

The Magazine Dedicated To The Tropical Fish Enthusiast

This Month's Cover: These juvenile Batfish, Platax teira, were photographed by John P. Hoover in waters off southern Oman.

FRESHWATER AND MARINE AQUARIUM (ISSN 0160 4317) is publisthed monthly by R/C Modeler Corporation, Don Dewey. President. Edrorial and Acvertising orices at 144 West Sierra Madre Eoulevard. Sverra Macte. Cahtornia 81824. Teiephone (818) 355-15 818-355-64 15 . Socond Class U.S pesiage patc at Sierta copyright 1995 by R/C Modeler Corporation. All rights reserved. Reproductions in whole or part, without wititen permission of the publisher, is pronibited. All prices appearing in this magazine are subject to change without notica. All subseriptions will be taken al the prevailing rate.
Postmaster: Send address Changes to Frestwaler And Postmaster: Send address changes to Frestwater And
Marine Aquarium, PO. Box 467 , Suerra Madre. CA $\$ 1025$. Marine Aquarum, PO. Box 487. Suerre Madre. CA 91025. EDITORIAL CONTRIBUTIONS are weicomed by Freshwater And Marine Aquarium but cannot be de accompanied by return posiage and any material accepted for publication is subject io such editorial revision as is necessary, in our discretion, 10 meet the requrrements of this magazne. Editorial material is selected on the basis of general interest io the frestwater and matine aquatium hobbyist and the publisher assumes no responsibility for accuracy of content. The opinions stated in published necessarity reflect those of the publisher. A/C Modeler Corporation assumes no responsibility for loss or camage of editorial comiributions. Upon acceplance payment will be made ather publication at our existing current raie, which covers all authors rights, title 10 , and interest in, the material mailed including, but not limited to. photos. drawings, and art work which shall be considered as text. Submission of the manuscript to Freshwater Anc Marine Aquatium expresses a warranty by the authot that the material is in no way an infringement upon the rights of others. Nole: The review or discussion of any product by
Fieshwater Ano Marine Aquarium does not construle an endorsement of that product nor any essurance as 10 its salety or performance by FAMA.
TRADEMARK AND COPYRIGHT names are used in this publication in an editorial fashion only and expressly insended to be to the beneft of the trademark owner with no intention of infringement of the tradernark or violation of the O in every occurrence of the trademarked or copyrigied in every occurrence of the trademarked or copyrighted names.
SUBSCRIPTION RATES: The United Ststes $\$ 22.00$ per year, $\$ 43.00$ iwo years. Foreign subscription including Canada and Mexico $\$ 27.50$ for one year ($n 0$ iwo year foreign). For further information, see subseription ac. Change of address notices, undelivered copies, and orders Madre, Calitornia 91025 . Allow 5 . Box 487. Sierra subseriptions and changes of addiess. Back issues available: $\$ 3.45$ U.S., $\$ 4.25$ Foreign.
ADVERTISING: Send a dvertising copy and complete instructions 10 : Advenising Depariment. Freshwater And Marine Aquarium, P.O. Box 487, Sierra Madre, Cahtornia 91025. Telephone (818) 355-1476: (800) 523.1736. FAX $818-355-6495$. The publisher reserves the right to retuse
any adverising copy.

FEATURES

8	Hawaii's Butterflyfishe Panl.	(John Hoover)
40	Colour Patterns in Cor Part 2:The Predator.	ydoras (David D. Sands Ph.D.)
104	Synthetic Description Rivulin Cyprinodonts	Of Four New Annual from Paraguay (Jean H. Huber)
143	Aphyosemion scheeli Care and breeding.	Radda, 1970 (Jaroslav Kadlec)
155	Smart Koi Update Lite with Alice.	(Margaret Hehman-Smith)
158	Book Review "Sharks."	(Dr. Peter A. Lewis)
	A Beginners Guide To Marine Invertebrates	Venomous (Paul Donovan)
202	Library \& Other Referen On The Internet Helpful research directory.	nce Resources (Garrett S. Glodek)
208	The Madagascar Lace A truly beautiful and unique aqua	Plant
211	The Community Aquar Parlll.	(Jimm Kostich)
MONTHLY COLUMNS		
Editorial...................... 2		Aquatic Maestro 85
Bettas ... And More 12		Popular Freshwater Tropicals .. 90
Beginner's Luck 28		Aquatic Environments 98
Over The Counter 36		Reef Notes 126
The Fishy Quiz................ 53		Fishy Trivia 148
Discus Beat 54		Original Descriptions 152
Basic Training 67		Piscatorial Verbiphile 170
From A Reef's Point Of View 72		Aquarium Geographic 176
Aquarium Set-Up 78		All In The Interest Of Science .. 190
If I Had Only Known \qquad 83		Freshwater Friends 198

DEPARTMENTS
Specialty Societies 219
For What It's Worth. 220
FAMA Dealer Listing 226
Showcase '95228

