All other samples evolved gas for over a period of four to eleven months.

Lost gas (i.e., the gas lost from the sample from the time it was drilled, brought to the surface, to the time it was canistered) was determined using the direct method (Kissel and others, 1975; also see McLennan and others, 1995, p. 6.1-6.14) in which the cumulative gas evolved is plotted against the square root of elapsed time. Time zero is assumed to be instant the core is lifted from the bottom of the hole. Characteristically, the cumulative gas evolved from the sample, when plotted against the square root of time, is linear for a short time period after the sample reaches ambient pressure conditions, therefore lost gas is determined by a line projected back to time zero.

LITHOLOGIC ANALYSIS

Upon removal from the canisters, the cores were washed of drilling mud and weighed. They were then dried in air for up to three weeks and weighed again. Weight loss, given in the spreadsheet desorption data tables, ranged between 1.7% to 5.1%.

DATA PRESENTATION

Data and analyses accompanying this report are presented in the following order: 1) data tables for the desorption analyses, 2) lost-gas graphs, and 3) a desorption graph for all the samples.

Data Tables of the Desorption Analyses (Table 1)

These are the basic data used for lost-gas analysis and determination of total gas desorbed from the samples. Basic temperature, volume, and barometric measurements are listed at left. Farther to the right, these are converted to standard temperature, pressure and volumes. The volumes are cumulatively summed, and converted to scf/ton based on the total dry weight of the sample. At the right of the table, the time of the measurements are listed and converted to hours (and square root of hours) since the sample was drilled.

Lost-Gas Graphs (Figures 1-6)

Gas lost prior to the canistering of the sample was estimated by extrapolation of the first few data points after the sample was canistered. The linear characteristic of the initial desorption measurements was usually lost within the couple of hours after canistening. Lost-gas volumes derived from this analysis are incorporated in the data tables described above.

Desorption Graph (Figure 7)

This is a desorption graph (gas content per weight vs. square root of time) for all the samples. The rate at which gas is evolved from the samples is thus comparable at a common scale.

PROXIMATE ANALYSIS and ASHING EXPERIMENTS

Samples from the Iron Post, Dry Wood, Rowe and Riverton coals were sent out for proximate analysis at Luman's Labs in Chetopa, KS. The samples were obtained by sawing the coal-part of the core vertically in half and sending this half to the analytical laboratory. The analyses are as follows:

Iron Post					
As Received					
moisture	ash	volatile matter	fixed carbon	BTU/lb	sulfur
1.90%	11.18%	42.15%	44.77%	13,065	5.86%
Moisture Fr	ee				
	ash	volatile matter	fixed carbon	BTU/lb	sulfur
	11.39%	42.96%	45.65%	13,317	5.97%
Moisture/asi	h free				
	3			BTU/lb	
				15,030	
Dry Wood					
As Received					
moisture	ash	volatile matter	fixed carbon	BTU/lb	sulfur
2.45%	31.77%	31.58%	34.20%	9,849	6.16%
Moisture Fr	ee				
	ash	volatile matter	fixed carbon	BTU/lb	sulfur
	32.57%	32.37%	35.06%	10,097	6.31%
Moisture/asi	h free				
	-			BTU/lb	
				14,973	

Rowe As Received					
moisture	ash	volatile matter	fixed carbon	BTU/lb	sulfur
2.88%	44.19%	20.64%	32.29%	7,452	2.26%
Moisture Fre	e				
	ash	volatile matter	fixed carbon	BTU/lb	sulfur
	45.50%	21.25%	33.25%	7,673	2.33%
Moisture/ash	free				
				BTU/lb	
				14,079	
Riverton As Received					
moisture	ash	volatile matter	fixed carbon	BTU/lb	sulfur
2.87%	33.44%	26.71%	36.98%	9,468	10.34%
Moisture Fre	e				
	ash	volatile matter	fixed carbon	BTU/lb	sulfur
	34.43%	27.50%	38.07%	9,748	10.65%
Moisture/ash	free				
				BTU/lb	
				14,866	

According to the BTU and fixed carbon analyses, all of the coals sampled can be classified as high-volatile A bituminous coal.

Simple ashing of the Neutral sample at the Kansas Geological Survey was carried out in a muffle furnace in which the samples were first weighed and then subjected to 110 °C until their weight stabilized. This first firing approximates moisture content. A second firing at 750 °C for three to four days essentially ashed the sample. Two crucibles of sample were utilized for both the 110 °C and 750 °C firings. Each crucible was filled with approximately 1.5 grams of pulverized material (i.e., < 0.0460" sieve size). Results were accepted if the difference in weight loss for each sample was less than 2%.

unit	depth	moisture	ash	moisture-free ash
Neutral coal	766.7'	0.86%	26.69%	26.92%

Using the equation from McLennan and others (1995):

$$G_c = G_{pc} (1-a_d)$$

where:

 $G_c = gas content, scf/ton$

 G_{pc} = "pure coal", gas content, scf/ton

 $a_d = dry$ ash content, weight fraction

the gas content of the samples converts to:

unit	depth	moisture-free ash	G_c	G_{pc}
Iron Post coal	382.0'	11.39%	143.5 scf/ton	161.9 scf/ton
Dry Wood coal	630.0'	32.57%	87.4 scf/ton	129.6 scf/ton
Rowe coal	695.1'	45.50%	76.1 scf/ton	139.6 scf/ton
Neutral coal	766.7'	26.92%	69.3 scf/ton	94.8 scf/ton
Riverton coal	840.2'	34.43%	62.5 scf/ton	95.3 scf/ton

REFERENCES

Dake, L.P., 1978, Fundamentals of Reservoir Engineering, Elsevier Scientific Publishing, New York, NY, 443 p.

Kissel, F.N., McCulloch, C.M., and Elder, C.H., 1975, The direct method of determining methane content of coals for ventilation design: U.S. Bureau of Mines, Report of Investigations, RI7767.

McLennan, J.D., Schafer, P.S., and Pratt, T.J., 1995, A guide to determining coalbed gas content: Gas Research Institute, Chicago, IL, Reference No. GRI-94/0396, 180 p.

FIGURES, TABLES and APPENDICES

TABLE 1. Desorption measurements for samples.

FIGURE 1. Lost-gas graph for Iron Post coal 382'-383' depth

FIGURE 2. Lost-gas graph for Fleming coal 420'-421' depth.

FIGURE 3. Lost-gas graph for Dry Wood coal 630.4'-631.4' depth.

FIGURE 4. Lost-gas graph for Rowe coal 695.9'-696.5' depth

FIGURE 5. Lost-gas graph for Neutral coal 766.7'-767.7' depth

FIGURE 6. Lost-gas graph for Riverton coal and shale at 840.2'-841.2' depth.

FIGURE 7. Desorption graph for all samples.

APPENDIX A. Core description.

APPENDIX B. Summary of tops and core photos.

Table 1 - Desorption measurement of samples

SAMPLE: 382' to 382.11' (Iron Post Coal) Canister L#2

APPROX. WEIGHT CALCULATION	
weight of container (full):	0.21250

						EIGHT CALCULA	ATION									
sample drie	ed 7 days @	150 deg.	F (65 deg C)		weight of cont	tainer (full):		0.21250								elapsed time
DRY WEI	GHT lbs		grams		weight of cont	tainer (empty)		1	moisture weight		est. lost gas (cc) =		TIME OF:			(off bottom to canistering)
weight:		1.566	710.45		wet sample we	eight:	1.6		2.13%		140		off bottom	at surface	in canister	11 min
CONVERS	SION OF VO	DLUMES	TO STP										7/16/02 11:52	7/16/02 11:54	7/16/02 12:03	0.183333333 hrs
RIG ME	ASUREME	ENTS	CONVERSION OF	RIG MEAS	SUREMENTS TO	STP (fi3; @60 degre	ces; @14.7 psi)	CUMULATI	VE VOLUMES	SCF/TON	SCF/TON (approx)		TIME SINCE			0.428174419 SQRT (hrs)
cc	T (F)	P	ft3 (@rig)	ABS. T (psia (@rig)	ft3 (@STP)	cc (@STP)	ft3 (@STP)	cc (@STP)	w/out lost gas	with lost gas	TIME	off bottom	at surface	in canister	SQRT hrs. (off bottom)
0	79	1089	0.000000	539	14.13167422	0.000000	0	0.00000	0	0	6.314268199	7/16/02 12:03	0:11:00	0:09:00	0:00:00	0.428174419
25	79	1089	0.000883	539	14.13167422	0.000819	23.18626895	0.00082	23.18626895	1.045745148	7.360013347	7/16/02 12:05	0:13:00	0:11:00	0:02:00	0.465474668
17	79	1089	0.000600	539	14.13167422	0.000557	15.76666289	0.00138	38.95293184	1.756851849	8.071120048	7/16/02 12:07	0:15:00	0:13:00	0:04:00	0.5
1	79	1089	0.000035	539	14.13167422	0.000033	0.927450758	0.00141	39.8803826	1.798681655	8.112949854	7/16/02 12:09	0:17:00	0:15:00	0:06:00	0.532290647
30	79	1089	0.001059	539	14.13167422	0.000983	27.82352275	0.00239	67.70390535	3.053575832	9.367844031	7/16/02 12:15	0:23:00	0:21:00	0:12:00	0.619139187
23	80	1089	0.000812	540	14.13167422	0.000752	21.29186491	0.00314	88.99577025	4.013879728	10.32814793	7/16/02 12:20	0:28:00	0:26:00	0:17:00	0.683130051
1	80	1089	0.000035	540	14.13167422	0.000033	0.925733257	0.00318	89.92150351	4.055632072	10.36990027	7/16/02 12:25	0:33:00	0:31:00	0:22:00	0.741619849
48	80	1089	0.001695	540	14.13167422	0.001569	44.43519633	0.00474	134.3566998	6.059744551	12.37401275	7/16/02 12:40	0:48:00	0:46:00	0:37:00	0.894427191
34	79	1089	0.001201	539	14.13167422	0.001114	31.53332578	0.00586	165.8900256	7.481957952	13.79622615	7/16/02 12:50	0:58:00	0:56:00	0:47:00	0.98319208
46	79	1089	0.001624	539	14.13167422	0.001507	42.66273488	0.00736	208.5527605	9.406129024	15.72039722	7/16/02 13:12	1:20:00	1:18:00	1:09:00	1.154700538
43	80	1089	0.001519	540	14.13167422	0.001406	39.80653004	0.00877	248.3592905	11.20147979	17.51574799	7/16/02 13:34	1:42:00	1:40:00	1:31:00	1.303840481
38	79	1089	0.001342	539	14.13167422	0.001245	35.24312881	0.01002	283.6024193	12.79101241	19.10528061	7/16/02 14:00	2:08:00	2:06:00	1:57:00	1.460593487
50	79	1089	0.001766	539	14.13167422	0.001638	46.37253791	0.01165	329.9749573	14.88250271	21.19677091	7/16/02 14:36	2:44:00	2:42:00	2:33:00	1.653279569
38	79	1087	0.001342		14.10572073	0.001242	35.17840314	0.01290	365.1533604	16.46911608	22.78338428	7/16/02 15:02	3:10:00	3:08:00	2:59:00	1.779513042
34	79	1087	0.001201		14.10572073	0.001112	31.47541333	0.01401	396.6287737	17.88871752		7/16/02 15:30	3:38:00	3:36:00	3:27:00	1.906130461
30	79	1087	0.001059		14.10572073	0.000981	27.77242353	0.01499	424.4011973	19.14130703	25.45557522	7/16/02 16:00	4:08:00	4:06:00	3:57:00	2.033060091
28	79	1087	0.000989		14.10572073	0.000915	25.92092863	0.01590	450.3221259	20.31039056		7/16/02 16:30	4:38:00	4:36:00	4:27:00	2.152517905
22	78	1086	0.000777		14.09274398	0.000720	20.38552856	0.01662	470.7076544	21.22981695		7/16/02 17:00	5:08:00	5:06:00	4:57:00	2.265686062
76	78	1086	0.002684		14.09274398	0.002487	70.42273503	0.01911	541.1303895	24.40601721	30.72028541	7/16/02 18:00	6:08:00	6:06:00	5:57:00	2.476556749
55	78	1086	0.001942		14.09274398	0.001800	50.9638214	0.02091	592.0942109	26.70458319		7/16/02 19:20	7:28:00	7:26:00	7:17:00	2.732520204
50	78	1086	0.001766		14.09274398	0.001636	46.33074673	0.02255	638.4249576	28.79418862		7/16/02 21:00	9:08:00	9:06:00	8:57:00	3.022140522
46	78	1086	0.001700		14.09274398	0.001505	42.62428699	0.02405	681.0492446	30.71662562	37.03089382	7/16/02 22:35	10:43:00	10:41:00	10:32:00	3.27363203
89	78	1086	0.003143		14.09274398	0.002912	82.46872918	0.02696	763.5179738	34.4361233		7/17/02 5:45	17:53:00	17:51:00	17:42:00	4.228869037
85	78	1086	0.003002		14.09274398	0.002781	78.76226944	0.02974	842.2802432	37.98845253		7/17/02 12:00	24:08:00	24:06:00	23:57:00	4.912568914
91	78	1086	0.003214		14.09274398	0.002978	84.32195905	0.03272	926.6022023	41.79153442		7/17/02 23:10	35:18:00	35:16:00	35:07:00	5.941380311
120	78	1086	0.004238		14.09274398	0.003927	111.1937922	0.03665	1037.795994	46.80658746		7/18/02 23:05	59:13:00	59:11:00	59:02:00	7.695236622
110	80	1080	0.003885		14.01488352	0.003566	100.9890826	0.04022	1138.785077	51.36138855	57.67565675	7/19/02 18:15	78:23:00	78:21:00	78:12:00	8.853436244
98	79	1079	0.003461		14.00190678	0.003180	90.05555379	0.04340	1228.840631	55.42306655		7/20/02 15:50	99:58:00	99:56:00	99:47:00	9.998333194
100	82	1083	0.003531		14.05381375	0.003239	91.72356291	0.04664	1320.564194	59.55997495		7/21/02 15:06	123:14:00	123:12:00	123:03:00	11.101051
72	77	1088	0.003531		14.11869747	0.002365	66.96360903	0.04900	1387.527803	62.580162		7/22/02 15:01	147:09:00	147:07:00	146:58:00	12.13053997
98	90	1083	0.002343		14.05381375	0.002303	88.58161395	0.05213	1476.109417	66.57536249	72.88963069	7/23/02 15:18	171:26:00	171:24:00	171:15:00	13.09325526
72	81	1079	0.002543		14.00190678	0.002328	65.91866784	0.05446	1542.028084	69.54842069		7/24/02 15:02	195:10:00	195:08:00	194:59:00	13.97020639
67	81	1077	0.002345		13.97595329	0.002320	61.22728288	0.05662	1603.255367	72.30988844		7/25/02 15:41	219:49:00	219:47:00	219:38:00	14.82621552
74	84	1074	0.002500		13.93702306	0.002162	67.06390646	0.05899	1670.319274	75.33459909	81.64886729	7/26/02 18:16	246:24:00	246:22:00	246:13:00	15.6971335
96	85	1074	0.002013		14.02786026	0.002308	87.40819876	0.06207	1757.727473	79.27687631	85.59114451	7/28/02 14:40	290:48:00	290:46:00	290:37:00	17.052859
50	78	1083	0.003390		14.05381375	0.003687	46.20276124	0.06371	1803.930234	81.36070935		7/29/02 15:52	316:00:00	315:58:00	315:49:00	17.77638883
50	78	1079	0.001766		14.00190678	0.001626	46.03211392	0.06533	1849.962348	83.43684587		7/31/02 15:08	363:16:00	363:14:00	363:05:00	19.05955578
	78	1079	0.001700		14.07976724	0.001864	52.76841679	0.06719	1902.730765	85.81680256		8/2/02 13:41	409:49:00	409:47:00	409:38:00	20.24392913
57 54	80	1085	0.002013		14.10572073	0.001864	49.89778761	0.06719	1952.628552	88.06728837		8/4/02 10:06	454:14:00	454:12:00	454:03:00	21.31275049
54 45	80	1087	0.001907		14.10372073	0.001762	41.54323623	0.00896	1994.171788	89.94096791	96.25523611	8/5/02 15:40	483:48:00	483:46:00	483:37:00	21.99545408
45	80	1088	0.001389		14.11869747	0.001407	45.31927584	0.07042	2039.491064	91.98495407	98.29922227	8/7/02 15:26	531:34:00	531:32:00	531:23:00	23.05572958
	80	1088	0.001730		14.05381375	0.001800	23.01581995	0.07202	2062.506884	93.02301164		8/9/02 15:59	580:07:00	580:05:00	579:56:00	24.0856112
25	80	1083	0.000683	340	14.03381373	0.000013	23,01361993	0.07284	2002.300884	73.06301104	77.33121704	0/9/02 13:39	300:07:00	380:03:00	3/9:30:00	24.0630112

