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First quantization

Second quantization

Classical particles are

assigned wave amplitudes | | wave fields are “quantized” to
describe the problem in
terms of “quanta” or particles.




Simple Harmonic Oscillator

A more general solution is

$(t) =cleiwt + 62e—iwt

To quantize it, we say

[z,p|=ih

A very very important trick is to write this as
_ T L P t— \/E _ P
@ 2h ($+mw)’ “ 2h (:z: mw)

[a,,a"] =

with

Then

H=hw<a*a. 4 %)

Thus energy eigenstates are eigenstates of the number operator
N=a'a




£ In Second Quantization one introduces the creation operator such that a
L2 state can be written as

pi) = ¢}, |0)
this state has to be normalized, that is,

(pilp:) = (Olep.c,|0) = (Olep,|pi) =1

from where it follows that
IO) = Cp, Ipt}
and the operator ¢, can be interpreted as the annihilation operator of a particle

Vacuum

(0[0) =1

ak|0>=0:




N|n)=n|n)
a'lny=vn+1n+1)
alny = valn 1)




i Anticommutation relation

operation
{A,B} = AB+ BA

is called the anticommutator of A and B, and these operators anticommute if

{A,B} =0

Summing these two equations one gets,
(Olexe] + clex|0) = 8

which is valid independently of whether |j) and |k) are particle or hole states. It is
a general equation and, therefore, the creation-annihilation operators satisfy

{Cj’ C;rc} = éjk'



t 1 tt, 1.t
a .,a;t=aa +aa =0

=a a; +a}a. =0,

H

{al.a}}
{a,. ,a}.}-a,.aj+aja. =0
{a..a}




Hole state
the Fermi level (FL) all states are occupied and one can not place a particle

there. In other words, the A-particle state |0), with all levels hi occupied, is the
ground state of the inert (frozen) double magic core.

This implies that the hole state h; in the (A-1)-nucleon system is

|h‘l) - chilo)

V(r)

Figure 5: Excitations h; in the (A-1)-particle nucleus. It looks like at the level h;
there is a hole in the completely filled states of the core. Therefore the states below
the Fermi level are called "hole excitations”. A hole at the more deeply bound level

hz induces a higher excitation than the one at h;.




Occupation number

n; = (0lcje;[0)

ism; = 1is j is a hole state and n; = 0 if j is a particle state. In the same fashion it
is (0|cjc;-|0) =1 (0) if j is a particle (hole) state, that is (Olcjc;‘-IO) = 1 - n;. Therefore
n; is called occupation number of the state j.
In general it is
(0|clex|0) = n;dj,

and
(0fexct|0) = (1 — ny)dj%.

H=hw(afa+%)

Thus energy eigenstates are eigenstates of the number operator
N=a'a
which is Hermetian. Also, all the stuff we saw last time is true
N|n)=n|n)
alln)=vn+1n+1)

aln)=+/njn-1)



First quantizaiton:

Slater determinant Second quantizaiton

y—) |jk)=alafo)

ij(ql) ¥, (q,)
‘/5 j(qz) ¥, (q,)

lpjk (4,,9,) =

a'|0) one-particle state
States af aj. |O> two-particle state | described |
. by Slater determinants
a;r aj. . a: 0) N-particle state ) jn, first quantization




la®byg = 1L (la; ® by) + |ay ® by))  bosons; symmetric

V2

la®b)r = % (la; ® by) — |a, ® b))  fermions; anti — symmetric

oConvenient to describe processes in which particles are created and annihilated;
oConvenient to describe interactions.

First quantizaiton:

Slater determinant Second quantizaiton

¥ ( ?/’(q;) v,(q,)
#(44,) = J_ (@) v.(q,)

y—) |jk)=alaf o)




In second quantization the antisymmetrized two-particle state is |ij), = c}c}lO),
since it implies
c:.‘c; = —c;'.c}‘ = c;.'cf =0
as required by the Pauli principle. In the same fashion

CiCj = —CiC

Therefore
{cici} ={c,¢j} =0
Since the state |0) corresponds to a nucleus with A = N + Z nucleons, the state
c! c;‘.|0) corresponds to A + 2 nucleons. Therefore

(Olclcf|0) =0, (0lcic;[0) =0

for all ¢ and j.