Publisher Don Dewey Editor Patricia Crews Advertising Manager Barbara Richardson Art Editor Susan Steele Technical Art Editor Dick Kidd Graphics Editor Mary Markley Assist. Graphics Editors
Beverly Calhoun, Joan Engmark, Diana Mitcheltree Photographic Editors
Denise Baldwin, Andrea Bertollini Contributing Editors
Frank G. Anderson, Tom Baugh,
Ben Birdsill, Michelle Blanchard, George C. Blasiola, Jt. Vince Brach, Ph.D., Bruce A. Carlson, Ted Coletti, John A. Dawes, C.W. Emmens, Bob Fenner, Lee Finley,
A. Colin Flood, Dr. David M. Ford, Garrett Glodek, Arie de Graaf, Harry Grier, Ph.D., Santiago Gutierrez, Jay Hemdal, Dennis Hough, Jeffrey C. Howe, Ken Howery, Owen R. Jeffries, Alex Kerstich, Dave Knelson, Alexander \& Sergej Kochetov, Dr. Peter A. Lewis, Dr. Gene Lucas, John Manzione, Robert Marsh, Watt Maurus, Jim Mortensen, Edmund Mowka, Jr., Michael F. McMaster, Dr. Joanne Norton,

Kevin Osborne, Gian Padovani,
Edward D. Prasek, Richard Pyle,
Jim E. Quarles, Dr. John Randall,
Dana Riddle, David D. Sands, Ph.D.
Dr. Steven J. Schift, Scott Siddall,
Ross Socoloi, Paul Speice,
Julian Sprung, Ed Stansbury,
lggy Tavares Ph.D., Dr. Leighton Taylor,
Scott Thomas, Randy Timms, Bill Volkart Office Staff
Kathleen Acton, Greg Acton, Jill Acton, Dirk Bolle, Marianne Ericksen,

Bridget Hayes, Yuki Kataoka,
Laura Nicholson, Kathy Rodriguez, Louise Stark

Abstract:

Four collecting trips undertaken from 1992 to 1994 by two families of enthusiastic aquarists, one from North America (Fromm) and the other from Holland (Van den Berg), have considerably improved our knowledge of the South American Cyprinodonts of Paraguay, and especially from the Paraguayan Chaco: 39 new collecting localities of annual species are reported, and 4 new species, all annual, described: Cynolebias patriciae n.sp.,
C. vandenbergi n.sp., C. monstrosus n.sp., and Trigonectes aplochiloides n.sp.
I. Description of four new species of annual Cyprinodonts:
. Cynolebias patriciae, new species (fig. 2 , male; fig. 3 , female; fig. 4 , juvenile).

Bư Jeon H. Huber

Museum national d'Histoire naturelle, Laborotoire d'lchtyologic, 43 rue Cuvicr, 75231 PARIS Cedex 05, Fronce.

Holotype. ANSP (1) 170424, male, 24.3 mm SL and 32 mm TL. Paraguay, Presidente Hayes department, ditch along the road to Clorinda, approximately 500 m south of Rio Negro (Station DF 93-28). 25.25S, 57.67W (in this paper latitude and longitude are stated in degrees and hundredths, not in degrees and minutes). Dan and Pat Fromm, June 11, 1993.

Paratypes. ANSP 170424B, 1 male examined, 24.0 mm SL and 30.6 TL and 10 individuals, 9 males and 1 female, of which 4 were transferred to MNHNP (abbreviations of institutional

FIg. 1: Map of collecting sles. Type localities in the inset. Drawn by M. Chauche.

Fig. 2: Adult male Cynoleblas patriclae n. sp., location DF 93-28. Photo: D. Fromm.

Fig. 4: Subadult male Cynoleblas patriciae n. sp., location DF 93-28. Photo: D. Fromm.

Fig. 3: Adult female Cynoleblas patriclae n. sp., Iocation DF 93-28. Photo: D. Fromm.

Fig. 5: Cynoleblas vandenbergl n. sp., male, locatlon LV 93/2. Photo: J.W. Hoetmer.

Fig．6：Cynoleblas vandenbergi n．sp．，female，location LV 94－34． Photo：J．W．Hoetmer： 4 4 4 2

FIg．8：Cynoleblas vandenbergl：n．sp．，drawing of a radlophotograph of a male ANSP 169800，location DF 92－114： Dräwing by P．Deynat in Huber（1994）．

Fig．10：Cynoleblas monstrosus n．sp．，female，location LV 94－33．
（Photo：J．W．Hoetmer．

names explained at the end of this
缹 MMACN，number on request．MHNH緵 1993－3620， 4 males and 1 female ＊examined，all collected with the
holotype．
Diagnosis：
W．Small relative to the average of the genus，resembling C．alexandri and Y V数 distinguished when preserved by a divather less marked dichromatism， 3 prominent anterior bars and by certain
meristic data（males average $A=23-24$
坆 versus $21-23 ; L L=23-25$ versus $25-26$ ， Wh s and especially D／A $=+2$ to +4 versus -1 5x to－3）；in addition，C．patriciae has a
line of 8－12 neuromasis in place of a preopercular canal，and many others partially surround the eye，which is placed higher．The pectorals are long， reaching the fourth anal ray in the male （scarcely the first in alexandri and affinis）and the second in the female． Finally，a significant（？）element，the membrane between the rays of the vertical fins does not extend as far as their distal edge，the opposite of affinis， thus creating a ragged outline．

Life colors：

Male，female，and juveniles dissimilar（the inverse of the color in alcohol）．Only juveniles have large ． dark gray bars on the flanks and dark

Fig．7：Cynolebias vandenbergl n．sp．，male，aberrant population， location LV 94－30．Photo：J．W．Hoetmer．

Fig．9：Cynoleblas monstrosus n．sp．，male，locatlon LV 94－33． Photo：R．H．Wildekamp．

Fig．11：Cynoleblas monstrosus n．sp．，male from the glant Fig．11：Cynoleblas monstrosus n．sp．，male from
populatlon，location LV 94－27．Photo：J．W．Hoetmer．

Flg 12: Cynoleblas monstrosus n. sp., closeup of the head,
location LV 94-27. Photo: J. W. Hoetmer.
black in color, the female bears a
strong resemblance to the other small
Cynolebias of Argentina, Uruguay, and the extreme south of Brazil.