29	81	1080	0.001024	541 14.01488352	0.000938	26.57518119	0.07378	2089.082065	94.22160322	100.5358714	8/11/02 12:45	624:53:00	624:51:00	624:42:00	24.99766656
32	82	1081	0.001130	542 14.02786026	0.001035	29.29733599	0.07481	2118.379401	95.5429692	101.8572374	8/13/02 11:33	671:41:00	671:39:00	671:30:00	25.91685423
29	81	1084	0.001024	541 14.0667905	0.000942	26.67360779	0.07575	2145.053009	96.74600001	103.0602682	8/15/02 11:42	719:50:00	719:48:00	719:39:00	26.8297099
65	90	1082	0.002295	550 14.04083701	0.002073	58.69886096	0.07783	2203.75187	99.39343109	105.7076993	8/18/02 15:05	795:13:00	795:11:00	795:02:00	28.19958629
35	80	1082	0.001236	540 14.04083701	0.001137	32.19239526	0.07896	2235.944265	100.8453698	107.159638	8/22/02 9:25	885:33:00	885:31:00	885:22:00	29.75819215
34	82	1086	0.001201	542 14.09274398	0.001104	31.27239923	0.08007	2267.216665	102.2558149	108.5700831	8/25/02 10:38	958:46:00	958:44:00	958:35:00	30.96395754
35	80	1088	0.001236	540 14.11869747	0.001143	32.37091131	0.08121	2299.587576	103.715805	110.0300732	8/29/02 11:15	1055:23:00	1055:21:00	1055:12:00	32.48666393
33	80	1077	0.001165	540 13.97595329	0.001067	30.2125672	0.08228	2329.800143	105.0784497	111.3927179	9/1/02 14:58	1131:06:00	1131:04:00	1130:55:00	33.63183016
30	80	1084	0.001059	540 14.0667905	0.000976	27.64448624	0.08325	2357.444629	106.325269	112.6395372	9/5/02 10:55	1223:03:00	1223:01:00	1222:52:00	34.97213176
30	80	1084	0.001059	540 14.0667905	0.000976	27.64448624	0.08423	2385.089116	107.5720882	113.8863564	9/11/02 15:30	1371:38:00	1371:36:00	1371:27:00	37.03556849
45	80	1076	0.001589	540 13.96297654	0.001454	41.16070183	0.08568	2426.249817	109.4285148	115.742783	9/25/02 15:28	1707:36:00	1707:34:00	1707:25:00	41.32311702
41	80	1078	0.001448	540 13.98893003	0.001327	37.57167905	0.08701	2463.821496	111.1230695	117.4373377	10/1/02 15:20	1851:28:00	1851:26:00	1851:17:00	43.02867261
37	80	1084	0.001307	540 14.0667905	0.001204	34.09486636	0.08821	2497.916363	112.6608132	118.9750814	10/9/02 15:21	2043:29:00	2043:27:00	2043:18:00	45.20490386
29	79	1091	0.001024	539 14.1576277	0.000952	26.9454679	0.08916	2524.861831	113.8761055	120.1903737	10/13/02 9:54	2134:02:00	2134:00:00	2133:51:00	46.19559864
24	85	1089	0.000848	545 14.13167422	0.000777	22.01376699	0.08994	2546.875598	114.8689685	121.1832367	10/15/02 10:42	2182:50:00	2182:48:00	2182:39:00	46.72080193
35	85	1095	0.001236	545 14.20953468	0.001140	32.28028848	0.09108	2579.155886	116.3248714	122.6391396	10/22/02 9:10	2349:18:00	2349:16:00	2349:07:00	48.46957809
33	85	1087	0.001165	545 14.10572073	0.001067	30.21333929	0.09215	2609.369225	117.6875509	124.0018191	10/29/02 14:32	2522:40:00	2522:38:00	2522:29:00	50.2261552
32	85	1091	0.001130	545 14.1576277	0.001038	29.40559508	0.09319	2638.774821	119.0137995	125.3280677	11/11/02 14:02	2834:10:00	2834:08:00	2833:59:00	53.23689197
30	85	1085	0.001059	545 14.07976724	0.000968	27.41613542	0.09416	2666.190956	120.2503198	126.564588	11/19/02 10:47	3022:55:00	3022:53:00	3022:44:00	54.98105734
26	85	1096	0.000918	545 14.22251142	0.000848	24.00154209	0.09500	2690.192498	121.3328353	127.6471035	11/26/02 11:26	3191:34:00	3191:32:00	3191:23:00	56.49395248
27	85	1095	0.000953	545 14.20953468	0.000879	24.90193683	0.09588	2715.094435	122.4559603	128.7702285	12/3/02 8:40	3356:48:00	3356:46:00	3356:37:00	57.93789779
25	85	1082	0.000883	545 14.04083701	0.000805	22.7836087	0.09669	2737.878044	123.4835447	129.7978129	12/10/02 7:57	3524:05:00	3524:03:00	3523:54:00	59.36399021
26	85	1079	0.000918	545 14.00190678	0.000834	23.6292554	0.09752	2761.507299	124.5492694	130.8635376	12/19/02 8:15	3740:23:00	3740:21:00	3740:12:00	61.15867341
25	85	1077	0.000883	545 13.97595329	0.000801	22.678324	0.09832	2784.185623	125.5721053	131.8863735	12/29/02 15:38	3987:46:00	3987:44:00	3987:35:00	63.14876615
26	80	1093	0.000918	540 14.18358119	0.000853	24.15747263	0.09918	2808.343096	126.6616536	132.9759218	1/6/03 10:19	4174:27:00	4174:25:00	4174:16:00	64.60998375
15	81	1098	0.000530	541 14.24846491	0.000494	13.97487977	0.09967	2822.317975	127.2919474	133.6062156	1/15/03 16:28	4396:36:00	4396:34:00	4396:25:00	66.30686239
19	86	1109	0.000671	546 14.3912091	0.000626	17.7151262	0.10030	2840.033102	128.0909336	134.4052018	1/22/03 11:46	4559:54:00	4559:52:00	4559:43:00	67.52703162
22	85	1087	0.000777	545 14.10572073	0.000711	20.14222619	0.10101	2860.175328	128.9993865	135.3136547	1/29/03 11:05	4727:13:00	4727:11:00	4727:02:00	68.75475741
20	86	1093	0.000706	546 14.18358119	0.000649	18.37846607	0.10166	2878.553794	129.8282906	136.1425588	2/5/03 15:05	4899:13:00	4899:11:00	4899:02:00	69.99440454
21	86	1067	0.000742	546 13.84618585	0.000665	18.83834809	0.10232	2897.392142	130.6779362	136.9922044	2/13/03 15:10	5091:18:00	5091:16:00	5091:07:00	71.3533461
15	84	1100	0.000530	544 14.2744184	0.000492	13.92312719	0.10281	2911.315269	131.3058959	137.6201641	2/23/03 16:08	5332:16:00	5332:14:00	5332:05:00	73.022371
17	84	1072	0.000600	544 13.91106957	0.000543	15.37788303	0.10336	2926.693152	131.9994679	138.3137361	3/3/03 10:09	5518:17:00	5518:15:00	5518:06:00	74.28514881
15	85	1081	0.000530	545 14.02786026	0.000482	13.65753106	0.10384	2940.350683	132.6154487	138.9297169	3/10/03 11:54	5688:02:00	5688:00:00	5687:51:00	75.41905153
16	5 89	1068	0.000565	549 13.85916259	0.000505	14.28797353	0.10434	2954.638657	133.2598636	139.5741318	3/17/03 11:28	5855:36:00	5855:34:00	5855:25:00	76.52189229
12	2 85	1083	0.000424	545 14.05381375	0.000387	10.94623951	0.10473	2965.584896	133.75356	140.0678282	3/24/03 14:06	6026:14:00	6026:12:00	6026:03:00	77.62881767
10	85	1073	0.000353	545 13.92404631	0.000319	9.037638497	0.10505	2974.622535	134.1611748	140.475443	3/31/03 15:44	6195:52:00	6195:50:00	6195:41:00	78.71382767
14	\$ 84	1089	0.000494	544 14.13167422	0.000454	12.86496952	0.10550	2987.487504	134.7414096	141.0556778	4/9/03 9:15	6405:23:00	6405:21:00	6405:12:00	80.03363876
10	84	1078	0.000353	544 13.98893003	0.000321	9.096443098	0.10582	2996.583947	135.1516766	141.4659448	4/17/03 8:22	6596:30:00	6596:28:00	6596:19:00	81.21884018
10	84	1067	0.000353	544 13.84618585	0.000318	9.00362225	0.10614	3005.58757	135.5577572	141.8720254	4/23/03 14:40	6746:48:00	6746:46:00	6746:37:00	82.13890674
9	9 88	1079	0.000318	548 14.00190678	0.000287	8.134580132	0.10643	3013.72215	135.9246424	142.2389106	4/30/03 13:29	6913:37:00	6913:35:00	6913:26:00	83.14816093
8	3 85	1067	0.000283	545 13.84618585	0.000254	7.189681474	0.10668	3020.911831	136.2489108	142.563179	5/7/03 16:18	7084:26:00	7084:24:00	7084:15:00	84.16907587
3	5 85	1080	0.000177	545 14.01488352	0.000161	4.548298964	0.10684	3025.46013	136.4540478	142.768316	5/14/03 13:46	7249:54:00	7249:52:00	7249:43:00	85.14634461
3	3 85	1088	0.000106	545 14.11869747	0.000097	2.749194041	0.10694	3028.209324	136.5780417	142.8923099	5/22/03 15:52	7444:00:00	7443:58:00	7443:49:00	86.27861844
	5 85	1088	0.000177	545 14.11869747	0.000162	4.581990068	0.10710	3032.791314	136.7846982	143.0989664	5/28/03 11:40	7583:48:00	7583:46:00	7583:37:00	87.08501593
	5 84	1084	0.000177	544 14.0667905	0.000162	4.573536326	0.10726	3037.364851	136.9909735	143.3052417	6/4/03 11:23	7751:31:00	7751:29:00	7751:20:00	88.04269797
(6 90	1077	0.000212	550 13.97595329	0.000190	5.393317781	0.10745	3042.758168	137.2342224	143.5484906	6/5/03 14:43	7778:51:00	7778:49:00	7778:40:00	88.19778909