Normal product

Operators in second quantization
Creation/Annihilation operations
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Geccupation Number Formalism

LSS

Fermion Creation and Annihilation Operators

n,..n,...) = (=1 1)* n, o)
1> 1)21 (1 n)nn % P >

Yi =n+n,+..+n,, i.e. number of particles to left of ith
Boson Creation and Annihilation Operators

)y =1’|nn,..n,...

1/2
1> = (ni + ) ‘nlnz...ni...>

Fermion examples

C;

+
C; |1

a;|1,

+
a; |1

c,[1111100) = (-1)"'1/1101100) =|1101100)




n; = (0|clc;[0)

isn; = 1is j is a hole state and n; = 0 if j is a particle state. In the same fashion it
is (0|CjC;IO) =1 (0) if j is a particle (hole) state, that is (0|c,-c;-|0) = 1 - n;. Therefore
n; is called occupation number of the state j.

In general it is
(0|C}Ck|0) = njéjk,

and
(Olexct]0) = (1 —n,)d.



al product (order)

Normal ordering for fermions is defined by rearranging all creation operators to the left
of annihilation operators, but keeping track of the anti-commutations relations at each
operator exchange.




ppal product (order)

£2 === S}

Since (0|c,-c}|0) = (1 — n;)d;;, one can write
c,-c} = (1 — n;)0;;+ : c,-c;- :
where : c,-c;’- : is defined by the relation,
(0| : c,fc;. :10) =0

The operator : AB : is called normal product between A and B. In the same fashion

t. N
c;cj = Nibij+ : ¢i¢cj ¢

From these equations one gets (using {¢;, c;} =0;; )

e 8. — ol — (1 — P
cic; = 0;; —cjc; = (1 —n;)0;— : cic;

but
cicl = (1= ny)d;+ @ ¢icl

P [P, P
-C‘C' . -ct'cjn

J




Contraction

mO(H KON5T¥
One uses the notation

C-iC} = (1 — n,-)é,;,-; C:!Cj — n,-é,-j
[
The operation AB is called contraction of the operators A and B. The contraction

is a number.

The confraction of arbitrary creation or annihilation operators A and B
designated by -

AB

is defined as the difference between the ordinary and the normal product
of the operators Aand B :

M
AB=AB-:AB:




Already in normal form

P S .
aa;=:aa;: ala; =0

aa;=:aa;: —> aa;=0

We defined t ;
c;c; = nidij+ : ¢;c;
T T
ch = (1 -_— nz)ézj, CiCj = 'n,;(sz'j
Thus

—
| f t

C;C; =CCjt+ ¢

ij .




{731 Wick’s theorem

The next degree of complication is when two contractions are possible, for in-
stance

f f i |

f f t f f.al t.af
+C;Cj i CkCy : — C;Ck : CjC) ¢ —CjC; : C;Ck : T+ CkCy & C;Cj -

Ll 1 J " )

|
fo ool —elon ool
+ €;Cj CkC; — C;C Cj(

1

one needs one permutation to get the term c} Ck : cjc;r and therefore a minus sign is
added. The same is done to get the signs of all other terms. The mean value of this

operator is,

(0lclejexcl|0) = cle; ckc;f - cfckc c, = 1;0;;(1 — g )0 — N30 (1 — ;)85




theorem

One can write any product of creation and annihilation operators in normal form
by using the Wick’s Theorem. It says that the product of operators,

A1A2A3 e An-lAn

where A; is cI or ¢;, can be written as

A1AxAs - Ap 1A = A1 AAs - Ap 1 An
| |
+ A1A2 . A3 s An—lAn .
L —
- Al& : A2 v 'An—lAn :
+ +++ (all single-contractions)
+ 'AlAz"AsA.; . As sov An—lAn .

- './41}1;;":‘12144l tAscr Apn14n :
+ -+ (all double-contractions)
+ - ++ (upto n/2-contractions)

The plus or minus sign in each term is determined by the number of permutations
one must do in order to arrive to the final form of the term. An odd (even) number
of permutation gives a minus (plus) sign.