Comparison with males of
C.alexandri and C. affinis:

紋 patriciae is easily separated from alexandri by the well marked striped pattern, in the latter made of regular brown bars; even though they are apparent only in the juvenile, broader and more distinct behind the opercule in the former.
ax patriciae is distinguished from affinis (D. Fromm, pers comm) by the disposition of spots on the flanks,
(vertically in the latter, posteriorly in a horizontal median line in the former), by the length of the lower part of the black eye bar (short in the latter; long, reaching the jaw; in the former).

Color in alcoho

The two sexes, with an intense Yertical (not oblique as in affinis) bar from one side of the eye to the other, followed by a light zone, then a dark grey zone, on the preopercule; the flanks display 7 broad dark grey bars? sometimes divided in two, and between them six narrower light bars; often, and particularly in subadults and dominant individuals, the two to four first bars behind the opercule are very dark contrariwise the following bars more grey, and they stand out strongly. The male is distinguished from the female by the presence of dark flames along all of the rays and of clear spots on the unpaired fins, as well as by the variably black trimmed end of the dorsal and anal In the female, each bar on the flanks is interuppted at least once. Sire proportions and form Size, proportions, and formulas
 ffemales a little less, after rearing in the aquarium.
6 K U K Morphological añd meristic data of

Flg. 14: Trigonectes aplochelloldes n. sp., palr, female above, location LV 94-35. Photo: J.W. Hoetmer.
the holorype, of a paratype 170424B and of paratypes in MNHN (holotype male first in bold face, then 5 males and one female; abbreviations are explained in Huber, 1992) are, after radiophotographic confirmation: $\mathrm{D}=$ 22,$23 ; 22,23,23,24,18 ; A=25,24$, $26,25,23,24,20 ; \mathrm{D} / \mathrm{A}=+2,+3,+2,+2$, $+3,+2,+4, \mathrm{LL}=25,25,24,23,25,25$, $24 ;$ TRAV. $=10,9,9,9,9,10,10 ; \mathrm{CIR}=$ $14,15,13,14,14,14,15$; L.S. (in $\mathrm{mm})=24.3,24.0,23.2,23.2,22.9,21.0$ 17.0; L.T. (in \% of L.S.) $=132 \%$, $128 \%, 131 \%, 126 \%, 124 \%, 130 \%$, 126%; P.D. $=54 \%, 57 \%, 58 \%, 57 \%$, $51 \%, 50 \%, 66 \%$; P.A. $=51 \%, 54 \%$, $53 \%, 52 \%, 49 \%, 51 \%, 59 \%$; P.V. $=$ $45 \%, 46 \%, 46 \%, 46 \%, 45 \%, 46 \%$, 53%; depth at the anal $=33 \%, 30 \%$, $34 \%, 31 \%, 29 \%, 29 \%, 34 \%$; head $=$ 33%; $31 \%, 34 \%, 34 \%, 33 \%, 30 \%$, 36%; interorbital width $=13 \%, 15 \%$, $13 \%, 13 \%, 11 \%, 10 \%$; 13%; diameter of the eye $=7 \%, 7 \%, 7 \%, 7 \%, 7 \%, 7 \%$, 9%; vertebrae $=11+15 ; 11+14,11+16$, $11+15,12+16,12+15$, no data-

One notes, as in many Cynolebias. an important sexual dimorphism. Fewer dorsal and anal rays, these fins inserted further to the rear, and form of the body more squat in the female. For example, here the female shows 4-6 fewer dorsal and anal rays, and a D / A
displacement, it seems, a little greater. this translates into a more rearwards position (8 to 10% of SL) of these fins.

Distribution

The Rio Negro crosses the road from Asuncion to Clorinda and discharges, not far from the type locality, directly into the Rio Paraguay. The other stream of the same name in that vicinity is an affluent of the Rio : Pilcomayo. The species is known only from the type locality, across the Rio Paraguay from Asuncion, the capitol of Paraguay. As the site is near the border with Argentina, it is very probable that the fish also occurs in the north of that country.

Relationships

By its green color and general conformation, C. patriciae is close to C. alexandri, described from Gualeguaychu (33.07 S ; 58.57 W) in Argentina; nearly 900 km to the south, and to C. affinis, described from Arroyo Tres Cruces (32.32S, 55.77W), in, Uruguay, approximately the same: distance to the southeast. More t, generally, C. patriciae belongs to a, group of small Cynolebias species whose rounded unpaired fins do not have long filaments, whose males have
the same average ray counts for dorsal and for anal fins, whose dorsal is inserted in front of or directly above the anal's insertion, and which have a southern distribution, viz., affinis, alexandri, costai, cyaneus, gymnoventris, luteoflammulatus, nigripinnis and patriciae. Together they form a group remarkably homogenous and distinct from other
Cynolebias and would deserve the allocation of a subgeneric name. Costa, the specialist in these fishes, will probably do this.

Etymology:

The species is dedicated to Patricia Fromm, Cherry Hill, New Jersey, U.S.A., following the wishes of her husband, with whom she discovered it.

Cynolebias vandenbergi, new species (fig. 5, male; fig. 6, female; and fig. 7, aberrant phenotype; fig. 8, drawing of a radiophotograph of a male ANSP 169800).