DESORPTION TERMINATED 6/6/03 DUE TO NO GAS GENERATION

SAMPLE: 420' to 421' (Fleming Coal) Canister L#3

ample dried	40 days	n air			weight of cont	sight CALCUL	5.038	0.21250								elapsed time
ORY WEIGH			grams		weight of cont		2.800		moisture weight		est. lost gas (cc) =		TIME OF:			(off bottom to canistering)
ample weigh		2.238	grants		wet sample we		2.238		0.0%		60			at surface	in canister	8.2 minutes
CONVERSION			S TO STP		wet satisfac we	agus.	2.230		0.0%		00		7/16/02 13:57		7/16/02 14:06	
RIG MEA				RIG MEAS	SUREMENTS TO	STP (cubic ft: @60	degrees; @14.7 psi)	CUMULATI	VE VOLUMES	SCF/TON	SCF/TON (approx)		TIME SINCE	7710/02 13.36	771002 14.00	0.368932394 SQRT (h
	(F)	P	cubic ft (@rig)			ft3 (@STP)	cc (@STP)	ft3 (@STP)	cc (@STP)	without lost gas	with lost gas	TIME	off bottom	at surface	in conister	hrs. (since off bottom)
0	79	1088		539	14.119	0.000000	0	0.00000	0	0	_	7/16/02 14:06		2:12:00	2:03:00	
7	79	1088		539	14.119	0.000229	6.486193732	0.00023	6.486193732	0.204745148		7/16/02 14:08		2:14:00	2:05:00	
7	79	1088		539	14.119	0.000229	6.486193732	0.00046	12.97238746	0.409490296		7/16/02 14:10		2:16:00	2:07:00	
4	79	1088		539	14.119	0.000131	3.706396418	0.00059	16.67878388	0.526487524		7/16/02 14:12		2:23:00	2:14:00	
7	79	1088		539	14.119	0.000229	6.486193732	0.00082	23.16497761	0.731232672		7/16/02 14:17		2:41:00	2:32:00	
36	79	1088		539	14.119	0.001178	33.35756777	0.00200	56.52254538	1.784207719		7/16/02 14:35		2:56:00	2:47:00	
25	79	1088		539	14.119	0.000818	23.16497761	0.00281	79.687523	2.515440391	4.409418491	7/16/02 14:50		3:11:00	3:02:00	
10	79	1087		539	14.106	0.000327	9.25747451	0.00314	88.94499751	2.807664624		7/16/02 15:05		3:36:00	3:27:00	
23	79	1087		539	14.106	0.000752	21.29219137	0.00389	110.2371889	3.47978036		7/16/02 15:30		4:06:00	3:57:00	
19	79	1087		539	14,106	0.000621	17.58920157	0.00451	127.8263904	4.035006403		7/16/02 16:00		4:36:00	4:27:00	
16	79	1087		539	14.106	0.000523	14.81195922	0.00504	142.6383497	4.502565176		7/16/02 16:30		5:06:00	4:57:00	
16	78	1086		538	14.093	0.000524	14.82583895	0.00556	157.4641886	4.970562081	6.864540182	7/16/02 17:00		6:06:00	5:57:00	
22	78	1086		538	14.093	0.000720	20.38552856	0.00628	177.8497172	5.614057825		7/16/02 18:00		7:26:00	7:17:00	
25	78	1086		538	14.093	0.000818	23.16537336	0.00710	201.0150905	6.345302989		7/16/02 19:20		9:11:00	9:02:00	
22	78	1086		538	14.093	0.000720	20.38552856	0.00782	221.4006191	6.988798734	8.882776834	7/16/02 21:05		10:42:00	10:33:00	
27	78	1086		538	14.093	0.000884	25.01860323	0.00870	246.4192223	7.778543511	9.672521612	7/16/02 22:36		17:52:00	17:43:00	
65	78	1086		538	14.093	0.002127	60.22997075	0.01083	306.6491931	9.679780938		7/17/02 5:46		24:12:00	24:03:00	
57	78	1085		538	14.080	0.001864	52.76841679	0.01269	359.4176099	11.3454847	13.2394628	7/17/02 12:06		26:46:00	26:37:00	
10	78	1085	0.000353	538	14.080	0.000327	9.25761698	0.01302	368.6752269	11.63771343	13.53169153	7/17/02 14:40	59:16:00	59:14:00	59:05:00	
140	78	1085	0.004944	538	14.080	0.004577	129.6066377	0.01760	498.2818646	15.72891566	17.62289376	7/18/02 23:08	78:24:00	78:22:00	78:13:00	8.854377448
95	80	1080	0.003355	540	14.015	0.003080	87.21784403	0.02068	585.4997086	18.48206043	20.37603853	7/19/02 18:16	100:01:00	99:59:00	99:50:00	10.0008333
75	79	1079	0.002649	539	14.002	0.002434	68.92006667	0.02311	654.4197753	20.65761205	22.55159015	7/20/02 15:53	123:16:00	123:14:00	123:05:00	11.10255226
75	82	1083	0.002649	542	14.054	0.002429	68.79267218	0.02554	723.2124475	22.82914229	24.72312039	7/21/02 15:08	147:10:00	147:08:00	146:59:00	12.13122692
48	77	1088	0.001695	537	14.119	0.001577	44.64240602	0.02712	767.8548535	24.23833795	26.13231605	7/22/02 15:02	171:27:00	171:25:00	171:16:00	13.09389171
75	90	1086	0.002649	550	14.093	0.002401	67.97984111	0.02952	835.8346946	26.38421012	28.27818822	7/23/02 15:19	195:12:00	195:10:00	195:01:00	13.97139936
50	81	1079	0.001766	541	14.002	0.001617	45.77685266	0.03113	881.6115472	27.82921606	29.72319416	7/24/02 15:04	219:50:00	219:48:00	219:39:00	14.82677758
49	81	1077	0.001730	541	13.976	0.001581	44.77816211	0.03272	926.3897094	29.24269703	31.13667514	7/25/02 15:42	246:27:00	246:25:00	246:16:00	15.69872606
67	84	1079	0.002366	544	14.002	0.002154	61.00270509	0.03487	987.3924144	31.16832683	33.06230493	7/26/02 18:19	290:51:00	290:49:00	290:40:00	17.05432496
82	85	1081	0.002896	545	14.028	0.002637	74.66116978	0.03751	1062.053584	33.52510384	35.41908194	7/28/02 14:43	316:01:00	315:59:00	315:50:00	17.77685762
33	78	1083	0.001165	538	14.054	0.001077	30.49382242	0.03858	1092.547407	34.48768103	36.38165913	7/29/02 15:53	363:16:00	363:14:00	363:05:00	19.05955578
35	78	1079	0.001236	538	14.002	0.001138	32.22247975	0.03972	1124.769886	35.50482555	37.39880365	7/31/02 15:08	409:47:00	363:14:00	409:36:00	20.24310582
49	80	1085	0.001730	540	14.080	0.001596	45.1943146	0.04132	1169.964201	36.93144292	38.82542102	8/2/02 13:39	454:13:00	409:45:00	454:02:00	21.31235948
43	80	1087	0.001519	540	14.106	0.001403	39.73342347	0.04272	1209.697624	38.18568015	40.07965825	8/4/02 10:05	483:49:00	454:11:00	483:38:00	21.99583294
32	80	1086	0.001130	540	14.093	0.001043	29.54185688	0.04376	1239.239481	39.11820732	41.01218542	8/5/02 15:41	531:35:00	483:47:00	483:38:00	23.05609102
35	80	1088	0.001236	540	14.119	0.001143	32.37091131	0.04491	1271.610393	40.14003727	42.03401537	8/7/02 15:27	580:08:00	531:33:00	531:24:00	24.08595718
37	80	1083	0.001307	540	14.054	0.001203	34.06341353	0.04611	1305.673806	41.21529326	43.10927136	8/9/02 16:00	580:08:00	580:06:00	579:57:00	24.08595718
35	81	1080	0.001236	541	14.015	0.001133	32.07349454	0.04724	1337.747301	42.22773486	44.12171296	8/11/02 12:46	624:54:00	624:52:00	624:43:00	24.99799992
33	81	1081	0.001165	541	14.028	0.001069	30.2687241	0.04831	1368.016025	43.18320654	45.07718464	8/13/02 11:34	671:42:00	671:40:00	671:31:00	25.91717577
30	81	1084	0.001059	541	14.067	0.000974	27.59338737	0.04929	1395.609412	44.05422773	45.94820583	8/15/02 17:39	725:47:00	725:45:00	725:36:00	26.94036624
70	90	1082	0.002472	550	14.041	0.002232	63.21415796	0.05152	1458.82357	46.04966491	47.94364301	8/18/02 15:06	795:14:00	795:12:00	795:03:00	28.1998818
33	80	1082	0.001165	540	14.041	0.001072	30.35282981	0.05259	1489.1764	47.00779149	48.90176959	8/22/02 9:26	885:34:00	885:32:00	885:23:00	29.75847218
0	82	1086	0.000000	542	14.093	0.000000	0	0.05259	1489.1764	47.00779149	48.90176959	8/25/02 10:39	958:47:00	958:45:00	958:36:00	30.96422667
5	80	1077	0.000177	540	13.976	0.000162	4.577661697	0.05275	1493.754062	47.15229134	49.04626944	9/1/02 15:01	1131:09:00	1131:07:00	1130:58:00	33.6325735

SAMPLE: 630.4' to 631.4' (Drywood Coal) Canister L#4

			weight of con	ht of container (full):			0.21250						elapsed time			
DRY WI	EIGHT	lbs.	grams		weight of con-	tainer (empty)		1	moisture weight		est. lost gas (cc) =		TIME OF:			(off bottom to canistering)
sample w	eight:	1.353	614.130000	•	wet sample w	eight:	1.577		14.2%		60		off bottom	at surface	in canister	12.5 minutes
CONVE	RSION OF	VOLUME											7/17/02 17:08	7/17/02 17:10	7/17/02 17:21	0.208 hours
RIG	MEASURE	MENTS	CONVERSION OF	RIG MEAS	SUREMENTS TO	O STP (cubic ft; @60	degrees; @14.7 psi)	CUMULATI	VE VOLUMES	SCF/TON	SCF/TON (approx)		TIME SINCE			0.456435465 SQRT (hrs)
cc	T (F)	P	cubic ft (@rig)	ABS. T (psia (@rig)	ft3 (@STP)	cc (@STP)	ft3 (@STP)	cc (@STP)	without lost gas	with lost gas	TIME	off bottom	at surface	in canister	Γ hrs. (since off bottom)
0	90	1083	0.000000	550	14.054	0.000000	0	0.00000	0	0	3.132133038	7/17/02 17:21	29:29:00	29:27:00	29:18:00	5.429855738
10	90	1083	0.000353	550	14.054	0.000319	9.038940199	0.00032	9.038940199	0.47185272	3.603985758	7/17/02 17:22	29:30:00	29:28:00	29:19:00	5.431390246
5	90	1083	0.000177	550	14.054	0.000160	4.5194701	0.00048	13.5584103	0.707779081	3.839912118	7/17/02 17:24	29:32:00	29:30:00	29:21:00	5.434457961
4	90	1083	0.000141	550	14.054	0.000128	3.61557608	0.00061	17.17398638	0.896520169	4.028653206	7/17/02 17:26	29:34:00	29:32:00	29:23:00	5.437523946
7	90	1083	0.000247		14.054	0.000223	6.327258139	0.00083	23.50124452	1.226817073	4.358950111	7/17/02 17:30	29:38:00	29:36:00	29:27:00	5.443650736
10	90	1083	0.000353	550	14.054	0.000319	9.038940199	0.00115	32.54018472	1.698669793	4.830802831	7/17/02 17:35	29:43:00	29:41:00	29:32:00	5.451299539
15	90	1083	0.000530			0.000479	13.5584103	0.00163	46.09859502	2.406448874	5.538581912	7/17/02 17:45	29:53:00	29:51:00	29:42:00	5.46656504
19	90	1083	0.000671	550		0.000606	17.17398638	0.00223	63.27258139	3.302969043	6.43510208	7/17/02 18:00		30:06:00	29:57:00	5.489383693
15	78	1083	0.000530	538	14.054	0.000489	13.86082837	0.00272	77.13340977	4.026535017	7.158668055	7/17/02 18:15	30:23:00	30:21:00	30:12:00	5.512107885
30	78	1083	0.001059		14.054	0.000979	27.72165674	0.00370	104.8550665	5.473666966	8.605800004	7/17/02 18:40	30:48:00	30:46:00	30:37:00	5.54977477
9	78	1083	0.000318		14.054	0.000294	8.316497023	0.00400	113.1715635	5.907806551	9.039939589	7/17/02 19:00	31:08:00	31:06:00	30:57:00	5.579725202
27	80	1083			14.054	0.000878	24.85708555	0.00487	138.0286491	7.205401532		7/17/02 20:00		32:06:00	31:57:00	5.668627112
15	80	1083			14.054	0.000488	13.80949197	0.00536	151.8381411	7.926287633		7/17/02 22:00		34:06:00	33:57:00	5.842373947
83	78	1084		538	14.067	0.002711	76.7674023	0.00807	228.6055434	11.93371625		7/18/02 5:45		41:51:00	41:42:00	6.47173341
41	78	1084			14.067	0.001339	37.92124692	0.00941	266.5267903	13.91328942		7/18/02 13:27		49:33:00	49:24:00	7.041543391
55	78	1084			14.067	0.001796	50.86996538	0.01121	317.3967556	16.56881441		7/18/02 23:10		59:16:00	59:07:00	7.700649323
50	80	1080			14.015	0.001621	45.90412844	0.01283	363.3008841	18.96511169		7/19/02 18:18		78:24:00	78:15:00	8.856259557
78	79	1079			14.002	0.002531	71.67686934	0.01536	434.9777534	22.7068032		7/20/02 15:54		100:00:00	99:51:00	10.00166653
74	82	1083			14.054	0.002397	67.87543655	0.01776	502.85319	26.25005149		7/21/02 15:10		123:16:00	123:07:00	11.10405331
52	77	1088			14.119	0.001708	48.36260652	0.01947	551.2157965	28.77468679		7/22/02 15:03		147:09:00	147:00:00	12.13191384
68	90	1086		550	14.093	0.002177	61.63505594	0.02164	612.8508524	31.99217337		7/23/02 15:20		171:26:00	171:17:00	13.09452812
46	81	1079			14.002	0.001487	42.11470445	0.02313	654.9655569	34.19065432		7/24/02 15:05		195:11:00	195:02:00	13.9719958
43	81	1077			13.976	0.001388	39.29512185	0.02452	694.2606787	36.24194681	39.37407985	7/25/02 15:43		219:49:00	219:40:00	14.82733961
48	84	1074			13.937	0.001536	43.5009123	0.02605	737.761591	38.51279089		7/26/02 18:22		246:28:00	246:19:00	15.70031847
73	85	108			14.028	0.002347	66.46665114	0.02840	804.2282422	41.98249745		7/28/02 14:44		290:50:00	290:41:00	17.05481359
27	78	1083			14.054	0.000881	24.94949107	0.02928	829.1777332	43.28491621	46.41704924	7/29/02 15:53	316:01:00	315:59:00	315:50:00	17.77685762
32	78	1079			14.002	0.001040	29.46055291	0.03032	858.6382862	44.82282239		7/31/02 15:10		363:16:00	363:07:00	19.06043022
37	80	1085			14.080	0.001205	34.12631919	0.03153	892.7646053	46.60429192		8/2/02 13:40		409:46:00	409:37:00	
34	80	108			14.106	0.001109	31.41712553	0.03264	924.1817309	48.24433554		8/4/02 10:07	454:15:00	454:13:00	454:04:00	
25	80	1086			14.093	0.000815	23.07957569	0.03345	947.2613066	49.44914056		8/5/02 15:42		483:48:00	483:39:00	21.9962118
25	80	108			14.119	0.000817	23.12207951	0.03427	970.3833861	50.65616438		8/7/02 15:28	531:36:00	531:34:00	531:25:00	
27	80	1083			14.054	0.000878	24.85708555	0.03515	995.2404716	51.95375936		8/9/02 16:03	580:11:00	580:09:00	580:00:00	24.08699511
25	81	108			14.015	0.000809	22.90963896	0.03596	1018.150111	53.14969331		8/11/02 12:47		624:53:00	624:44:00	
25	81	108			14.028	0.000810	22.93085159	0.03677	1041.080962	54.34673461		8/13/02 11:35		671:41:00	671:32:00	25.91749731
16	81	108			14.067	0.000520	14.71647326	0.03729	1055.797435	55.11496714		8/15/02 11:44		719:50:00	719:41:00	
45	90	108			14.041	0.001435	40.63767297	0.03872	1096.435108	57.23634378		8/18/02 15:07	795:15:00	795:13:00	795:04:00	28.2001773
22	80	108			14.041	0.000715	20.23521988	0.03943	1116.670328	58.29266712		8/22/02 9:26		885:32:00	885:23:00	
20	82	108			14.093	0.000650	18.39552896	0.04008	1135.065857	59.25295452		8/25/02 10:40		958:46:00	958:37:00	30.9644958
25	80	108			14.119		23.12207951	0.04090	1158.187937	60.45997834		8/29/02 11:16		1055:22:00	1055:13:00	
21	80	107				0.000679	19.22617913	0.04158	1177.414116	61.46362752		9/1/02 15:03		1131:09:00	1131:00:00	33.63306904
6	80	108				0.000195	5.528897247	0.04178	1182.943013	61.75224822		9/5/02 10:56		1223:02:00	1222:53:00	
25	80 80	108			14.067	0.000814	23.03707186 32.92856146	0.04259	1205.980085	62.95483445		9/11/02 15:31 9/25/02 15:29	1371:39:00	1371:37:00	1371:28:00	37.0357935
36	80	107	6 0.001271	540	13.903	0.001163	32.92830146	0.043/5	1238.908646	64.67377837	07.80391141	9123/02 13:29	1707:37:00	1707:35:00	1707:26:00	41.32331868