The great property of this theorem is that it allows one to get in a straightforward
fashion the mean value of the product of operators, which is what one usually needs.
This number is just the term without normal products, i. e. the last two terms in
the equation above.




Every operator in the Fock’s space can be written as a product of
creation and annihilation operators. In general, every operation takes

the form:
M
> O(m,n),

mn=0

m creation and n annihilation
operators in normal order




2% One-body operator in second quantization

o3

ne-body operators depend upon one radial coordinate r only. In second quan-
tization a one-body operator M can be written as,

M=) (p|Mlg)cjc,
pq

where p and g run over all single-particle states (particle- as well as hole-states).




~

To proof that this is correct we will evaluate the matrix element of M between two
single-particle states, i. e. (A+1)-states of the form |i) = c||0) for which n; = 0.
The final result of this calculation sould be that we get the matrix element itself
again.

We then evaluate

(il M]5) =(0le;Mc}[0) = D _(p|M]g)(0leichec]|0)

Pq

= (pIM|g)(0] cich coc} + cicl chey [0)
Pq

: (1)
= 3 w1g) [(1 = m)Bip(1 = )64 + (1 = 7:)igmy )

=(1 — n:)(1 — ny) (i M5) + (1 — ms)8; an(P|M|P)

and we see that with n; = n; = 0 we get the matrix element we needed, i. e.
(2|M |7), but that there is also another contribution which appears only when i = j.
This corresponds to the sum of the mean values of M over all hole states. It is
the interaction of the particles in the A-nucleon core among themselves, leaving the
particle in the (A+1)-nucleus untouched. This term is called ” core polarization”.




To avoid polarization effects one defines

M= Z(p|M|q) :c;cq :
P

that is, one assumes that M itself includes polarization. One sees that this avoids
the core polarization term, since one cannot contract the indeces p and ¢ (i. e. the
term J,, in Eq. (1)).




the core polarization effect in the one-particle case above, one defines the two-body
operator in second quantization in normal form, i. e. as,

M = Z(aﬁlMl'y&) ¢l chese, (2)

afBvé

and evaluate the matrix element of this operator between antisymmetrized two-
particle states, i. e. states in the (A+2)-nucleus. Our aim is to show that this
procedure will indeed provide the antisymmetrized matrix element. In this context




The antisymmetrized two-particle states are,

[i)a = cle}|0) = o(ij| = (0l(c]c))" = (Olejc: (7.41)
and the matrix element is,
(7| M|kl)a =Y (aB|M|y8){0lc;c; : clehese, : ciel[0) (7.42)
afvys

Since the mean value of operators in normal form vanishes, the terms that survive contain
only contractions. They are,

¢jci : ¢! c},c ¢, :ciel = [c,c* chﬂ gc}, c,cf ] [c.,ckc 5C; — c.,c, c‘;ck] (7.43)
which give,
(i KDe = 3 (@BIIT6) [(1 = n)Bia(L = n;)635 — (1 = n)dis(1 = ;)]
afvyé

X [(1 — nk)ék.,(l — n1)615 — (1 — nk)(s}“s(l — n,)J;.,]
=(1 = a)(1 = ) (1 = ) (1 =) [ G|V 1T} — Gl M|kl
— (1= (1 = ) (1 = i) (1 — ) [ (i |tk)a — (il |1k o

(7.44)



The matrix element antisymmetrized to the right only becomes,
(76| M|kl)a = (il M [|kl) — |tk)] = (7| M [|tk) — |kl)] = —(ij| M|kL)q
and Eq. (3) becomes,

o(i5|Mkl)e = (1 —n:)(1 —n;) (1 — ng) (1 — ng) o(i5| M |kl)q

The Hamiltonian becomes,

1
H =3 (a|T|B)ches + 3 D _{aBIV hd)clckese,.
af al~yé



Random Phase approximation and Tamm-Dancoff
approximation



P

One-body operators depend upon one radial coordinate r only. In second quan-
tization a one-body operator M can be written as,

M = Z(lelq cle, = Z<p|M|q ey : +cleg]

(il M|35) —<0|ciMC§I0) = Z(lelq ){(0lcicheqct|0)