Holotype. ZMA 121270, male, 61.0 mm SL and 74.3 mm TL Paraguay, Boqueron Department, near Fortin Toledo, (Station LV 93-2 = LV 94-22). 22.27S., 60.54W. Leen and Arjen Van den Berg, July 23 1993, collected; Jan Willem Hoetmer, deposited.

Paratypes. NRM 20231, UFRJ 3028, 1 pair each, NMW 92900, 1 pair; MNHN 1993-297, 3 individuals (Station LV 93-2), aquarium reared. Leen and Arjen Van den Berg, 1993 coll. and J. Huber dep. ANSP 169800,4 males, of which 2 will be transferred to MNHNP (number on demand), from a roadside ditch 14.4 km from the Filadelfia airport on the road from Filadelfia to Teniente Montahia (Station DF 92-114); ANSP 169801, 5 males (Station DF 92-107B); ANSP 169802, 10 males (Station DF 92-107); ANSP 169803, 6 males (Station DF 92-110); ANSP 169804, 5 males (Station DF 92-122); ANSP 169805, 14 females (Station DF 92-122); ANSP 169806, 4 females (Station DF 92-108); ANSP 169807, 3 females (Station DF 92-114); ANSP 169808, 5 females (Station DF 92-110); ANSP 169809, 4 males (Station DF 92-108); ANSP 169810,

7 females (Station DF 92-107B); ANSP 169811, 1 female (Station DF 92-110); MNHN 1993-3618, 4 females, taken from lot ANSP 169812 of 23 females collected 19.3 km from Mariscal Estigarribia on the Ruta TransChaco (Station DF 92-107): Dan Fromm, 10-13 October 1992. dep. ANSP 170425, 2 males (Station DF 93-21); ANSP 170426, 1 female (Station DF 93-12); Dan and Pat Fromm, 7 and 5 June 1993, dep. ZMA 121272 , 4 individuals (Station LV 94-22); ZMA 121276 and MHNG (1) 2571.72, respectively 4 and 3 individuals (Station LV 94-26); ZMA 121277, 4 males (Station LV 94-24): ZMA 121278, 3 females (Station LV 94-36); ZMA 121279, 2 males and 2 females (Station LV 94-36); ZMA 121282, 2 individuals (Station LV 94-34); MNHN 1994-1107, UFRJ 3029 and FMNH (1) 105075 , comprising 5, 6 , and 3 individuals respectively (Station LV 94-30). Leen Van den Berg coll., 1994; Jan Willem Hoetmer dep.

Diagnosis

Very deep-bodied and of average to large size relative to the average of the genus, resembling C. bellontii, but easily distinguished from it by a less
marked sexual dichromatism, anterior bars darker than the posterior and by morphomeristic characteristics (for example more dorsal and anal rays. smaller D/A displacement): in addition. C. vandenbergi possesses a double series of cephalic neuromasts forming an extension of the prenpercular line towards the snout, as well as, in the male, much longer pectorals, reaching to the third ray of the anal: finally, C. vandenbergi does not have the white marginal band which surrounds the caudal of male bellomii: the adult males display regular and complete series of ctenoid spines on the flanks, as many as transverse series of scales, and on the 4-6 rows of scales at the base of the anal.

Life colors

Male and female differ litule. Both have the characteristic black bar which crosses the eye and, variably, some 15 vertical dark grey bars on a lighter base. In addition, the male displays numerous little whitish yellow shining spots all over the flanks; the spots are also found on the dorsal and anal, near their bases on a rather dark base. These two fins are dark-edged, while the tail is uniformly dark grey. The female has
at least one or two black spots behind the opercle, bright golden reflections on the upper flanks and some greyish flames on a transparent base in front of the dorsal and anal.

Colors in alcohol: very variable

Both sexes, with a variable black vertical bar, more intense below the eye, followed by a pale zone, then a dark grey zone, on the preopercule; the flanks bear 13 to 15 broad vertical dark grey bars, some of them, depending on the individual, more intense than others (rather high up on the flanks) or replaced by black spots (somewhat behind the opercule). In the male, the barred pattern is inconstant. Females' fins are unspotted; the males' fins are dark grey, with the pectorals and sometimes the dorsal and the anal edged in black, and clear spots near the bases of the latter two fins.