25	80	1078	0.000883	540	13.989	0.000809	22.9095604	0.04456	1261.818207	65.86970822	69.00184126	10/1/02 15:21	1851:29:00	1851:27:00	1851:18:00	43.02886628
25	80	1084	0.000883	540	14.067	0.000814	23.03707186	0.04537	1284.855279	67.07229445	70.20442749	10/9/02 15:22	2043:30:00	2043:28:00	2043:19:00	45.20508821
15	79	1091	0.000530	539	14.158	0.000492	13.93731098	0.04587	1298.79259	67.79985299	70.93198603	10/13/02 9:55	2134:03:00	2134:01:00	2133:52:00	46.19577903
11	85	1089	0.000388	545	14.132	0.000356	10.0896432	0.04622	1308.882233	68.32655473	71.45868777	10/15/02 10:43	2182:51:00	2182:49:00	2182:40:00	46.7209803
17	85	1095	0.000600	545	14.210	0.000554	15.67899726	0.04678	1324.56123	69.14503316	72.27716619	10/22/02 9:11	2349:19:00	2349:17:00	2349:08:00	48.46975002
19	85	1087	0.000671	545	14.106	0.000614	17.39555898	0.04739	1341.956789	70.05311991	73.18525294	10/29/02 14:34	2522:42:00	2522:40:00	2522:31:00	50.22648704
20	85	1091	0.000706	545	14.158	0.000649	18.37849693	0.04804	1360.335286	71.0125182	74.14465123	11/11/02 14:03	2834:11:00	2834:09:00	2834:00:00	53.2370485
20	85	1085	0.000706	545	14.080	0.000645	18.27742362	0.04869	1378.61271	71.96664024	75.09877327	11/19/02 10:48	3022:56:00	3022:54:00	3022:45:00	54.98120891
18	85	1096	0.000636	545	14.223	0.000587	16.61645222	0.04927	1395.229162	72.83405589	75.96618892	11/26/02 11:27	3191:35:00	3191:33:00	3191:24:00	56.49409999
15	85	1095	0.000530	545	14.210	0.000489	13.83440935	0.04976	1409.063571	73.55624273	76.68837577	12/3/02 8:41	3356:49:00	3356:47:00	3356:38:00	57.93804162
15	85	1082	0.000530	545	14.041	0.000483	13.67016522	0.05024	1422.733736	74.26985566	77.4019887	12/10/02 7:58	3524:06:00	3524:04:00	3523:55:00	59.36413058
16	85	1079	0.000565	545	14.002	0.000514	14.54108024	0.05076	1437.274817	75.02893229	78.16106533	12/19/02 8:16	3740:24:00	3740:22:00	3740:13:00	61.15880967
15	85	1079	0.000530	545	14.002	0.000481	13.63226273	0.05124	1450.907079	75.74056664	78.87269967	12/29/02 15:39	3987:47:00	3987:45:00	3987:36:00	63.14889812
10	85	1093	0.000353	545	14.184	0.000325	9.206094015	0.05156	1460.113173	76.22114516	79.35327819	1/6/03 10:20	4174:28:00	4174:26:00	4174:17:00	64.61011273
10	81	1098	0.000353	541	14.248	0.000329	9.316586511	0.05189	1469.42976	76.70749163	79.83962467	1/15/03 16:29	4396:37:00	4396:35:00	4396:26:00	66.30698807
10	86	1109	0.000353	546	14.391	0.000329	9.323750629	0.05222	1478.753511	77.19421209	80.32634512	1/22/03 11:47	4559:55:00	4559:53:00	4559:44:00	67.52715503
15	85	1087	0.000530	545	14.106	0.000485	13.73333604	0.05271	1492.486847	77.91112268	81.04325572	1/29/03 11:06	4727:14:00	4727:12:00	4727:03:00	68.75487861
14	86	1093	0.000494	546	14.184	0.000454	12.86492625	0.05316	1505.351773	78.58270035	81.71483339	2/5/03 11:56	4896:04:00	4896:02:00	4895:53:00	69.97189912
14	86	1067	0.000494	546	13.846	0.000444	12.55889873	0.05360	1517.910672	79.23830271	82.37043575	2/13/03 15:11	5091:19:00	5091:17:00	5091:08:00	71.35346289
9	84	1100	0.000318	544	14.274	0.000295	8.353876315	0.05390	1526.264548	79.67439358	82.80652662	2/23/03 16:09	5332:17:00	5332:15:00	5332:06:00	73.02248512
11	84	1072	0.000388	544	13.911	0.000351	9.950394899	0.05425	1536.214943	80.19382626	83.32595929	3/3/03 10:10	5518:18:00	5518:16:00	5518:07:00	74.28526099
9	85	1081	0.000318	545	14.028	0.000289	8.194518634	0.05454	1544.409461	80.6215983	83.75373134	3/10/03 11:55	5688:03:00	5688:01:00	5687:52:00	75.41916202
10	89	1068	0.000353	549	13.859	0.000315	8.929983455	0.05486	1553.339445	81.08776324	84.21989627	3/17/03 11:29	5855:37:00	5855:35:00	5855:26:00	76.52200119
5	85	1083	0.000177	545	14.054	0.000161	4.560933128	0.05502	1557.900378	81.32585406	84.4579871	3/24/03 14:07	6026:15:00	6026:13:00	6026:04:00	77.62892502
7	85	1073	0.000247	545	13.924	0.000223	6.326346948	0.05524	1564.226725	81.6561034	84.78823643	3/31/03 15:45	6195:53:00	6195:51:00	6195:42:00	78.71393354
7	84	1089	0.000247	544	14.132	0.000227	6.432484762	0.05547	1570.65921	81.99189336	85.1240264	4/9/03 9:18	6405:26:00	6405:24:00	6405:15:00	80.03395113
5	84	1078	0.000177	544	13.989	0.000161	4.548221549	0.05563	1575.207431	82.22932061	85.36145365	4/17/03 8:23	6596:31:00	6596:29:00	6596:20:00	81.21894278
9	84	1067	0.000318	544	13.846	0.000286	8.103260025	0.05591	1583.310691	82.65232875	85.78446179	4/23/03 14:41	6746:49:00	6746:47:00	6746:38:00	82.13900819
6	88	1079	0.000212	548	14.002	0.000192	5.423053421	0.05611	1588.733745	82.93542417	86.0675572	4/30/03 13:30	6913:38:00	6913:36:00	6913:27:00	83.14826116
6	85	1067	0.000212	545	13.846	0.000190	5.392261105	0.05630	1594.126006	83.21691215	86.34904519	5/7/03 16:18	7084:26:00	7084:24:00	7084:15:00	84.16907587
4	85	1080	0.000141	545	14.015	0.000128	3.638639171	0.05642	1597.764645	83.40685719	86.53899022	5/14/03 13:47	7249:55:00	7249:53:00	7249:44:00	85.14644248
3	85	1088	0.000106	545	14.119	0.000097	2.749194041	0.05652	1600.513839	83.55037121	86.68250425	5/22/03 15:42	7443:50:00	7443:48:00	7443:39:00	86.27765257
5	85	1088	0.000177	545	14.119	0.000162	4.581990068	0.05668	1605.095829	83.78956125	86.92169429	5/28/03 11:58	7584:06:00	7584:04:00	7583:55:00	87.08673837
5	84	1084	0.000177	544	14.067	0.000162	4.573536326	0.05685	1609.669365	84.02830999	87.16044303	6/4/03 11:24	7751:32:00	7751:30:00	7751:21:00	88.04279263
6	90	1077	0.000212	550	13.976	0.000190	5.393317781	0.05704	1615.062683	84.30985314	87.44198617	6/5/03 14:44	7778:52:00	7778:50:00	7778:41:00	88.19788357

DESORPTION TERMINATED 6/6/03 DUE TO NO GAS GENERATION

SAMPLE: 695.10' to 696.5' (Rowe Coal) Canister Brady #25

					ALLKON. WI	dill Chicol	A I I CIT									
sample	dried 7 day	rs @ 150 de	g. F (65 deg C)		weight of cont	ainer (full):							elapsed time			
DRYW	VEIGHT	lbs.	grams		weight of cont	ainer (empty)		п	noisture weight		est. lost gas (cc) =		TIME OF:			(off bottom to canistering)
sample	weight:	1.04	3 473.340	000	wet sample we	ight:	1.099		5.1%		50		off bottom	at surface	in canister	9.5 minutes
CONV	ERSION C	F VOLUM	ES TO STP										7/18/02 11:35	7/18/02 11:37	7/18/02 11:45	0.158 hours
RIG	MEASUR	EMENTS	CONVERSION	OF RIG MEA	SUREMENTS TO	STP (cubic ft; @60	degrees; @14.7 psi)	CUMULATIV	VE VOLUMES	SCF/TON	SCF/TON (approx)		TIME SINCE			0.397911213 SQRT (hrs)
cc	T (F)	P	cubic ft (@:	ig) ABS. T	(psia (@rig)	ft3 (@STP)	cc (@STP)	ft3 (@STP)	cc (@STP)	without lost gas	with lost gas	TIME	off bottom	at surface	in canister	Γ hrs. (since off bottom)
0	79	9 108	4 0.000	000 539	14.067	0.000000	0	0.00000	0	0	3.385886865	7/18/02 11:45	47:53:00	47:51:00	47:42:00	6.919778417
5	79	108	4 0.000	177 539	14.067	0.000163	4.615962451	0.00016	4.615962451	0.312582533	3.698469397	7/18/02 11:47	47:55:00	47:53:00	47:44:00	6.922186552
8	3 7	9 108	4 0.000	283 539	14.067	0.000261	7.385539922	0.00042	12.00150237	0.812714585	4.19860145	7/18/02 11:51	47:59:00	47:57:00	47:48:00	6.927000313
13	3 7	9 108	0.000	459 539	14.067	0.000424	12.00150237	0.00085	24.00300475	1.62542917	5.011316035	7/18/02 11:58	48:06:00	48:04:00	47:55:00	6.935416354
17	7 7	9 100	0.000	600 539	14.067	0.000554	15.69427233	0.00140	39.69727708	2.688209781	6.074096646	7/18/02 12:10	48:18:00	48:16:00	48:07:00	6.949820142
12	7	9 10	0.000	424 539	14.067	0.000391	11.07830988	0.00179	50.77558696	3.438407859	6.824294724	7/18/02 12:20	48:28:00	48:26:00	48:17:00	6.961800533