—Z(p|M|q (0|c,c cqc)'+c,c C;Cq |0)
=Z<p|M|q (1 = )85 (1 = 13)65 + (1 = )8y
Pq

=(1 —n;)(1 — ;) (| M]5) + (1 — n:)é;; Y _ ny(p| M|p)

Two-body operator

M= Z(aﬁthd) : ¢l chesey

af~vyd




We found that to avoid core excitations the one-body operator should be defined
in terms of normal products. That is to use : ¢lcs : instead of ¢l cz. It was due
to this that we wrote the two-body operator in normal form also. But in doing so
we bypassed what maybe an important physics. And indeed there is an important

H = Z(aITIB )eleg + 4;“5(aBIV|76 chescy.

Converting to normal form one gets,

H= ZalTlm( s +clos) + - Z(aﬁIVhJ)[ clehese,
aﬁé
1 1 ! 1 1

+ ¢ e c}ca — el Tcs c};c., cﬁc.7 : c};c(,-+ : c5c5 : chT

+Jg%q—dq%q




pati€e-Fock potential
$ verenscar &

After some algebra to be performed,

1
H = Ey+ Hur + 1 Z(aﬁWI'y&) : c’{,,c:gctsc7 ;
afvé

where

Eo = Y nafalTlo) + 5 3 (aB|V]aB) ©
o ap

This is the kinetic energy of particles in the occupied states plus the interaction
between particles placed in any pair of levels of the representation. It is the energy
carried by the core, as can also be seen by noticing that E, = (0|H|0).

The one-body Hamiltonian is

Hur=) ((alTlﬂ) + Zm(a‘erlﬁ’Y}a)  ches

al

In this Hamiltonian the levels a and 3 include all states of the representation. These
are the levels that we will occupied by particles which eventually will be added to the




The one-body Hamiltonian is

Hyp =) ((alTlﬂ) + Zm(a7IV|ﬂ7)a)  ches

af

In this Hamiltonian the levels a and 3 include all states of the representation. These
are the levels that we will occupied by particles which eventually will be added to the
core. One thus sees that Hyr contains the core excitations through the interaction
of particles in all occupied states (called |y) in Hyr) with the rest of the particles
(including those in the core). The Hamiltonian Hyp, which is called the Hartree-
Fock Hamiltonian, thus corresponds to the core excitation which in the one-body
case were assumed to be contained in the renormalized operators.




The diagonalization of Hyr provides the Hartree-Fock representation. This is
not a very easy task because it is not a linear problem. To see this we write Hyp
in Dirac notation, i.e.

Hyp = Z@ ) ((a|T|,B) + an(a'y|V|ﬂ7)a) (8]

and the Hartree-Fock representation will be defined by the eigenvectors {|i)} given
by,
Hypli) = &ilt)

To solve this eigenvalue problem we multiply by (a| from the left to get,

> ((aITlﬂ) - Zm(aﬂvwm> (Bl3) = e:(ali)

3

and the eigenvectors are obtained by imposing the normalization condition,

5} = (ali)la), (ili) =1

(83

Within the representation {|7)} it should be
I (|Hurli) = €idi; |



Random Phase Approximation (RPA)

is of two nucleons added or substracted from the core. For this we will write the
Hamiltonian in the Hartre-Fock representation which we will label with greek as
well as latin letters. It is,

H = Zsa L clcy +% Z(aﬂth) : ch:gcac,, ; (7)
a afvyé

where £, is the Hartrre-Fock single-particle energy. The constant energy Ej, Eq.
(6), is not included because all eigenvalues of the Hamiltonian (7) will be referred
to the core and, therefore, Ey plays no role.




Ez
Lo e==="co,

To obtain the two-particle energi% we evaluate the commutator,

[ ] Zsz[ ¢t olcﬁ] + = zJ|V|kl)[ c,c,c ! Lc:g]

=(eq + £5)cCl, c'r +(1—ne— ng) z (i§|V]aB)qc! c (8)
1<J
+ Zz (ij|V|Bl), : ¢! c clep: — ZZ(zﬂVlal)a c} ctchl
i< i<j