Size, proportions, and formulas

Males around 90 mm TL, females a little less, after rearing in the aquarium (the largest male, from lot MNHN 1993-297, measures 86.7 mm). Morphological and meristic data of 16 types examined, 6 males and 10 females (??) (holotype first and in
bold face) are, after radiophotographic confirmation: $\mathrm{D}=26,25,24,23,23,28$, $21,18,23,21,22,22,27,24,21,21$; $A=31,30,30,26,26,31,28,26,27$, $24,26,26,32,26,26,26 ; D / A=+4,+4$, $+4,+3,+5,+4,+2,+5,+4,+2,+4,+4$, $+5,+4,+4,+5 ; \mathrm{LL}=30,32,31,30,32$, $30,30,31,31,30,30,29,30,30,31$, 28 ; pDor $=24,23,19,19,19,22,21$, 23, 22, 20, 22, 22, 17, 21, 19, 20;
TRAV. $=16,18,17,17,16,17,16,17$, $17,15,16,15,16,17,17,16$; CIR $=20$, $19,21,19,18,19,20,20,19,18,18$, $19,19,22,21,18$; L.S. $($ in mm$)=61.0$, 62.4, 61.5, 47.8, 50.4, 32.8, 53.0, 43.6, 43.1, 39.9, 36.1, 31.9, 37.8, 52.2, 45.8, 37.8; L.T. (in \% of L.S.) $=122 \%$, $121 \%, 120 \%, 121 \%, 121 \%, 127 \%$, $122 \%, 124 \%, 123 \%, 130 \%, 129 \%$, $121 \%, 122 \%, 125 \%, 124 \%, 125 \%$; P.D. $=54 \%, 58 \%, 55 \%, 57 \%, 55 \%$, $54 \%, 61 \%, 60 \%, 60 \%, 59 \%, 57 \%$, $57 \%, 51 \%, 61 \%, 64 \%, 52 \%$; P.A. $=$ $46 \%, 46 \%, 47 \%, 49 \%, 45 \%, 55 \%$, $58 \%, 55 \%, 53 \%, 56 \%, 53 \%, 49 \%$, $49 \%, 56 \%, 56 \%, 48 \%$; P.V. $=40 \%$, $40 \%, 40 \%, 43 \%, 39 \%, 46 \%, 49 \%$, $45 \%, 45 \%, 48 \%, 46 \%, 42 \%, 43 \%$, $46 \%, 46 \%, 44 \%$; depth at the anal $=$ $41 \%, 42 \%, 41 \%, 41 \%, 38 \%, 37 \%$, $42 \%, 41 \%, 38 \%, 39 \%, 39 \%, 36 \%$, $35 \%, 38 \%, 41 \%, 36 \%$; head $=30 \%$, $29 \%, 28 \%, 28 \%, 28 \%, 36 \%, 30 \%$, $28 \%, 28 \%, 28 \%, 29 \%, 29 \%, 29 \%$, $30 \%, 28 \%, 31 \%$; interorbital width $=$ $16 \%, 15 \%, 13 \%, 12 \%, 12 \%, 11 \%$, $14 \%, 13 \%, 12 \%, 13 \%, 11 \%, 11 \%$, $10 \%, 12 \%, 13 \%, 13 \%$; diameter of the eye $=$ from 6% to 8%; vertebrae $=$ $14+18,13+17,13+18,12+18,13+18$, $13+18,13+16,13+18,13+18,13+18$, $12+17,13+17,13+18,12+18,13+18$, $13+17$.

Sexual dimorphism is shown notably in the lower contour of the body behind the anal; it's much less deep in the female; in addition, females' frontal profile (sometimes as flattened as in some Chaetodon) is so variable that they might be taken for several different species. The classic Cynolebias sexual dimorphism (dorsal and anal rays; predorsal and preanal lengths; etc.) is very strong, but difficult to place in evidence given the great variability and the similarity of color patterns. C. vandenbergi is also characterized by the presence in the male of an exceptional number of ctenoid spines (almost on each scale in some specimens) on the flanks, the preopercle, and the tail. Finally, there are 17-22 neuromasts at the bottom of each of the sensory canals of the forehead, and the lateral line extends at
least 6 scales onto the caudal peduncle.

Distribution

The species is known from 16 collecting sites (see fig. 1) in the high Chaco, in the vicinity of Filadelfia in northwestem Paraguay. The limits of its distribution are unknown.

Relationships

C. vandenbergi belongs to a group of Cynolebias species with medium to large size; with deep and rhomboidal form; that do not prey on congeners; unpaired fins without long filaments, and, in addition, rounded; and with a southern distribution; viz., adloff, bellottii, carvalhoi(?), cinereus, melanoorus, vandenbergi, and viarius.

Etymology

This species is dedicated to Leen Van den Berg and his son Arjen, of Maarn, the Netherlands, its codiscoverors with the Fromms.

Important note

The study and diagnosis of this species turned out to be formidably complex. Even after many tests, the possibility that it actually comprises two different species cannot be entirely
ruled out: extreme variability in the same sex in morphology, number of rays, presence or absence of particular neuromasts or of ctenoid spines; variability of certain osteological characters; reversal of characteristic features of male and female coloration, confirmed by aquarists; and selective courtship behavior that is difficult to understand. The conservative approach has prevailed here because of the impossibility of finding distinctive, stable, and objective criteria and because of the remarkable stability of the D/A displacement, of scale counts in the longitudinal series, and of numbers of vertebrae.

Cynolebias monstrosus, new species (fig. 9, male; fig. 10, female; fig. 11, male from the giant population; and fig. 12, male's head).

Holotype. MNHN 1994-1110, male, 105.5 mm SL amd 128.9 mm TL Paraguay, Boqueron department, near La Serena (Station LV 94-27). 21.94S, 56.97W. Leen Van den Berg, 15 March 1994, coll. and Jan Willem Hoetmer, dep.

Paratypes. MNHN 1994-1111, female, with the same data as the holotype. ANSP 169974, 1 pair, of which the male will be transferred to MNHNP (number on demand), from a pool by the road from Filadelfia to Fortin Toledo, 32.3 km south of the Ruta TransChaco (Station DF 92-110); ANSP 169973, 1 pair (Station DF 92-107) and ANSP 169975, 2 males (?) (Station DF 92-107B), of which the largest has been transferred to MNHN, No 1993-3619; Dan Fromm,
October 1992, coll. and dep. ZMA 121281, 3 individuals (Station LV 94-33); ZMA 121284, 4 males (Station LV 94-33); ZMA 121285, 1 pair (Station LV 94-28); NMW-92899, 1 individual (Station LV 94-23). Leen Van den Berg, 1994 coll. and Jan Willem Hoetmer, dep.