24	79	1084	0.000848	539	14.067	0.000782	22.15661977	0.00258	72.93220673	4.938804016	8.324690881	7/18/02 12:55	49:03:00	49:01:00	48:52:00	7.003570518
18	79	1084	0.000636	539	14.067	0.000587	16.61746482	0.00316	89.54967155	6.064101133	9.449987998	7/18/02 13:25	49:33:00	49:31:00	49:22:00	7.039176088
5	79	1084	0.000177	539	14.067	0.000163	4.615962451	0.00333	94.165634	6.376683666	9.762570531	7/18/02 14:00	50:08:00	50:06:00	49:57:00	7.080489625
21	78	1083	0.000742	538	14.054	0.000685	19.40515972	0.00401	113.5707937	7.690757174	11.07664404	7/18/02 15:00	51:08:00	51:06:00	50:57:00	7.150757536
22	78	1083	0.000777	538	14.054	0.000718	20.32921495	0.00473	133.9000087	9.067405611	12.45329248	7/18/02 16:00	52:08:00	52:06:00	51:57:00	7.220341636
18	78	1083	0.000636	538	14.054	0.000587	16.63299405	0.00532	150.5330027	10.19375433	13.5796412	7/18/02 17:00	53:08:00	53:06:00	52:57:00	7.289261508
18	78	1083	0.000636	538	14.054	0.000587	16.63299405	0.00590	167.1659968	11.32010305	14.70598992	7/18/02 18:00	54:08:00	54:06:00	53:57:00	7.357535819
23	78	1083	0.000812	538	14.054	0.000751	21.25327017	0.00665	188.4192669	12.75932642	16.14521328	7/18/02 19:00	55:08:00	55:06:00	54:57:00	7.425182377
13	78	1083	0,000459	538	14.054	0.000424	12.01271792	0.00708	200.4319849	13.5728005	16.95868736	7/18/02 21:00	57:08:00	57:06:00	56:57:00	7.558659493
13	78	1083	0.000459	538	14.054	0.000424	12.01271792	0.00750	212.4447028	14.38627457	17.77216144	7/18/02 23:13	59:21:00	59:19:00	59:10:00	7.703895119
45	79	1085	0.001589	539	14.080	0.001468	41.58198647	0.00897	254.0266893	17.20211261	20.58799947	7/19/02 7:12	67:20:00	67:18:00	67:09:00	8.205689083
30	79	1085	0.001059	539	14.080	0.000979	27.72132431	0.00995	281.7480136	19.07933797	22.46522483	7/19/02 12:20	72:28:00	72:26:00	72:17:00	8.512735557
27	80	1080	0.000953	540	14.015	0.000875	24.78822936	0.01083	306.5362429	20.75794077	24.14382763	7/19/02 18:19	78:27:00	78:25:00	78:16:00	8.857200461
40	79	1079	0.001413	539	14.002	0.001298	36,75736889	0.01212	343.2936118	23.24706662	26.63295349	7/20/02 15:57	100:05:00	100:03:00	99:54:00	10.0041658
61	82	1083	0.002154	542	14.054	0.001976	55.95137337	0.01410	399.2449852	27.03596702	30.42185389	7/21/02 15:12	123:20:00	123:18:00	123:09:00	11.10555417
42	77	1088	0.001483	537	14.119	0.001379	39.06210527	0.01548	438.3070905	29.68116441	33.06705127	7/22/02 15:04	147:12:00	147:10:00	147:01:00	12.13260071
54	90	1086	0.001907	550	14.093	0.001729	48.9454856	0.01721	487.2525761	32.99564194	36.38152881	7/23/02 15:21	171:29:00	171:27:00	171:18:00	13.0951645
38	81	1079	0.001342	541	14.002	0.001229	34.79040802	0.01844	522.0429841	35.35156965	38.73745652	7/24/02 15:07	195:15:00	195:13:00	195:04:00	13.97318861
34	81	1077	0.001201	541	13.976	0.001097	31.07056146	0.01953	553.1135455	37.45559777	40.84148464	7/25/02 15:44	219:52:00	219:50:00	219:41:00	14.82790163
37	84	1079	0.001307	544	14.002	0.001190	33.68806102	0.02072	586.8016066	39.73687704	43.1227639	7/26/02 16:24	244:32:00	244:30:00	244:21:00	15.63756162
49	85	1081	0.001730	545	14.028	0.001576	44.61460145	0.02230	631.416208	42.7580769	46.14396376	7/28/02 14:46	290:54:00	290:52:00	290:43:00	17.05579081
21	78	1083	0.000742	538	14.054	0.000685	19.40515972	0.02298	650.8213677	44.07215041	47.45803727	7/29/02 15:54	316:02:00	316:00:00	315:51:00	17.77732638
22	78	1079	0.000777	538	14.002	0.000715	20.25413013	0.02370	671.0754979	45.44371427	48.82960114	7/31/02 3:11	351:19:00	351:17:00	351:08:00	18.7434433
27	80	1085	0.000953	540	14.080	0.000879	24.90298968	0.02458	695.9784875	47.13008838	50.51597525	8/2/02 13:43	409:51:00	409:49:00	409:40:00	20.24475241
23	80	1087	0.000812	540	14.106	0.000751	21.25276139	0.02533	717.2312489	48.5692773	51.95516416	8/4/02 10:10	454:18:00	454:16:00	454:07:00	21.31431444
18	80	1086	0.000636	540	14.093	0.000587	16.61729449	0.02592	733.8485434	49.69456288	53.08044974	8/5/02 15:43	483:51:00	483:49:00	483:40:00	21.99659064
17	80	1088	0.000600	540	14.119	0.000555	15.72301407	0.02647	749.5715575	50.75928981	54.14517668	8/7/02 15:29	531:37:00	531:35:00	531:26:00	23.05681389
19	80	1083	0.000671	540	14.054	0.000618	17.49202316	0.02709	767.0635807	51.94381004	55.32969691	8/9/02 16:05	580:13:00	580:11:00	580:02:00	24.08768703
15	81	1080	0.000530	541	14.015	0.000485	13.74578338	0.02757	780.809364	52.87464339	56.26053026	8/11/02 12:48	624:56:00	624:54:00	624:45:00	24.99866663
15	81	1081	0.000530	541	14.028	0.000486	13.75851095	0.02806	794.567875	53.80633862	57.19222549	8/13/02 11:38	671:46:00	671:44:00	671:35:00	25.91846189
12	81	1084	0.000424	541	14.067	0.000390	11.03735495	0.02845	805.6052299	54.55376332	57.93965019	8/15/02 11:46	719:54:00	719:52:00	719:43:00	26.83095228
30	90	1082	0.001059	550	14.041	0.000957	27.09178198	0.02941	832.6970119	56.3883575	59.77424436	8/18/02 15:08	795:16:00	795:14:00	795:05:00	28.20047281
13	80	1082	0.000459	540	14.041	0.000422	11.95717538	0.02983	844.6541873	57.19807036	60.58395723	8/22/02 9:27	885:35:00	885:33:00	885:24:00	29.75875221
13	82	1086	0.000459	542	14.093	0.000422	11.95709382	0.03025	856.6112811	58.0077777	61.39366456	8/25/02 10:40	958:48:00	958:46:00	958:37:00	30.9644958
15	80	1088	0.000530	540	14.119	0.000490	13.8732477	0.03074	870.4845288	58.94724264	62.33312951	8/29/02 11:17	1055:25:00	1055:23:00	1055:14:00	32.48717696
15	81	1085	0.000530	541	14.080	0.000488	13.80942126	0.03123	884.2939501	59.8823854	63.26827227	9/2/02 8:15	1148:23:00	1148:21:00	1148:12:00	33.88780508
10	80	1084	0.000353	540	14.067	0.000325	9.214828745	0.03155	893.5087788	60.50639276	63.89227962	9/5/02 10:57	1223:05:00	1223:03:00	1222:54:00	34.97260833
14	80	1084	0.000494	540	14.067	0.000456	12.90076024	0.03201	906.4095391	61.38000305	64.76588991	9/11/02 15:31	1371:39:00	1371:37:00	1371:28:00	37.0357935
20	80	1076	0.000706	540	13.963	0.000646	18.29364526	0.03266	924.7031843	62.61880731	66.00469418	9/25/02 15:30	1707:38:00	1707:36:00	1707:27:00	41.32352034
15	80	1078	0.000530	540	13.989	0.000485	13.74573624	0.03314	938.4489206	63.54963747	66.93552433	10/1/02 15:22	1851:30:00	1851:28:00	1851:19:00	43.02905995
15	80	1084	0.000530	540	14.067	0.000488	13.82224312	0.03363	952.2711637	64.4856485	67.87153536	10/9/02 15:22	2043:30:00	2043:28:00	2043:19:00	45.20508821
7	79	1091	0.000247	539	14.158	0.000230	6.504078458	0.03386	958.7752421	64.92608997	68.31197684	10/13/02 9:56	2134:04:00	2134:02:00	2133:53:00	46.19595942
15	85	1098	0.000530	545	14.248	0.000490	13.87231184	0.03435	972.647554	65.86549154	69.25137841	10/15/02 10:44	2182:52:00	2182:50:00	2182:41:00	46.72115866
15	85	1075	0.000530	545	13.950	0.000480	13.58172607	0.03483	986.2292801	66.7852153	70.17110217	10/22/02 9:12	2349:20:00	2349:18:00	2349:09:00	48.46992194
11	85	1087	0.000388	545	14.106	0.000356	10.0711131	0.03518	996.3003932	67.46720829	70.85309516	10/29/02 14:35	2522:43:00	2522:41:00	2522:32:00	50.22665295
10	85	1091	0.000353	545	14.158	0.000325	9.189248463	0.03551	1005.489642	68.0894834	71.47537027	11/11/02 14:04	2834:12:00	2834:10:00	2834:01:00	53.23720504
10	85	1085	0.000353	545	14.080	0.000323	9.138711808	0.03583	1014.628353	68.70833629	72.09422316	11/19/02 10:49	3022:57:00	3022:55:00	3022:46:00	54.98136048
9	85	1096	0.000318	545	14.223	0.000293	8.308226108	0.03612	1022.93658	69.27095056	72.65683743	11/26/02 11:28	3191:36:00	3191:34:00	3191:25:00	56.49424749
6	85	1085	0.000212	545	14.080	0.000194	5.483227085	0.03632	1028.419807	69.64226229	73.02814916	12/3/02 8:42	3356:50:00	3356:48:00	3356:39:00	57.93818545
6	85	1082	0.000212	545	14.041	0.000193	5.468066088	0.03651	1033.887873	70.01254736	73.39843422	12/10/02 7:59	3524:07:00	3524:05:00	3523:56:00	59.36427096
7	85	1079	0.000247	545	14.002	0.000225	6.361722607	0.03674	1040.249595	70.44334882	73.82923568	12/19/02 8:17	3740:25:00	3740:23:00	3740:14:00	61.15894593
6	85	1077	0.000212	545	13.976	0.000192	5.442797761	0.03693	1045.692393	70.81192277	74.19780963	12/29/02 15:40	3987:48:00	3987:46:00	3987:37:00	63.14903008

1	80	1093	0.000035	540	14.184	0.000033	0.929133563	0.03696	1046.621527	70.87484159	74.26072845	1/6/03 10:21	4174:29:00	4174:27:00	4174:18:00	64.61024171
1	81	1098	0.000035	541	14.248	0.000033	0.931658651	0.03699	1047.553185	70.9379314	74.32381827	1/15/03 16:30	4396:38:00	4396:36:00	4396:27:00	66.30711375
4	86	1109	0.000141	546	14.391	0.000132	3.729500252	0.03713	1051.282686	71.19048472	74.57637159	1/22/03 11:48	4559:56:00	4559:54:00	4559:45:00	67.52727844
7	85	1087	0.000247	545	14.106	0.000226	6.408890152	0.03735	1057.691576	71.62448026	75.01036713	1/29/03 11:07	4727:15:00	4727:13:00	4727:04:00	68.75499982
5	86	1093	0.000177	546	14.184	0.000162	4.594616518	0.03751	1062.286192	71.9356173	75.32150416	2/5/03 15:07	4899:15:00	4899:13:00	4899:04:00	69.99464265
5	86	1067	0.000177	546	13.846	0.000158	4.485320974	0.03767	1066.771513	72.23935308	75.62523995	2/13/03 15:12	5091:20:00	5091:18:00	5091:09:00	71.35357968
0	84	1100	0.000000	544	14.274	0.000000	0	0.03767	1066.771513	72.23935308	75.62523995	2/23/03 16:10	5332:18:00	5332:16:00	5332:07:00	73.02259924
5	84	1072	0.000177	544	13.911	0.000160	4.522906772	0.03783	1071.29442	72.5456341	75.93152096	3/3/03 10:11	5518:19:00	5518:17:00	5518:08:00	74.28537317
1	85	1081	0.000035	545	14.028	0.000032	0.91050207	0.03786	1072.204922	72.60729124	75.9931781	3/10/03 11:56	5688:04:00	5688:02:00	5687:53:00	75.41927251
1	89	1068	0.000035	549	13.859	0.000032	0.892998346	0.03790	1073.09792	72.66776306	76.05364993	3/17/03 11:31	5855:39:00	5855:37:00	5855:28:00	76.522219
1	85	1083	0.000035	545	14.054	0.000032	0.912186626	0.03793	1074.010107	72.72953428	76.11542114	3/24/03 14:08	6026:16:00	6026:14:00	6026:05:00	77.62903237
1	85	1073	0.000035	545	13.924	0.000032	0.90376385	0.03796	1074.913871	72.79073512	76.17662199	3/31/03 15:46	6195:54:00	6195:52:00	6195:43:00	78.71403941
0	84	1089	0.000000	544	14.132	0.000000	0	0.03796	1074.913871	72.79073512	76.17662199	4/9/03 9:18	6405:26:00	6405:24:00	6405:15:00	80.03395113
0	85	1081	0.000000	545	14.028	0.000000	0	0.03796	1074.913871	72.79073512	76.17662199	4/10/03 16:02	6436:10:00	6436:08:00	6435:59:00	80.22572322

DESORPTION TERMINATED 4/10/03 DUE TO NO GAS GENERATION

SAMPLE: 766.7-767.7 (Neutral Coal) Canister Brady # 31

sample drie	ed 7 days @	150 deg	F (65 deg C)		weight of cont	ainer (full):		0.21250								elapsed time
DRY WEI	GHT lbs	S.	grams	2.289	weight of cont	ainer (empty)		n	noisture weight		est. lost gas (cc) =		TIME OF:			(off bottom to canistering)
sample we	ight:	2.208	1001.540000		wet sample we	eight:	2.300		4.0%		90		off bottom	at surface	in canister	9.3 minutes
CONVERS	SION OF V	OLUME	S TO STP										7/18/02 18:27	7/18/02 18:30	7/18/02 18:37	
RIG MI	EASUREM	ENTS	CONVERSION OF	RIG MEAS	UREMENTS TO	STP (cubic ft; @60	degrees; @14.7 psi)	CUMULATIV	E VOLUMES	SCF/TON	SCF/TON (approx)		TIME SINCE			0.394405319 SQRT (hrs)
cc	T (F)	P	ft3 (@rig)	ABS. T (psia (@rig)	ft3 (@STP)	cc (@STP)	ft3 (@STP)	∞ (@STP)	without lost gas	with lost gas	TIME	off bottom	at surface	in canister	Γ hrs. (since off bottom)
0	79	1082	0.000000	539	14.041	0.000000	0	0.00000	0	0	2.878923913	7/18/02 18:37	54:45:00	54:43:00	54:34:00	
9	79	1082	0.000318	539	14.041	0.000293	8.293402648	0.00029	8.293402648	0.265289724	3.144213638	7/18/02 18:39	54:47:00	54:45:00	54:36:00	7.401576409
8	79	1082	0.000283	539	14.041	0.000260	7.371913465	0.00055	15.66531611	0.501102813	3.380026726	7/18/02 18:41	54:49:00	54:47:00	54:38:00	7.403827839
9	79	1082	0.000318	539	14.041	0.000293	8.293402648	0.00085	23.95871876	0.766392537	3.64531645	7/18/02 18:43	54:51:00	54:49:00	54:40:00	
7	79	1082	0.000247	539	14.041	0.000228	6.450424281	0.00107	30.40914304	0.97272899	3.851652903	7/18/02 18:45	54:53:00	54:51:00	54:42:00	7.408328646
7	79	1082	0.000247	539	14.041	0.000228	6.450424281	0.00130	36.85956732	1.179065442	4.057989355	7/18/02 18:47	54:55:00	54:53:00	54:44:00	7.410578025
13	79	1082	0.000459	539	14.041	0.000423	11.97935938	0.00172	48.8389267	1.562261711	4.441185624	7/18/02 18:52	55:00:00	54:58:00	54:49:00	7.416198487
14	79	1082	0.000494	539	14.041	0.000456	12.90084856	0.00218	61.73977527	1.974934616	4.853858529	7/18/02 18:57	55:05:00	55:03:00	54:54:00	7.421814693
13	79	1082	0.000459	539	14.041	0.000423	11.97935938	0.00260	73.71913465	2.358130884	5.237054797	7/18/02 19:02	55:10:00	55:08:00	54:59:00	7.427426652
10	79	1082	0.000353	539	14.041	0.000325	9.214891831	0.00293	82.93402648	2.652897245	5.531821158	7/18/02 19:07	55:15:00	55:13:00	55:04:00	7.433034374
22	79	1082	0.000777	539	14.041	0.000716	20.27276203	0.00364	103.2067885	3.301383238	6.180307151	7/18/02 19:17	55:25:00	55:23:00	55:14:00	7.444237145
14	79	1082	0.000494	539	14.041	0.000456	12.90084856	0.00410	116.1076371	3.714056143	6.592980056	7/18/02 19:27	55:35:00	55:33:00	55:24:00	7.455423082
15	79	1082	0.000530	539	14.041	0.000488	13.82233775	0.00459	129.9299748	4.156205683	7.035129596	7/18/02 19:40	55:48:00	55:46:00	55:37:00	7.469939759
16	79	1082	0.000565	539	14.041	0.000521	14.74382693	0.00511	144.6738017	4.62783186	7.506755773	7/18/02 19:55	56:03:00	56:01:00	55:52:00	7.486654794
21	79	1082	0.000742	539	14.041	0.000683	19.35127284	0.00579	164.0250746	5.246841217	8.12576513	7/18/02 20:30	56:38:00	56:36:00	56:27:00	7.525512164
20	79	1082	0.000706	539	14.041	0.000651	18.42978366	0.00644	182.4548582	5.836373938	8.715297851	7/18/02 21:00	57:08:00	57:06:00	56:57:00	7.558659493
31	79	1082	0.001095	539	14.041	0.001009	28.56616467	0.00745	211.0210229	6.750149656	9.629073569	7/18/02 23:13	59:21:00	59:19:00	59:10:00	7.703895119
190	79	1085	0.006710	539	14.080	0.006200	175.5683873	0.01365	386.5894102	12.36623886	15.24516278	7/19/02 7:13	67:21:00	67:19:00	67:10:00	8.206704576
104	79	1085	0.003673	539	14.080	0.003394	96.10059096	0.01705	482.6900012	15.44030875	18.31923266	7/19/02 12:22	72:30:00	72:28:00	72:19:00	8.514693183
67	80	1080	0.002366	540	14.015	0.002172	61.5115321	0.01922	544.2015333	17.40794231	20.28686622	7/19/02 18:20	78:28:00	78:26:00	78:17:00	8.858141265
146	79	1079	0.005156	539	14.002	0.004738	134.1643965	0.02396	678.3659298	21.69959886	24.57852277	7/20/02 15:58	100:06:00	100:04:00	99:55:00	10.00499875
154	82	1083	0.005438	542	14.054	0.004988	141.2542869	0.02894	819.6202166	26.21804713	29.09697104	7/21/02 15:14	123:22:00	123:20:00	123:11:00	11.10705482
73	77	1088	0.002578	537	14.119	0.002398	67.89365916	0.03134	887.5138758	28.38983245	31.26875636	7/22/02 15:05	147:13:00	147:11:00	147:02:00	12.13328755
148	90	1086	0.005227	550	14.093	0.004737	134.1468865	0.03608	1021.660762	32.68092888	35.5598528	7/23/02 15:23	171:31:00	171:29:00	171:20:00	13.09643717
85	81	1079	0.003002	541	14.002	0.002748	77.82064953	0.03883	1099.481412	35.1702592	38.04918312	7/24/02 15:09	195:17:00	195:15:00	195:06:00	13.97438132
81	81	107	0.002860	541	13.976	0.002614	74.02104348	0.04144	1173.502455	37.53804756	40.41697147	7/25/02 15:45	219:53:00	219:51:00	219:42:00	14.82846362
107	84	1073	0.003779	544	13.950	0.003428	97.06107304	0.04487	1270.563528	40.64284139	43.5217653	7/26/02 18:35	246:43:00	246:41:00	246:32:00	15.70721702