One sees in this equation that the two-particle creation operators are mixed with
three-particle one-hole excitations, that is with core excitation components. In the
Random Phase Approximation (RPA) one neglects the core excitations, that is terms
of the form (n| : ¢! ;'c};c; |0}, because they are supposed to generate states which
lie high in the spectrum, thus having little influence over the low-lying two-particle




one gets,
(nal | H, clich] 10) =(Bny — Eo)(nalctchlo)
=(ea + &5)(nalclc}|0) + (1 — ma —ns) 3 (i5]V|aB)a(nalclc][0)

i<j

which is the RPA equation. The term 1 —n, —ng in the RPA equations shows that
one can place two particles above the Fermi level, in which case it is 1 —n, —ng =
1, or below it (1 —n, —ng = -1). These two forms of excitations are mixed to each
other, given rise to the so-called RPA correlations. This also implies that within
the RPA one evaluates simultaneously the (A+2)- and (A-2)-systems and, therefore,
there is an influence of one system upon the other.




With w,, = E,, — Ey the RPA equation can be written in matrix form as

()= (% ) (3) ®
where X,,,(af3) = (n2|c’{,c}|0) with @ and S particle states and Y,,,(af) = (n2|c:f,cf3|0)
but with a and 8 hole states. In the same fashion the indices of A are all particle
states and the indices of D are all hole states. Instead in the matrices B and C
the indices are mixed. For instance C(af8vd) = (vd|V|aB)., where o and § are
hole states while v and § are particle states. Notice that the minus sign in front of
the matrices C and D comes from the factor 1 — n, — ng in Eq. (9). Due to this,

the RPA matrix (10) is not Hermitian and, therefore, the energies w,, can become
complex quantities.



The two-particle state can be written as,

Ino) =) X (B, na)chchl0)
a<pB
and multiplying by (ms| one gets
Bromy = Y X (B, na)(malclch|0)
a<lfB

since the basis elements form and independent set one finds, comparing with Eq.

(13),
X(aB,n) = (1 — nq — ng)(na|c),ch|0)*

which is the RPA wave function amplitude.



Clgsed.shell: 1p-1h correlation

EEEEEEEEEEEE

p-h phonon operator Q" = 2 X a a. - E Y a’a,

0" koot olrpa)-0

Fermi Energy

o | >0

RPA equation

el )

=(¢, —€,)0, 0, +V

mnij nijm

ml nj

~~




gD amkoff Approximation (TDA)

The difference between TDA and RPA is that we use
>The simple particle-hole vacuum |HF> in TDA
>The correlated ground state in the RPA




am BDankoff Approximation (TDA)

We will concentrate in the shell model in this course, and here one has either
two-particle or two-hole excitations, and the (A+2) and (A-2) systems are indepen-
dent of each other. The shell model cases are actually particular cases of the RPA
since one gets them by imposing the condition that only particles can occupied par-
ticle states and only holes can occupied hole states. This is called Tamm-Damkoff
approximation (TDA).

This approximation implies that the matrices B and C vanish in Eq. (10). The
particle- and hole-states decoupled and the RPA equation transforms in two TDA
equations, one for particle states, i. e.

WnyXn, = AXy,
and the other one for hole states,

—Wn,Yn, = DY,

Since the matrices A and D are Hermitians the energies are real, as they should be.




(nol [H, cl,ch] 10) =(E. — Eo)(nalclchl0)

=(ea + £5)(nalcl,c5[0) + Z(ij|V|aﬁ)a(m|c;-'c}|0) (14)
i<j

which is the TDA equation. It is also the shell model equation, which we will apply
in the next Chapter.

For holes

(na| [H, cacs] |0) =(En, — Eo){n2|cacs|0)
= — (ea +2p)(nalclchl0) + Y _(iV]aB)a(naleic;|0)

i<j



The TDA wave function can be written in the two-particle basis {cl,c5|0) }, where
it should be & < B because the states a3 and Bo are related by {cl,c5[0)} = -
{clcl]0)}. One thus gets,

In2) = > X(aB;na)clch0) (16)

a<f

The TDA eigenvectors (n2|c:f,c£|0) and the wave function amplitudes X are related
by,
(malno) = bmyny, = Y X (083 na)(malclch|0)

a<f

since the basis states chLIO) form an independent set of unit vectors, it should be
X (af;ng) = (nalchch|0)”