Diagnosis

Of very great size, probably, with C. porosus, the largest of the genus; similar to C. elongatus and C. prognathus, but easily distinguished by the color pattern, composed of 13 to 14 prominent bars on the flanks and by morphomeristic data (notably, the much higher number of scales in the longitudinal series, the strong reduction in the depth of the body behind the anal, with a form generally elongate, approximately from $28-30 \%$ to $14-18 \%$ in SL); additionally, C. monstrosus has approximately 104 neuromasts (a
$+8,+7,+6,+7,+7,+8 ; \mathrm{LL}=66+9$, $68+3,77,63,64,65,74,67$, TRAV $=$ 21, 23, 26, 20, 20, 20, 22, 24; L.S. (in $\mathrm{mm})=105.5,86.0,76.9,73.8,65.1$, $54.1,65.2,68.8$; L.T. (in $\%$ of SL)= $122 \%, 122 \%, 127 \%, 118 \%, 122 \%$, $124 \%, 123 \%, 117 \%$; P.D. $=68 \%, 70 \%$, $70 \%, 68 \%, 70 \%, 68 \%, 70 \%, 70 \%$; P.A. $=60 \%, 60 \%, 58 \%, 57 \%, 57 \%$, $60 \%, 56 \%, 57 \%$; P.V. $=54 \%, 53 \%$, $50 \%, 49 \%, 49 \%, 51 \%, 50 \%, 50 \%$; depth at the anal $=\mathbf{2 7 \%}, 28 \%, 33 \%$, $28 \%, 28 \%, 27 \%, 31 \%, 27 \%$; head= $\mathbf{3 7 \%}, 40 \%, 37 \%, 36 \%, 38 \%, 38 \%$, $38 \%, 38 \%$; interorbital width $=17 \%$, $14 \%, 15 \%, 15 \%, 14 \%, 13 \%, 16 \%$, 14%; diameter the eye $=4 \%, 5 \%, 4 \%$, $5 \%, 4 \%, 4 \%, 4 \%, 5 \%$; snout $=11 \%$, $11 \%, 8 \%, 8 \%, 9 \%, 9 \%, 9 \%, 10 \%$; vertebrae $=15+22,14+19,12+21$, $13+21,13+21,13+21,12+21,13+22$.

For comparison, in the single type of elongatus (which we have examined and for which Dr. B. Herzig has kindly sent a radiophotograph), counts are: $D=$ 19; $\mathrm{A}=23$; $\mathrm{D} / \mathrm{A}=+3$; $\mathrm{LL}=48$; L.T. $=$ 122%; P.D. $=68 \%$; P.A. $=67 \%$; P.V. $=$ 59% : depth at the anal $=30 \%$; vertebrae $=14+21$.

The general form is massive, notably the head, which is very long and wider than the rest of the body, making one think immediately of a predator (cf. fig. 12); the teeth in the outer row are numerous, unicuspid, and strongly recurved towards the inside. Sexual dimorphism is weak (morphology) to nonexistent (number of rays in and insertion of the vertical fins), as in Cynopoccilus and al., but contrary to the other Cynolebias.

Distribution

The species is known from seven collecting sites in the high Chaco, in the vicinity of Filadelfia, in northwestern Paraguay; the limits of its distribution are unknown. The type locality of C. elongatus is "La Plata" (by assumption, near the town, 25.88 S , 58.91 W), around 1500 km from the monstrosus sites; its other known collecting sites are all near Buenos Aires. The type locality of prognathus is "Las Maravillas" in southeastern Uruguay (33.65S, 53.67W in Huber, 1994), roughly 1300 km from the monstrosus sites.

Relationships

C. monstrosus belongs to a group of very large species of Cynolebias having a cylindrical body and a massive appearance; with more than 45 scales in the longitudinal series; agressive;
eating large prey including their smaller congeners such as C. chacoensis and C. bitteri; having unpaired fins without long filaments; without gonopodium: and having a rather southern distribution. Viz., C. elongatus, C. monstrosus, and
C. prognathus. C. porosus, type species of the genus Cynolebias Steindachner 1978, and other forms described by Costa from Brazil (albipunctatus, griseus, leptocephalus and perforatus) could easily be included in the group, for they share certain of the traits listed
above (with, always, a somewhat lower LL), as well as, to a lesser degree, cherodophilus, schreitmuelleri and wolierstorff. This group could make up the typical subgenus Cynolebias. s.s., containing several superspecies.

Etymology

From the Latin monstrum, referring to the species' shape and behavior; common name given by Dan Fromm "pike-like monster."

History:

The species was discovered 10 October, 1992 (ANSP 160073); however, Dan Fromm reports that specimens collected previously are cataloged in MHNHP as C. elongatus.

Trigonectes aplocheiloides, new species (fig. 13, male, and fig. 14, male and female)

Holotype. MNHN 1994-1 104, male, 75.9 mm SL and 93.1 mm TL . Paraguay, Boqueron department, 74 km from Mariscal Estigarribia in the direction of Americo Picco, (Station LV 94-35). 21.30S, 60.51W. Leen Van den Berg, 16 March 1994, coll. and Jan Willem Hoetmer, dep.; maintained in aquarium for 4 months.

Paratype, MNHN 1994-1105,
female, 69.8 mm SL and 83.6 mm TL , with the same data as the holotype.