17.05530221	290:42:00	290:51:00	290:53:00	7/28/02 14:45	48.61867177	45.73974785	1429.901391	0.05050	159.3378623	0.005627	14.028	545	0.006180	1081	85	175
17.77779514	315:52:00	316:01:00	316:03:00	7/29/02 15:55	51.13116286	48.25223894	1508.446085	0.05327	78.54469411	0.002774	14.054	538	0.003002	1083	78	85
19.06217896	363:11:00	363:20:00	363:22:00	7/31/02 15:14	52.3974933	49.51856939	1548.033703	0.05467	39.58761797	0.001398	14.002	538	0.001519	1079	78	43
20.24598726	409:43:00	409:52:00	409:54:00	8/2/02 13:46	53.87267463	50.99375072	1594.15035	0.05630	46.11664755	0.001629	14.080	540	0.001766	1085	80	50
21.31353248	454:05:00	454:14:00	454:16:00	8/4/02 10:08	55.32101717	52.44209326	1639.427972	0.05790	45.27762209	0.001599	14.106	540	0.001730	1087	80	49
21.99696949	483:41:00	483:50:00	483:52:00	8/5/02 15:44	56.1478801	53.26895619	1665.277097	0.05881	25.84912477	0.000913	14.093	540	0.000989	1086	80	28
23.05753673	531:28:00	531:37:00	531:39:00	8/7/02 15:31	56.79875457	53.91983066	1685.624527	0.05953	20.34742997	0.000719	14.119	540	0.000777	1088	80	22
24.08837894	580:04:00	580:13:00	580:15:00	8/9/02 16:07	57.8000288	54.92110489	1716.926042	0.06063	31.30151513	0.001105	14.054	540	0.001201	1083	80	34
24.99899998	624:46:00	624:55:00	624:57:00	8/11/02 12:49	58.67943023	55.80050632	1744.417609	0.06160	27.49156675	0.000971	14.015	541	0.001059	1080	81	30
25.91878341	671:36:00	671:45:00	671:47:00	8/13/02 11:39	59.41294331	56.5340194	1767.348461	0.06241	22.93085159	0.000810	14.028	541	0.000883	1081	81	25
26.83064169	719:42:00	719:51:00	719:53:00	8/15/02 11:45	59.73658475	56.85766084	1777.466036	0.06277	10.11757537	0.000357	14.067	541	0.000388	1084	81	11
28.08380316	788:31:00	788:40:00	788:42:00	8/18/02 8:34	63.02971453	60.15079062	1880.414807	0.06641	102.9487715	0.003636	14.041	550	0.004026	1082	90	114
29.75903224	885:25:00	885:34:00	885:36:00	8/22/02 9:28	62.73549403	59.85657012	1871.21698	0.06608	-9.197827216	-0.000325	14.041	540	-0.000353	1082	80	-10
30.96476492	958:38:00	958:47:00	958:49:00	8/25/02 10:41	63.17682177	60.29789786	1885.013627	0.06657	13.79664672	0.000487	14.093	542	0.000530	1086	82	15
32.48743347	1055:15:00	1055:24:00	1055:26:00	8/29/02 11:18	63.85728145	60.97835753	1906.28594	0.06732	21.27231315	0.000751	14.119	540	0.000812	1088	80	23
33.9325311	1151:14:00	1151:23:00	1151:25:00	9/2/02 11:17	64.82910146	61.95017754	1936.666667	0.06839	30.38072678	0.001073	14,080	541	0.001165	1085	81	33
34.97284661	1222:55:00	1223:04:00	1223:06:00	9/5/02 10:58	64.97648363	62.09755971	1941.274081	0.06856	4.607414373	0.000163	14.067	540	0.000177	1084	80	5
37.0360185	1371:29:00	1371:38:00	1371:40:00	9/11/02 15:32	65.56601231	62.6870884	1959.703739	0.06921	18.42965749	0.000651	14.067	540	0.000706	1084	80	20
41.323722	1707:28:00	1707:37:00	1707:39:00	9/25/02 15:31	66.88266263	64.00373872	2000.864441	0.07066	41.16070183	0.001454	13.963	540	0.001589	1076	80	45
43.02925362	1851:20:00	1851:29:00	1851:31:00	10/1/02 15:23	67.67412121	64.79519729	2025.606766	0.07153	24.74232523	0.000874	13.989	540	0.000953	1078	80	27
45.2054569	2043:21:00	2043:30:00	2043:32:00	10/9/02 15:24	67.76255051	64.8836266	2028.371214	0.07163	2.764448624	0.000098	14.067	540	0.000106	1084	80	3
46.19613981	2133:54:00	2134:03:00	2134:05:00	10/13/02 9:57	67.77741142	64.89848751	2028.835791	0.07165	0.464577033	0.000016	14.158	539	0.000018	1091	79	0.5
46.72133702	2182:42:00	2182:51:00	2182:53:00	10/15/02 10:45	68.19121865	65.31229474	2041.772101	0.07210	12.93630947	0.000457	14.132	541	0.000494	1089	81	14
48.47009387	2349:10:00	2349:19:00	2349:21:00	10/22/02 9:13	68.48624244	65.60731853	2050.995041	0.07243	9.222939566	0.000326	14.210	545	0.000353	1095	85	10
50.22681887	2522:33:00	2522:42:00	2522:44:00	10/29/02 14:36	68.95483183	66.07590792	2065.643932	0.07295	14.64889178	0.000517	14,106	545	0.000565	1087	85	16
53.23736157	2834:02:00	2834:11:00	2834:13:00	11/11/02 14:05	69.13119948	66.25227556	2071.157481	0.07314	5.513549078	0.000195	14.158	545	0.000212	1091	85	6
54.98151204	3022:47:00	3022:56:00	3022:58:00	11/19/02 10:50	69.30659718	66.42767327	2076.640708	0.07334	5.483227085	0.000194	14.080	545	0.000212	1085	85	6
56.494395	3191:26:00	3191:35:00	3191:37:00	11/26/02 11:29	69.30659718	66.42767327	2076.640708	0.07334	0	0.000000	14.223	545	0.000000	1096	85	0

DESORPTION TERMINATED 11/30/03 DUE TO NO GAS GENERATION

SAMPLE: 840.2' to 841.2' (Riverton Coal) Canister Brady #23

					APPROX. WE	EIGHT CALCULA	ATION									
sample drie	ed 7 days	@ 150 deg	. F (65 deg C)		weight of cont	ainer (full):		0.21250								elapsed time
DRY WEI	GHT 1	lbs.	grams		weight of cont	ainer (empty)		n	noisture weight		est. lost gas (cc) =		TIME OF:			(off bottom to canistering)
sample we	ight:	2.317	1051.330000		wet sample we	eight:	2.356		1.7%		80		off bottom	at surface	in canister	9.0 minutes
CONVER	SION OF	VOLUME	S TO STP										7/19/02 11:14	7/19/02 11:17	7/19/02 11:23	0.150 hours
	EASURE			RIG MEAS	SUREMENTS TO	STP (cubic ft; @60	degrees; @14.7 psi)	CUMULATIV	E VOLUMES	SCF/TON	SCF/TON (approx)		TIME SINCE			0.387298335 SQRT (hrs)
cc	T (F)	P	cubic ft (@rig)	ABS. T (psia (@rig)	ft3 (@STP)	cc (@STP)	ft3 (@STP)	cc (@STP)	without lost gas	with lost gas	TIME	off bottom	at surface	in canister	SQRT hrs. (since off bottom)
0	79	1085	0.000000	539	14.080	0.000000	0	0.00000	0	0	2.438656884	7/19/02 11:23	71:31:00	71:29:00	71:20:00	8.456752726
6	79	1085	0.000212	539	14.080	0.000196	5.544264863	0.00020	5.544264863	0.169006996	2.60766388	7/19/02 11:25	71:33:00	71:31:00	71:22:00	8.458723308
4	79	1085	0.000141	539	14.080	0.000131	3.696176575	0.00033	9.240441438	0.281678327	2.72033521	7/19/02 11:27	71:35:00	71:33:00	71:24:00	8.460693431
8	79	1085	0.000283	539	14.080	0.000261	7.392353151	0.00059	16.63279459	0.507020988	2.945677872	7/19/02 11:29	71:37:00	71:35:00	71:26:00	8.462663095
8	79	1085	0.000283	539	14.080	0.000261	7.392353151	0.00085	24.02514774	0.732363649	3.171020533	7/19/02 11:31	71:39:00	71:37:00	71:28:00	8.464632302
9	79	1083	0.000318	539	14.080	0.000294	8.316397294	0.00114	32.34154503	0.985874143	3.424531027	7/19/02 11:33	71:41:00	71:39:00	71:30:00	8.46660105
19	79	1085	0.000671	539	14.080	0.000620	17.55683873	0.00176	49.89838377	1.521062963	3.959719847	7/19/02 11:38	71:46:00	71:44:00	71:35:00	8.471520918
23	79	1085	0.000812	539	14.080	0.000751	21.25301531	0.00251	71.15139907	2.168923114	4.607579998	7/19/02 11:44	71:52:00	71:50:00	71:41:00	8.477420991
16	79	108	0.000565	539	14.080	0.000522	14.7847063	0.00303	85.93610538	2.619608437	5.058265321	7/19/02 11:49	71:57:00	71:55:00	71:46:00	8.482334584
14	79	108:	0.000494	539	14.080	0.000457	12.93661801	0.00349	98.87272339	3.013958094	5.452614978	7/19/02 11:54	72:02:00	72:00:00	71:51:00	8.487245332
23	79	108	0.000812	539	14.080	0.000751	21.25301531	0.00424	120.1257387	3.661818245	6.100475129	7/19/02 12:04	72:12:00	72:10:00	72:01:00	8.497058315
28	79	108	0.000989	539	14.080	0.000914	25.87323603	0.00516	145.9989747	4.450517559	6.889174443	7/19/02 12:20	72:28:00	72:26:00	72:17:00	8.512735557
45	79	108.	0.001589	539	14.080	0.001468	41.58198647	0.00662	187.5809612	5.718070029	8.156726913	7/19/02 12:35	72:43:00	72:41:00	72:32:00	8.527406796
45	79	108	0.001589	539	14.080	0.001468	41.58198647	0.00809	229.1629477	6.985622498	9.424279382	7/19/02 13:20	73:28:00	73:26:00	73:17:00	8.57126984