Paratypes. ANSP 169976, 3 individuals, the largest probably a female, respectively $69.1,34.6$, and 25.9 mm SL, Paraguay. KM 464.1 on the Ruta TransChaco (Station DF 92-103); ANSP 169977, 1 individual (Station DF 92-109); ANSP 169980. 1 juvenile (Station DF 92-122), Dan Fromm, 9 to 13 October 1992, coll. and dep. ANSP 170416, 2 individuals (Station DF 93-21); ANSP 170420, 1 individual (Station DF 93-25). Dan and Pat Fromm, 7 June 1993, coll. and dep.

Diagnosis

Of great size relative to the average of the genus, distinguished from all of the other Trigonectes by the color of the flanks (yellow-green spots, not red-brown), by the morphology which makes it appear like, to the point of being mistaken for, a fish of the Cyprinodont genus Aplocheilus from the Indo-Malaysian subcontinent (frontal profile greatly flattened, fusiform body, dorsal fin set far back, with, additionally, a generally ochre coloration).

Life colors

The male and female differ little, the female having paler coloration, as in Rivulus: both have two grey-black bars from top to bottom of the ey'e; a yellow band with orange speckles near the base of the anal; and (?) an oblong
bright yellow blotch on the forehead: additionally, in the male the distal part of the anal and the lower part of the caudal are bright orange. The flanks of both sexes are covered by 8-10 longitudinal series of bright yellow to green spots on an ochre to rose base,
somewhat like Rivulus bahianus; a shining yellow preopercular blotch is likewise very distinct; the male's other fins are orange ventrals, the dorsal with chestnut reticulations and a vestigial basal band as in the anal, and finally the tail streaked with brown; the female's fins have similar but paler coloration; take note of an elegant little touch, that the ventrals are edged in white.

Color in alcohol (after 12 hours

 fixation)Males, with unspotted flanks, dorsal and anal orange at the base, additionally with dark spots near the base and on all of the dorsal; the lower abdomen is orange; a grey vertical zone appears clearly on the tail to the rear of the peduncle; the female is similar, except for the flanks, which are spotted and the tail, dorsal, and anal, which are completely yellow; in both sexes the lower lip is dark, as is the preopercular region.

Size, proportions, and formulas
Males around 100 mm TL, females a litule less, after rearing in the aquarium. Morphologic and meristic data of the 7 types mentioned (holotype, male, first and in bold face, then 6 probably females) are. after radiophotographic confirmation: $\mathrm{D}=$ $13,14,12,12,12,13,13 ; A=17,17$, $16,16,17,17,16 ; D / A=+7,+6,+6,+7$, $+8,+7,+7$; LL $=36+4,37,35,33,34$, 35,$37 ;$ TRAV. $=11,11,9,10,10,11$, 11; L.S. $($ in mm$)=75.9,69.8,69.1$, 34.6, 25.9, 28.4, 36.6; L.T. (in \% of L.S.) $=123 \%, 120 \%, 124 \%, 126 \%$, $127 \%, 125 \%, 125 \%$; P.D. $=73 \%, 72 \%$, $74 \%, 73 \%, 72 \%, 74 \%, 73 \%$; P.A. $=$ $64 \%, 67 \%, 67 \%, 64 \%, 62 \%, 66 \%$, 66%; P.V. $=50 \%, 53 \%, 54 \%, 52 \%$, $50 \%, 54 \%, 53 \%$; depth of the anal= $23 \%, 20 \%, 20 \%, 20 \%, 19 \%, 21 \%$, 20%; head $=28 \%, 29 \%, 27 \%, 32 \%$, $32 \%, 31 \%, 30 \%$; interorbital width $=$ $14 \%, 15 \%, 13 \%, 13 \%, 12 \%, 11 \%$, 12%; diameter of the eye $=6 \%, 7 \%$, $7 \%, 7 \%, 8 \%, 8 \%, 6 \%$; vertebrae $=$ $15+18,16+18,15+17,15+18,16+18$, $16+17,15+18$.

The pectorals are long for a Trigonectes: 21% of SL in the male and 18% in the female; the ventrals are long, but much less than in the other members of the genus: in males they reach only to the second or third anal ray.

There are around
22 circumpeduncular scales and 24-30
predorsal scales. There is no outstanding sexual dimorphism:
ventrals a little longer in males, but vertical fins not pointed in either sex (respectively, very long and filamentous in T. balzanii).

Distribution

The species is known from five collecting sites in the high Chaco, in the vicinity of Filadelfia, in northwestern Paraguay; the limits of its distribution are unknown. T. balzanii, a species common to Brazil and Paraguay, is known to the northeast and to the south in the drainage of the Rio Paraguay. We doubt that the two species are sympatric.

Relationships

Although is it clearly distinguished from the other members of the genus, T. aplocheiloides belongs in Trigonectes s.s. The genus is very close to Rivulus and a more extensive study could even merge them if new characters are not used in the analysis. In fact, the criteria commonly believed to separate the two genera (filamentous ventrals, annual development, reproductive behavior) are no longer supportable because of the discovery of intermediate Rivulus species and because of the new diagnosis of Rivulus (Huber, 1992).

Costa (1990b), with the description of two new Brazilian Trigonectes species, tried to redefine the genus on the basis of osteological characters, but his data set was unfortunately too limited.

Etymology

Similar to Aplocheilus, a Cyprinodont genus of the Old World.

II. Conclusion

Thanks to teams of enthusiastic amateurs, the first significant approach to Paraguayan Cyprinodonts has been proposed for the annual forms.