40	79	1085	0.001413	539	14.080	0.001305	36.96176575	0.00940	266.1247134	8.112335805	10.55099269	7/19/02 14:00	74:08:00	74:06:00	73:57:00	8.610071622
30	79	1085	0.001059	539	14.080	0.000979	27.72132431	0.01038	293.8460377	8.957370784	11.39602767	7/19/02 14:40	74:48:00	74:46:00	74:37:00	8.648699324
95	80	1080	0.003355	540	14.015	0.003080	87.21784403	0.01346	381.0638818	11.61605073	14.05470761	7/19/02 18:22	78:30:00	78:28:00	78:19:00	8.860022573
288	79	1079	0.010171	539	14.002	0.009346	264.653056	0.02280	645.7169378	19.68352569	22.12218258	7/20/02 16:00	100:08:00	100:06:00	99:57:00	10.00666445
193	82	1083	0.006816	542	14.054	0.006252	177.0264764	0.02906	822.7434142	25.07986113	27.51851802	7/21/02 15:15	123:23:00	123:21:00	123:12:00	11.10780506
93	77	1088	0.003284	537	14.119	0.003055	86.49466167	0.03211	909.2380759	27.71649616	30.15515304	7/22/02 15:06	147:14:00	147:12:00	147:03:00	12.13397434
165	90	1086	0.005827	550	14.093	0.005282	149.5556504	0.03739	1058.793726	32.27543262	34.7140895	7/23/02 15:24	171:32:00	171:30:00	171:21:00	13.09707346
75	81	1079	0.002649	541	14.002	0.002425	68.665279	0.03982	1127.459005	34.36857081	36.80722769	7/24/02 15:11	195:19:00	195:17:00	195:08:00	13.97557393
71	81	1077	0.002507	541	13.976	0.002291	64.88264305	0.04211	1192.341648	36.34640211	38.78505899	7/25/02 15:47	219:55:00	219:53:00	219:44:00	14.82958754
89	89	1074	0.003143	549	13.937	0.002822	79.92335192	0.04493	1272.265	38.78272251	41.2213794	7/26/02 18:27	246:35:00	246:33:00	246:24:00	15.70297212
162	85	1081	0.005721	545	14.028	0.005209	147.5013354	0.05014	1419.766336	43.27903685	45.71769373	7/28/02 14:47	290:55:00	290:53:00	290:44:00	17.05627939
24	85	1083	0.000848	545	14.054	0.000773	21.89247901	0.05091	1441.658815	43.94638991	46.38504679	7/29/02 15:55	316:03:00	316:01:00	315:52:00	17.77779514
30	78	1079	0.001059	538	14.002	0.000975	27.61926835	0.05189	1469.278083	44.7883139	47.22697078	7/31/02 15:13	363:21:00	363:19:00	363:10:00	19.06174179
46	80	1085	0.001624	540	14.080	0.001498	42.42731574	0.05339	1511.705399	46.08163472	48.5202916	8/2/02 15:46	411:54:00	411:52:00	411:43:00	20.29531966
40	80	1087	0.001413	540	14.106	0.001305	36.96132416	0.05469	1548.666723	47.20833456	49.64699144	8/4/02 10:08	454:16:00	454:14:00	454:05:00	21.31353248
28	80	1086	0.000989	540	14.093	0.000913	25.84912477	0.05560	1574.515848	47.99629889	50.43495577	8/5/02 15:45	483:53:00	483:51:00	483:42:00	21.99734833
23	80	1088	0.000812	540	14.119	0.000751	21.27231315	0.05635	1595.788161	48.6447473	51.08340418	8/7/02 15:30	531:38:00	531:36:00	531:27:00	23.05717531
31	80	1083	0.001095	540	14.054	0.001008	28.53961674	0.05736	1624.327778	49.51472646	51.95338334	8/9/02 16:09	580:17:00	580:15:00	580:06:00	24.08907083
31	81	1080	0.001095	541	14.015	0.001003	28.40795231	0.05837	1652.73573	50.38069206	52.81934895	8/11/02 12:50	624:58:00	624:56:00	624:47:00	24.99933332
27	81	1081	0.000953	541	14.028	0.000875	24.76531972	0.05924	1677.50105	51.13561853	53.57427541	8/13/02 11:37	671:45:00	671:43:00	671:34:00	25.91814037
10	81	1084	0.000353	541	14.067	0.000325	9.19779579	0.05957	1686.698845	51.41599688	53.85465376	8/15/02 11:47	719:55:00	719:53:00	719:44:00	26.83126286
108	90	1082	0.003814	550	14.041	0.003444	97.53041514	0.06301	1784.229261	54.38903711	56.82769399	8/18/02 15:10	795:18:00	795:16:00	795:07:00	28.20106381
-15	80	1082	-0.000530	540	14.041	-0.000487	-13.79674082	0.06252	1770.43252	53.96846815	56.40712503	8/22/02 9:29	885:37:00	885:35:00	885:26:00	29.75931227
10	82	1086	0.000353	542	14.093	0.000325	9.19776448	0.06285	1779.630284	54.24884554	56.68750243	8/25/02 10:41	958:49:00	958:47:00	958:38:00	30.96476492
20	80	1088	0.000706	540	14.119	0.000653	18.49766361	0.06350	1798.127948	54.81271373	57.25137061	8/29/02 11:16	1055:24:00	1055:22:00	1055:13:00	32.48692045
40	81	1085	0.001413	541	14.080	0.001300	36.82512337	0.06480	1834.953071	55.93526173	58.37391862	9/1/02 8:17	1124:25:00	1124:23:00	1124:14:00	33.53232272
5	80	1084	0.000177	540	14.067	0.000163	4.607414373	0.06496	1839.560486	56.07571052	58.5143674	9/5/02 10:59	1223:07:00	1223:05:00	1222:56:00	34.97308489
20	80	1084	0.000706	540	14.067	0.000651	18.42965749	0.06561	1857.990143	56.63750566	59.07616254	9/11/02 15:33	1371:41:00	1371:39:00	1371:30:00	37.03624351
41	80	1076	0.001448	540	13.963	0.001324	37.50197278	0.06694	1895.492116	57.78068621	60.21934309	9/25/02 15:32	1707:40:00	1707:38:00	1707:29:00	41.32392366
30	80	1078	0.001059	540	13.989	0.000971	27.49147247	0.06791	1922.983588	58.61871457	61.05737145	10/1/02 15:24	1851:32:00	1851:30:00	1851:21:00	43.02944728
5	80	1084	0.000177	540	14.067	0.000163	4.607414373	0.06807	1927.591003	58.75916335	61.19782023	10/9/02 15:25	2043:33:00	2043:31:00	2043:22:00	45.20564124
3	79	1091	0.000106	539	14.158	0.000098	2.787462196	0.06817	1930.378465	58.84413415	61.28279103	10/13/02 9:58	2134:06:00	2134:04:00	2133:55:00	46.1963202
0.5	85	1089	0.000018	545	14.132	0.000016	0.458620146	0.06819	1930.837085	58.85811436	61.29677125	10/15/02 10:46	2182:54:00	2182:52:00	2182:43:00	46.72151539
9	85	1095	0.000318	545	14.210	0.000293	8.30064561	0.06848	1939.137731	59.1111447	61.54980158	10/22/02 9:14	2349:22:00	2349:20:00	2349:11:00	48.4702658
13	85	1087	0.000459	545	14.106	0.000420	11.90222457	0.06890	1951.039955	59.47396272	61.9126196	10/29/02 14:37	2522:45:00	2522:43:00	2522:34:00	50.22698478
6	85	1091	0.000212	545	14.158	0.000195	5.513549078	0.06910	1956.553504	59.6420334	62.08069028	11/11/02 14:06	2834:14:00	2834:12:00	2834:03:00	53.2375181
11	85	1085	0.000388	545	14.080	0.000355	10.05258299	0.06945	1966.606087	59.94846841	62.38712529	11/19/02 10:51	3022:59:00	3022:57:00	3022:48:00	54.98166361
1	85	1096	0.000035	545	14.223	0.000033	0.923136234	0.06948	1967.529223	59.97660856	62.41526545	11/26/02 11:33	3191:41:00	3191:39:00	3191:30:00	56.49498503
4	85	1085	0.000141	545	14.080	0.000129	3.655484723	0.06961	1971.184708	60.08803948	62.52669636	12/3/02 8:43	3356:51:00	3356:49:00	3356:40:00	57.93832928
20	85	1082	0.000706	545	14.041	0.000644	18.22688696	0.07026	1989.411595	60.64365352	63.0823104	12/10/02 8:00	3524:08:00	3524:06:00	3523:57:00	59.36441134
15	85	1079	0.000530	545	14.002	0.000481	13.63226273	0.07074	2003.043858	61.05920866	63.49786554	12/19/02 8:18	3740:26:00	3740:24:00	3740:15:00	61.15908218
-20	80	1093	-0.000706	540	14.184	-0.000656	-18.58267125	0.07008	1984.461187	60.49274917	62.93140605	1/6/03 15:38	4179:46:00	4179:44:00	4179:35:00	64.65111497
-15	81	1098	-0.000530	541	14.248	-0.000494	-13.97487977	0.06959	1970.486307	60.06674996	62.50540685	1/15/03 16:31	4396:39:00	4396:37:00	4396:28:00	66.30723942
-10	0.1	.020	0.00000													

DESORPTION TERMINATED 1/16/03 DUE TO NO GAS GENERATION

Kansas Geological Survey, Cooper #CW-1; SE SW SW 11-T35S-R18E

Kansas Geological Survey, Cooper #CW-1; SE SW SW 11-T35S-R18E

Kansas Geological Survey, Cooper #CW-1; SE SW SW 11-T35S-R18E

Desorption Characteristics of Cooper #Cw-1 Samples

Kansas Geological Survey Cooper #CW-1 SE SW SW 11-T35S-R18E

Appendix A

Graphical and Verbal Descriptions of Core

	- Comment of the Comm		
Lege	<u>nd</u>		Coal Bands
	Coal	~~	Syneresis Cracks
	Black Shale	1	Soft Sediment Def.
	Sandstone	_	Stylolite
====	Shale	B	Bioclasts, Whole
	Interbedded Sh and Ss	B	Bioclastic Fragments
포글로	Calcareous Shale	n	Algae
[1]1]1	Underclay	A	Algae
	Limestone		Brachiopods
	Planer Bedding	AT	Bryozoa
	Flaser Bedding	3 **	Corals, Colonial
-	Wavy Bedding	*	Crinoids
	Lenticular Bedding	0	Foraminifera
2	Cross Ripple Laminae	5	Bioturbation
\sim	Wave Ripples	\vee	Burrowing
	Siderite Nodules	0	Caliche
0	Phosphatic Nodules	}	Slickensides
#	Pyrite	H	Ped Structures
∇	Chert	λ	Rhizoliths

NA	ME COOPER CW-1	STRU	JCTURAL SETTING	CHEROKEE BASIN
LO	CATION SE SW SW 11-T35S-R18E		DESCRIBED BY:	JONATHAN LANGE
DEPTH (FT)	CARBONATES GN PK WKE IMUDST EVAP CLASTICS Sand Sand		DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE JANUARY 2003 UNIT: Fort Scott PAGE 01 OF 30 PAGES REMARKS, INTERPRETATION
265—	B B B B B B B B B B B B B B B B B B B	17 17	Limestone - Light gray to tan - Calcarcous - Medium bedded - Stylolites, and horse tail stylolites - Calcite veins - Rooting - Gradational upper contact - Bioclasts of brachiopods, crinoids, fusilinids, and bryozoa - Bioturbated Heavily fractured with calcite crystals	Top of Fort Scott - Higginsville Limestone Restricted marine - Above wave base - Shoaling upward sequence
275—	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	18	Shale parting Rip-up clasts and rooting Peloidal and nonfossiliferous	Flooding surface Exposure surface Restricted marine - Tidal flat - Above wave base

NAME	E COOPER CW-1	STRUCTURA	L SETTING	CHEROKEE BASIN
LOCA	ATION SE SW SW 11-T35S-R18E	DE	SCRIBED BY:	JONATHAN LANGE
PTH (FT)	CARBONATES CLASTICS Sand Sand		DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATEJANUARY 2003 UNIT: Fort Scott PAGE 02 OF 30 PAGES REMARKS, INTERPRETATION
2285		18	one as above	Above wave base Shallowing upward sequence
111111		Whole b	vioclasts	Open Marine - Below Wave Base

NA	ME COOPER CW-1	STR	.U	CTURAL SETTING	CHEROKEE BASIN
LO	CATION SE SW SW 11-T35S-R18	E	_	DESCRIBED BY:	JONATHAN LANGE
DEPTH (FT)	CARBONATES GN PK WKE MUDST EVAP CLASTICS Sand ARBONATES UIT CLASTICS Sand ARBONATES UIT CLASTICS SAND ARBONATES UIT CLASTICS SAND ARBONATES UIT CARBONATES UIT C	HOLOGY	BOX #	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE JANUARY 2003 UNIT: Fort Scott PAGE 04 OF 30 PAGES REMARKS, INTERPRETATION
325-			221	Limestone - Same as above Whole bioclasts	Open marine - Below wave base

NA	ME	COOPER CW-1		STI	RU	CTURAL SETTING	CHEROKEE BASIN
LO	CATION	SE SW SW 11	-T35S-	R18E		DESCRIBED BY:	JONATHAN LANGE
DEPTH (FT)	GN PK	OGY GRAIN SIZE A CARBONATES WKE IMUDSTI CLASTICS Sand SEED OF THE SEED OF T	EVAP	RUCTURES LITHOLOGY	BOX#	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE JANUARY 2003 UNIT: Cherokee Group PAGE 05 OF 30 PAGES REMARKS, INTERPRETATION
_			=				
345—					22	Black Shale - Black - Micaceous - Very thinly laminated - Planar bedding - Phosphatic nodules - Gradational Contact - Bioclastic fragments conodonts? - Gas show	Top of Cherokee Group - Excello Shale Transgressive marine core shale
350—		B > B > B			23	Limestone - Medium gray to dark gray - Calcareous - Medium bedded - Caliche - Gradational upper contact - Bioclasts of brachiopods, fusilinids, and bryozoa - Burrowed	Mulky coal not present at this location ———————————————————————————————————
355			\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Whole bioclasts	Open marine - Below wave base

NAME	COOPER CW-1	STRU	CTURAL SETTING	CHEROKEE BASIN
LOCAT	TON SE SW SW 11-T35S-F	R18E	DESCRIBED BY:	JONATHAN LANGE
PTH (FT)	CLASTICS Sand Olay Olay Olay Olay Olay Olay Olay Olay	LITHOLOGY # XO	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE JANUARY 2003 UNIT: Cherokee Group PAGE 07 OF 30 PAGES REMARKS, INTERPRETATION
385	88 747 47		Coal - Black - High sulfur content - Well developed cleating - Calcite mineralization in cleats - Sharp contact Underclay - Light gray - Pedogenie - Rooting - Sharp contact - Bioturbation	Iron Post Marker Transgressive lag Iron Post Coal Flooding Surface Exposure Surface Palcosol
390—			Sandstone - Light to medium gray - Siliceous to micaecous on bottom - Fine-grained, well sorted and well rounded - Thinly laminated - Planar bedding and wavy bedded on bottom foot - Plant fragements - Gradational contaet	Upper Squirrer Sandstone Possibly a tidal splay Flooding Surface
395—		2	Coal - Black - High in sulfur and calcite - Good cleating - Sharp contact Sandstone - Light to medium gray - Siliceous and micaceous - Fine-grained, well sorted and well rounded - Thinly laminated - Wavy Bedding - Soft sediment deformation at 398' - Gradational contact - Bioturbation	Bevier Coal Lower Squirrel Sandstone - Tidal influenced

NAME_	COOPER CW-1	_ STRUCTURAL SE	TTING CHEROKEE	BASIN
LOCATIO	N SE SW SW 11-T35S-R181	DESCRI	BED BY: JONATHA	N LANGE
E	CARBONATES PK WKE MUDST EVAP CLASTICS Sand Sand Single Sin	IOLOGY # - Lithol - Color - Comp O Beddi - Shape - Beddi - Sed. S - Uppe - Fossil	e and Sorting ng page 1 Contact s s REMARKS,	30 PAGES INTERPRETATION
425—	4 6 # 6 # 4 ×	Black Shale Coal - Black - Well develope - High sulfur co - Gradational co Underclay - Medium gray - Poorly develo - Pedogenic - Siderite nodul - Sharp contact 28 - Bioturbated	ed Palcosol potent ontact pped	Flooding surfa Exposure surfa
430—		Sandstone - Light brown - Siliceous and - Fine-grained, well rounded - Thinly lamina - Wavy to lenti - Gradational c	micaceous well sorted, and ated cular bedded ontact t deformation at	ience boundary at
11111	= = = = = = = = = = = = = = = = = = =	Shale Dark gray Micaceous Thinly lamina Planar boddin Gradational c Siderite	_{rs} l	

NA	ME	COOPER CW-1	STI	RU	CTURAL SETTING	CHEROKEE BASIN
LO	CATION	SE SW SW 11-T355	-R18E		DESCRIBED BY:	JONATHAN LANGE
DEPTH (FT)	GN PK	OGY GRAIN SIZE AND S' CARBONATES L WKE MUDST EVAI CLASTICS Sand Property Propert	LITHOLOGY	BOX #	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE FEBRUARY 2003 UNIT: Cherokee Group PAGE 12 OF 30 PAGES REMARKS, INTERPRETATION Scammon marker
				32	Shale, same as above Black Shale Underclay - Light gray - Pedogenic - Rooting and plant fragments - Sharp contact - Siderite and claiche nodules - Bioturbated Sandstone - Light brown - Siliceous with micaecous laminae - Fine to medium-grained, well rounded, and well sorted - Thickly laminated - Wavy, lenitcular and planar bedded - Bimodal crossbedding - Siderite crystals - Gradational contact - Slightly bioturbated, passively filled horizontal burrows	Transgressive lag — Flooding surface Paleosol Exposure surface The Scammon Coal is absent in this location Skinner/Chealsea Sandstone Bay head delta - upper estuarine - Incised valley fill - Bimodal flow - Tidalites - Sequence boundary on bottom of sand
495—				33		

NAME COO	PER CW-1	STR	UCTURAL SETTING	CHEROKEE BASIN
LOCATIONSI	E SW SW 11-T35S-R18E		DESCRIBED BY:	JONATHAN LANGE
E CARI	E IMUDST EVAP ASTICS and E E E E E E E E E E E E E E E E E E E	DLOGY	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE FEBRUARY 2003 UNIT: Cherokee Group PAGE 13 OF 30 PAGES REMARKS, INTERPRETATION
505			Shale - Brown from 505'-514'. And dark gray from 514'-523' - Micaccous with some silica laminae - Thinly laminated - Planar bedding - Siderite nodules - Gradational contact - Slightly bioturbated	Exposure surface Offshore transition - Shoaling upward

NAME	COOPER CW-1		STR	U	CTURAL SETTING	CHEROKEE BASIN
LOCATION	SE SW SW 11-	T35S-R18E			DESCRIBED BY:	JONATHAN LANGE
SPTH (FT)	OGY GRAIN SIZE AN CARBONATES L WE IMUDST CLASTICS Sand Sand Sund Sund Sund Sund Sund Sund Sund Su	LITHO	LOGY	BUA#	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE FEBRUARY 2003 UNIT: Cherokee Group PAGE 14 OF 30 PAGES REMARKS, INTERPRETATION
525—			3:	4	Black Shale - Micaccous - Thinly laminated - Planar bedding - Slightly phosphatic - Gradational - Brachiopod fragments Coal - Well developed eleating - Low mineralization - Sharp contact - Good gas show Underclay - Light gray - Pedogenic - Rooting - Siderite, and pyrite nodules - Sharp contact - Bioturbated	Tebo Coal — Flooding surface Exposure surface Palcosol
535-					Shale - Medium gray, lightens upward - Micaccous - Thinly laminated - Wavy cross ripple lamina and planar in upper portion - Ripple cross-laminated - Rooting and plant fragments - Gradational contact - Bioturbated and non-fossiliferous	Shallow marinc, probably a muddy tidal flat or coastal plain

NA	ME COOPER CW-1	STRU	CTURAL SETTING	CHEROKEE BASIN
LO	CATION SE SW SW 11-T35S-R18E	E	DESCRIBED BY:	JONATHAN LANGE
DEPTH (FT)	GN PK WKE MUDST EVAP CLASTICS Sand In the property of the pr	HOLOGY # XOQ	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE FEBRUARY 2003 UNIT: Cherokee Group PAGE 16 OF 30 PAGES REMARKS, INTERPRETATION
565—		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Shale - Dark brown to gray - Micaceous with siliceous laminae - Thinly laminated - Lenticular bedded with planar bedding on top - Plant fragments - Gradational contact - Bioclastic fragments on top	Non-marine, outside shale
575—			Black Shale - Black - Micaceous - Thinly laminated - Planar bedded - Phosphatic - Gradational contact - Non-fossiliferous Sandstone, description on next page	Transgressive marine, core shale ———————————————————————————————————

NAME CO	OOPER CW-1	STR	RU	CTURAL SETTING	CHEROKEE BASIN
LOCATION	SE SW SW 11-T35S-	R18E		DESCRIBED BY:	JONATHAN LANGE
GN PK W	GRAIN SIZE AND STI	LITHOLOGY	BOX#	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE FEBRUARY 2003 UNIT: Cherokee Group PAGE 18 OF 30 PAGES REMARKS, INTERPRETATION
615—			440	Sandstone, same as above Escape structures Rip-up clasts Passively filled vertical burrows Rip-up clasts	Exposure surface

NA	ME COOPER CW-1	STR	lU	CTURAL SETTING	CHEROKEE BASIN
LO	CATION SE SW SW 11-T35S-R1	18E		DESCRIBED BY:	JONATHAN LANGE
DEPTH (FT)	CARBONATES GN PK WKE MUDST EVAP CLASTICS Sand Sand Sand Sand Sand Sand Sand San	ITHOLOGY	BOX#	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE MARCH 2003 UNIT: Cherokee Group PAGE 19 OF 30 PAGES REMARKS, INTERPRETATION
625—			41	Shale - Dark gray, lightens upward - Micaceous - Thinly laminated - Planar bedded - Rooting? - Siderite nodules - Gradational contact - Some bioturbation Black shale - Micaceous - Thinly laminated - Planar bedded - Gradational contact - Non-fossiliferous	Offshore transition - Shoaling upward Shelf shale - Transgressive marine shale
-		1,1,1,		Coal - Sharp contact Palcosol - Medium gray	Drywood Coal - Flooding surface Exposure surface
-	**; • - · · ·		42	- Pedogenic - Rooting - Sharp contact - Bioturbated	Nearshore shale
635—	λ _ς =			Shale - Dark gray to black - Micaceous - Thinly laminated - Planar bedded - Top is pedogenically altered - Rooting - Pyrite nodules - Gradational contact - Bioturbated	Transgressive marine shale

NA	ME COOPER CW-1 ST	RU	CTURAL SETTING	CHEROKEE BASIN
LO	CATION SE SW SW 11-T35S-R18E		DESCRIBED BY:	JONATHAN LANGE
DEPTH (FT)	LITHOLOGY GRAIN SIZE AND STRUCTURES CARBONATES GN PK WKE MUDST EVAP CLASTICS Sand Sand Sand Size Size	BOX#	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE MARCH 2003 UNIT: Cherokee Group PAGE 21 OF 30 PAGES REMARKS, INTERPRETATION
665—	6	44	Shale Dark gray Micaceous, high carbon content Thinly laminated Planar bedded Rooting and plant fragments Siderite nodules Gradational contact Non-fossiliferous Carbonaceous shale Coaly streaks Gras show Underclay Gray Pedogenic Rooting and plant fragments Siderite nodules Sharp contact Bioturbated	Nonmarine, outside shale ———————————————————————————————————
670—		45	Shale - Dark gray to black - Micaceous - Thinly laminated - Lenticular to planar bedded - Siderite nodules - Gradational contact - Non-fossiliferous	Crevasse splay
675—		The state of the s	Underclay - Gray - Slickensides - Siderite crystals - Sharp contact - Heavily bioturbated Shale - Gray - Micaceous - Thinly laminated - Planar bedded - Siderite crystals - Gradational contact - Heavily bioturbated	Paleosol Lagoonal shale

NAME COOPER (CW-1 S	TRU	CTURAL SETTING	CHEROKEE BASIN
LOCATION SE SW	SW 11-T35S-R18E		DESCRIBED BY:	JONATHAN LANGE
LITHOLOGY GRAIN CARBON GN PK WKE IM CLASTI Sand Wedimum Line Line	UDST EVAP CS	-	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE MARCH 2003 UNIT: Cherokee Group PAGE 22 OF 30 PAGES REMARKS, INTERPRETATION
685—	\frac{\}{\} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	45	Shale, same as above	
- - - - - - - - - - - - -			- Medium to dark gray - Micaceous - Thinly laminated - Planar bedded - Fractured - Siderite nodules in lower half - Gradational contact - Non-fossiliferous	
695—	0	46		
			Coal - Gas show Underclay - Gray - Pedogenic - Rooting and plant fragments - Slickensides - Siderite crystals - Sharp contact - Bioturbated	Rowe Coal Exposure surface Paleosol

NAME	E COOPER CW-1	STI	RU	CTURAL SETTING	CHEROKEE BASIN
LOCA	TION SE SW SW 11-T35S-	-R18E		DESCRIBED BY:	JONATHAN LANGE
PTH (FT)	THOLOGY GRAIN SIZE AND ST CARBONATES N PK WKE MUDST EVAP CLASTICS Sand PK WKE MUDST EVAP SAND S	LITHOLOGY	BOX#	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE MARCH 2003 UNIT: Cherokee Group PAGE 23 OF 30 PAGES REMARKS, INTERPRETATION
705			47	Shale - Dark gray to black - Micaceous - Thinly laminated - Planar to lenticular bedded - Siderite bands - Gradational contact - Non-fossiliferous	Flooding surface
715—				Underclay Gray Pedogenic Rooting and plant fragments Siderite crystals Slickensides Sharp contact Bioturbated Shale Medium gray Micaceous	Paleosol Flooding surface Exposure surface Lagoonal shale
			48	- Thinly laminated - Planar bedding - Pedogenically altered at top 2' - Siderite nodules - Gradational contact - Heavily bioturbated	

NAM	IE COOPER CW-1		STRU	JCTURAL SETTING	CHEROKEE BASIN
LOC	ATION SE SW SW 11	-T35S-R18E		DESCRIBED BY:	JONATHAN LANGE
F	CARBONATES GN PK WKE MUDST CLASTICS Sand SAND ON ON ON ON ON ON ON ON	LITHOL	_	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils Shale	DATE MARCH 2003 UNIT: Cherokee Group PAGE 24 OF 30 PAGES REMARKS, INTERPRETATION Non-marine, outside shale
725—				- Dark gray to black - Micaceous with a calcareous cement at 735' - Thinly laminated - Planar to lenticular bedded - Sparse siderite nodules - Sparse plant fragments - Gradational contact	
735—			49		

NA	ME COOPER CW-1	STRU	CTURAL SETTING	CHEROKEE BASIN
LO	CATION SE SW SW 11-T35S-R18E		DESCRIBED BY:	JONATHAN LANGE
DEPTH (FT)	CARBONATES GN PK WKE MUDST EVAP CLASTICS Sand Sand Size Si		DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE MARCH 2003 UNIT: Cherokee Group PAGE 25 OF 30 PAGES REMARKS, INTERPRETATION
745—			Underclay Gray Pedogenic Plant fragments and rooting Siderite nodules Laminated on bottom Sharp contact Bioturbated	Paleosol Lagoonal shale
755—			Shale - Dark gray to black - Micaceous with a calcareous cement between 764.9'-766.7' - Planar bedding - Plant fragments - Siderite nodules - Gradational contact - Bioturbated on top - Bioclastic fragments	Lagounai suaje

NA	ME	COOPER CW-1		STR	U	CTURAL SETTING	CHEROKEE BASIN
LO	CATION	SE SW SW 11	-T35S-R18E	3	_	DESCRIBED BY:	JONATHAN LANGE
DEPTH (FT)	GN PK	OGY GRAIN SIZE A CARBONATES I WKE IMUDSTI CLASTICS Sand SERIE OF THE SERIES SAND SERIES OF THE SERIES SAND SAND SAND SAND SAND SAND SAND SAN	LITH	IOLOGY	BOX#	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE MARCH 2003 UNIT: Cherokee Group PAGE 26 OF 30 PAGES REMARKS, INTERPRETATION
765—						Abundant brachiopod fragments Coal - Good gas show Underclay - Gray - Pedogenic - Rooting and plant fragments - Carbonaccous - Siderite nodules - Sharp contact - Bioturbated	Offshore transition - Shoaling upward Transgressive lag Shelf shale - Flooding surface Neutral coal - Exposure surface
7775—		\(\lambda \)			52	Shale - Dark gray to black - Micaceous with a calcareous cement at 806' - Highly carbonaceous at 807' - Thinly laminated - Fissile - Planar bedded - Plant fragments in top 2' - Siderite nodules - Gradational contact - Bioclastic fragments and bioturbated arounf 776'	Outside nearshore shale, lagoonal shale Shelf shale

NAMECOOPER C	CW-1	STRU	CTURAL SETTING	CHEROKEE BASIN
LOCATION SE SW	SW 11-T35S-R18E		DESCRIBED BY:	JONATHAN LANGE
LITHOLOGY GRAIN CARBONA GN PK WKE IM CLASTI Sand Sand Lim PK CLASTI Sand Lim PK CLASTI Sand Lim PK CLASTI Sand	UDST EVAP CS	∣	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE MARCH 2003 UNIT: Cherokee Group PAGE 28 OF 30 PAGES REMARKS, INTERPRETATION
005	000	53	Gas show Underelay - Light gray - Pedogenic - Slightly laminated between 809° - 811° - Slickensides - Siderite nodules - Rooting and plant fragments - Sharp contact - Bioturbated	Transgressive lag — — — Flooding surface Exposure surface Palcosol
315		55	Shale - Dark gray - Micaccous - Thinly laminated - Lenticular and planar bedded - Soft sediment deformation - Gradational contact - Passively filled horizontal burrows, Planolites montanus?	Central basin - middle estuarine - Low trace fossil diversity indicates a stressed environment — — — Flooding surface

NA	ME COOPER CW-1 ST	rru	CTURAL SETTING	CHEROKEE BASIN				
LOCATION SE SW SW 11-T35S-R18E DESCRIBED BY: JONATHAN LANGE								
DEPTH (FT)	LITHOLOGY GRAIN SIZE AND STRUCTURES CARBONATES GN PK WKE MUDST EVAP CLASTICS Sand ARE SEE SEE SEE SEE SEE CARBONATES LITHOLOGY	BOX#	DESCRIPTION - Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE MARCH 2003 UNIT: Cherokee Group PAGE 29 OF 30 PAGES REMARKS, INTERPRETATION				
825—		55	- Fossils Sandstone - Light brown to dark gray - Siliceous with micaceous laminae - Very fine-grained, well sorted and well rounded - Thickly laminated - Wavy bedded - Starved wave ripples - Siderite bands - Soft sediment deformation - Gradational contact - Actively and passively filled horizontal burrows, Arenicolites,	Flooding surface Warner Sandstone Bay head delta - upper estuarine - Several 1-5cm upward silting packages representing tidal cycles - Low trace fossil diversity indicates a stressed environment - Incised valley fill - Sequence boundary at bottom of sand				
830—		-	Shale - Dark gray, lightens upward - Micaceous - Thinly laminated - Lenticular to planar bedded - Starved wave ripples - Siderite bands - Soft sediment deformation - Gradational contact - Diplocraterion burrows	Offshore transition - Shoaling upward				

LOCATION	SE SW SW 11-T35S-R18E		DESCRIBED BY: DESCRIPTION	JONATHAN LANGE
E		IOLOGY #	- Lithology - Color - Comp., Cement, or Matrix - Shape and Sorting - Bedding - Sed. Structures - Upper Contact - Fossils	DATE MARCH 2003 UNIT: Cherokee Group PAGE 30 OF 30 PAGES REMARKS, INTERPRETATION
845—			Coal - Coal partings - Poorly developed cleats - Calcite mineralization - Gas show Underclay - Light gray - Carbonaceous - Pedogenic - Slickensides - Some laminations on bottom - Plant fragments - Sharp contact - Bioturbated Shale - Light gray to black - Micaceous - Lenticular to planar bedded - Starved wave ripples - Pyrite - Slickensides - Gradational - Burrowed	Riverton Coal Riverton Coal Exposure surface Paleosol Crevasse splay - Possibly a tidal splay - Very organic rich
855—		57	Limestone - Gray - Calcarcous - Thinly bedded - Heavily weathered - Vuggy and fractured - Dissolution breceia - Cher nodules - Pyrite - Sharp contact - Non-fossiliferous - Oil stained	Flooding surface Exposure surface Salt water marsh - swampy environment Mississippian/Pennsylvanian Unconformity Mississippian Limestone - Karstic
-				Bottom of run

Appendix B

Formation Tops and Core Photos

Company: Kansas Geological Survey

Well: Cooper CW-1
County: Labette State: Kansas
Location: 125' FSL & 1320' FWL SE-SW-SW 11-T35S-R18E

Formation Tops	Depth (md)	Box #1
Bandera Shale	22'	01-09
Pawnee Limestone	150'	09-11
Anna Shale	178'	11-12
Peru Sandstone	185'	12-17
Fort Scott	262'	17-22
Higginsville Limestone	262'	17-19
Little Osage Shale	300'	19-20
Black Jack Creek Limestone	305'	20-22
Excello Shale	340'	22-23
Cherokee Group	350'	23-57
Brezzy Hill Limestone	350'	23-24
IP coal	382'	25
Upper Squirrel Sandstone	387'	25
Bevier coal	393'	26
Lower Squirrel Sandstone	394'	26
Verdigris	406'	27
V-Shale	410'	27
Fleming coal	420'	28
Mineral coal	464'	31
Scammon coal	485'	32
Skinner Sandstone	489'	32-33
Tebo coal	525'	35
Bartlesville Sandstone	597'	40-41
Drywood coal	630'	42
Rowe coal	696'	46
Neutral coal	767'	51
Warner Sandstone	821'	55
Riverton coal	840'	56
Mississippian	853'	57

Desorption Characteristics of Cooper #Cw-1 Samples

Kansas Geological Survey Cooper #CW-1 SE SW SW 11-T35S-R18E