Much field work remains to be done; in fact, collections have been made in only 10% of the country, life colors from the type localities of taxa as important as Rivulus punctatus, Neofundulus paraguayensis, and N. ornatipinnis are not yet known, and additional extremely limited, therefore not discussed here, collections allow us
to expect the discovery of interesting forms.

The bases of the enormous morphological (including the sensory organs) meristic, and behavioral variability established above, and not only in Cynolebias vandenbergi, as well as habitat partitioning in the wild also remain to be understood.

This augurs well for the future and will provide the stimulus necessary for new expeditions by killie fanciers.

III. Acknowledgements

It is to the credit of the American amateurs Daniel and Patricia Fromm that they had the insight and courage to be the first aquarists to mount a systematic collecting trip to this country, which they believed rich in annual species allied to the genus Cynolebias. In fact, until the 1980's, it was firmly believed that the distribution of annual Rivulins in South America was restricted to coastal regions of Venezuela, Brazil, Uruguay, and Argentina. It was only at the end of the decade that numerous collections from the interior plateau of Brazil, thanks to LaCorte, Campello-Brasil, and Costa, proved the opposite.

With the Fromms' new collections, in October, 1992, and May and June, 1993, and those of the Dutch collector Leen Van den Berg and his son Arjen, in July, 1993 and March 1994, one region of Paraguay, the high Chaco, has been well worked over. Some sites have been visited twice at a one year interval. In addition, the Fromms made a single collection of annuals not far from Asuncion (cf. figure 1, a map of the high Chaco). Thanks to their initiatives, many of these fishes have been brought back alive and reared for the first time, and their ecology is better understood. Specimens have been deposited in museums in quantities sufficient to make study possible. We thank the collectors for having given specimens to museums. We thank them also for the valuable advice that they have given us and for having shared their aquaristic experiences with us. We note finally that all of the specimens donated by Jan Willem Hoetmer had been held for 2 to 4 months in the
aquarium.
We are especially grateful to
Prof. J. Daget (MNHN), Dr. M.L. Bauchot (MNHN), R.H. Wildekamp (Gemert), Dr. E. Maury and J. Braga (MACN, Buenos Aires), and to an anonymous reviewer for having reviewed the manuscript. Dr. W.J.E.M. Costa (UFRJ, Rio de Janeiro) also reviewed it, but his notes and new publications reached us only after it had been finalized. We thank as well Mme. de Soutter (MNHN) for having checked scale counts for the types of C. monstrosus.

Finally we thank Dan Fromm (Cherry Hill) for his translation of this text, an abstracted version of the French original. The full text includes history of collections; ecology of the Chaco; diagnoses of three other species (Cynolebias chacoensis, Neofundulus paraguayensis, Ptcrolebias sp. aff. longipinnis, and Trigonectes balzanii); and a preliminary discussion of the genus Cynolebias and its allies, which revalidates Simpsonichthys as a subgenus and places Plesiolebias as a subgenus of Cynolebias.

Bibliography:
Amato, L.H. 1986. Seis Especies
nuevas del Genero Cynolebias Stdr. 1876, de Uruguay y Paraguay (Cyprinodontiformes. Rivulidae). Communicaciones Zoologicas del Museo de Historia Natural de Montevideo, 11 (162): 4-7, fig. 3-6. Costa, W.J.E.M. 1988. Sistematica e Distribuicao do genero Neofundulus (Cyprinodontiformes, Rivulidae). Rev. Brasil Biol., 48 (2): 110, fig.
--. 1990a. Descricao de um genero e
duas especies novas de peixes anuais do centro da America do Sul. Communicaciones de Museu de Ciencias, Pontifica U'niv. Catolica do Rio Grande do Sul, 2 (1989) (10): 195-198, fig.
--. 1990b. Systematics \&
Distribution of the Neotropical annual Fish genus Trigonectes
(Cyprinodontiformes, Rivulidae), with description of two new species.
Ichthyol. Explor. Freshwaters, 1 (2):
141-144, fig.
--. 1991. Systematics \& Distribution of the Neotropical annual Fish genus Plesiolebias, with Description of a new species. Ichthyol. Explor. Freshwaters, 1(4): 375, fig.
--. 1992. Review of Rivulus. Ecobiogeography - Relationships. Cybium Suppl., Societe Francaise
d'Ichtyologie Publ.: 586 pp., 40 pls., 85 figs, 8 tabs, 13 maps.
--. 1994. Killi-Data 1994. Updated checklist of taxonomic names, collecting localities \& bibliographic references of oviparous Cyprinodont fishes (Cyprinodontoidei); in French, English, \& German. Cybium, Soc. fr. Ichtyologie, Ed., Paris: 1-366.

Parenti, L.R. 1981. A phylogenetic \& biogeographic Analysis of Cyprinodontiformes Fishes (Teleostei, Atherinomorpha). Bull. Amer. Mus. Nat., 168 (4): 335-557, 99 figs.

Abbreviations of institutions' names: ANSP: Academy of Natural Sciences of Philadelphia (USA); MNHN: Museum national d'Histoire naturelle de Paris (France); ZMA: Zoologisch Museum Amsterdam (The Netherlands); MNHNP: Museo National de Historia Natural del Paraguay (Asuncion); NMW: Naturhistorisches Museum Wien (Austria); NRM: Naturhistorika Rijks Museum, Stockholm (Sweden); UFRJ: Universidad Federal do Rio de Janeiro (Brazil); MACN: Museo Argentino de Ciencias Naturales (Buenos Aires); MHNG: Musee d'Histoire Naturelle de Geneve (Switzerland).

